1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
|
/*
* This file is part of the coreboot project.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
/*
* Intel Pentium L2 Cache initialization.
* This code was developed by reverse engineering
* the BIOS. Where the code accesses documented
* registers I have added comments as best I can.
* Some undocumented registers on the Pentium II are
* used so some of the documentation is incomplete.
*
* References:
* Intel Architecture Software Developer's Manual
* Volume 3B: System Programming Guide, Part 2 (#253669)
* Appendix B.9
*/
/* This code is ported from coreboot v1.
* The L2 cache initialization sequence here only apply to SECC/SECC2 P6 family
* CPUs with Klamath (63x), Deschutes (65x) and Katmai (67x) cores.
* It is not required for Coppermine (68x) and Tualatin (6bx) cores.
* It is currently not known if Celerons with Mendocino (66x) core require the
* special initialization.
* Covington-core Celerons do not have L2 cache.
*/
#include <stdint.h>
#include <console/console.h>
#include <cpu/intel/l2_cache.h>
#include <cpu/x86/cache.h>
#include <cpu/x86/msr.h>
/* Latency Tables */
struct latency_entry {
u8 key;
u8 value;
};
/*
Latency maps for Deschutes and Katmai.
No such mapping is available for Klamath.
Cache latency to
be written to L2 -----++++
control register ||||
0000 xx 00 -----> 000 cccc 0
|||| 00 66MHz
|||| 10 100MHz
|||| 01 133MHz (Katmai "B" only)
++++------ CPU frequency multiplier
0000 2x
0001 3x
0010 4x
0011 5x
0100 2.5x
0101 3.5x
0110 4.5x
0111 5.5x
1000 6x
1001 7x
1010 8x
1011 Reserved
1100 6.5x
1101 7.5x
1110 1.5x
1111 2x
*/
static const struct latency_entry latency_650_t0[] = {
{0x10, 0x02}, {0x50, 0x02}, {0x20, 0x04}, {0x60, 0x06},
{0x00, 0x08}, {0x40, 0x0C}, {0x12, 0x06}, {0x52, 0x0A},
{0x22, 0x0E}, {0x62, 0x10}, {0x02, 0x10}, {0xFF, 0x00}
};
static const struct latency_entry latency_650_t1[] = {
{0x12, 0x14}, {0x52, 0x16}, {0x22, 0x16}, {0x62, 0x16},
{0xFF, 0x00}
};
static const struct latency_entry latency_670_t0[] = {
{0x60, 0x06}, {0x00, 0x08}, {0x12, 0x06}, {0x52, 0x0A},
{0x22, 0x0E}, {0x62, 0x10}, {0x02, 0x10}, {0x42, 0x02},
{0x11, 0x0E}, {0x51, 0x0C}, {0x21, 0x02}, {0x61, 0x10},
{0x01, 0x10}, {0x41, 0x02}, {0xFF, 0x00}
};
static const struct latency_entry latency_670_t1[] = {
{0x22, 0x18}, {0x62, 0x18}, {0x02, 0x1A}, {0x11, 0x18},
{0xFF, 0x00}
};
static const struct latency_entry latency_670_t2[] = {
{0x22, 0x12}, {0x62, 0x14}, {0x02, 0x16}, {0x42, 0x1E},
{0x11, 0x12}, {0x51, 0x16}, {0x21, 0x1E}, {0x61, 0x14},
{0x01, 0x16}, {0x41, 0x1E}, {0xFF, 0x00}
};
/* Latency tables for 650 model/type */
static const struct latency_entry *latency_650[] = {
latency_650_t0, latency_650_t1, latency_650_t1
};
/* Latency tables for 670 model/type */
static const struct latency_entry *latency_670[] = {
latency_670_t0, latency_670_t1, latency_670_t2
};
int calculate_l2_latency(void)
{
u32 eax, l, signature;
const struct latency_entry *latency_table, *le;
msr_t msr;
/* First, attempt to get cache latency value from
IA32_PLATFORM_ID[56:53]. (L2 Cache Latency Read)
*/
msr = rdmsr(IA32_PLATFORM_ID);
printk(BIOS_DEBUG, "rdmsr(IA32_PLATFORM_ID) = %x:%x\n", msr.hi, msr.lo);
l = (msr.hi >> 20) & 0x1e;
if (l == 0) {
/* If latency value isn't available from
IA32_PLATFORM_ID[56:53], read it from
L2 control register 0 for lookup from
tables. */
int t, a;
/* The raw code is read from L2 register 0, bits [7:4]. */
a = read_l2(0);
if (a < 0)
return -1;
a &= 0xf0;
if ((a & 0x20) == 0)
t = 0;
else if (a == 0x20)
t = 1;
else if (a == 0x30)
t = 2;
else
return -1;
printk(BIOS_DEBUG, "L2 latency type = %x\n", t);
/* Get CPUID family/model */
signature = cpuid_eax(1) & 0xfff0;
/* Read EBL_CR_POWERON */
msr = rdmsr(EBL_CR_POWERON);
/* Get clock multiplier and FSB frequency.
