1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
|
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2007 Advanced Micro Devices, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#if FAM10_SET_FIDVID == 1
#include "../../../northbridge/amd/amdht/AsPsDefs.h"
#define FAM10_SET_FIDVID_DEBUG 1
// if we are tight of CAR stack, disable it
#define FAM10_SET_FIDVID_STORE_AP_APICID_AT_FIRST 1
static void print_debug_fv(const char *str, u32 val)
{
#if FAM10_SET_FIDVID_DEBUG == 1
printk_debug("%s%x\n", str, val);
#endif
}
static void print_debug_fv_8(const char *str, u8 val)
{
#if FAM10_SET_FIDVID_DEBUG == 1
printk_debug("%s%02x\n", str, val);
#endif
}
static void print_debug_fv_64(const char *str, u32 val, u32 val2)
{
#if FAM10_SET_FIDVID_DEBUG == 1
printk_debug("%s%x%x\n", str, val, val2);
#endif
}
struct fidvid_st {
u32 common_fid;
};
static void enable_fid_change(u8 fid)
{
u32 dword;
u32 nodes;
device_t dev;
int i;
nodes = get_nodes();
for(i = 0; i < nodes; i++) {
dev = NODE_PCI(i,3);
dword = pci_read_config32(dev, 0xd4);
dword &= ~0x1F;
dword |= (u32) fid & 0x1F;
dword |= 1 << 5; // enable
pci_write_config32(dev, 0xd4, dword);
printk_debug("FID Change Node:%02x, F3xD4: %08x \n", i, dword);
}
}
static void recalculateVsSlamTimeSettingOnCorePre(device_t dev)
{
u8 pviModeFlag;
u8 highVoltageVid, lowVoltageVid, bValue;
u16 minimumSlamTime;
u16 vSlamTimes[7]={1000,2000,3000,4000,6000,10000,20000}; /* Reg settings scaled by 100 */
u32 dtemp;
msr_t msr;
/* This function calculates the VsSlamTime using the range of possible
* voltages instead of a hardcoded 200us.
* Note:This function is called from setFidVidRegs and setUserPs after
* programming a custom Pstate.
*/
/* Calculate Slam Time
* Vslam = 0.4us/mV * Vp0 - (lowest out of Vpmin or Valt)
* In our case, we will scale the values by 100 to avoid
* decimals.
*/
/* Determine if this is a PVI or SVI system */
dtemp = pci_read_config32(dev, 0xA0);
if( dtemp & PVI_MODE )
pviModeFlag = 1;
else
pviModeFlag = 0;
/* Get P0's voltage */
msr = rdmsr(0xC0010064);
highVoltageVid = (u8) ((msr.lo >> PS_CPU_VID_SHFT) & 0x7F);
/* If SVI, we only care about CPU VID.
* If PVI, determine the higher voltage b/t NB and CPU
*/
if (pviModeFlag) {
bValue = (u8) ((msr.lo >> PS_NB_VID_SHFT) & 0x7F);
if( highVoltageVid > bValue )
highVoltageVid = bValue;
}
/* Get Pmin's index */
msr = rdmsr(0xC0010061);
bValue = (u8) ((msr.lo >> PS_CUR_LIM_SHFT) & BIT_MASK_3);
/* Get Pmin's VID */
msr = rdmsr(0xC0010064 + bValue);
lowVoltageVid = (u8) ((msr.lo >> PS_CPU_VID_SHFT) & 0x7F);
/* If SVI, we only care about CPU VID.
