1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
|
/* SPDX-License-Identifier: GPL-2.0-only */
#include <stdint.h>
#include <string.h>
#include <rmodule.h>
#include <cpu/x86/smm.h>
#include <commonlib/helpers.h>
#include <console/console.h>
#include <security/intel/stm/SmmStm.h>
#define FXSAVE_SIZE 512
#define SMM_CODE_SEGMENT_SIZE 0x10000
/* FXSAVE area during relocation. While it may not be strictly needed the
SMM stub code relies on the FXSAVE area being non-zero to enable SSE
instructions within SMM mode. */
static uint8_t fxsave_area_relocation[CONFIG_MAX_CPUS][FXSAVE_SIZE]
__attribute__((aligned(16)));
/*
* Components that make up the SMRAM:
* 1. Save state - the total save state memory used
* 2. Stack - stacks for the CPUs in the SMM handler
* 3. Stub - SMM stub code for calling into handler
* 4. Handler - C-based SMM handler.
*
* The components are assumed to consist of one consecutive region.
*/
/* These parameters are used by the SMM stub code. A pointer to the params
* is also passed to the C-base handler. */
struct smm_stub_params {
u32 stack_size;
u32 stack_top;
u32 c_handler;
u32 c_handler_arg;
u32 fxsave_area;
u32 fxsave_area_size;
struct smm_runtime runtime;
} __packed;
/*
* The stub is the entry point that sets up protected mode and stacks for each
* CPU. It then calls into the SMM handler module. It is encoded as an rmodule.
*/
extern unsigned char _binary_smmstub_start[];
/* Per CPU minimum stack size. */
#define SMM_MINIMUM_STACK_SIZE 32
struct cpu_smm_info {
uint8_t active;
uintptr_t smbase;
uintptr_t entry;
uintptr_t ss_start;
uintptr_t code_start;
uintptr_t code_end;
};
struct cpu_smm_info cpus[CONFIG_MAX_CPUS] = { 0 };
/*
* This method creates a map of all the CPU entry points, save state locations
* and the beginning and end of code segments for each CPU. This map is used
* during relocation to properly align as many CPUs that can fit into the SMRAM
* region. For more information on how SMRAM works, refer to the latest Intel
* developer's manuals (volume 3, chapter 34). SMRAM is divided up into the
* following regions:
* +-----------------+ Top of SMRAM
* | | <- MSEG, FXSAVE
* +-----------------+
* | common |
* | smi handler | 64K
* | |
* +-----------------+
* | CPU 0 code seg |
* +-----------------+
* | CPU 1 code seg |
* +-----------------+
* | CPU x code seg |
* +-----------------+
* | |
* | |
* +-----------------+
* | stacks |
* +-----------------+ <- START of SMRAM
*
* The code below checks when a code segment is full and begins placing the remainder
* CPUs in the lower segments. The entry point for each CPU is smbase + 0x8000
* and save state is smbase + 0x8000 + (0x8000 - state save size). Save state
* area grows downward into the CPUs entry point. Therefore staggering too many
* CPUs in one 32K block will corrupt CPU0's entry code as the save states move
* downward.
* input : smbase of first CPU (all other CPUs
* will go below this address)
* input : num_cpus in the system. The map will
* be created from 0 to num_cpus.