* Multiplier is in [25:22].
* FSB is in [19:18] in Katmai, [19] in Deschutes ([18] is zero
* for them).
*/
eax = msr.lo >> 18;
if (signature == 0x650) {
eax &= ~0xf2;
latency_table = latency_650[t];
} else if (signature == 0x670) {
eax &= ~0xf3;
latency_table = latency_670[t];
} else
return -1;
/* Search table for matching entry */
for (le = latency_table; le->key != eax; le++) {
/* Fail if we get to the end of the table */
if (le->key == 0xff) {
printk(BIOS_DEBUG,
"Could not find key %02x in latency table\n",
eax);
return -1;
}
}
l = le->value;
}
printk(BIOS_DEBUG, "L2 Cache latency is %d\n", l / 2);
/* Writes the calculated latency in BBL_CR_CTL3[4:1]. */
msr = rdmsr(BBL_CR_CTL3);
msr.lo &= 0xffffffe1;
msr.lo |= l;
wrmsr(BBL_CR_CTL3, msr);
return 0;
}
/* Setup address, data_high:data_low into the L2
* control registers and then issue command with correct cache way
*/
int signal_l2(u32 address, u32 data_high, u32 data_low, int way, u8 command)
{
int i;
msr_t msr;
/* Write L2 Address to BBL_CR_ADDR */
msr.lo = address;
msr.hi = 0;
wrmsr(BBL_CR_ADDR, msr);
/* Write data to BBL_CR_D{0..3} */
msr.lo = data_low;
msr.hi = data_high;
for (i = BBL_CR_D0; i <= BBL_CR_D3; i++)
wrmsr(i, msr);
/* Put the command and way into BBL_CR_CTL */
msr = rdmsr(BBL_CR_CTL);
msr.lo = (msr.lo & 0xfffffce0) | command | (way << 8);
wrmsr(BBL_CR_CTL, msr);
/* Trigger L2 controller */
msr.lo = 0;
msr.hi = 0;
wrmsr(BBL_CR_TRIG, msr);
/* Poll the controller to see when done */
for (i = 0; i < 0x100; i++) {
/* Read BBL_CR_BUSY */
msr = rdmsr(BBL_CR_BUSY);
/* If not busy then return */
if ((msr.lo & 1) == 0)
return 0;
}
/* Return timeout code */
return -1;
}
/* Read the L2 Cache controller register at given address */
int read_l2(u32 address)
{
msr_t msr;
/* Send a L2 Control Register Read to L2 controller */
if (signal_l2(address << 5, 0, 0, 0, L2CMD_CR) != 0)
return -1;
/* If OK then get the result from BBL_CR_ADDR */
msr = rdmsr(BBL_CR_ADDR);
return (msr.lo >> 0x15);
}
/* Write data into the L2 controller register at address */
int write_l2(u32 address, u32 data)
{
int v1, v2, i;
v1 = read_l2(0);
if (v1 < 0)
return -1;
v2 = read_l2(2);
if (v2 < 0)
return -1;
if ((v1 & 0x20) == 0) {
v2 &= 0x3;
v2++;
} else
v2 &= 0x7;
/* This write has to be replicated to a number of places. Not sure what.
