1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
|
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2013 Google LLC
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
/* SMM relocation with intention to work for i945-ivybridge.
Right now used for sandybridge and ivybridge. */
#include <assert.h>
#include <types.h>
#include <string.h>
#include <device/device.h>
#include <device/pci.h>
#include <cpu/x86/cache.h>
#include <cpu/x86/msr.h>
#include <cpu/x86/mtrr.h>
#include <cpu/x86/smm.h>
#include <console/console.h>
#include "smi.h"
#define SMRR_SUPPORTED (1 << 11)
#define D_OPEN (1 << 6)
#define D_CLS (1 << 5)
#define D_LCK (1 << 4)
#define G_SMRAME (1 << 3)
#define C_BASE_SEG ((0 << 2) | (1 << 1) | (0 << 0))
struct ied_header {
char signature[10];
u32 size;
u8 reserved[34];
} __packed;
struct smm_relocation_params {
u32 smram_base;
u32 smram_size;
u32 ied_base;
u32 ied_size;
msr_t smrr_base;
msr_t smrr_mask;
};
/* This gets filled in and used during relocation. */
static struct smm_relocation_params smm_reloc_params;
static void *default_smm_area = NULL;
static void write_smrr(struct smm_relocation_params *relo_params)
{
struct cpuinfo_x86 c;
printk(BIOS_DEBUG, "Writing SMRR. base = 0x%08x, mask=0x%08x\n",
relo_params->smrr_base.lo, relo_params->smrr_mask.lo);
/* Both model_6fx and model_1067x SMRR function slightly differently
from the rest. The MSR are at different location from the rest
and need to be explicitly enabled. */
get_fms(&c, cpuid_eax(1));
if (c.x86 == 6 && (c.x86_model == 0xf || c.x86_model == 0x17)) {
msr_t msr;
msr = rdmsr(IA32_FEATURE_CONTROL);
/* SMRR enabled and feature locked */
if (!((msr.lo & SMRR_ENABLE)
&& (msr.lo & FEATURE_CONTROL_LOCK_BIT))) {
printk(BIOS_WARNING,
"SMRR not enabled, skip writing SMRR...\n");
return;
}
wrmsr(MSR_SMRR_PHYS_BASE, relo_params->smrr_base);
wrmsr(MSR_SMRR_PHYS_MASK, relo_params->smrr_mask);
} else {
wrmsr(IA32_SMRR_PHYS_BASE, relo_params->smrr_base);
wrmsr(IA32_SMRR_PHYS_MASK, relo_params->smrr_mask);
}
}
/* The relocation work is actually performed in SMM context, but the code
* resides in the ramstage module. This occurs by trampolining from the default
* SMRAM entry point to here. */
static void asmlinkage cpu_smm_do_relocation(void *arg)
{
em64t101_smm_state_save_area_t *save_state;
msr_t mtrr_cap;
struct smm_relocation_params *relo_params;
const struct smm_module_params *p;
const struct smm_runtime *runtime;
int cpu;
p = arg;
runtime = p->runtime;
relo_params = p->arg;
cpu = p->cpu;
if (cpu >= CONFIG_MAX_CPUS) {
printk(BIOS_CRIT,
"Invalid CPU number assigned in SMM stub: %d\n", cpu);
return;
}
printk(BIOS_DEBUG, "In relocation handler: cpu %d\n", cpu);
/* All threads need to set IEDBASE and SMBASE in the save state area.
* Since one thread runs at a time during the relocation the save state
* is the same for all cpus. */
save_state = (void *)(runtime->smbase + SMM_DEFAULT_SIZE -
runtime->save_state_size);
/* The relocated handler runs with all CPUs concurrently. Therefore
* stagger the entry points adjusting SMBASE downwards by save state
* size * CPU num. */
save_state->smbase = relo_params->smram_base -
cpu * runtime->save_state_size;
if (CONFIG_IED_REGION_SIZE != 0) {
save_state->iedbase = relo_params->ied_base;
printk(BIOS_DEBUG, "New SMBASE=0x%08x IEDBASE=0x%08x @ %p\n",
save_state->smbase, save_state->iedbase, save_state);
} else {
printk(BIOS_DEBUG, "New SMBASE=0x%08x @ %p\n",
save_state->smbase, save_state);
}
/* Write SMRR MSRs based on indicated support. */
mtrr_cap = rdmsr(MTRR_CAP_MSR);
if (mtrr_cap.lo & SMRR_SUPPORTED)
write_smrr(relo_params);
southbridge_clear_smi_status();
}
static void fill_in_relocation_params(struct smm_relocation_params *params)
{
/* All range registers are aligned to 4KiB */
const u32 rmask = ~((1 << 12) - 1);
const u32 tsegmb = northbridge_get_tseg_base();
/* TSEG base is usually aligned down (to 8MiB). So we can't
derive the TSEG size from the distance to GTT but use the
configuration value instead. */
const u32 tseg_size = northbridge_get_tseg_size();
params->smram_base = tsegmb;
params->smram_size = tseg_size;
if (CONFIG_IED_REGION_SIZE != 0) {
ASSERT(params->smram_size > CONFIG_IED_REGION_SIZE);
params->smram_size -= CONFIG_IED_REGION_SIZE;
params->ied_base = tsegmb + tseg_size - CONFIG_IED_REGION_SIZE;
params->ied_size = CONFIG_IED_REGION_SIZE;
}
/* Adjust available SMM handler memory size. */
if (IS_ENABLED(CONFIG_CACHE_RELOCATED_RAMSTAGE_OUTSIDE_CBMEM)) {
ASSERT(params->smram_size > CONFIG_SMM_RESERVED_SIZE);
params->smram_size -= CONFIG_SMM_RESERVED_SIZE;
}
if (IS_ALIGNED(tsegmb, tseg_size)) {
/* SMRR has 32-bits of valid address aligned to 4KiB. */
struct cpuinfo_x86 c;
/* On model_6fx and model_1067x bits [0:11] on smrr_base
are reserved */
get_fms(&c, cpuid_eax(1));
if (c.x86 == 6 && (c.x86_model == 0xf || c.x86_model == 0x17))
params->smrr_base.lo = (params->smram_base & rmask);
else
params->smrr_base.lo = (params->smram_base & rmask)
| MTRR_TYPE_WRBACK;
params->smrr_base.hi = 0;
params->smrr_mask.lo = (~(tseg_size - 1) & rmask)
| MTRR_PHYS_MASK_VALID;
params->smrr_mask.hi = 0;
} else {
printk(BIOS_WARNING,
"TSEG base not aligned with TSEG SIZE! Not setting SMRR\n");
}
}
static int install_relocation_handler(int *apic_id_map, int num_cpus,
struct smm_relocation_params *relo_params)
{
/* The default SMM entry happens serially at the default location.