*/
static int smm_create_map(uintptr_t smbase, unsigned int num_cpus,
const struct smm_loader_params *params)
{
unsigned int i;
struct rmodule smm_stub;
unsigned int ss_size = params->per_cpu_save_state_size, stub_size;
unsigned int smm_entry_offset = params->smm_main_entry_offset;
unsigned int seg_count = 0, segments = 0, available;
unsigned int cpus_in_segment = 0;
unsigned int base = smbase;
if (rmodule_parse(&_binary_smmstub_start, &smm_stub)) {
printk(BIOS_ERR, "%s: unable to get SMM module size\n", __func__);
return 0;
}
stub_size = rmodule_memory_size(&smm_stub);
/* How many CPUs can fit into one 64K segment? */
available = 0xFFFF - smm_entry_offset - ss_size - stub_size;
if (available > 0) {
cpus_in_segment = available / ss_size;
/* minimum segments needed will always be 1 */
segments = num_cpus / cpus_in_segment + 1;
printk(BIOS_DEBUG,
"%s: cpus allowed in one segment %d\n", __func__, cpus_in_segment);
printk(BIOS_DEBUG,
"%s: min # of segments needed %d\n", __func__, segments);
} else {
printk(BIOS_ERR, "%s: not enough space in SMM to setup all CPUs\n", __func__);
printk(BIOS_ERR, " save state & stub size need to be reduced\n");
printk(BIOS_ERR, " or increase SMRAM size\n");
return 0;
}
if (sizeof(cpus) / sizeof(struct cpu_smm_info) < num_cpus) {
printk(BIOS_ERR,
"%s: increase MAX_CPUS in Kconfig\n", __func__);
return 0;
}
for (i = 0; i < num_cpus; i++) {
cpus[i].smbase = base;
cpus[i].entry = base + smm_entry_offset;
cpus[i].ss_start = cpus[i].entry + (smm_entry_offset - ss_size);
cpus[i].code_start = cpus[i].entry;
cpus[i].code_end = cpus[i].entry + stub_size;
cpus[i].active = 1;
base -= ss_size;
seg_count++;
if (seg_count >= cpus_in_segment) {
base -= smm_entry_offset;
seg_count = 0;
}
}
if (CONFIG_DEFAULT_CONSOLE_LOGLEVEL >= BIOS_DEBUG) {
seg_count = 0;
for (i = 0; i < num_cpus; i++) {
printk(BIOS_DEBUG, "CPU 0x%x\n", i);
printk(BIOS_DEBUG,
" smbase %zx entry %zx\n",
cpus[i].smbase, cpus[i].entry);
printk(BIOS_DEBUG,
" ss_start %zx code_end %zx\n",
cpus[i].ss_start, cpus[i].code_end);
seg_count++;
if (seg_count >= cpus_in_segment) {
printk(BIOS_DEBUG,
"-------------NEW CODE SEGMENT --------------\n");
seg_count = 0;
}
}
}
return 1;
}
/*
* This method expects the smm relocation map to be complete.
* This method does not read any HW registers, it simply uses a
* map that was created during SMM setup.
* input: cpu_num - cpu number which is used as an index into the
* map to return the smbase
*/
u32 smm_get_cpu_smbase(unsigned int cpu_num)
{
if (cpu_num < CONFIG_MAX_CPUS) {
if (cpus[cpu_num].active)
return cpus[cpu_num].smbase;
}
return 0;
}
/*
* This method assumes that at least 1 CPU has been set up from
* which it will place other CPUs below its smbase ensuring that
* save state does not clobber the first CPUs init code segment. The init
* code which is the smm stub code is the same for all CPUs. They enter
* smm, setup stacks (based on their apic id), enter protected mode
* and then jump to the common smi handler. The stack is allocated
* at the beginning of smram (aka tseg base, not smbase). The stack
* pointer for each CPU is calculated by using its apic id
* (code is in smm_stub.s)
* Each entry point will now have the same stub code which, sets up the CPU
* stack, enters protected mode and then jumps to the smi handler. It is
* important to enter protected mode before the jump because the "jump to
* address" might be larger than the 20bit address supported by real mode.
* SMI entry right now is in real mode.
* input: smbase - this is the smbase of the first cpu not the smbase
* where tseg starts (aka smram_start). All CPUs code segment
* and stack will be below this point except for the common
* SMI handler which is one segment above
* input: num_cpus - number of cpus that need relocation including
* the first CPU (though its code is already loaded)
* input: top of stack (stacks work downward by default in Intel HW)
* output: return -1, if runtime smi code could not be installed. In
* this case SMM will not work and any SMI's generated will
* cause a CPU shutdown or general protection fault because
* the appropriate smi handling code was not installed
*/
static int smm_place_entry_code(uintptr_t smbase, unsigned int num_cpus,
unsigned int stack_top, const struct smm_loader_params *params)
{
unsigned int i;
unsigned int size;
if (smm_create_map(smbase, num_cpus, params)) {
/*
* Ensure there was enough space and the last CPUs smbase
* did not encroach upon the stack. Stack top is smram start
* + size of stack.