*/
for (i = 0; i < v2; i++) {
u32 data1, data2;
// Bits legend
// data1 = ffffffff
// data2 = 000000dc
// address = 00aaaaaa
// Final address signaled:
// 000fffff fff000c0 000dcaaa aaa00000
data1 = data & 0xff;
data1 = data1 << 21;
data2 = (i << 11) & 0x1800;
data1 |= data2;
data2 <<= 6;
data2 &= 0x20000;
data1 |= data2;
/* Signal L2 controller */
if (signal_l2((address << 5) | data1, 0, 0, 0, 3))
return -1;
}
return 0;
}
/* Write data_high:data_low into the cache at address1. Test address2
* to see if the same data is returned. Return 0 if the data matches.
* return lower 16 bits if mismatched data if mismatch. Return -1
* on error
*/
int test_l2_address_alias(u32 address1, u32 address2,
u32 data_high, u32 data_low)
{
int d;
msr_t msr;
/* Tag Write with Data Write for L2 */
if (signal_l2(address1, data_high, data_low, 0, L2CMD_TWW))
return -1;
/* Tag Read with Data Read for L2 */
if (signal_l2(address2, 0, 0, 0, L2CMD_TRR))
return -1;
/* Read data from BBL_CR_D[0-3] */
for (d = BBL_CR_D0; d <= BBL_CR_D3; d++) {
msr = rdmsr(d);
if (msr.lo != data_low || msr.hi != data_high)
return (msr.lo & 0xffff);
}
return 0;
}
/* Calculates the L2 cache size.
*
* Reference: Intel(R) 64 and IA-32 Architectures Software Developer's Manual
* Volume 3B: System Programming Guide, Part 2, Intel pub. 253669,
* pg. B-172.
*
*/
int calculate_l2_cache_size(void)
{
int v;
msr_t msr;
u32 cache_setting;
u32 address, size, eax, bblcr3;
v = read_l2(0);
if (v < 0)
return -1;
if ((v & 0x20) == 0) {
msr = rdmsr(BBL_CR_CTL3);
bblcr3 = msr.lo & ~BBLCR3_L2_SIZE;
/*
* Successively write in all the possible cache size per bank
* into BBL_CR_CTL3[17:13], starting from 256KB (00001) to 4MB
* (10000), and read the last value written and accepted by the
* cache.
*
* No idea why these bits are writable at all.
*/
for (cache_setting = BBLCR3_L2_SIZE_256K;
cache_setting <= BBLCR3_L2_SIZE_4M; cache_setting <<= 1) {
eax = bblcr3 | cache_setting;
msr.lo = eax;
wrmsr(BBL_CR_CTL3, msr);
msr = rdmsr(BBL_CR_CTL3);
/* Value not accepted */
if (msr.lo != eax)
break;
}
/* Backtrack to the last value that worked... */
cache_setting >>= 1;
/* and write it into BBL_CR_CTL3 */
msr.lo &= ~BBLCR3_L2_SIZE;
msr.lo |= (cache_setting & BBLCR3_L2_SIZE);
wrmsr(BBL_CR_CTL3, msr);
printk(BIOS_DEBUG, "Maximum cache mask is %x\n", cache_setting);
/* For now, BBL_CR_CTL3 has the highest cache "size" that
* register will accept. Now we'll ping the cache and see where
* it wraps.
*/
/* Write aaaaaaaa:aaaaaaaa to address 0 in the l2 cache.
* If this "alias test" returns an "address", it means the
* cache cannot be written to properly, and we have a problem.
