summaryrefslogtreecommitdiff
path: root/payloads/libpayload/arch/arm64/mmu.c
blob: 3822a891cf2368abac5f0044c2d28679c90aa80b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
/*
 *
 * Copyright 2014 Google Inc.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. The name of the author may not be used to endorse or promote products
 *    derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include <assert.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>

#include <arch/mmu.h>
#include <arch/lib_helpers.h>
#include <arch/cache.h>

/* Maximum number of XLAT Tables available based on ttb buffer size */
static unsigned int max_tables;
/* Address of ttb buffer */
static uint64_t *xlat_addr;

static int free_idx;

/*
 * We refer to the section ".bss.ttb_buffer" in the linker script for ChromeOS's depthcharge
 * payload. Please DO NOT change the section name without discussing with us.
 * Please contact: jwerner@chromium.org or yich@chromium.org
 */
static uint8_t ttb_buffer[TTB_DEFAULT_SIZE] __aligned(GRANULE_SIZE)
	__section(".bss.ttb_buffer");

static const char * const tag_to_string[] = {
	[TYPE_NORMAL_MEM] = "normal",
	[TYPE_DEV_MEM] = "device",
	[TYPE_DMA_MEM] = "uncached",
};

/*
 * The usedmem_ranges is used to describe all the memory ranges that are
 * actually used by payload i.e. _start -> _end in linker script and the
 * coreboot tables. This is required for two purposes:
 * 1) During the pre_sysinfo_scan_mmu_setup, these are the only ranges
 * initialized in the page table as we do not know the entire memory map.
 * 2) During the post_sysinfo_scan_mmu_setup, these ranges are used to check if
 * the DMA buffer is being placed in a sane location and does not overlap any of
 * the used mem ranges.
 */
static struct mmu_ranges usedmem_ranges;

static void __attribute__((noreturn)) mmu_error(void)
{
	halt();
}

/* Func : get_block_attr
 * Desc : Get block descriptor attributes based on the value of tag in memrange
 * region
 */
static uint64_t get_block_attr(unsigned long tag)
{
	uint64_t attr;

	/* We should be in EL2(which is non-secure only) or EL1(non-secure) */
	attr = BLOCK_NS;

	/* Assuming whole memory is read-write */
	attr |= BLOCK_AP_RW;

	attr |= BLOCK_ACCESS;

	switch (tag) {

	case TYPE_NORMAL_MEM:
		attr |= BLOCK_SH_INNER_SHAREABLE;
		attr |= (BLOCK_INDEX_MEM_NORMAL << BLOCK_INDEX_SHIFT);
		break;
	case TYPE_DEV_MEM:
		attr |= BLOCK_INDEX_MEM_DEV_NGNRNE << BLOCK_INDEX_SHIFT;
		attr |= BLOCK_XN;
		break;
	case TYPE_DMA_MEM:
		attr |= BLOCK_INDEX_MEM_NORMAL_NC << BLOCK_INDEX_SHIFT;
		break;
	}

	return attr;
}

/* Func : table_desc_valid
 * Desc : Check if a table entry contains valid desc
 */
static uint64_t table_desc_valid(uint64_t desc)
{
	return((desc & TABLE_DESC) == TABLE_DESC);
}

/* Func : setup_new_table
 * Desc : Get next free table from TTB and set it up to match old parent entry.
 */
static uint64_t *setup_new_table(uint64_t desc, size_t xlat_size)
{
	uint64_t *new, *entry;

	assert(free_idx < max_tables);

	new = (uint64_t*)((unsigned char *)xlat_addr + free_idx * GRANULE_SIZE);
	free_idx++;

	if (!desc) {
		memset(new, 0, GRANULE_SIZE);
	} else {
		/* Can reuse old parent entry, but may need to adjust type. */
		if (xlat_size == L3_XLAT_SIZE)
			desc |= PAGE_DESC;

		for (entry = new; (u8 *)entry < (u8 *)new + GRANULE_SIZE;
		     entry++, desc += xlat_size)
			*entry = desc;
	}

	return new;
}

/* Func : get_table_from_desc
 * Desc : Get next level table address from table descriptor
 */
static uint64_t *get_table_from_desc(uint64_t desc)
{
	uint64_t *ptr = (uint64_t*)(desc & XLAT_TABLE_MASK);
	return ptr;
}

/* Func: get_next_level_table
 * Desc: Check if the table entry is a valid descriptor. If not, initialize new
 * table, update the entry and return the table addr. If valid, return the addr.
 */
static uint64_t *get_next_level_table(uint64_t *ptr, size_t xlat_size)
{
	uint64_t desc = *ptr;

	if (!table_desc_valid(desc)) {
		uint64_t *new_table = setup_new_table(desc, xlat_size);
		desc = ((uint64_t)new_table) | TABLE_DESC;
		*ptr = desc;
	}
	return get_table_from_desc(desc);
}

