1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
|
/*
* This file is part of the coreboot project.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <arch/early_variables.h>
#include <console/console.h>
#include <arch/io.h>
#include <cpu/x86/msr.h>
#include <cpu/x86/tsc.h>
#include <smp/spinlock.h>
#include <delay.h>
#include <thread.h>
static unsigned long clocks_per_usec CAR_GLOBAL;
#define CLOCK_TICK_RATE 1193180U /* Underlying HZ */
/* ------ Calibrate the TSC -------
* Too much 64-bit arithmetic here to do this cleanly in C, and for
* accuracy's sake we want to keep the overhead on the CTC speaker (channel 2)
* output busy loop as low as possible. We avoid reading the CTC registers
* directly because of the awkward 8-bit access mechanism of the 82C54
* device.
*/
#define CALIBRATE_INTERVAL ((2*CLOCK_TICK_RATE)/1000) /* 2ms */
#define CALIBRATE_DIVISOR (2*1000) /* 2ms / 2000 == 1usec */
static unsigned long calibrate_tsc_with_pit(void)
{
/* Set the Gate high, disable speaker */
outb((inb(0x61) & ~0x02) | 0x01, 0x61);
/*
* Now let's take care of CTC channel 2
*
* Set the Gate high, program CTC channel 2 for mode 0,
* (interrupt on terminal count mode), binary count,
* load 5 * LATCH count, (LSB and MSB) to begin countdown.
*/
outb(0xb0, 0x43); /* binary, mode 0, LSB/MSB, Ch 2 */
outb(CALIBRATE_INTERVAL & 0xff, 0x42); /* LSB of count */
outb(CALIBRATE_INTERVAL >> 8, 0x42); /* MSB of count */
{
tsc_t start;
tsc_t end;
unsigned long count;
start = rdtsc();
count = 0;
do {
count++;
} while ((inb(0x61) & 0x20) == 0);
end = rdtsc();
/* Error: ECTCNEVERSET */
if (count <= 1)
goto bad_ctc;
/* 64-bit subtract - gcc just messes up with long longs */
__asm__("subl %2,%0\n\t"
"sbbl %3,%1"
: "=a" (end.lo), "=d" (end.hi)
: "g" (start.lo), "g" (start.hi),
"0" (end.lo), "1" (end.hi));
/* Error: ECPUTOOFAST */
if (end.hi)
goto bad_ctc;
/* Error: ECPUTOOSLOW */
if (end.lo <= CALIBRATE_DIVISOR)
goto bad_ctc;
return CEIL_DIV(end.lo, CALIBRATE_DIVISOR);
}
/*
* The CTC wasn't reliable: we got a hit on the very first read,
* or the CPU was so fast/slow that the quotient wouldn't fit in
* 32 bits..
*/
bad_ctc:
printk(BIOS_ERR, "bad_ctc\n");
return 0;
}
static unsigned long calibrate_tsc(void)
{
if (IS_ENABLED(CONFIG_TSC_CONSTANT_RATE))
return tsc_freq_mhz();
else
return calibrate_tsc_with_pit();
}
void init_timer(void)
{
if (!car_get_var(clocks_per_usec))
car_set_var(clocks_per_usec, calibrate_tsc());
}
static inline unsigned long get_clocks_per_usec(void)
{
init_timer();
return car_get_var(clocks_per_usec);
}
void udelay(unsigned int us)
{
unsigned long long start;
unsigned long long current;
unsigned long long clocks;
if (!thread_yield_microseconds(us))
return;
start = rdtscll();
clocks = us;
clocks *= get_clocks_per_usec();
current = rdtscll();
while ((current - start) < clocks) {
cpu_relax();
current = rdtscll();
}
}
#if CONFIG_TSC_MONOTONIC_TIMER
#include <timer.h>
static struct monotonic_counter {
int initialized;
struct mono_time time;
uint64_t last_value;
} mono_counter_g CAR_GLOBAL;
static inline struct monotonic_counter *get_monotonic_context(void)
{
return car_get_var_ptr(&mono_counter_g);
}
void timer_monotonic_get(struct mono_time *mt)
{
uint64_t current_tick;
uint64_t ticks_elapsed;
unsigned long ticks_per_usec;
struct monotonic_counter *mono_counter;
mono_counter = get_monotonic_context();
if (!mono_counter->initialized) {
init_timer();
mono_counter->last_value = rdtscll();
mono_counter->initialized = 1;
}
current_tick = rdtscll();
ticks_elapsed = current_tick - mono_counter->last_value;
ticks_per_usec = get_clocks_per_usec();
/* Update current time and tick values only if a full tick occurred. */
if (ticks_elapsed >= ticks_per_usec) {
uint64_t usecs_elapsed;
usecs_elapsed = ticks_elapsed / ticks_per_usec;
mono_time_add_usecs(&mono_counter->time, (long)usecs_elapsed);
mono_counter->last_value = current_tick;
}
/* Save result. */
*mt = mono_counter->time;
}
#endif
|