*/
v = test_l2_address_alias(0, 0, 0xaaaaaaaa, 0xaaaaaaaa);
if (v != 0)
return -1;
/* Start with 32K wrap point (256KB actually) */
size = 1;
address = 0x8000;
while (1) {
v = test_l2_address_alias(address, 0, 0x55555555,
0x55555555);
// Write failed.
if (v < 0)
return -1;
// It wraps here.
else if (v == 0)
break;
size <<= 1;
address <<= 1;
if (address > 0x200000)
return -1;
}
/* Mask size */
size &= 0x3e;
/* Shift to [17:13] */
size <<= 12;
/* Set this into BBL_CR_CTL3 */
msr = rdmsr(BBL_CR_CTL3);
msr.lo &= ~BBLCR3_L2_SIZE;
msr.lo |= size;
wrmsr(BBL_CR_CTL3, msr);
printk(BIOS_DEBUG, "L2 Cache Mask is %x\n", size);
/* Shift to [6:2] */
size >>= 11;
v = read_l2(2);
if (v < 0)
return -1;
printk(BIOS_DEBUG, "L2(2): %x ", v);
v &= 0x3;
/* Shift size right by v */
size >>= v;
/* Or in this size */
v |= size;
printk(BIOS_DEBUG, "-> %x\n", v);
if (write_l2(2, v) != 0)
return -1;
} else {
// Some cache size information is available from L2 registers.
// Work from there.
int b, c;
v = read_l2(2);
printk(BIOS_DEBUG, "L2(2) = %x\n", v);
if (v < 0)
return -1;
// L2 register 2 bitmap: cc---bbb
b = v & 0x7;
c = v >> 6;
v = 1 << c * b;
v &= 0xf;
printk(BIOS_DEBUG, "Calculated a = %x\n", v);
if (v == 0)
return -1;
/* Shift to 17:14 */
v <<= 14;
/* Write this size into BBL_CR_CTL3 */
msr = rdmsr(BBL_CR_CTL3);
msr.lo &= ~BBLCR3_L2_SIZE;
msr.lo |= v;
wrmsr(BBL_CR_CTL3, msr);
}
return 0;
}
// L2 physical address range can be found from L2 control register 3,
// bits [2:0].
int calculate_l2_physical_address_range(void)
{
int r0, r3;
msr_t msr;
r3 = read_l2(3);
if (r3 < 0)
return -1;
r0 = read_l2(0);
if (r0 < 0)
return -1;
if (r0 & 0x20)
r3 = 0x7;
else
r3 &= 0x7;
printk(BIOS_DEBUG, "L2 Physical Address Range is %dM\n",
(1 << r3) * 512);
/* Shift into [22:20] to be saved into BBL_CR_CTL3. */
r3 = r3 << 20;
msr = rdmsr(BBL_CR_CTL3);
msr.lo &= ~BBLCR3_L2_PHYSICAL_RANGE;
msr.lo |= r3;
wrmsr(BBL_CR_CTL3, msr);
return 0;
}
int set_l2_ecc(void)
{
u32 eax;
const u32 data1 = 0xaa55aa55;
const u32 data2 = 0xaaaaaaaa;
msr_t msr;
/* Set User Supplied ECC in BBL_CR_CTL */
msr = rdmsr(BBL_CR_CTL);
msr.lo |= BBLCR3_L2_SUPPLIED_ECC;
wrmsr(BBL_CR_CTL, msr);
/* Write a value into the L2 Data ECC register BBL_CR_DECC */
msr.lo = data1;
msr.hi = 0;
wrmsr(BBL_CR_DECC, msr);
if (test_l2_address_alias(0, 0, data2, data2) < 0)
return -1;
/* Read back ECC from BBL_CR_DECC */
msr = rdmsr(BBL_CR_DECC);
eax = msr.lo;
if (eax == data1) {
printk(BIOS_DEBUG, "L2 ECC Checking is enabled\n");
/* Set ECC Check Enable in BBL_CR_CTL3 */
msr = rdmsr(BBL_CR_CTL3);
msr.lo |= BBLCR3_L2_ECC_CHECK_ENABLE;
wrmsr(BBL_CR_CTL3, msr);
}
/* Clear User Supplied ECC in BBL_CR_CTL */
msr = rdmsr(BBL_CR_CTL);
msr.lo &= ~BBLCR3_L2_SUPPLIED_ECC;
wrmsr(BBL_CR_CTL, msr);
return 0;
}
/*
* This is the function called from CPU initialization
* driver to set up P6 family L2 cache.