*/
if (cpus[num_cpus].active) {
if (cpus[num_cpus - 1].smbase +
params->smm_main_entry_offset < stack_top) {
printk(BIOS_ERR, "%s: stack encroachment\n", __func__);
printk(BIOS_ERR, "%s: smbase %zx, stack_top %x\n",
__func__, cpus[num_cpus].smbase, stack_top);
return 0;
}
}
} else {
printk(BIOS_ERR, "%s: unable to place smm entry code\n", __func__);
return 0;
}
printk(BIOS_INFO, "%s: smbase %zx, stack_top %x\n",
__func__, cpus[num_cpus-1].smbase, stack_top);
/* start at 1, the first CPU stub code is already there */
size = cpus[0].code_end - cpus[0].code_start;
for (i = 1; i < num_cpus; i++) {
memcpy((int *)cpus[i].code_start, (int *)cpus[0].code_start, size);
printk(BIOS_DEBUG,
"SMM Module: placing smm entry code at %zx, cpu # 0x%x\n",
cpus[i].code_start, i);
printk(BIOS_DEBUG, "%s: copying from %zx to %zx 0x%x bytes\n",
__func__, cpus[0].code_start, cpus[i].code_start, size);
}
return 1;
}
/*
* Place stacks in base -> base + size region, but ensure the stacks don't
* overlap the staggered entry points.
*/
static void *smm_stub_place_stacks(char *base, size_t size,
struct smm_loader_params *params)
{
size_t total_stack_size;
char *stacks_top;
/* If stack space is requested assume the space lives in the lower
* half of SMRAM. */
total_stack_size = params->per_cpu_stack_size *
params->num_concurrent_stacks;
printk(BIOS_DEBUG, "%s: cpus: %zx : stack space: needed -> %zx\n",
__func__, params->num_concurrent_stacks,
total_stack_size);
printk(BIOS_DEBUG, " available -> %zx : per_cpu_stack_size : %zx\n",
size, params->per_cpu_stack_size);
/* There has to be at least one stack user. */
if (params->num_concurrent_stacks < 1)
return NULL;
/* Total stack size cannot fit. */
if (total_stack_size > size)
return NULL;
/* Stacks extend down to SMBASE */
stacks_top = &base[total_stack_size];
printk(BIOS_DEBUG, "%s: exit, stack_top %p\n", __func__, stacks_top);
return stacks_top;
}
/*
* Place the staggered entry points for each CPU. The entry points are
* staggered by the per CPU SMM save state size extending down from
* SMM_ENTRY_OFFSET.
*/
static int smm_stub_place_staggered_entry_points(char *base,
const struct smm_loader_params *params, const struct rmodule *smm_stub)
{
size_t stub_entry_offset;
int rc = 1;
stub_entry_offset = rmodule_entry_offset(smm_stub);
/* Each CPU now has its own stub code, which enters protected mode,
* sets up the stack, and then jumps to common SMI handler
*/
if (params->num_concurrent_save_states > 1 || stub_entry_offset != 0) {
rc = smm_place_entry_code((unsigned int)base,
params->num_concurrent_save_states,
(unsigned int)params->stack_top, params);
}
return rc;
}
/*
* The stub setup code assumes it is completely contained within the
* default SMRAM size (0x10000) for the default SMI handler (entry at
* 0x30000), but no assumption should be made for the permanent SMI handler.
* The placement of CPU entry points for permanent handler are determined
* by the number of CPUs in the system and the amount of SMRAM.
* There are potentially 3 regions to place
* within the default SMRAM size:
* 1. Save state areas
* 2. Stub code
* 3. Stack areas
*
* The save state and smm stack are treated as contiguous for the number of
* concurrent areas requested. The save state always lives at the top of the
* the CPUS smbase (and the entry point is at offset 0x8000). This allows only a certain
* number of CPUs with staggered entry points until the save state area comes
* down far enough to overwrite/corrupt the entry code (stub code). Therefore,
* an SMM map is created to avoid this corruption, see smm_create_map() above.
* This module setup code works for the default (0x30000) SMM handler setup and the
* permanent SMM handler.
