1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
|
/*
* Macro: PCI_WRITE_CONFIG_BYTE
* Arguments: %eax address to write to (includes bus, device, function, &offset)
* %dl byte to write
*
* Results: none
*
* Trashed: %eax, %edx
* Effects: writes a single byte to pci config space
*
* Notes: This routine is optimized for minimal register usage.
* And the tricks it does cannot scale beyond writing a single byte.
*
* What it does is almost simple.
* It preserves %eax (baring special bits) until it is written
* out to the appropriate port. And hides the data byte
* in the high half of edx.
*
* In %edx[3] it stores the byte to write.
* In %edx[2] it stores the lower three bits of the address.
*/
#define PCI_WRITE_CONFIG_BYTE \
shll $8, %edx ; \
movb %al, %dl ; \
andb $0x3, %dl ; \
shll $16, %edx ; \
\
orl $0x80000000, %eax ; \
andl $0xfffffffc, %eax ; \
movw $0xcf8, %dx ; \
outl %eax, %dx ; \
\
shrl $16, %edx ; \
movb %dh, %al ; \
movb $0, %dh ; \
addl $0xcfc, %edx ; \
outb %al, %dx
/*
* Macro: PCI_WRITE_CONFIG_WORD
* Arguments: %eax address to write to (includes bus, device, function, &offset)
* %ecx word to write
*
* Results: none
*
* Trashed: %eax, %edx
* Preserved: %ecx
* Effects: writes a single byte to pci config space
*
* Notes: This routine is optimized for minimal register usage.
*
* What it does is almost simple.
* It preserves %eax (baring special bits) until it is written
* out to the appropriate port. And hides the least significant
* bits of the address in the high half of edx.
*
* In %edx[2] it stores the lower three bits of the address.
*/
#define PCI_WRITE_CONFIG_WORD \
movb %al, %dl ; \
andl $0x3, %edx ; \
shll $16, %edx ; \
\
orl $0x80000000, %eax ; \
andl $0xfffffffc, %eax ; \
movw $0xcf8, %dx ; \
outl %eax, %dx ; \
\
shrl $16, %edx ; \
movl %ecx, %eax ; \
addl $0xcfc, %edx ; \
outw %ax, %dx
/*
* Macro: PCI_WRITE_CONFIG_DWORD
* Arguments: %eax address to write to (includes bus, device, function, &offset)
* %ecx dword to write
*
* Results: none
*
* Trashed: %eax, %edx
* Preserved: %ecx
* Effects: writes a single byte to pci config space
*
* Notes: This routine is optimized for minimal register usage.
*
* What it does is almost simple.
* It preserves %eax (baring special bits) until it is written
* out to the appropriate port. And hides the least significant
* bits of the address in the high half of edx.
*
* In %edx[2] it stores the lower three bits of the address.
*/
#define PCI_WRITE_CONFIG_DWORD \
movb %al, %dl ; \
andl $0x3, %edx ; \
shll $16, %edx ; \
\
orl $0x80000000, %eax ; \
andl $0xfffffffc, %eax ; \
movw $0xcf8, %dx ; \
outl %eax, %dx ; \
\
shrl $16, %edx ; \
movl %ecx, %eax ; \
addl $0xcfc, %edx ; \
outl %eax, %dx
/*
* Macro: PCI_READ_CONFIG_BYTE
* Arguments: %eax address to read from (includes bus, device, function, &offset)
*
* Results: %al Byte read
*
* Trashed: %eax, %edx
* Effects: reads a single byte from pci config space
*
* Notes: This routine is optimized for minimal register usage.
*
* What it does is almost simple.
* It preserves %eax (baring special bits) until it is written
* out to the appropriate port. And hides the least significant
* bits of the address in the high half of edx.
*
* In %edx[2] it stores the lower three bits of the address.
*/
#define PCI_READ_CONFIG_BYTE \
movb %al, %dl ; \
andl $0x3, %edx ; \
shll $16, %edx ; \
\
orl $0x80000000, %eax ; \
andl $0xfffffffc, %eax ; \
movw $0xcf8, %dx ; \
outl %eax, %dx ; \
\
shrl $16, %edx ; \
addl $0xcfc, %edx ; \
inb %dx, %al
/*
* Macro: PCI_READ_CONFIG_WORD
* Arguments: %eax address to read from (includes bus, device, function, &offset)
*
* Results: %ax word read
*
* Trashed: %eax, %edx
* Effects: reads a 2 bytes from pci config space
*
* Notes: This routine is optimized for minimal register usage.
*
* What it does is almost simple.
* It preserves %eax (baring special bits) until it is written
* out to the appropriate port. And hides the least significant
* bits of the address in the high half of edx.
*
* In %edx[2] it stores the lower three bits of the address.
*/
#define PCI_READ_CONFIG_WORD \
movb %al, %dl ; \
andl $0x3, %edx ; \
shll $16, %edx ; \
\
orl $0x80000000, %eax ; \
andl $0xfffffffc, %eax ; \
movw $0xcf8, %dx ; \
outl %eax, %dx ; \
\
shrl $16, %edx ; \
addl $0xcfc, %edx ; \
inw %dx, %ax
/*
* Macro: PCI_READ_CONFIG_DWORD
* Arguments: %eax address to read from (includes bus, device, function, &offset)
*
* Results: %eax
*
* Trashed: %edx
* Effects: reads 4 bytes from pci config space
*
* Notes: This routine is optimized for minimal register usage.
*
* What it does is almost simple.
* It preserves %eax (baring special bits) until it is written
* out to the appropriate port. And hides the least significant
* bits of the address in the high half of edx.
*
* In %edx[2] it stores the lower three bits of the address.
*/
#define PCI_READ_CONFIG_DWORD \
movb %al, %dl ; \
andl $0x3, %edx ; \
shll $16, %edx ; \
\
orl $0x80000000, %eax ; \
andl $0xfffffffc, %eax ; \
movw $0xcf8, %dx ; \
outl %eax, %dx ; \
\
shrl $16, %edx ; \
addl $0xcfc, %edx ; \
inl %dx, %eax
|