summaryrefslogtreecommitdiff
path: root/src/cpu/samsung/s5p-common/s3c24x0_i2c.c
blob: 3e94ea7b49b93a2e73e95c9c4afcc0d80b74331e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
/*
 * (C) Copyright 2002
 * David Mueller, ELSOFT AG, d.mueller@elsoft.ch
 *
 * See file CREDITS for list of people who contributed to this
 * project.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of
 * the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
 * MA 02111-1307 USA
 */

/* This code should work for both the S3C2400 and the S3C2410
 * as they seem to have the same I2C controller inside.
 * The different address mapping is handled by the s3c24xx.h files below.
 */

#include <common.h>
#include <arch/io.h>
#include "clk.h"
#include "cpu/samsung/exynos5-common/clk.h"
#include "cpu/samsung/exynos5250/cpu.h"
#include "gpio.h"
#include "cpu/samsung/exynos5250/gpio.h"
#include "cpu/samsung/exynos5250/pinmux.h"

//#include <fdtdec.h>
#include "device/i2c.h"
#include "s3c24x0_i2c.h"

#define I2C_WRITE	0
#define I2C_READ	1

#define I2C_OK		0
#define I2C_NOK		1
#define I2C_NACK	2
#define I2C_NOK_LA	3	/* Lost arbitration */
#define I2C_NOK_TOUT	4	/* time out */

#define I2CSTAT_BSY	0x20	/* Busy bit */
#define I2CSTAT_NACK	0x01	/* Nack bit */
#define I2CCON_ACKGEN	0x80	/* Acknowledge generation */
#define I2CCON_IRPND	0x10	/* Interrupt pending bit */
#define I2C_MODE_MT	0xC0	/* Master Transmit Mode */
#define I2C_MODE_MR	0x80	/* Master Receive Mode */
#define I2C_START_STOP	0x20	/* START / STOP */
#define I2C_TXRX_ENA	0x10	/* I2C Tx/Rx enable */

/* The timeouts we live by */
enum {
	I2C_XFER_TIMEOUT_MS	= 35,	/* xfer to complete */
	I2C_INIT_TIMEOUT_MS	= 1000,	/* bus free on init */
	I2C_IDLE_TIMEOUT_MS	= 100,	/* waiting for bus idle */
	I2C_STOP_TIMEOUT_US	= 200,	/* waiting for stop events */
};

/* We should not rely on any particular ordering of these IDs */
#if 0
#ifndef CONFIG_OF_CONTROL
static enum periph_id periph_for_dev[EXYNOS_I2C_MAX_CONTROLLERS] = {
	PERIPH_ID_I2C0,
	PERIPH_ID_I2C1,
	PERIPH_ID_I2C2,
	PERIPH_ID_I2C3,
	PERIPH_ID_I2C4,
	PERIPH_ID_I2C5,
	PERIPH_ID_I2C6,
	PERIPH_ID_I2C7,
};
#endif
#endif

static unsigned int g_current_bus __attribute__((section(".data")));
static struct s3c24x0_i2c *g_early_i2c_config __attribute__((section(".data")));

static struct s3c24x0_i2c_bus i2c_bus[EXYNOS_I2C_MAX_CONTROLLERS]
		__attribute__((section(".data")));
static int i2c_busses __attribute__((section(".data")));

void i2c_set_early_reg(unsigned int base)
{
	g_early_i2c_config = (struct s3c24x0_i2c *)base;
}

static struct s3c24x0_i2c_bus *get_bus(int bus_idx)
{
	/* If an early i2c config exists we just use that */
	if (g_early_i2c_config) {
		/* FIXME: value not retained from i2c_set_early_reg()? (but then, how
		 * did if (!i2c) check pass earlier on? Corrupt value? */
		i2c_bus[0].regs = g_early_i2c_config;
		return &i2c_bus[0];
	}

	if (bus_idx < i2c_busses)
		return &i2c_bus[bus_idx];
	debug("Undefined bus: %d\n", bus_idx);
	return NULL;
}