*/
static int smm_module_setup_stub(void *smbase, size_t smm_size,
struct smm_loader_params *params,
void *fxsave_area)
{
size_t total_save_state_size;
size_t smm_stub_size;
size_t stub_entry_offset;
char *smm_stub_loc;
void *stacks_top;
size_t size;
char *base;
size_t i;
struct smm_stub_params *stub_params;
struct rmodule smm_stub;
unsigned int total_size_all;
base = smbase;
size = smm_size;
/* The number of concurrent stacks cannot exceed CONFIG_MAX_CPUS. */
if (params->num_concurrent_stacks > CONFIG_MAX_CPUS) {
printk(BIOS_ERR, "%s: not enough stacks\n", __func__);
return -1;
}
/* Fail if can't parse the smm stub rmodule. */
if (rmodule_parse(&_binary_smmstub_start, &smm_stub)) {
printk(BIOS_ERR, "%s: unable to parse smm stub\n", __func__);
return -1;
}
/* Adjust remaining size to account for save state. */
total_save_state_size = params->per_cpu_save_state_size *
params->num_concurrent_save_states;
if (total_save_state_size > size) {
printk(BIOS_ERR,
"%s: more state save space needed:need -> %zx:available->%zx\n",
__func__, total_save_state_size, size);
return -1;
}
size -= total_save_state_size;
/* The save state size encroached over the first SMM entry point. */
if (size <= params->smm_main_entry_offset) {
printk(BIOS_ERR, "%s: encroachment over SMM entry point\n", __func__);
printk(BIOS_ERR, "%s: state save size: %zx : smm_entry_offset -> %x\n",
__func__, size, params->smm_main_entry_offset);
return -1;
}
/* Need a minimum stack size and alignment. */
if (params->per_cpu_stack_size <= SMM_MINIMUM_STACK_SIZE ||
(params->per_cpu_stack_size & 3) != 0) {
printk(BIOS_ERR, "%s: need minimum stack size\n", __func__);
return -1;
}
smm_stub_loc = NULL;
smm_stub_size = rmodule_memory_size(&smm_stub);
stub_entry_offset = rmodule_entry_offset(&smm_stub);
/* Put the stub at the main entry point */
smm_stub_loc = &base[params->smm_main_entry_offset];
/* Stub is too big to fit. */
if (smm_stub_size > (size - params->smm_main_entry_offset)) {
printk(BIOS_ERR, "%s: stub is too big to fit\n", __func__);
return -1;
}
/* The stacks, if requested, live in the lower half of SMRAM space
* for default handler, but for relocated handler it lives at the beginning
* of SMRAM which is TSEG base
*/
size = params->num_concurrent_stacks * params->per_cpu_stack_size;
stacks_top = smm_stub_place_stacks((char *)params->smram_start, size, params);
if (stacks_top == NULL) {
printk(BIOS_ERR, "%s: not enough space for stacks\n", __func__);
printk(BIOS_ERR, "%s: ....need -> %p : available -> %zx\n", __func__,
base, size);
return -1;
}
params->stack_top = stacks_top;
/* Load the stub. */
if (rmodule_load(smm_stub_loc, &smm_stub)) {
printk(BIOS_ERR, "%s: load module failed\n", __func__);
return -1;
}
if (!smm_stub_place_staggered_entry_points(base, params, &smm_stub)) {
printk(BIOS_ERR, "%s: staggered entry points failed\n", __func__);
return -1;
}
/* Setup the parameters for the stub code. */
stub_params = rmodule_parameters(&smm_stub);
stub_params->stack_top = (uintptr_t)stacks_top;
stub_params->stack_size = params->per_cpu_stack_size;
stub_params->c_handler = (uintptr_t)params->handler;
stub_params->c_handler_arg = (uintptr_t)params->handler_arg;
stub_params->fxsave_area = (uintptr_t)fxsave_area;
stub_params->fxsave_area_size = FXSAVE_SIZE;
stub_params->runtime.smbase = (uintptr_t)smbase;
stub_params->runtime.smm_size = smm_size;