* If PVI, determine the higher voltage b/t NB and CPU
*/
if (pviModeFlag) {
bValue = (u8) ((msr.lo >> PS_NB_VID_SHFT) & 0x7F);
if( lowVoltageVid > bValue )
lowVoltageVid = bValue;
}
/* Get AltVID */
dtemp = pci_read_config32(dev, 0xDC);
bValue = (u8) (dtemp & BIT_MASK_7);
/* Use the VID with the lowest voltage (higher VID) */
if( lowVoltageVid < bValue )
lowVoltageVid = bValue;
/* If Vids are 7Dh - 7Fh, force 7Ch to keep calculations linear */
if (lowVoltageVid > 0x7C) {
lowVoltageVid = 0x7C;
if(highVoltageVid > 0x7C)
highVoltageVid = 0x7C;
}
bValue = (u8) (lowVoltageVid - highVoltageVid);
/* Each Vid increment is 12.5 mV. The minimum slam time is:
* vidCodeDelta * 12.5mV * 0.4us/mV
* Scale by 100 to avoid decimals.
*/
minimumSlamTime = bValue * (125 * 4);
/* Now round up to nearest register setting.
* Note that if we don't find a value, we
* will fall through to a value of 7
*/
for(bValue=0; bValue < 7; bValue++) {
if(minimumSlamTime <= vSlamTimes[bValue])
break;
}
/* Apply the value */
dtemp = pci_read_config32(dev, 0xD8);
dtemp &= VSSLAM_MASK;
dtemp |= bValue;
pci_write_config32(dev, 0xd8, dtemp);
}
static void prep_fid_change(void)
{
u32 dword, dtemp;
u32 nodes;
device_t dev;
int i;
/* This needs to be run before any Pstate changes are requested */
nodes = get_nodes();
for(i = 0; i < nodes; i++) {
printk_debug("Prep FID/VID Node:%02x \n", i);
dev = NODE_PCI(i,3);
dword = pci_read_config32(dev, 0xd8);
dword &= VSRAMP_MASK;
dword |= VSRAMP_VALUE;
pci_write_config32(dev, 0xd8, dword);
/* Figure out the value for VsSlamTime and program it */
recalculateVsSlamTimeSettingOnCorePre(dev);
/* Program fields in Clock Power/Control register0 (F3xD4) */
/* set F3xD4 Clock Power/Timing Control 0 Register
* NbClkDidApplyAll=1b
* NbClkDid=100b
* PowerStepUp= "platform dependent"
* PowerStepDown= "platform dependent"
* LinkPllLink=01b
* ClkRampHystSel=HW default
*/
/* check platform type */
if (!(get_platform_type() & AMD_PTYPE_SVR)) {
/* For non-server platform
* PowerStepUp=01000b - 50nS
* PowerStepDown=01000b - 50ns
*/
dword = pci_read_config32(dev, 0xd4);
dword &= CPTC0_MASK;
dword |= NB_CLKDID_ALL | NB_CLKDID | PW_STP_UP50 | PW_STP_DN50 |
LNK_PLL_LOCK; /* per BKDG */
pci_write_config32(dev, 0xd4, dword);
} else {
dword = pci_read_config32(dev, 0xd4);
dword &= CPTC0_MASK;
/* get number of cores for PowerStepUp & PowerStepDown in server
1 core - 400nS - 0000b
2 cores - 200nS - 0010b
3 cores - 133nS -> 100nS - 0011b
4 cores - 100nS - 0011b
*/
switch(get_core_num_in_bsp(i))
{
case 0:
dword |= PW_STP_UP400 | PW_STP_DN400;
break;
case 1:
case 2:
dword |= PW_STP_UP200 | PW_STP_DN200;
break;
case 3:
dword |= PW_STP_UP100 | PW_STP_DN100;
break;
default:
dword |= PW_STP_UP100 | PW_STP_DN100;
break;
}
dword |= NB_CLKDID_ALL | NB_CLKDID | LNK_PLL_LOCK;
pci_write_config32(dev, 0xd4, dword);
}
/* check PVI/SVI */
dword = pci_read_config32(dev, 0xA0);
if(dword & PVI_MODE) { /* PVI */
/* set slamVidMode to 0 for PVI */
dword &= VID_SLAM_OFF | PLLLOCK_OFF;
dword |= PLLLOCK_DFT_L;
pci_write_config32(dev, 0xA0, dword);
} else { /* SVI */
