1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
|
// SPDX-License-Identifier: BSD-3-Clause
/*
* Libpayload NVMe device driver
* Copyright (C) 2019 secunet Security Networks AG
*/
#include <stdlib.h>
#include <stdint.h>
#include <stdio.h>
#include <pci.h>
#include <pci/pci.h>
#include <libpayload.h>
#include <storage/storage.h>
#include <storage/nvme.h>
#define NVME_CC_EN (1 << 0)
#define NVME_CC_CSS (0 << 4)
#define NVME_CC_MPS (0 << 7)
#define NVME_CC_AMS (0 << 11)
#define NVME_CC_SHN (0 << 14)
#define NVME_CC_IOSQES (6 << 16)
#define NVME_CC_IOCQES (4 << 20)
#define NVME_QUEUE_SIZE 2
#define NVME_SQ_ENTRY_SIZE 64
#define NVME_CQ_ENTRY_SIZE 16
struct nvme_dev {
storage_dev_t storage_dev;
pcidev_t pci_dev;
void *config;
struct {
void *base;
uint32_t *bell;
uint16_t idx; // bool pos 0 or 1
uint16_t round; // bool round 0 or 1+0xd
} queue[4];
uint64_t *prp_list;
};
struct nvme_s_queue_entry {
uint32_t dw[16];
};
struct nvme_c_queue_entry {
uint32_t dw[4];
};
enum nvme_queue {
NVME_ADMIN_QUEUE = 0,
ads = 0,
adc = 1,
NVME_IO_QUEUE = 2,
ios = 2,
ioc = 3,
};
static storage_poll_t nvme_poll(struct storage_dev *dev)
{
return POLL_MEDIUM_PRESENT;
}
static int nvme_cmd(
struct nvme_dev *nvme, enum nvme_queue q, const struct nvme_s_queue_entry *cmd)
{
int sq = q, cq = q+1;
void *s_entry = nvme->queue[sq].base + (nvme->queue[sq].idx * NVME_SQ_ENTRY_SIZE);
memcpy(s_entry, cmd, NVME_SQ_ENTRY_SIZE);
nvme->queue[sq].idx = (nvme->queue[sq].idx + 1) & (NVME_QUEUE_SIZE - 1);
write32(nvme->queue[sq].bell, nvme->queue[sq].idx);
struct nvme_c_queue_entry *c_entry = nvme->queue[cq].base +
(nvme->queue[cq].idx * NVME_CQ_ENTRY_SIZE);
while (((read32(&c_entry->dw[3]) >> 16) & 0x1) == nvme->queue[cq].round)
;
nvme->queue[cq].idx = (nvme->queue[cq].idx + 1) & (NVME_QUEUE_SIZE - 1);
write32(nvme->queue[cq].bell, nvme->queue[cq].idx);
if (nvme->queue[cq].idx == 0)
nvme->queue[cq].round = (nvme->queue[cq].round + 1) & 1;
return c_entry->dw[3] >> 17;
}
static int delete_io_submission_queue(struct nvme_dev *nvme)
{
const struct nvme_s_queue_entry e = {
.dw[0] = 0,
.dw[10] = ios,
};
int res = nvme_cmd(nvme, NVME_ADMIN_QUEUE, &e);
free(nvme->queue[ios].base);
nvme->queue[ios].base = NULL;
nvme->queue[ios].bell = NULL;
nvme->queue[ios].idx = 0;
return res;
}
static int delete_io_completion_queue(struct nvme_dev *nvme)
{
const struct nvme_s_queue_entry e = {
.dw[0] = 1,
.dw[10] = ioc,
};
int res = nvme_cmd(nvme, NVME_ADMIN_QUEUE, &e);
free(nvme->queue[ioc].base);
nvme->queue[ioc].base = NULL;
nvme->queue[ioc].bell = NULL;
nvme->queue[ioc].idx = 0;
nvme->queue[ioc].round = 0;
return res;
}
static int delete_admin_queues(struct nvme_dev *nvme)
{
if (nvme->queue[ios].base || nvme->queue[ioc].base)
printf("NVMe ERROR: IO queues still active.\n");
free(nvme->queue[ads].base);
nvme->queue[ads].base = NULL;
nvme->queue[ads].bell = NULL;
nvme->queue[ads].idx = 0;
free(nvme->queue[adc].base);
nvme->queue[adc].base = NULL;
nvme->queue[adc].bell = NULL;
nvme->queue[adc].idx = 0;
nvme->queue[adc].round = 0;
return 0;
}
static void nvme_detach_device(struct storage_dev *dev)
{
struct nvme_dev *nvme = (struct nvme_dev *)dev;
if (delete_io_submission_queue(nvme))
printf("NVMe ERROR: Failed to delete io submission queue\n");
if (delete_io_completion_queue(nvme))
printf("NVME ERROR: Failed to delete io completion queue\n");
if (delete_admin_queues(nvme))
printf("NVME ERROR: Failed to delete admin queues\n");
write32(nvme->config + 0x1c, 0);