*/
int p6_configure_l2_cache(void)
{
msr_t msr, bblctl3;
unsigned int eax;
u16 signature;
int cache_size, bank;
int result, calc_eax;
int v, a;
int badclk1, badclk2, clkratio;
int crctl3_or;
printk(BIOS_INFO, "Configuring L2 cache... ");
/* Read BBL_CR_CTL3 */
bblctl3 = rdmsr(BBL_CR_CTL3);
/* If bit 23 (L2 Hardware disable) is set then done */
/* These would be Covington core Celerons with no L2 cache */
if (bblctl3.lo & BBLCR3_L2_NOT_PRESENT) {
printk(BIOS_INFO, "hardware disabled\n");
return 0;
}
signature = cpuid_eax(1) & 0xfff0;
/* Klamath-specific bit settings for certain
preliminary checks.
*/
if (signature == 0x630) {
clkratio = 0x1c00000;
badclk2 = 0x1000000;
crctl3_or = 0x44000;
} else {
clkratio = 0x3c00000;
badclk2 = 0x3000000;
crctl3_or = 0x40000;
}
badclk1 = 0xc00000;
/* Read EBL_CR_POWERON */
msr = rdmsr(EBL_CR_POWERON);
eax = msr.lo;
/* Mask out [22-25] Clock frequency ratio */
eax &= clkratio;
if (eax == badclk1 || eax == badclk2) {
printk(BIOS_ERR, "Incorrect clock frequency ratio %x\n", eax);
return -1;
}
disable_cache();
/* Mask out from BBL_CR_CTL3:
* [0] L2 Configured
* [5] ECC Check Enable
* [6] Address Parity Check Enable
* [7] CRTN Parity Check Enable
* [8] L2 Enabled
* [12:11] Number of L2 banks
* [17:13] Cache size per bank
* [18] (Set below)
* [22:20] L2 Physical Address Range Support
*/
bblctl3.lo &= 0xff88061e;
/* Set:
* [17:13] = 00010 = 512Kbyte Cache size per bank (63x)
* [17:13] = 00000 = 128Kbyte Cache size per bank (all others)
* [18] Cache state error checking enable
*/
bblctl3.lo |= crctl3_or;
/* Write BBL_CR_CTL3 */
wrmsr(BBL_CR_CTL3, bblctl3);
if (signature != 0x630) {
eax = bblctl3.lo;
/* Set the l2 latency in BBL_CR_CTL3 */
if (calculate_l2_latency() != 0)
goto bad;
/* Read the new latency values back */
bblctl3 = rdmsr(BBL_CR_CTL3);
calc_eax = bblctl3.lo;
/* Write back the original default value */
bblctl3.lo = eax;
wrmsr(BBL_CR_CTL3, bblctl3);
/* Write BBL_CR_CTL3[27:26] (reserved??) to bits [1:0] of L2
* register 4. Apparently all other bits must be preserved,
* hence these code.
*/
v = (calc_eax >> 26) & 0x3;
printk(BIOS_DEBUG, "write_l2(4, %x)\n", v);
a = read_l2(4);
if (a >= 0) {
a &= 0xfffc;
a |= v;
a = write_l2(4, a);
/* a now contains result code from write_l2() */
}
if (a != 0)
goto bad;
/* Restore the correct latency value into BBL_CR_CTL3 */
bblctl3.lo = calc_eax;
wrmsr(BBL_CR_CTL3, bblctl3);
} /* ! 63x CPU */
/* Read L2 register 0 */
v = read_l2(0);
/* If L2(0)[5] set (and can be read properly), enable CRTN and address
* parity
*/
if (v >= 0 && (v & 0x20)) {
bblctl3 = rdmsr(BBL_CR_CTL3);
bblctl3.lo |= (BBLCR3_L2_ADDR_PARITY_ENABLE |
BBLCR3_L2_CRTN_PARITY_ENABLE);
wrmsr(BBL_CR_CTL3, bblctl3);
}
/* If something goes wrong at L2 ECC setup, cache ECC
* will just remain disabled.