static inline struct exynos5_gpio_part1 *exynos_get_base_gpio1(void)
{
	return (struct exynos5_gpio_part1 *)(EXYNOS5_GPIO_PART1_BASE);
}

static int WaitForXfer(struct s3c24x0_i2c *i2c)
{
	int i;

	i = I2C_XFER_TIMEOUT_MS * 20;
	while (!(readl(&i2c->iiccon) & I2CCON_IRPND)) {
		if (i == 0) {
			debug("%s: i2c xfer timeout\n", __func__);
			return I2C_NOK_TOUT;
		}
		udelay(50);
		i--;
	}

	return I2C_OK;
}

static int IsACK(struct s3c24x0_i2c *i2c)
{
	return !(readl(&i2c->iicstat) & I2CSTAT_NACK);
}

static void ReadWriteByte(struct s3c24x0_i2c *i2c)
{
	uint32_t x;

	x = readl(&i2c->iiccon);
	writel(x & ~I2CCON_IRPND, &i2c->iiccon);
	/* FIXME(dhendrix): cannot use nested macro (compilation failure) */
//	writel(readl(&i2c->iiccon) & ~I2CCON_IRPND, &i2c->iiccon);
}

static void i2c_ch_init(struct s3c24x0_i2c *i2c, int speed, int slaveadd)
{
	ulong freq, pres = 16, div;

	freq = clock_get_periph_rate(PERIPH_ID_I2C0);
	/* calculate prescaler and divisor values */
	if ((freq / pres / (16 + 1)) > speed)
		/* set prescaler to 512 */
		pres = 512;

	div = 0;

	while ((freq / pres / (div + 1)) > speed)
		div++;

	/* set prescaler, divisor according to freq, also set ACKGEN, IRQ */
	writel((div & 0x0F) | 0xA0 | ((pres == 512) ? 0x40 : 0), &i2c->iiccon);

	/* init to SLAVE REVEIVE and set slaveaddr */
	writel(0, &i2c->iicstat);
	writel(slaveadd, &i2c->iicadd);
	/* program Master Transmit (and implicit STOP) */
	writel(I2C_MODE_MT | I2C_TXRX_ENA, &i2c->iicstat);
}

/* TODO: determine if this is necessary to init board using FDT-provided info */
#if 0
void board_i2c_init(const void *blob)
{
	/*
	 * Turn off the early i2c configuration and init the i2c properly,
	 * this is done here to enable the use of i2c configs from FDT.
	 */
	i2c_set_early_reg(0);

#ifdef CONFIG_OF_CONTROL
	int node_list[EXYNOS_I2C_MAX_CONTROLLERS];
	int i, count;

	count = fdtdec_find_aliases_for_id(blob, "i2c",
		COMPAT_SAMSUNG_S3C2440_I2C, node_list,
		EXYNOS_I2C_MAX_CONTROLLERS);

	for (i = 0; i < count; i++) {
		struct s3c24x0_i2c_bus *bus;
		int node = node_list[i];

		if (node < 0)
			continue;
		bus = &i2c_bus[i2c_busses];
		bus->regs = (struct s3c24x0_i2c *)
			fdtdec_get_addr(blob, node, "reg");
		bus->id = (enum periph_id)
			fdtdec_get_int(blob, node, "samsung,periph-id", -1);
		bus->node = node;
		bus->bus_num = i2c_busses++;
	}
#else
	int i;

	for (i = 0; i < EXYNOS_I2C_MAX_CONTROLLERS; i++) {
		uintptr_t reg_addr = samsung_get_base_i2c() +
			EXYNOS_I2C_SPACING * i;

		i2c_bus[i].regs = (struct s3c24x0_i2c_bus *)reg_addr;
		i2c_bus[i].id = periph_for_dev[i];
	}
	i2c_busses = EXYNOS_I2C_MAX_CONTROLLERS;
#endif
}
#endif

/*
 * MULTI BUS I2C support
 */
static void i2c_bus_init(struct s3c24x0_i2c_bus *i2c, unsigned int bus)
{
	exynos_pinmux_config(i2c->id, 0);
	i2c_ch_init(i2c->regs, CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE);
}