/* set slamVidMode to 1 for SVI */
dword &= PLLLOCK_OFF;
dword |= PLLLOCK_DFT_L | VID_SLAM_ON;
pci_write_config32(dev, 0xA0, dword);
dtemp = dword;
/* Program F3xD8[PwrPlanes] according F3xA0[DulaVdd] */
dword = pci_read_config32(dev, 0xD8);
if( dtemp & DUAL_VDD_BIT)
dword |= PWR_PLN_ON;
else
dword &= PWR_PLN_OFF;
pci_write_config32(dev, 0xD8, dword);
}
/* Note the following settings are additional from the ported
* function setFidVidRegs()
*/
dword = pci_read_config32(dev, 0xDc);
dword |= 0x5 << 12; /* NbsynPtrAdj set to 0x5 per BKDG (needs reset) */
pci_write_config32(dev, 0xdc, dword);
/* Rev B settings - FIXME: support other revs. */
dword = 0xA0E641E6;
pci_write_config32(dev, 0x84, dword);
dword = 0xE600A681;
pci_write_config32(dev, 0x80, dword);
dword = pci_read_config32(dev, 0x80);
printk_debug(" F3x80: %08x \n", dword);
dword = pci_read_config32(dev, 0x84);
printk_debug(" F3x84: %08x \n", dword);
dword = pci_read_config32(dev, 0xD4);
printk_debug(" F3xD4: %08x \n", dword);
dword = pci_read_config32(dev, 0xD8);
printk_debug(" F3xD8: %08x \n", dword);
dword = pci_read_config32(dev, 0xDC);
printk_debug(" F3xDC: %08x \n", dword);
}
}
static void UpdateSinglePlaneNbVid(void)
{
u32 nbVid, cpuVid;
u8 i;
msr_t msr;
/* copy higher voltage (lower VID) of NBVID & CPUVID to both */
for (i = 0; i < 5; i++) {
msr = rdmsr(PS_REG_BASE + i);
nbVid = (msr.lo & PS_CPU_VID_M_ON) >> PS_CPU_VID_SHFT;
cpuVid = (msr.lo & PS_NB_VID_M_ON) >> PS_NB_VID_SHFT;
if( nbVid != cpuVid ) {
if(nbVid > cpuVid)
nbVid = cpuVid;
msr.lo = msr.lo & PS_BOTH_VID_OFF;
msr.lo = msr.lo | (u32)((nbVid) << PS_NB_VID_SHFT);
msr.lo = msr.lo | (u32)((nbVid) << PS_CPU_VID_SHFT);
wrmsr(PS_REG_BASE + i, msr);
}
}
}
static void fixPsNbVidBeforeWR(u32 newNbVid, u32 coreid)
{
msr_t msr;
u8 startup_pstate;
/* This function sets NbVid before the warm reset.
* Get StartupPstate from MSRC001_0071.
* Read Pstate register pionted by [StartupPstate].
* and copy its content to P0 and P1 registers.
* Copy newNbVid to P0[NbVid].
* transition to P1 on all cores,
* then transition to P0 on core 0.
* Wait for MSRC001_0063[CurPstate] = 000b on core 0.
*/
msr = rdmsr(0xc0010071);
startup_pstate = (msr.hi >> (32-32)) & 0x07;
/* Copy startup pstate to P1 and P0 MSRs. Set the maxvid for this node in P0.
* Then transition to P1 for corex and P0 for core0.
* These setting will be cleared by the warm reset
*/
msr = rdmsr(0xC0010064 + startup_pstate);
wrmsr(0xC0010065, msr);
wrmsr(0xC0010064, msr);
msr.lo &= ~0xFE000000; // clear nbvid
msr.lo |= newNbVid << 25;
wrmsr(0xC0010064, msr);
UpdateSinglePlaneNbVid();
// Transition to P1 for all APs and P0 for core0.
msr = rdmsr(0xC0010062);
msr.lo = (msr.lo & ~0x07) | 1;
wrmsr(0xC0010062, msr);
// Wait for P1 to set.
do {
msr = rdmsr(0xC0010063);
} while (msr.lo != 1);
if (coreid == 0) {
msr.lo = msr.lo & ~0x07;
wrmsr(0xC0010062, msr);
// Wait for P0 to set.
do {
msr = rdmsr(0xC0010063);
} while (msr.lo != 0);
}
}
static void coreDelay (void)
{
u32 saved;
u32 hi, lo, msr;
u32 cycles;
/* delay ~40us
This seems like a hack to me...