stub_params->runtime.save_state_size = params->per_cpu_save_state_size;
stub_params->runtime.num_cpus = params->num_concurrent_stacks;
printk(BIOS_DEBUG, "%s: stack_end = 0x%x\n",
__func__, stub_params->runtime.smbase);
printk(BIOS_DEBUG,
"%s: stack_top = 0x%x\n", __func__, stub_params->stack_top);
printk(BIOS_DEBUG, "%s: stack_size = 0x%x\n",
__func__, stub_params->stack_size);
printk(BIOS_DEBUG, "%s: runtime.smbase = 0x%x\n",
__func__, stub_params->runtime.smbase);
printk(BIOS_DEBUG, "%s: runtime.start32_offset = 0x%x\n", __func__,
stub_params->runtime.start32_offset);
printk(BIOS_DEBUG, "%s: runtime.smm_size = 0x%zx\n",
__func__, smm_size);
printk(BIOS_DEBUG, "%s: per_cpu_save_state_size = 0x%x\n",
__func__, stub_params->runtime.save_state_size);
printk(BIOS_DEBUG, "%s: num_cpus = 0x%x\n", __func__,
stub_params->runtime.num_cpus);
printk(BIOS_DEBUG, "%s: total_save_state_size = 0x%x\n",
__func__, (stub_params->runtime.save_state_size *
stub_params->runtime.num_cpus));
total_size_all = stub_params->stack_size +
(stub_params->runtime.save_state_size *
stub_params->runtime.num_cpus);
printk(BIOS_DEBUG, "%s: total_size_all = 0x%x\n", __func__,
total_size_all);
/* Initialize the APIC id to CPU number table to be 1:1 */
for (i = 0; i < params->num_concurrent_stacks; i++)
stub_params->runtime.apic_id_to_cpu[i] = i;
/* Allow the initiator to manipulate SMM stub parameters. */
params->runtime = &stub_params->runtime;
printk(BIOS_DEBUG, "SMM Module: stub loaded at %p. Will call %p(%p)\n",
smm_stub_loc, params->handler, params->handler_arg);
return 0;
}
/*
* smm_setup_relocation_handler assumes the callback is already loaded in
* memory. i.e. Another SMM module isn't chained to the stub. The other
* assumption is that the stub will be entered from the default SMRAM
* location: 0x30000 -> 0x40000.
*/
int smm_setup_relocation_handler(struct smm_loader_params *params)
{
void *smram = (void *)(SMM_DEFAULT_BASE);
printk(BIOS_SPEW, "%s: enter\n", __func__);
/* There can't be more than 1 concurrent save state for the relocation
* handler because all CPUs default to 0x30000 as SMBASE. */
if (params->num_concurrent_save_states > 1)
return -1;
/* A handler has to be defined to call for relocation. */
if (params->handler == NULL)
return -1;
/* Since the relocation handler always uses stack, adjust the number
* of concurrent stack users to be CONFIG_MAX_CPUS. */
if (params->num_concurrent_stacks == 0)
params->num_concurrent_stacks = CONFIG_MAX_CPUS;
params->smm_main_entry_offset = SMM_ENTRY_OFFSET;
params->smram_start = SMM_DEFAULT_BASE;
params->smram_end = SMM_DEFAULT_BASE + SMM_DEFAULT_SIZE;
return smm_module_setup_stub(smram, SMM_DEFAULT_SIZE,
params, fxsave_area_relocation);
printk(BIOS_SPEW, "%s: exit\n", __func__);
}
/*
*The SMM module is placed within the provided region in the following
* manner:
* +-----------------+ <- smram + size
* | BIOS resource |
* | list (STM) |
* +-----------------+
* | fxsave area |
* +-----------------+
* | smi handler |
* | ... |
* +-----------------+ <- cpu0
* | stub code | <- cpu1
* | stub code | <- cpu2
* | stub code | <- cpu3, etc
* | |
* | |
* | |
* | stacks |
* +-----------------+ <- smram start
* It should be noted that this algorithm will not work for
* SMM_DEFAULT_SIZE SMRAM regions such as the A segment. This algorithm
* expects a region large enough to encompass the handler and stacks
* as well as the SMM_DEFAULT_SIZE.