#ifdef CONFIG_I2C_MULTI_BUS
int i2c_set_bus_num(unsigned int bus)
{
	struct s3c24x0_i2c_bus *i2c;

	i2c = get_bus(bus);
	if (!i2c)
		return -1;
	g_current_bus = bus;
	i2c_bus_init(i2c, g_current_bus);

	return 0;
}

unsigned int i2c_get_bus_num(void)
{
	return g_current_bus;
}
#endif

#ifdef CONFIG_OF_CONTROL
int i2c_get_bus_num_fdt(const void *blob, int node)
{
	enum fdt_compat_id compat;
	fdt_addr_t reg;
	int i;

	compat = fdtdec_lookup(blob, node);
	if (compat != COMPAT_SAMSUNG_S3C2440_I2C) {
		debug("%s: Not a supported I2C node\n", __func__);
		return -1;
	}

	reg = fdtdec_get_addr(blob, node, "reg");
	for (i = 0; i < i2c_busses; i++)
		if (reg == (fdt_addr_t)(uintptr_t)i2c_bus[i].regs)
			return i;

	debug("%s: Can't find any matched I2C bus\n", __func__);
	return -1;
}

int i2c_reset_port_fdt(const void *blob, int node)
{
	struct s3c24x0_i2c_bus *i2c;

	int bus;

	bus = i2c_get_bus_num_fdt(blob, node);
	if (bus < 0) {
		printf("could not get bus for node %d\n", node);
		return -1;
	}
	i2c = get_bus(bus);
	if (!i2c) {
		printf("get_bus() failed for node node %d\n", node);
		return -1;
	}

	i2c_ch_init(i2c->regs, CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE);

	return 0;
}
#endif

/*
 * Verify the whether I2C ACK was received or not
 *
 * @param i2c	pointer to I2C register base
 * @param buf	array of data
 * @param len	length of data
 * return	I2C_OK when transmission done
 *		I2C_NACK otherwise
 */
static int i2c_send_verify(struct s3c24x0_i2c *i2c, unsigned char buf[],
			   unsigned char len)
{
	int i, result = I2C_OK;

	if (IsACK(i2c)) {
		for (i = 0; (i < len) && (result == I2C_OK); i++) {
			writel(buf[i], &i2c->iicds);
			ReadWriteByte(i2c);
			result = WaitForXfer(i2c);
			if (result == I2C_OK && !IsACK(i2c))
				result = I2C_NACK;
		}
	} else {
		result = I2C_NACK;
	}

	return result;
}

void i2c_init(int speed, int slaveadd)
{
	struct s3c24x0_i2c_bus *i2c;
	struct exynos5_gpio_part1 *gpio;
	int i;
	uint32_t x;

	/* By default i2c channel 0 is the current bus */
	g_current_bus = 0;

	i2c = get_bus(g_current_bus);
	if (!i2c)
		return;

	i2c_bus_init(i2c, g_current_bus);

	/* wait for some time to give previous transfer a chance to finish */
	i = I2C_INIT_TIMEOUT_MS * 20;
	while ((readl(&i2c->regs->iicstat) & I2CSTAT_BSY) && (i > 0)) {
		udelay(50);
		i--;
	}

	gpio = exynos_get_base_gpio1();
	/* FIXME(dhendrix): cannot use nested macro (compilation failure) */
//	writel((readl(&gpio->b3.con) & ~0x00FF) | 0x0022, &gpio->b3.con);
	x = readl(&gpio->b3.con);
	writel((x & ~0x00FF) | 0x0022, &gpio->b3.con);

	i2c_ch_init(i2c->regs, speed, slaveadd);
}

/*
 * Send a STOP event and wait for it to have completed
 *
 * @param mode	If it is a master transmitter or receiver
 * @return I2C_OK if the line became idle before timeout I2C_NOK_TOUT otherwise
 */
static int i2c_send_stop(struct s3c24x0_i2c *i2c, int mode)
{
	int timeout;

