1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
|
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
* Copyright (C) 2009 Rudolf Marek <r.marek@assembler.cz>
* Copyright (C) 2015 Timothy Pearson <tpearson@raptorengineeringinc.com>, Raptor Engineering
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc.
*/
#include <console/console.h>
#include <stdint.h>
#include <cpu/x86/msr.h>
#include <arch/acpigen.h>
#include <cpu/amd/powernow.h>
#include <device/pci.h>
#include <device/pci_ids.h>
#include <cpu/x86/msr.h>
#include <cpu/amd/mtrr.h>
#include <cpu/amd/amdfam10_sysconf.h>
#include <arch/cpu.h>
#include <northbridge/amd/amdht/AsPsDefs.h>
#include <northbridge/amd/amdmct/mct/mct.h>
#include <northbridge/amd/amdmct/amddefs.h>
static void write_pstates_for_core(u8 pstate_num, u16 *pstate_feq, u32 *pstate_power,
u32 *pstate_latency, u32 *pstate_control,
u32 *pstate_status, int coreID,
u32 pcontrol_blk, u8 plen, u8 onlyBSP,
uint8_t single_link)
{
int i;
struct cpuid_result cpuid1;
if ((onlyBSP) && (coreID != 0)) {
plen = 0;
pcontrol_blk = 0;
}
acpigen_write_processor(coreID, pcontrol_blk, plen);
acpigen_write_empty_PCT();
acpigen_write_name("_PSS");
/* add later to total sum */
acpigen_write_package(pstate_num);
for (i = 0;i < pstate_num; i++)
acpigen_write_PSS_package(pstate_feq[i],
pstate_power[i],
pstate_latency[i],
pstate_latency[i],
pstate_control[i],
pstate_status[i]);
/* update the package size */
acpigen_pop_len();
/* Write PPC object */
acpigen_write_PPC(pstate_num);
/* Write PSD indicating coordination type */
if ((single_link) && (mctGetLogicalCPUID(0) & AMD_DR_GT_Bx)) {
/* Revision C or greater single-link processor */
cpuid1 = cpuid(0x80000008);
acpigen_write_PSD_package(0, (cpuid1.ecx & 0xff) + 1, SW_ALL);
}
else {
/* Find the local APIC ID for the specified core ID */
struct device* cpu;
int cpu_index = 0;
for (cpu = all_devices; cpu; cpu = cpu->next) {
if ((cpu->path.type != DEVICE_PATH_APIC) ||
(cpu->bus->dev->path.type != DEVICE_PATH_CPU_CLUSTER))
continue;
if (!cpu->enabled)
continue;
if (cpu_index == coreID)
break;
cpu_index++;
}
if (cpu)
acpigen_write_PSD_package(cpu->path.apic.apic_id, 1, SW_ANY);
}
/* patch the whole Processor token length */
acpigen_pop_len();
}
/*
* For details of this algorithm, please refer to the BDKG 3.62 page 69
*
* WARNING: The core count algorithm below assumes that all processors
* are identical, with the same number of active cores. While the BKDG
* states the BIOS must enforce this coreboot does not currently do so.
* As a result it is possible that this code may break if an illegal
* processor combination is installed. If it does break please fix the
* code in the proper locations!
*/
void amd_generate_powernow(u32 pcontrol_blk, u8 plen, u8 onlyBSP)
{
u8 processor_brand[49];
u32 *v;
struct cpuid_result cpuid1;
u16 Pstate_feq[10];
u32 Pstate_power[10];
u32 Pstate_latency[10];
u32 Pstate_control[10];
u32 Pstate_status[10];
u8 Pstate_num;
u8 cmp_cap;
u8 index;
msr_t msr;
/* Get the Processor Brand String using cpuid(0x8000000x) command x=2,3,4 */
cpuid1 = cpuid(0x80000002);
v = (u32 *) processor_brand;
v[0] = cpuid1.eax;
v[1] = cpuid1.ebx;
v[2] = cpuid1.ecx;
v[3] = cpuid1.edx;
cpuid1 = cpuid(0x80000003);
v[4] = cpuid1.eax;
v[5] = cpuid1.ebx;
v[6] = cpuid1.ecx;
v[7] = cpuid1.edx;
cpuid1 = cpuid(0x80000004);
v[8] = cpuid1.eax;
v[9] = cpuid1.ebx;
v[10] = cpuid1.ecx;
v[11] = cpuid1.edx;
processor_brand[48] = 0;
printk(BIOS_INFO, "processor_brand=%s\n", processor_brand);
uint32_t dtemp;
uint8_t node_count;
/*
* Based on the CPU socket type,cmp_cap and pwr_lmt , get the power limit.