* Therefore, there is only 1 concurrent save state area. Set the
* stack size to the save state size, and call into the
* do_relocation handler. */
int save_state_size = sizeof(em64t101_smm_state_save_area_t);
struct smm_loader_params smm_params = {
.per_cpu_stack_size = save_state_size,
.num_concurrent_stacks = num_cpus,
.per_cpu_save_state_size = save_state_size,
.num_concurrent_save_states = 1,
.handler = &cpu_smm_do_relocation,
.handler_arg = (void *)relo_params,
};
default_smm_area = backup_default_smm_area();
if (smm_setup_relocation_handler(&smm_params))
return -1;
int i;
for (i = 0; i < num_cpus; i++)
smm_params.runtime->apic_id_to_cpu[i] = apic_id_map[i];
return 0;
}
static void setup_ied_area(struct smm_relocation_params *params)
{
char *ied_base;
struct ied_header ied = {
.signature = "INTEL RSVD",
.size = params->ied_size,
.reserved = {0},
};
ied_base = (void *)params->ied_base;
/* Place IED header at IEDBASE. */
memcpy(ied_base, &ied, sizeof(ied));
/* Zero out 32KiB at IEDBASE + 1MiB */
memset(ied_base + (1 << 20), 0, (32 << 10));
}
static int install_permanent_handler(int *apic_id_map, int num_cpus,
struct smm_relocation_params *relo_params)
{
/* There are num_cpus concurrent stacks and num_cpus concurrent save
* state areas. Lastly, set the stack size to the save state size. */
int save_state_size = sizeof(em64t101_smm_state_save_area_t);
struct smm_loader_params smm_params = {
.per_cpu_stack_size = save_state_size,
.num_concurrent_stacks = num_cpus,
.per_cpu_save_state_size = save_state_size,
.num_concurrent_save_states = num_cpus,
};
printk(BIOS_DEBUG, "Installing SMM handler to 0x%08x\n",
relo_params->smram_base);
if (smm_load_module((void *)relo_params->smram_base,
relo_params->smram_size, &smm_params))
return -1;
int i;
for (i = 0; i < num_cpus; i++)
smm_params.runtime->apic_id_to_cpu[i] = apic_id_map[i];
return 0;
}
static int cpu_smm_setup(void)
{
int num_cpus;
int apic_id_map[CONFIG_MAX_CPUS];
printk(BIOS_DEBUG, "Setting up SMI for CPU\n");
fill_in_relocation_params(&smm_reloc_params);
/* enable the SMM memory window */
northbridge_write_smram(D_OPEN | G_SMRAME | C_BASE_SEG);
if (CONFIG_IED_REGION_SIZE != 0)
setup_ied_area(&smm_reloc_params);
num_cpus = cpu_get_apic_id_map(apic_id_map);
if (num_cpus > CONFIG_MAX_CPUS) {
printk(BIOS_CRIT,
"Error: Hardware CPUs (%d) > MAX_CPUS (%d)\n",
num_cpus, CONFIG_MAX_CPUS);
}
if (install_relocation_handler(apic_id_map, num_cpus,
&smm_reloc_params)) {
printk(BIOS_CRIT, "SMM Relocation handler install failed.\n");
return -1;
}
if (install_permanent_handler(apic_id_map, num_cpus,
&smm_reloc_params)) {
printk(BIOS_CRIT, "SMM Permanent handler install failed.\n");
return -1;
}
/* Ensure the SMM handlers hit DRAM before performing first SMI. */
/* TODO(adurbin): Is this really needed? */
wbinvd();
/* close the SMM memory window and enable normal SMM */
northbridge_write_smram(G_SMRAME | C_BASE_SEG);
return 0;
}
void smm_init(void)
{
/* Return early if CPU SMM setup failed. */
if (cpu_smm_setup())
return;
southbridge_smm_init();
/* Initiate first SMI to kick off SMM-context relocation. Note: this
* SMI being triggered here queues up an SMI in the APs which are in
* wait-for-SIPI state. Once an AP gets an SIPI it will service the SMI
* at the SMM_DEFAULT_BASE before jumping to startup vector. */
southbridge_trigger_smi();
printk(BIOS_DEBUG, "Relocation complete.\n");
/* Lock down the SMRAM space. */
smm_lock();
}
void smm_init_completion(void)
{
restore_default_smm_area(default_smm_area);
}
void smm_lock(void)
{
/* LOCK the SMM memory window and enable normal SMM.
* After running this function, only a full reset can
* make the SMM registers writable again.
*/
printk(BIOS_DEBUG, "Locking SMM.\n");
northbridge_write_smram(D_LCK | G_SMRAME | C_BASE_SEG);
}
|