It would be nice to have a central delay function. */
cycles = 8000 << 3; /* x8 (number of 1.25ns ticks) */
msr = 0x10; /* TSC */
_RDMSR(msr, &lo, &hi);
saved = lo;
do {
_RDMSR(msr, &lo, &hi);
} while (lo - saved < cycles );
}
static void transitionVid(u32 targetVid, u8 dev, u8 isNb)
{
u32 currentVid, dtemp;
msr_t msr;
u8 vsTimecode;
u16 timeTable[8]={10, 20, 30, 40, 60, 100, 200, 500};
int vsTime;
/* This function steps or slam the Nb VID to the target VID.
* It uses VSRampTime for [SlamVidMode]=0 ([PviMode]=1)
* or VSSlamTime for [SlamVidMode]=1 ([PviMode]=0)to time period.
*/
/* get the current VID */
msr = rdmsr(0xC0010071);
if(isNb)
currentVid = (msr.lo >> NB_VID_POS) & BIT_MASK_7;
else
currentVid = (msr.lo >> CPU_VID_POS) & BIT_MASK_7;
/* Read MSRC001_0070 COFVID Control Register */
msr = rdmsr(0xC0010070);
/* check PVI/SPI */
dtemp = pci_read_config32(dev, 0xA0);
if (dtemp & PVI_MODE) { /* PVI, step VID */
if (currentVid < targetVid) {
while (currentVid < targetVid) {
currentVid++;
if(isNb)
msr.lo = (msr.lo & NB_VID_MASK_OFF) | (currentVid << NB_VID_POS);
else
msr.lo = (msr.lo & CPU_VID_MASK_OFF) | (currentVid << CPU_VID_POS);
wrmsr(0xC0010070, msr);
/* read F3xD8[VSRampTime] */
dtemp = pci_read_config32(dev, 0xD8);
vsTimecode = (u8)((dtemp >> VS_RAMP_T) & 0x7);
vsTime = (int) timeTable[vsTimecode];
do {
coreDelay();
vsTime -=40;
} while(vsTime > 0);
}
} else if (currentVid > targetVid) {
while (currentVid > targetVid) {
currentVid--;
if(isNb)
msr.lo = (msr.lo & NB_VID_MASK_OFF) | (currentVid << NB_VID_POS);
else
msr.lo = (msr.lo & CPU_VID_MASK_OFF) | (currentVid << CPU_VID_POS);
wrmsr(0xC0010070, msr);
/* read F3xD8[VSRampTime] */
dtemp = pci_read_config32(dev, 0xD8);
vsTimecode = (u8)((dtemp >> VS_RAMP_T) & 0x7);
vsTime = (int) timeTable[vsTimecode];
do {
coreDelay();
vsTime -=40;
} while(vsTime > 0);
}
}
} else { /* SVI, slam VID */
if(isNb)
msr.lo = (msr.lo & NB_VID_MASK_OFF) | (targetVid << NB_VID_POS);
else
msr.lo = (msr.lo & CPU_VID_MASK_OFF) | (targetVid << CPU_VID_POS);
wrmsr(0xC0010070, msr);
/* read F3xD8[VSRampTime] */
dtemp = pci_read_config32(dev, 0xD8);
vsTimecode = (u8)((dtemp >> VS_RAMP_T) & 0x7);
vsTime = (int) timeTable[vsTimecode];
do {
coreDelay();
vsTime -=40;
} while(vsTime > 0);
}
}
static void init_fidvid_ap(u32 bsp_apicid, u32 apicid, u32 nodeid, u32 coreid)
{
device_t dev;
u32 vid_max;
u32 fid_max;
u8 nb_cof_vid_update;
u8 pvimode;
u32 reg1fc;
u32 send;
u8 nodes;
u8 i;
printk_debug("FIDVID on AP: %02x\n", apicid);
/* Steps 1-6 of BIOS NB COF and VID Configuration
* for SVI and Single-Plane PVI Systems.