*/
int smm_load_module(void *smram, size_t size, struct smm_loader_params *params)
{
struct rmodule smm_mod;
size_t total_stack_size;
size_t handler_size;
size_t module_alignment;
size_t alignment_size;
size_t fxsave_size;
void *fxsave_area;
size_t total_size = 0;
char *base;
if (size <= SMM_DEFAULT_SIZE)
return -1;
/* Load main SMI handler at the top of SMRAM
* everything else will go below
*/
base = smram;
base += size;
params->smram_start = (uintptr_t)smram;
params->smram_end = params->smram_start + size;
params->smm_main_entry_offset = SMM_ENTRY_OFFSET;
/* Fail if can't parse the smm rmodule. */
if (rmodule_parse(&_binary_smm_start, &smm_mod))
return -1;
/* Clear SMM region */
if (CONFIG(DEBUG_SMI))
memset(smram, 0xcd, size);
total_stack_size = params->per_cpu_stack_size *
params->num_concurrent_stacks;
total_size += total_stack_size;
/* Stacks are the base of SMRAM */
params->stack_top = smram + total_stack_size;
/* MSEG starts at the top of SMRAM and works down */
if (CONFIG(STM)) {
base -= CONFIG_MSEG_SIZE + CONFIG_BIOS_RESOURCE_LIST_SIZE;
total_size += CONFIG_MSEG_SIZE + CONFIG_BIOS_RESOURCE_LIST_SIZE;
}
/* FXSAVE goes below MSEG */
if (CONFIG(SSE)) {
fxsave_size = FXSAVE_SIZE * params->num_concurrent_stacks;
fxsave_area = base - fxsave_size;
base -= fxsave_size;
total_size += fxsave_size;
} else {
fxsave_size = 0;
fxsave_area = NULL;
}
handler_size = rmodule_memory_size(&smm_mod);
base -= handler_size;
total_size += handler_size;
module_alignment = rmodule_load_alignment(&smm_mod);
alignment_size = module_alignment -
((uintptr_t)base % module_alignment);
if (alignment_size != module_alignment) {
handler_size += alignment_size;
base += alignment_size;
}
printk(BIOS_DEBUG,
"%s: total_smm_space_needed %zx, available -> %zx\n",
__func__, total_size, size);
/* Does the required amount of memory exceed the SMRAM region size? */
if (total_size > size) {
printk(BIOS_ERR, "%s: need more SMRAM\n", __func__);
return -1;
}
if (handler_size > SMM_CODE_SEGMENT_SIZE) {
printk(BIOS_ERR, "%s: increase SMM_CODE_SEGMENT_SIZE: handler_size = %zx\n",
__func__, handler_size);
return -1;
}
if (rmodule_load(base, &smm_mod))
return -1;
params->handler = rmodule_entry(&smm_mod);
params->handler_arg = rmodule_parameters(&smm_mod);
printk(BIOS_DEBUG, "%s: smram_start: 0x%p\n",
__func__, smram);
printk(BIOS_DEBUG, "%s: smram_end: %p\n",
__func__, smram + size);
printk(BIOS_DEBUG, "%s: stack_top: %p\n",
__func__, params->stack_top);
printk(BIOS_DEBUG, "%s: handler start %p\n",
__func__, params->handler);
printk(BIOS_DEBUG, "%s: handler_size %zx\n",
__func__, handler_size);
printk(BIOS_DEBUG, "%s: handler_arg %p\n",
__func__, params->handler_arg);
printk(BIOS_DEBUG, "%s: fxsave_area %p\n",
__func__, fxsave_area);
printk(BIOS_DEBUG, "%s: fxsave_size %zx\n",
__func__, fxsave_size);
printk(BIOS_DEBUG, "%s: CONFIG_MSEG_SIZE 0x%x\n",
__func__, CONFIG_MSEG_SIZE);
printk(BIOS_DEBUG, "%s: CONFIG_BIOS_RESOURCE_LIST_SIZE 0x%x\n",
__func__, CONFIG_BIOS_RESOURCE_LIST_SIZE);
/* CPU 0 smbase goes first, all other CPUs
* will be staggered below
*/
base -= SMM_CODE_SEGMENT_SIZE;
printk(BIOS_DEBUG, "%s: cpu0 entry: %p\n",
__func__, base);
params->smm_entry = (uintptr_t)base + params->smm_main_entry_offset;
return smm_module_setup_stub(base, size, params, fxsave_area);
}
|