int status, timeout = (read64(nvme->config) >> 24 & 0xff) * 500;
do {
status = read32(nvme->config + 0x1c) & 0x3;
if (status == 0x2) {
printf("NVMe ERROR: Failed to disable controller. FATAL ERROR\n");
break;
}
if (timeout < 0) {
printf("NVMe ERROR: Failed to disable controller. Timeout.\n");
break;
}
timeout -= 10;
mdelay(10);
} while (status != 0x0);
uint16_t command = pci_read_config16(nvme->pci_dev, PCI_COMMAND);
pci_write_config16(nvme->pci_dev, PCI_COMMAND, command & ~PCI_COMMAND_MASTER);
free(nvme->prp_list);
}
static int nvme_read(struct nvme_dev *nvme, unsigned char *buffer, uint64_t base, uint16_t count)
{
if (count == 0 || count > 512)
return -1;
struct nvme_s_queue_entry e = {
.dw[0] = 0x02,
.dw[1] = 0x1,
.dw[6] = virt_to_phys(buffer),
.dw[10] = base,
.dw[11] = base >> 32,
.dw[12] = count - 1,
};
const unsigned int start_page = (uintptr_t)buffer >> 12;
const unsigned int end_page = ((uintptr_t)buffer + count * 512 - 1) >> 12;
if (end_page == start_page) {
/* No page crossing, PRP2 is reserved */
} else if (end_page == start_page + 1) {
/* Crossing exactly one page boundary, PRP2 is second page */
e.dw[8] = virt_to_phys(buffer + 0x1000) & ~0xfff;
} else {
/* Use a single page as PRP list, PRP2 points to the list */
unsigned int i;
for (i = 0; i < end_page - start_page; ++i) {
buffer += 0x1000;
nvme->prp_list[i] = virt_to_phys(buffer) & ~0xfff;
}
e.dw[8] = virt_to_phys(nvme->prp_list);
}
return nvme_cmd(nvme, ios, &e);
}
static ssize_t nvme_read_blocks512(
struct storage_dev *const dev,
const lba_t start, const size_t count, unsigned char *const buf)
{
unsigned int off = 0;
while (off < count) {
const unsigned int blocks = MIN(count - off, 512);
if (nvme_read((struct nvme_dev *)dev, buf + (off * 512), start + off, blocks))
return off;
off += blocks;
}
return count;
}
static int create_io_submission_queue(struct nvme_dev *nvme)
{
void *sq_buffer = memalign(0x1000, NVME_SQ_ENTRY_SIZE * NVME_QUEUE_SIZE);
if (!sq_buffer) {
printf("NVMe ERROR: Failed to allocate memory for io submission queue.\n");
return -1;
}
memset(sq_buffer, 0, NVME_SQ_ENTRY_SIZE * NVME_QUEUE_SIZE);
struct nvme_s_queue_entry e = {
.dw[0] = 0x01,
.dw[6] = virt_to_phys(sq_buffer),
.dw[10] = ((NVME_QUEUE_SIZE - 1) << 16) | ios >> 1,
.dw[11] = (1 << 16) | 1,
};
int res = nvme_cmd(nvme, NVME_ADMIN_QUEUE, &e);
if (res) {
printf("NVMe ERROR: nvme_cmd returned with %i.\n", res);
free(sq_buffer);
return res;
}
uint8_t cap_dstrd = (read64(nvme->config) >> 32) & 0xf;
nvme->queue[ios].base = sq_buffer;
nvme->queue[ios].bell = nvme->config + 0x1000 + (ios * (4 << cap_dstrd));
nvme->queue[ios].idx = 0;
return 0;
}
static int create_io_completion_queue(struct nvme_dev *nvme)
{
void *const cq_buffer = memalign(0x1000, NVME_CQ_ENTRY_SIZE * NVME_QUEUE_SIZE);
if (!cq_buffer) {
printf("NVMe ERROR: Failed to allocate memory for io completion queue.\n");
return -1;
}
memset(cq_buffer, 0, NVME_CQ_ENTRY_SIZE * NVME_QUEUE_SIZE);
const struct nvme_s_queue_entry e = {
.dw[0] = 0x05,
.dw[6] = virt_to_phys(cq_buffer),
.dw[10] = ((NVME_QUEUE_SIZE - 1) << 16) | ioc >> 1,
.dw[11] = 1,
};
int res = nvme_cmd(nvme, NVME_ADMIN_QUEUE, &e);
if (res) {
printf("NVMe ERROR: nvme_cmd returned with %i.\n", res);
free(cq_buffer);
return res;
}
uint8_t cap_dstrd = (read64(nvme->config) >> 32) & 0xf;
nvme->queue[ioc].base = cq_buffer;
nvme->queue[ioc].bell = nvme->config + 0x1000 + (ioc * (4 << cap_dstrd));
nvme->queue[ioc].idx = 0;
