blob: 5f7cd5dddfee17d31fef99a39b3e716aee09409c (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
|
/* SPDX-License-Identifier: GPL-2.0-only */
#include <commonlib/helpers.h>
#include <cpu/cpu.h>
#include <types.h>
#if ENV_X86_32
/* Standard macro to see if a specific flag is changeable */
static inline int flag_is_changeable_p(uint32_t flag)
{
uint32_t f1, f2;
asm(
"pushfl\n\t"
"pushfl\n\t"
"popl %0\n\t"
"movl %0,%1\n\t"
"xorl %2,%0\n\t"
"pushl %0\n\t"
"popfl\n\t"
"pushfl\n\t"
"popl %0\n\t"
"popfl\n\t"
: "=&r" (f1), "=&r" (f2)
: "ir" (flag));
return ((f1^f2) & flag) != 0;
}
/* Probe for the CPUID instruction */
int cpu_have_cpuid(void)
{
return flag_is_changeable_p(X86_EFLAGS_ID);
}
#else
int cpu_have_cpuid(void)
{
return 1;
}
#endif
unsigned int cpu_cpuid_extended_level(void)
{
return cpuid_eax(0x80000000);
}
unsigned int cpu_phys_address_size(void)
{
if (!(cpu_have_cpuid()))
return 32;
if (cpu_cpuid_extended_level() >= 0x80000008) {
int size = cpuid_eax(0x80000008) & 0xff;
size -= get_reserved_phys_addr_bits();
return size;
}
if (cpuid_edx(1) & (CPUID_FEATURE_PAE | CPUID_FEATURE_PSE36))
return 36;
return 32;
}
unsigned int soc_phys_address_size(void)
{
if (CONFIG_SOC_PHYSICAL_ADDRESS_WIDTH)
return CONFIG_SOC_PHYSICAL_ADDRESS_WIDTH;
return cpu_phys_address_size();
}
/*
* Get processor id using cpuid eax=1
* return value in EAX register
*/
uint32_t cpu_get_cpuid(void)
{
return cpuid_eax(1);
}
/*
* Get processor feature flag using cpuid eax=1
* return value in ECX register
*/
uint32_t cpu_get_feature_flags_ecx(void)
{
return cpuid_ecx(1);
}
/*
* Get processor feature flag using cpuid eax=1
* return value in EDX register
*/
uint32_t cpu_get_feature_flags_edx(void)
{
return cpuid_edx(1);
}
enum cpu_type cpu_check_deterministic_cache_cpuid_supported(void)
{
if (cpu_is_intel()) {
if (cpuid_get_max_func() < 4)
return CPUID_COMMAND_UNSUPPORTED;
return CPUID_TYPE_INTEL;
} else if (cpu_is_amd()) {
if (cpu_cpuid_extended_level() < 0x80000001)
return CPUID_COMMAND_UNSUPPORTED;
if (!(cpuid_ecx(0x80000001) & (1 << 22)))
return CPUID_COMMAND_UNSUPPORTED;
return CPUID_TYPE_AMD;
} else {
return CPUID_TYPE_INVALID;
}
}
static uint32_t cpu_get_cache_info_leaf(void)
{
uint32_t leaf = (cpu_check_deterministic_cache_cpuid_supported() == CPUID_TYPE_AMD) ?
DETERMINISTIC_CACHE_PARAMETERS_CPUID_AMD :
DETERMINISTIC_CACHE_PARAMETERS_CPUID_IA;
return leaf;
}
size_t cpu_get_cache_ways_assoc_info(const struct cpu_cache_info *info)
{
if (!info)
return 0;
return info->num_ways;
}
uint8_t cpu_get_cache_type(const struct cpu_cache_info *info)
{
if (!info)
return 0;
return info->type;
}
uint8_t cpu_get_cache_level(const struct cpu_cache_info *info)
{
if (!info)
return 0;
return info->level;
}
size_t cpu_get_cache_phy_partition_info(const struct cpu_cache_info *info)
{
if (!info)
return 0;
return info->physical_partitions;
}
size_t cpu_get_cache_line_size(const struct cpu_cache_info *info)
{
if (!info)
return 0;
return info->line_size;
}
size_t cpu_get_cache_sets(const struct cpu_cache_info *info)
{
if (!info)
return 0;
return info->num_sets;
}
bool cpu_is_cache_full_assoc(const struct cpu_cache_info *info)
{
if (!info)
return false;
return info->fully_associative;
}
size_t cpu_get_max_cache_share(const struct cpu_cache_info *info)
{
if (!info)
return 0;
return info->num_cores_shared;
}
size_t get_cache_size(const struct cpu_cache_info *info)
{
if (!info)
return 0;
return info->num_ways * info->physical_partitions * info->line_size * info->num_sets;
}
/*
* Returns the sub-states supported by the specified CPU
* C-state level.
*
* Level 0 corresponds to the lowest C-state (C0).
* Higher levels are processor specific.
*/
uint8_t cpu_get_c_substate_support(const int state)
{
if ((cpuid_get_max_func() < 5) ||
!(cpuid_ecx(5) & CPUID_FEATURE_MONITOR_MWAIT) || (state > 4))
return 0;
return (cpuid_edx(5) >> (state * 4)) & 0xf;
}
bool fill_cpu_cache_info(uint8_t level, struct cpu_cache_info *info)
{
if (!info)
return false;
uint32_t leaf = cpu_get_cache_info_leaf();
if (!leaf)
return false;
struct cpuid_result cache_info_res = cpuid_ext(leaf, level);
info->type = CPUID_CACHE_TYPE(cache_info_res);
info->level = CPUID_CACHE_LEVEL(cache_info_res);
info->num_ways = CPUID_CACHE_WAYS_OF_ASSOC(cache_info_res) + 1;
info->num_sets = CPUID_CACHE_NO_OF_SETS(cache_info_res) + 1;
info->line_size = CPUID_CACHE_COHER_LINE(cache_info_res) + 1;
info->physical_partitions = CPUID_CACHE_PHYS_LINE(cache_info_res) + 1;
info->num_cores_shared = CPUID_CACHE_SHARING_CACHE(cache_info_res) + 1;
info->fully_associative = CPUID_CACHE_FULL_ASSOC(cache_info_res);
info->size = get_cache_size(info);
return true;
}
bool is_cache_sets_power_of_two(void)
{
struct cpu_cache_info info;
if (!fill_cpu_cache_info(CACHE_L3, &info))
return false;
size_t cache_sets = cpu_get_cache_sets(&info);
return IS_POWER_OF_2(cache_sets);
}
|