1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
|
/* SPDX-License-Identifier: GPL-2.0-only */
#include <arch/io.h>
#include <commonlib/bsd/compiler.h>
#include <commonlib/region.h>
#include <console/cbmem_console.h>
#include <console/console.h>
#include <cpu/cpu.h>
#include <cpu/x86/smm.h>
#include <rmodule.h>
#include <types.h>
#if CONFIG(SPI_FLASH_SMM)
#include <spi-generic.h>
#endif
static int do_driver_init = 1;
typedef enum { SMI_LOCKED, SMI_UNLOCKED } smi_semaphore;
/* SMI multiprocessing semaphore */
static volatile
__attribute__((aligned(4))) smi_semaphore smi_handler_status = SMI_UNLOCKED;
static const volatile
__attribute((aligned(4), __section__(".module_parameters"))) struct smm_runtime smm_runtime;
static int smi_obtain_lock(void)
{
u8 ret = SMI_LOCKED;
asm volatile (
"movb %2, %%al\n"
"xchgb %%al, %1\n"
"movb %%al, %0\n"
: "=g" (ret), "=m" (smi_handler_status)
: "g" (SMI_LOCKED)
: "eax"
);
return (ret == SMI_UNLOCKED);
}
static void smi_release_lock(void)
{
asm volatile (
"movb %1, %%al\n"
"xchgb %%al, %0\n"
: "=m" (smi_handler_status)
: "g" (SMI_UNLOCKED)
: "eax"
);
}
#if CONFIG(RUNTIME_CONFIGURABLE_SMM_LOGLEVEL)
int get_console_loglevel(void)
{
return smm_runtime.smm_log_level;
}
#endif
void smm_get_cbmemc_buffer(void **buffer_out, size_t *size_out)
{
*buffer_out = smm_runtime.cbmemc;
*size_out = smm_runtime.cbmemc_size;
}
void io_trap_handler(int smif)
{
/* If a handler function handled a given IO trap, it
* shall return a non-zero value
*/
printk(BIOS_DEBUG, "SMI function trap 0x%x: ", smif);
if (mainboard_io_trap_handler(smif))
return;
printk(BIOS_DEBUG, "Unknown function\n");
}
static u32 pci_orig;
/**
* @brief Backup PCI address to make sure we do not mess up the OS
*/
static void smi_backup_pci_address(void)
{
pci_orig = inl(0xcf8);
}
/**
* @brief Restore PCI address previously backed up
*/
static void smi_restore_pci_address(void)
{
outl(pci_orig, 0xcf8);
}
struct global_nvs *gnvs;
void *smm_get_save_state(int cpu)
{
if (cpu > smm_runtime.num_cpus)
return NULL;
return (void *)(smm_runtime.save_state_top[cpu] - smm_runtime.save_state_size);
}
uint32_t smm_revision(void)
{
const uintptr_t save_state = (uintptr_t)(smm_get_save_state(0));
return *(uint32_t *)(save_state + smm_runtime.save_state_size
- SMM_REVISION_OFFSET_FROM_TOP);
}
bool smm_region_overlaps_handler(const struct region *r)
{
const struct region r_smm = {smm_runtime.smbase, smm_runtime.smm_size};
const struct region r_aseg = {SMM_BASE, SMM_DEFAULT_SIZE};
return region_overlap(&r_smm, r) || region_overlap(&r_aseg, r);
}
asmlinkage void smm_handler_start(void *arg)
{
const struct smm_module_params *p;
int cpu;
uintptr_t actual_canary;
uintptr_t expected_canary;
p = arg;
cpu = p->cpu;
expected_canary = (uintptr_t)p->canary;
/* Make sure to set the global runtime. It's OK to race as the value
* will be the same across CPUs as well as multiple SMIs. */
gnvs = (void *)(uintptr_t)smm_runtime.gnvs_ptr;
if (cpu >= CONFIG_MAX_CPUS) {
/* Do not log messages to console here, it is not thread safe */
return;
}
/* Are we ok to execute the handler? */
if (!smi_obtain_lock()) {
/* For security reasons we don't release the other CPUs
* until the CPU with the lock is actually done */
while (smi_handler_status == SMI_LOCKED) {
asm volatile (
".byte 0xf3, 0x90\n" /* PAUSE */
);
}
return;
}
smi_backup_pci_address();
smm_soc_early_init();
console_init();
printk(BIOS_SPEW, "\nSMI# #%d\n", cpu);
/* Allow drivers to initialize variables in SMM context. */
if (do_driver_init) {
#if CONFIG(SPI_FLASH_SMM)
spi_init();
#endif
do_driver_init = 0;
}
cpu_smi_handler();
northbridge_smi_handler();
southbridge_smi_handler();
smi_restore_pci_address();
actual_canary = *p->canary;
if (actual_canary != expected_canary) {
printk(BIOS_DEBUG, "canary 0x%lx != 0x%lx\n", actual_canary,
expected_canary);
// Don't die if we can't indicate an error.
if (CONFIG(DEBUG_SMI))
die("SMM Handler caused a stack overflow\n");
}
smm_soc_exit();
smi_release_lock();
/* De-assert SMI# signal to allow another SMI */
southbridge_smi_set_eos();
}
#if CONFIG(SMM_PCI_RESOURCE_STORE)
const volatile struct smm_pci_resource_info *smm_get_pci_resource_store(void)
{
return &smm_runtime.pci_resources[0];
}
#endif
RMODULE_ENTRY(smm_handler_start);
/* Provide a default implementation for all weak handlers so that relocation
* entries in the modules make sense. Without default implementations the
* weak relocations w/o a symbol have a 0 address which is where the modules
* are linked at. */
int __weak mainboard_io_trap_handler(int smif) { return 0; }
void __weak cpu_smi_handler(void) {}
void __weak northbridge_smi_handler(void) {}
void __weak southbridge_smi_handler(void) {}
void __weak mainboard_smi_gpi(u32 gpi_sts) {}
int __weak mainboard_smi_apmc(u8 data) { return 0; }
void __weak mainboard_smi_sleep(u8 slp_typ) {}
void __weak mainboard_smi_finalize(void) {}
void __weak smm_soc_early_init(void) {}
void __weak smm_soc_exit(void) {}
|