*/
/* If any node has nb_cof_vid_update set all nodes need an update. */
nodes = get_nodes();
nb_cof_vid_update = 0;
for (i = 0; i < nodes; i++) {
if (pci_read_config32(NODE_PCI(i,3), 0x1FC) & 1) {
nb_cof_vid_update = 1;
break;
}
}
dev = NODE_PCI(nodeid,3);
pvimode = (pci_read_config32(dev, 0xA0) >> 8) & 1;
reg1fc = pci_read_config32(dev, 0x1FC);
if (nb_cof_vid_update) {
if (pvimode) {
vid_max = (reg1fc >> 7) & 0x7F;
fid_max = (reg1fc >> 2) & 0x1F;
/* write newNbVid to P-state Reg's NbVid always if NbVidUpdatedAll=1 */
fixPsNbVidBeforeWR(vid_max, coreid);
} else { /* SVI */
vid_max = ((reg1fc >> 7) & 0x7F) - ((reg1fc >> 17) & 0x1F);
fid_max = ((reg1fc >> 2) & 0x1F) + ((reg1fc >> 14) & 0x7);
transitionVid(vid_max, dev, IS_NB);
}
/* fid setup is handled by the BSP at the end. */
} else { /* ! nb_cof_vid_update */
/* Use max values */
if (pvimode)
UpdateSinglePlaneNbVid();
}
send = (nb_cof_vid_update << 16) | (fid_max << 8);
send |= (apicid << 24); // ap apicid
// Send signal to BSP about this AP max fid
// This also indicates this AP is ready for warm reset (if required).
lapic_write(LAPIC_MSG_REG, send | 1);
}
static u32 calc_common_fid(u32 fid_packed, u32 fid_packed_new)
{
u32 fidmax;
u32 fidmax_new;
fidmax = (fid_packed >> 8) & 0xFF;
fidmax_new = (fid_packed_new >> 8) & 0xFF;
if(fidmax > fidmax_new) {
fidmax = fidmax_new;
}
fid_packed &= 0xFF << 16;
fid_packed |= (fidmax << 8);
fid_packed |= fid_packed_new & (0xFF << 16); // set nb_cof_vid_update
return fid_packed;
}
static void init_fidvid_bsp_stage1(u32 ap_apicid, void *gp )
{
u32 readback = 0;
u32 timeout = 1;
struct fidvid_st *fvp = gp;
int loop;
print_debug_fv("Wait for AP stage 1: ap_apicid = ", ap_apicid);
loop = 100000;
while(--loop > 0) {
if(lapic_remote_read(ap_apicid, LAPIC_MSG_REG, &readback) != 0) continue;
if((readback & 0x3f) == 1) {
timeout = 0;
break; //target ap is in stage 1
}
}
if(timeout) {
print_initcpu8("fidvid_bsp_stage1: time out while reading from ap ", ap_apicid);
return;
}
print_debug_fv("\treadback = ", readback);
fvp->common_fid = calc_common_fid(fvp->common_fid, readback);
print_debug_fv("\tcommon_fid(packed) = ", fvp->common_fid);
}
static void updateSviPsNbVidAfterWR(u32 newNbVid)
{
msr_t msr;
u8 i;
/* This function copies newNbVid to NbVid bits in P-state Registers[4:0]
* for SVI mode.