	/* Setting the STOP event to fire */
	writel(mode | I2C_TXRX_ENA, &i2c->iicstat);
	ReadWriteByte(i2c);

	/* Wait for the STOP to send and the bus to go idle */
	for (timeout = I2C_STOP_TIMEOUT_US; timeout > 0; timeout -= 5) {
		if (!(readl(&i2c->iicstat) & I2CSTAT_BSY))
			return I2C_OK;
		udelay(5);
	}

	return I2C_NOK_TOUT;
}

/*
 * cmd_type is 0 for write, 1 for read.
 *
 * addr_len can take any value from 0-255, it is only limited
 * by the char, we could make it larger if needed. If it is
 * 0 we skip the address write cycle.
 */
static int i2c_transfer(struct s3c24x0_i2c *i2c,
			unsigned char cmd_type,
			unsigned char chip,
			unsigned char addr[],
			unsigned char addr_len,
			unsigned char data[],
			unsigned short data_len)
{
	int i, result, stop_bit_result;
	uint32_t x;

	if (data == 0 || data_len == 0) {
		/* Don't support data transfer of no length or to address 0 */
		debug("i2c_transfer: bad call\n");
		return I2C_NOK;
	}

	/* Check I2C bus idle */
	i = I2C_IDLE_TIMEOUT_MS * 20;
	while ((readl(&i2c->iicstat) & I2CSTAT_BSY) && (i > 0)) {
		udelay(50);
		i--;
	}

	if (readl(&i2c->iicstat) & I2CSTAT_BSY) {
		debug("%s: bus busy\n", __func__);
		return I2C_NOK_TOUT;
	}

	/* FIXME(dhendrix): cannot use nested macro (compilation failure) */
	//writel(readl(&i2c->iiccon) | I2CCON_ACKGEN, &i2c->iiccon);
	x = readl(&i2c->iiccon);
	writel(x | I2CCON_ACKGEN, &i2c->iiccon);

	if (addr && addr_len) {
		writel(chip, &i2c->iicds);
		/* send START */
		writel(I2C_MODE_MT | I2C_TXRX_ENA | I2C_START_STOP,
			&i2c->iicstat);
		if (WaitForXfer(i2c) == I2C_OK)
			result = i2c_send_verify(i2c, addr, addr_len);
		else
			result = I2C_NACK;
	} else
		result = I2C_NACK;

	switch (cmd_type) {
	case I2C_WRITE:
		if (result == I2C_OK)
			result = i2c_send_verify(i2c, data, data_len);
		else {
			writel(chip, &i2c->iicds);
			/* send START */
			writel(I2C_MODE_MT | I2C_TXRX_ENA | I2C_START_STOP,
				&i2c->iicstat);
			if (WaitForXfer(i2c) == I2C_OK)
				result = i2c_send_verify(i2c, data, data_len);
		}

		if (result == I2C_OK)
			result = WaitForXfer(i2c);

		stop_bit_result = i2c_send_stop(i2c, I2C_MODE_MT);
		break;

	case I2C_READ:
	{
		int was_ok = (result == I2C_OK);

		writel(chip, &i2c->iicds);
		/* resend START */
		writel(I2C_MODE_MR | I2C_TXRX_ENA |
					I2C_START_STOP, &i2c->iicstat);
		ReadWriteByte(i2c);
		result = WaitForXfer(i2c);

		if (was_ok || IsACK(i2c)) {
			i = 0;
			while ((i < data_len) && (result == I2C_OK)) {
				/* disable ACK for final READ */
				if (i == data_len - 1) {
					/* FIXME(dhendrix): nested macro */
#if 0
					writel(readl(&i2c->iiccon) &
					       ~I2CCON_ACKGEN,
					       &i2c->iiccon);
#endif
					x = readl(&i2c->iiccon) & ~I2CCON_ACKGEN;
					writel(x, &i2c->iiccon);
				}
				ReadWriteByte(i2c);
				result = WaitForXfer(i2c);
				data[i] = readl(&i2c->iicds);
				i++;
			}
		} else {
			result = I2C_NACK;
		}

		stop_bit_result = i2c_send_stop(i2c, I2C_MODE_MR);
		break;
	}

	default:
		debug("i2c_transfer: bad call\n");
		result = stop_bit_result = I2C_NOK;
		break;
	}