*/
set_l2_ecc();
if (calculate_l2_physical_address_range() != 0) {
printk(BIOS_ERR,
"Failed to calculate L2 physical address range");
goto bad;
}
if (calculate_l2_cache_size() != 0) {
printk(BIOS_ERR, "Failed to calculate L2 cache size");
goto bad;
}
/* Turn on cache. Only L1 is active at this time. */
enable_cache();
/* Get the calculated cache size from BBL_CR_CTL3[17:13] */
bblctl3 = rdmsr(BBL_CR_CTL3);
cache_size = (bblctl3.lo & BBLCR3_L2_SIZE);
if (cache_size == 0)
cache_size = 0x1000;
cache_size = cache_size << 3;
/* TODO: Cache size above is per bank. We're supposed to get
* the number of banks from BBL_CR_CTL3[12:11].
* Confirm that this still provides the correct answer.
*/
bank = (bblctl3.lo >> 11) & 0x3;
if (bank == 0)
bank = 1;
printk(BIOS_INFO, "size %dK... ", cache_size * bank * 4 / 1024);
/* Write to all cache lines to initialize */
while (cache_size > 0) {
/* Each cache line is 32 bytes. */
cache_size -= 32;
/* Update each way */
/* We're supposed to get L2 associativity from
* BBL_CR_CTL3[10:9]. But this code only applies to certain
* members of the P6 processor family and since all P6
* processors have 4-way L2 cache, we can safely assume
* 4 way for all cache operations.
*/
for (v = 0; v < 4; v++) {
/* Send Tag Write w/Data Write (TWW) to L2 controller
* MESI = Invalid
*/
if (signal_l2(cache_size, 0, 0, v, L2CMD_TWW
| L2CMD_MESI_I) != 0) {
printk(BIOS_ERR,
"Failed on signal_l2(%x, %x)\n",
cache_size, v);
goto bad;
}
}
}
printk(BIOS_DEBUG, "L2 Cache lines initialized\n");
/* Disable cache */
disable_cache();
/* Set L2 cache configured in BBL_CR_CTL3 */
bblctl3 = rdmsr(BBL_CR_CTL3);
bblctl3.lo |= BBLCR3_L2_CONFIGURED;
wrmsr(BBL_CR_CTL3, bblctl3);
/* Invalidate cache and discard unsaved writes */
asm volatile ("invd");
/* Write 0 to L2 control register 5 */
if (write_l2(5, 0) != 0) {
printk(BIOS_ERR, "write_l2(5, 0) failed\n");
goto done;
}
bblctl3 = rdmsr(BBL_CR_CTL3);
if (signature == 0x650) {
/* Change the L2 latency to 0101 then back to
* original value. I don't know why this is needed - dpd
*/
eax = bblctl3.lo;
bblctl3.lo &= ~BBLCR3_L2_LATENCY;
bblctl3.lo |= 0x0a;
wrmsr(BBL_CR_CTL3, bblctl3);
bblctl3.lo = eax;
wrmsr(BBL_CR_CTL3, bblctl3);
}
/* Enable L2 in BBL_CR_CTL3 */
bblctl3.lo |= BBLCR3_L2_ENABLED;
wrmsr(BBL_CR_CTL3, bblctl3);
/* Turn on cache. Both L1 and L2 are now active. Wahoo! */
done:
result = 0;
goto out;
bad:
result = -1;
out:
printk(BIOS_INFO, "done.\n");
return result;
}
|