* socket_type : 0x10 SocketF; 0x11 AM2/ASB1 ; 0x12 S1G1
* cmp_cap : 0x0 SingleCore ; 0x1 DualCore ; 0x2 TripleCore ; 0x3 QuadCore ; 0x4 QuintupleCore ; 0x5 HexCore
*/
printk(BIOS_INFO, "Pstates algorithm ...\n");
/* Get number of cores */
dtemp = pci_read_config32(dev_find_slot(0, PCI_DEVFN(0x18, 3)), 0xE8);
cmp_cap = (dtemp & 0x3000) >> 12;
if (mctGetLogicalCPUID(0) & AMD_FAM10_REV_D) /* revision D */
cmp_cap |= (dtemp & 0x8000) >> 13;
/* Get number of nodes */
dtemp = pci_read_config32(dev_find_slot(0, PCI_DEVFN(0x18, 0)), 0x60);
node_count = ((dtemp & 0x70) >> 4) + 1;
/* Compute total number of cores installed in system */
cmp_cap++;
cmp_cap *= node_count;
Pstate_num = 0;
/* See if the CPUID(0x80000007) returned EDX[7]==1b */
cpuid1 = cpuid(0x80000007);
if ((cpuid1.edx & 0x80) != 0x80) {
printk(BIOS_INFO, "No valid set of P-states\n");
return;
}
uint8_t pviModeFlag;
uint8_t Pstate_max;
uint8_t cpufid;
uint8_t cpudid;
uint8_t cpuvid;
uint8_t cpuidd;
uint8_t cpuidv;
uint8_t power_step_up;
uint8_t power_step_down;
uint8_t pll_lock_time;
uint32_t expanded_cpuidv;
uint32_t core_frequency;
uint32_t core_power;
uint32_t core_latency;
uint32_t core_voltage; /* multiplied by 10000 */
uint8_t single_link;
/* Determine if this is a single-link system */
dtemp = pci_read_config32(dev_find_slot(0, PCI_DEVFN(0x18, 0)), 0x80);
single_link = !!(((dtemp & 0xff00) >> 8) == 0);
/* Determine if this is a PVI or SVI system */
dtemp = pci_read_config32(dev_find_slot(0, PCI_DEVFN(0x18, 3)), 0xA0);
if (dtemp & PVI_MODE)
pviModeFlag = 1;
else
pviModeFlag = 0;
/* Get PSmax's index */
msr = rdmsr(0xC0010061);
Pstate_max = (uint8_t) ((msr.lo >> PS_MAX_VAL_SHFT) & BIT_MASK_3);
/* Determine if all enabled Pstates have the same fidvid */
uint8_t i;
uint8_t cpufid_prev = (rdmsr(0xC0010064).lo & 0x3f);
uint8_t all_enabled_cores_have_same_cpufid = 1;
for (i = 1; i < Pstate_max; i++) {
cpufid = rdmsr(0xC0010064 + i).lo & 0x3f;
if (cpufid != cpufid_prev) {
all_enabled_cores_have_same_cpufid = 0;
break;
}
}
/* Populate tables with all Pstate information */
for (Pstate_num = 0; Pstate_num < Pstate_max; Pstate_num++) {
/* Get power state information */
msr = rdmsr(0xC0010064 + Pstate_num);
cpufid = (msr.lo & 0x3f);
cpudid = (msr.lo & 0x1c0) >> 6;
cpuvid = (msr.lo & 0xfe00) >> 9;
cpuidd = (msr.hi & 0xff);
cpuidv = (msr.hi & 0x300) >> 8;
core_frequency = (100 * (cpufid + 0x10)) / (0x01 << cpudid);
if (pviModeFlag) {
if (cpuvid >= 0x20) {
core_voltage = 7625 - (((cpuvid - 0x20) * 10000) / 80);
}
else {
core_voltage = 15500 - ((cpuvid * 10000) / 40);
}
}
else {
cpuvid = cpuvid & 0x7f;
if (cpuvid >= 0x7c)
core_voltage = 0;
else
core_voltage = 15500 - ((cpuvid * 10000) / 80);
}
switch (cpuidv) {
case 0x0:
expanded_cpuidv = 1;
break;
case 0x1:
expanded_cpuidv = 10;
break;
case 0x2:
expanded_cpuidv = 100;
break;
case 0x3:
expanded_cpuidv = 1000;
break;
default:
printk(BIOS_ERR, "%s:%s:%d: Invalid cpuidv, "
"not generating pstate tables.\n",
__FILE__, __func__, __LINE__);
return;
}
core_power = (core_voltage * cpuidd) / (expanded_cpuidv * 10);
/* Calculate transition latency */
dtemp = pci_read_config32(dev_find_slot(0, PCI_DEVFN(0x18, 3)), 0xD4);
power_step_up = (dtemp & 0xf000000) >> 24;
power_step_down = (dtemp & 0xf00000) >> 20;
dtemp = pci_read_config32(dev_find_slot(0, PCI_DEVFN(0x18, 3)), 0xA0);
pll_lock_time = (dtemp & 0x3800) >> 11;
if (all_enabled_cores_have_same_cpufid)
core_latency = ((12 * power_step_down) + power_step_up) / 1000;
else
core_latency = (12 * (power_step_down + power_step_up) / 1000)
+ pll_lock_time;
Pstate_feq[Pstate_num] = core_frequency;
Pstate_power[Pstate_num] = core_power;
Pstate_latency[Pstate_num] = core_latency;
Pstate_control[Pstate_num] = Pstate_num;
Pstate_status[Pstate_num] = Pstate_num;
}
/* Print Pstate frequency, power, and latency */
for (index = 0; index < Pstate_num; index++) {
printk(BIOS_INFO, "Pstate_freq[%d] = %dMHz\t", index,
Pstate_feq[index]);
printk(BIOS_INFO, "Pstate_power[%d] = %dmw\n", index,
Pstate_power[index]);
printk(BIOS_INFO, "Pstate_latency[%d] = %dus\n", index,
Pstate_latency[index]);
}
char pscope[] = "\\_PR";
acpigen_write_scope(pscope);
for (index = 0; index < cmp_cap; index++)
write_pstates_for_core(Pstate_num, Pstate_feq, Pstate_power,
Pstate_latency, Pstate_control, Pstate_status,
index, pcontrol_blk, plen, onlyBSP, single_link);
acpigen_pop_len();
}
|