*/
for( i = 0; i < 5; i++) {
msr = rdmsr(0xC0010064 + i);
if ((msr.hi >> 31) & 1) { /* PstateEn? */
msr.lo &= ~(0x7F << 25);
msr.lo |= (newNbVid & 0x7F) << 25;
wrmsr(0xC0010064 + i, msr);
}
}
}
static void fixPsNbVidAfterWR(u32 newNbVid, u8 NbVidUpdatedAll)
{
msr_t msr;
u8 i;
u8 StartupPstate;
/* This function copies newNbVid to NbVid bits in P-state
* Registers[4:0] if its NbDid bit=0 and PstateEn bit =1 in case of
* NbVidUpdatedAll =0 or copies copies newNbVid to NbVid bits in
* P-state Registers[4:0] if its and PstateEn bit =1 in case of
* NbVidUpdatedAll=1. Then transition to StartPstate.
*/
/* write newNbVid to P-state Reg's NbVid if its NbDid=0 */
for( i = 0; i < 5; i++) {
msr = rdmsr(0xC0010064 + i);
/* NbDid (bit 22 of P-state Reg) == 0 or NbVidUpdatedAll = 1 */
if ((((msr.lo >> 22) & 1) == 0) || NbVidUpdatedAll) {
msr.lo &= ~(0x7F << 25);
msr.lo |= (newNbVid & 0x7F) << 25;
wrmsr (0xC0010064 + i, msr);
}
}
UpdateSinglePlaneNbVid();
/* For each core in the system, transition all cores to StartupPstate */
msr = rdmsr(0xC0010071);
StartupPstate = msr.hi & 0x07;
msr = rdmsr(0xC0010062);
msr.lo = StartupPstate;
wrmsr(0xC0010062, msr);
/* Wait for StartupPstate to set.*/
do {
msr = rdmsr(0xC0010063);
} while (msr.lo != StartupPstate);
}
static void set_p0(void)
{
msr_t msr;
// Transition P0 for calling core.
msr = rdmsr(0xC0010062);
msr.lo = (msr.lo & ~0x07);
wrmsr(0xC0010062, msr);
/* Wait for P0 to set. */
do {
msr = rdmsr(0xC0010063);
} while (msr.lo != 0);
}
static void finalPstateChange (void) {
/* Enble P0 on all cores for best performance.
* Linux can slow them down later if need be.
* It is safe since they will be in C1 halt
* most of the time anyway.
*/
set_p0();
}
static void init_fidvid_stage2(u32 apicid, u32 nodeid)
{
msr_t msr;
device_t dev;
u32 reg1fc;
u32 dtemp;
u32 nbvid;
u8 nb_cof_vid_update;
u8 nodes;
u8 NbVidUpdateAll;
u8 i;
u8 pvimode;
/* After warm reset finish the fid/vid setup for all cores. */
/* If any node has nb_cof_vid_update set all nodes need an update. */
nodes = get_nodes();
nb_cof_vid_update = 0;
for (i = 0; i < nodes; i++) {
if (pci_read_config32(NODE_PCI(i,3), 0x1FC) & 1) {
nb_cof_vid_update = 1;
break;
}
}
dev = NODE_PCI(nodeid,3);
pvimode = (pci_read_config32(dev, 0xA0) >> 8) & 1;
reg1fc = pci_read_config32(dev, 0x1FC);
nbvid = (reg1fc >> 7) & 0x7F;
NbVidUpdateAll = (reg1fc >> 1) & 1;
if (nb_cof_vid_update) {
if (pvimode) {
nbvid = (reg1fc >> 7) & 0x7F;
/* write newNbVid to P-state Reg's NbVid if its NbDid=0 */
fixPsNbVidAfterWR(nbvid, NbVidUpdateAll);
} else { /* SVI */
nbvid = ((reg1fc >> 7) & 0x7F) - ((reg1fc >> 17) & 0x1F);
updateSviPsNbVidAfterWR(nbvid);
}
} else { /* !nb_cof_vid_update */
if (pvimode)
UpdateSinglePlaneNbVid();
}
dtemp = pci_read_config32(dev, 0xA0);
dtemp &= PLLLOCK_OFF;
dtemp |= PLLLOCK_DFT_L;
pci_write_config32(dev, 0xA0, dtemp);
finalPstateChange();
/* Set TSC to tick at the P0 ndfid rate */
msr = rdmsr(HWCR);
msr.lo |= 1 << 24;
wrmsr(HWCR, msr);
}
#if FAM10_SET_FIDVID_STORE_AP_APICID_AT_FIRST == 1
struct ap_apicid_st {
u32 num;
// it could use 256 bytes for 64 node quad core system
u8 apicid[NODE_NUMS * 4];
};
static void store_ap_apicid(unsigned ap_apicid, void *gp)
{
struct ap_apicid_st *p = gp;
p->apicid[p->num++] = ap_apicid;
}
#endif
static int init_fidvid_bsp(u32 bsp_apicid, u32 nodes)
{
#if FAM10_SET_FIDVID_STORE_AP_APICID_AT_FIRST == 1
struct ap_apicid_st ap_apicidx;
u32 i;
#endif
struct fidvid_st fv;
device_t dev;
u32 vid_max;
u32 fid_max;
u8 nb_cof_vid_update;
u32 reg1fc;
u8 pvimode;
printk_debug("FIDVID on BSP, APIC_id: %02x\n", bsp_apicid);
/* FIXME: The first half of this function is nearly the same as
* init_fidvid_bsp() and the code could be combined.