	/*
	 * If the transmission went fine, then only the stop bit was left to
	 * fail.  Otherwise, the real failure we're interested in came before
	 * that, during the actual transmission.
	 */
	return (result == I2C_OK) ? stop_bit_result : result;
}

int i2c_probe(uchar chip)
{
	struct s3c24x0_i2c_bus *i2c;
	uchar buf[1];
	int ret;

	i2c = get_bus(g_current_bus);
	if (!i2c)
		return -1;
	buf[0] = 0;

	/*
	 * What is needed is to send the chip address and verify that the
	 * address was <ACK>ed (i.e. there was a chip at that address which
	 * drove the data line low).
	 */
	ret = i2c_transfer(i2c->regs, I2C_READ, chip << 1, 0, 0, buf, 1);

	return ret != I2C_OK;
}

int i2c_read(uchar chip, uint addr, int alen, uchar *buffer, int len)
{
	struct s3c24x0_i2c_bus *i2c;
	uchar xaddr[4];
	int ret;

	if (alen > 4) {
		debug("I2C read: addr len %d not supported\n", alen);
		return 1;
	}

	if (alen > 0) {
		xaddr[0] = (addr >> 24) & 0xFF;
		xaddr[1] = (addr >> 16) & 0xFF;
		xaddr[2] = (addr >> 8) & 0xFF;
		xaddr[3] = addr & 0xFF;
	}

#ifdef CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW
	/*
	 * EEPROM chips that implement "address overflow" are ones
	 * like Catalyst 24WC04/08/16 which has 9/10/11 bits of
	 * address and the extra bits end up in the "chip address"
	 * bit slots. This makes a 24WC08 (1Kbyte) chip look like
	 * four 256 byte chips.
	 *
	 * Note that we consider the length of the address field to
	 * still be one byte because the extra address bits are
	 * hidden in the chip address.
	 */
	if (alen > 0)
		chip |= ((addr >> (alen * 8)) &
			 CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW);
#endif
	i2c = get_bus(g_current_bus);
	if (!i2c)
		return -1;
	ret = i2c_transfer(i2c->regs, I2C_READ, chip << 1, &xaddr[4 - alen],
			   alen, buffer, len);
	if (ret) {
		debug("I2c read: failed %d\n", ret);
		return 1;
	}
	return 0;
}

int i2c_write(uchar chip, uint addr, int alen, uchar *buffer, int len)
{
	struct s3c24x0_i2c_bus *i2c;
	uchar xaddr[4];
	int ret;

	if (alen > 4) {
		debug("I2C write: addr len %d not supported\n", alen);
		return 1;
	}

	if (alen > 0) {
		xaddr[0] = (addr >> 24) & 0xFF;
		xaddr[1] = (addr >> 16) & 0xFF;
		xaddr[2] = (addr >> 8) & 0xFF;
		xaddr[3] = addr & 0xFF;
	}
#ifdef CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW
	/*
	 * EEPROM chips that implement "address overflow" are ones
	 * like Catalyst 24WC04/08/16 which has 9/10/11 bits of
	 * address and the extra bits end up in the "chip address"
	 * bit slots. This makes a 24WC08 (1Kbyte) chip look like
	 * four 256 byte chips.
	 *
	 * Note that we consider the length of the address field to
	 * still be one byte because the extra address bits are
	 * hidden in the chip address.
	 */
	if (alen > 0)
		chip |= ((addr >> (alen * 8)) &
			 CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW);
#endif
	i2c = get_bus(g_current_bus);
	if (!i2c)
		return -1;

	ret = i2c_transfer(i2c->regs, I2C_WRITE, chip << 1, &xaddr[4 - alen],
			   alen, buffer, len);

	return ret != 0;
}