1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
|
/* SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0-or-later */
#include <assert.h>
#include <commonlib/bsd/cbfs_private.h>
/*
* A CBFS metadata cache is an in memory data structure storing CBFS file headers (= metadata).
* It is defined by its start pointer and size. It contains a sequence of variable-length
* union mcache_entry entries. There is no overall header structure for the cache.
*
* Each mcache_entry is the raw metadata for a CBFS file (including attributes) in the same form
* as stored on flash (i.e. values in big-endian), except that the CBFS magic signature in the
* first 8 bytes ('LARCHIVE') is overwritten with mcache-internal bookkeeping data. The first 4
* bytes are a magic number (MCACHE_MAGIC_FILE) and the next 4 bytes are the absolute offset in
* bytes on the cbfs_dev_t that this metadata blob was found at. (Note that depending on the
* implementation of cbfs_dev_t, this offset may still be relative to the start of a subregion
* of the underlying storage device.)
*
* The length of an mcache_entry (i.e. length of the underlying metadata blob) is encoded in the
* metadata (entry->file.h.offset). The next mcache_entry begins at the next
* CBFS_MCACHE_ALIGNMENT boundary after that. The cache is terminated by a special 4-byte
* mcache_entry that consists only of a magic number (MCACHE_MAGIC_END or MCACHE_MAGIC_FULL).
*/
#define MCACHE_MAGIC_FILE 0x454c4946 /* 'FILE' */
#define MCACHE_MAGIC_FULL 0x4c4c5546 /* 'FULL' */
#define MCACHE_MAGIC_END 0x444e4524 /* '$END' */
union mcache_entry {
union cbfs_mdata file;
struct { /* These fields exactly overlap file.h.magic */
uint32_t magic;
uint32_t offset;
};
};
struct cbfs_mcache_build_args {
void *mcache;
void *end;
int count;
};
static cb_err_t build_walker(cbfs_dev_t dev, size_t offset, const union cbfs_mdata *mdata,
size_t already_read, void *arg)
{
struct cbfs_mcache_build_args *args = arg;
union mcache_entry *entry = args->mcache;
const uint32_t data_offset = be32toh(mdata->h.offset);
if (args->end - args->mcache < data_offset)
return CB_CBFS_CACHE_FULL;
if (cbfs_copy_fill_metadata(args->mcache, mdata, already_read, dev, offset))
return CB_CBFS_IO;
entry->magic = MCACHE_MAGIC_FILE;
entry->offset = offset;
args->mcache += ALIGN_UP(data_offset, CBFS_MCACHE_ALIGNMENT);
args->count++;
return CB_CBFS_NOT_FOUND;
}
cb_err_t cbfs_mcache_build(cbfs_dev_t dev, void *mcache, size_t size,
struct vb2_hash *metadata_hash)
{
struct cbfs_mcache_build_args args = {
.mcache = mcache,
.end = mcache + ALIGN_DOWN(size, CBFS_MCACHE_ALIGNMENT)
- sizeof(uint32_t), /* leave space for terminating magic */
.count = 0,
};
assert(size > sizeof(uint32_t) && IS_ALIGNED((uintptr_t)mcache, CBFS_MCACHE_ALIGNMENT));
cb_err_t ret = cbfs_walk(dev, build_walker, &args, metadata_hash, 0);
union mcache_entry *entry = args.mcache;
if (ret == CB_CBFS_NOT_FOUND) {
ret = CB_SUCCESS;
entry->magic = MCACHE_MAGIC_END;
} else if (ret == CB_CBFS_CACHE_FULL) {
ERROR("mcache overflow, should increase CBFS_MCACHE size!\n");
entry->magic = MCACHE_MAGIC_FULL;
}
LOG("mcache @%p built for %d files, used %#zx of %#zx bytes\n", mcache,
args.count, args.mcache + sizeof(entry->magic) - mcache, size);
return ret;
}
cb_err_t cbfs_mcache_lookup(const void *mcache, size_t mcache_size, const char *name,
union cbfs_mdata *mdata_out, size_t *data_offset_out)
{
const size_t namesize = strlen(name) + 1; /* Count trailing \0 so we can memcmp() it. */
const void *end = mcache + mcache_size;
const void *current = mcache;
while (current + sizeof(uint32_t) <= end) {
const union mcache_entry *entry = current;
if (entry->magic == MCACHE_MAGIC_END)
return CB_CBFS_NOT_FOUND;
if (entry->magic == MCACHE_MAGIC_FULL)
return CB_CBFS_CACHE_FULL;
assert(entry->magic == MCACHE_MAGIC_FILE);
const uint32_t data_offset = be32toh(entry->file.h.offset);
const uint32_t data_length = be32toh(entry->file.h.len);
if (namesize <= data_offset - offsetof(union cbfs_mdata, h.filename) &&
memcmp(name, entry->file.h.filename, namesize) == 0) {
LOG("Found '%s' @%#x size %#x in mcache @%p\n",
name, entry->offset, data_length, current);
*data_offset_out = entry->offset + data_offset;
memcpy(mdata_out, &entry->file, data_offset);
return CB_SUCCESS;
}
current += ALIGN_UP(data_offset, CBFS_MCACHE_ALIGNMENT);
}
ERROR("CBFS mcache overflow!\n");
return CB_ERR;
}
size_t cbfs_mcache_real_size(const void *mcache, size_t mcache_size)
{
const void *end = mcache + mcache_size;
const void *current = mcache;
while (current + sizeof(uint32_t) < end) {
const union mcache_entry *entry = current;
if (entry->magic == MCACHE_MAGIC_FULL || entry->magic == MCACHE_MAGIC_END) {
current += sizeof(entry->magic);
break;
}
assert(entry->magic == MCACHE_MAGIC_FILE);
current += ALIGN_UP(be32toh(entry->file.h.offset), CBFS_MCACHE_ALIGNMENT);
}
return current - mcache;
}
|