*/
/* Steps 1-6 of BIOS NB COF and VID Configuration
* for SVI and Single-Plane PVI Systems.
*/
/* If any node has nb_cof_vid_update set all nodes need an update. */
nb_cof_vid_update = 0;
for (i = 0; i < nodes; i++) {
if (pci_read_config32(NODE_PCI(i,3), 0x1FC) & 1) {
nb_cof_vid_update = 1;
break;
}
}
dev = NODE_PCI(0, 3);
pvimode = (pci_read_config32(dev, 0xA0) >> 8) & 1;
reg1fc = pci_read_config32(dev, 0x1FC);
if (nb_cof_vid_update) {
if (pvimode) {
vid_max = (reg1fc >> 7) & 0x7F;
fid_max = (reg1fc >> 2) & 0x1F;
/* write newNbVid to P-state Reg's NbVid always if NbVidUpdatedAll=1 */
fixPsNbVidBeforeWR(vid_max, 0);
} else { /* SVI */
vid_max = ((reg1fc >> 7) & 0x7F) - ((reg1fc >> 17) & 0x1F);
fid_max = ((reg1fc >> 2) & 0x1F) + ((reg1fc >> 14) & 0x7);
transitionVid(vid_max, dev, IS_NB);
}
/* fid setup is handled by the BSP at the end. */
} else { /* ! nb_cof_vid_update */
/* Use max values */
if (pvimode)
UpdateSinglePlaneNbVid();
}
fv.common_fid = (nb_cof_vid_update << 16) | (fid_max << 8) ;
print_debug_fv("BSP fid = ", fv.common_fid);
#if FAM10_SET_FIDVID_STORE_AP_APICID_AT_FIRST == 1 && FAM10_SET_FIDVID_CORE0_ONLY == 0
/* For all APs (We know the APIC ID of all APs even when the APIC ID
is lifted) remote read from AP LAPIC_MSG_REG about max fid.
Then calculate the common max fid that can be used for all
APs and BSP */
ap_apicidx.num = 0;
for_each_ap(bsp_apicid, FAM10_SET_FIDVID_CORE_RANGE, store_ap_apicid, &ap_apicidx);
for(i = 0; i < ap_apicidx.num; i++) {
init_fidvid_bsp_stage1(ap_apicidx.apicid[i], &fv);
}
#else
for_each_ap(bsp_apicid, FAM10_SET_FIDVID_CORE0_ONLY, init_fidvid_bsp_stage1, &fv);
#endif
print_debug_fv("common_fid = ", fv.common_fid);
if (fv.common_fid & (1 << 16)) { /* check nb_cof_vid_update */
// Enable the common fid and other settings.
enable_fid_change((fv.common_fid >> 8) & 0x1F);
// nbfid change need warm reset, so reset at first
return 1;
}
return 0; // No FID/VID changes. Don't reset
}
#endif
|