nvme->queue[ioc].round = 0;
return 0;
}
static int create_admin_queues(struct nvme_dev *nvme)
{
uint8_t cap_dstrd = (read64(nvme->config) >> 32) & 0xf;
write32(nvme->config + 0x24, (NVME_QUEUE_SIZE - 1) << 16 | (NVME_QUEUE_SIZE - 1));
void *sq_buffer = memalign(0x1000, NVME_SQ_ENTRY_SIZE * NVME_QUEUE_SIZE);
if (!sq_buffer) {
printf("NVMe ERROR: Failed to allocated memory for admin submission queue\n");
return -1;
}
memset(sq_buffer, 0, NVME_SQ_ENTRY_SIZE * NVME_QUEUE_SIZE);
write64(nvme->config + 0x28, virt_to_phys(sq_buffer));
nvme->queue[ads].base = sq_buffer;
nvme->queue[ads].bell = nvme->config + 0x1000 + (ads * (4 << cap_dstrd));
nvme->queue[ads].idx = 0;
void *cq_buffer = memalign(0x1000, NVME_CQ_ENTRY_SIZE * NVME_QUEUE_SIZE);
if (!cq_buffer) {
printf("NVMe ERROR: Failed to allocate memory for admin completion queue\n");
free(cq_buffer);
return -1;
}
memset(cq_buffer, 0, NVME_CQ_ENTRY_SIZE * NVME_QUEUE_SIZE);
write64(nvme->config + 0x30, virt_to_phys(cq_buffer));
nvme->queue[adc].base = cq_buffer;
nvme->queue[adc].bell = nvme->config + 0x1000 + (adc * (4 << cap_dstrd));
nvme->queue[adc].idx = 0;
nvme->queue[adc].round = 0;
return 0;
}
static void nvme_init(pcidev_t dev)
{
printf("NVMe init (Device %02x:%02x.%02x)\n",
PCI_BUS(dev), PCI_SLOT(dev), PCI_FUNC(dev));
void *pci_bar0 = phys_to_virt(pci_read_config32(dev, 0x10) & ~0x3ff);
if (!(((read64(pci_bar0) >> 37) & 0xff) == 0x01)) {
printf("NVMe ERROR: PCIe device does not support the NVMe command set\n");
return;
}
struct nvme_dev *nvme = malloc(sizeof(*nvme));
if (!nvme) {
printf("NVMe ERROR: Failed to allocate buffer for nvme driver struct\n");
return;
}
nvme->storage_dev.port_type = PORT_TYPE_NVME;
nvme->storage_dev.poll = nvme_poll;
nvme->storage_dev.read_blocks512 = nvme_read_blocks512;
nvme->storage_dev.write_blocks512 = NULL;
nvme->storage_dev.detach_device = nvme_detach_device;
nvme->pci_dev = dev;
nvme->config = pci_bar0;
nvme->prp_list = memalign(0x1000, 0x1000);
if (!nvme->prp_list) {
printf("NVMe ERROR: Failed to allocate buffer for PRP list\n");
goto abort;
}
const uint32_t cc = NVME_CC_EN | NVME_CC_CSS | NVME_CC_MPS | NVME_CC_AMS | NVME_CC_SHN
| NVME_CC_IOSQES | NVME_CC_IOCQES;
write32(nvme->config + 0x1c, 0);
int status, timeout = (read64(nvme->config) >> 24 & 0xff) * 500;
do {
status = read32(nvme->config + 0x1c) & 0x3;
if (status == 0x2) {
printf("NVMe ERROR: Failed to disable controller. FATAL ERROR\n");
goto abort;
}
if (timeout < 0) {
printf("NVMe ERROR: Failed to disable controller. Timeout.\n");
goto abort;
}
timeout -= 10;
mdelay(10);
} while (status != 0x0);
if (create_admin_queues(nvme))
goto abort;
write32(nvme->config + 0x14, cc);
timeout = (read64(nvme->config) >> 24 & 0xff) * 500;
do {
status = read32(nvme->config + 0x1c) & 0x3;
if (status == 0x2)
goto abort;
if (timeout < 0)
goto abort;
timeout -= 10;
mdelay(10);
} while (status != 0x1);
uint16_t command = pci_read_config16(dev, PCI_COMMAND);
pci_write_config16(dev, PCI_COMMAND, command | PCI_COMMAND_MASTER);
if (create_io_completion_queue(nvme))
goto abort;
if (create_io_submission_queue(nvme))
goto abort;
storage_attach_device((storage_dev_t *)nvme);
printf("NVMe init done.\n");
return;
abort:
printf("NVMe init failed.\n");
delete_io_submission_queue(nvme);
delete_io_completion_queue(nvme);
delete_admin_queues(nvme);
free(nvme->prp_list);
free(nvme);
}
void nvme_initialize(struct pci_dev *dev)
{
nvme_init(PCI_DEV(dev->bus, dev->dev, dev->func));
}
|