/* Func : init_xlat_table
 * Desc : Given a base address and size, it identifies the indices within
 * different level XLAT tables which map the given base addr. Similar to table
 * walk, except that all invalid entries during the walk are updated
 * accordingly. On success, it returns the size of the block/page addressed by
 * the final table.
 */
static uint64_t init_xlat_table(uint64_t base_addr,
				uint64_t size,
				uint64_t tag)
{
	uint64_t l0_index = (base_addr & L0_ADDR_MASK) >> L0_ADDR_SHIFT;
	uint64_t l1_index = (base_addr & L1_ADDR_MASK) >> L1_ADDR_SHIFT;
	uint64_t l2_index = (base_addr & L2_ADDR_MASK) >> L2_ADDR_SHIFT;
	uint64_t l3_index = (base_addr & L3_ADDR_MASK) >> L3_ADDR_SHIFT;
	uint64_t *table = xlat_addr;
	uint64_t desc;
	uint64_t attr = get_block_attr(tag);

	/* L0 entry stores a table descriptor (doesn't support blocks) */
	table = get_next_level_table(&table[l0_index], L1_XLAT_SIZE);

	/* L1 table lookup */
	if ((size >= L1_XLAT_SIZE) &&
	    IS_ALIGNED(base_addr, (1UL << L1_ADDR_SHIFT))) {
			/* If block address is aligned and size is greater than
			 * or equal to size addressed by each L1 entry, we can
			 * directly store a block desc */
			desc = base_addr | BLOCK_DESC | attr;
			table[l1_index] = desc;
			/* L2 lookup is not required */
			return L1_XLAT_SIZE;
	}

	/* L1 entry stores a table descriptor */
	table = get_next_level_table(&table[l1_index], L2_XLAT_SIZE);

	/* L2 table lookup */
	if ((size >= L2_XLAT_SIZE) &&
	    IS_ALIGNED(base_addr, (1UL << L2_ADDR_SHIFT))) {
		/* If block address is aligned and size is greater than
		 * or equal to size addressed by each L2 entry, we can
		 * directly store a block desc */
		desc = base_addr | BLOCK_DESC | attr;
		table[l2_index] = desc;
		/* L3 lookup is not required */
		return L2_XLAT_SIZE;
	}

	/* L2 entry stores a table descriptor */
	table = get_next_level_table(&table[l2_index], L3_XLAT_SIZE);

	/* L3 table lookup */
	desc = base_addr | PAGE_DESC | attr;
	table[l3_index] = desc;
	return L3_XLAT_SIZE;
}

/* Func : sanity_check
 * Desc : Check address/size alignment of a table or page.
 */
static void sanity_check(uint64_t addr, uint64_t size)
{
	assert(!(addr & GRANULE_SIZE_MASK) &&
	       !(size & GRANULE_SIZE_MASK) &&
	       (addr + size < (1UL << BITS_PER_VA)) &&
	       size >= GRANULE_SIZE);
}

/* Func : mmu_config_range
 * Desc : This function repeatedly calls init_xlat_table with the base
 * address. Based on size returned from init_xlat_table, base_addr is updated
 * and subsequent calls are made for initializing the xlat table until the whole
 * region is initialized.
 */
void mmu_config_range(void *start, size_t size, uint64_t tag)
{
	uint64_t base_addr = (uintptr_t)start;
	uint64_t temp_size = size;

	assert(tag < ARRAY_SIZE(tag_to_string));
	printf("Libpayload: ARM64 MMU: Mapping address range [%p:%p) as %s\n",
	       start, start + size, tag_to_string[tag]);
	sanity_check(base_addr, temp_size);

	while (temp_size)
		temp_size -= init_xlat_table(base_addr + (size - temp_size),
					     temp_size, tag);

	/* ARMv8 MMUs snoop L1 data cache, no need to flush it. */
	dsb();
	tlbiall_el2();
	dsb();
	isb();
}

/* Func : mmu_init
 * Desc : Initialize mmu based on the mmu_memrange passed. ttb_buffer is used as
 * the base address for xlat tables. TTB_DEFAULT_SIZE defines the max number of
 * tables that can be used
 * Assuming that memory 0-4GiB is device memory.
 */
uint64_t mmu_init(struct mmu_ranges *mmu_ranges)
{
	int i = 0;

	xlat_addr = (uint64_t *)&ttb_buffer;

	memset((void*)xlat_addr, 0, GRANULE_SIZE);
	max_tables = (TTB_DEFAULT_SIZE >> GRANULE_SIZE_SHIFT);
	free_idx = 1;

	printf("Libpayload ARM64: TTB_BUFFER: %p Max Tables: %d\n",
	       (void*)xlat_addr, max_tables);

	/*
	 * To keep things simple we start with mapping the entire base 4GB as
	 * device memory. This accommodates various architectures' default
	 * settings (for instance rk3399 mmio starts at 0xf8000000); it is
	 * fine tuned (e.g. mapping DRAM areas as write-back) later in the
	 * boot process.
	 */
	mmu_config_range(NULL, 0x100000000, TYPE_DEV_MEM);

	for (; i < mmu_ranges->used; i++)
		mmu_config_range((void *)mmu_ranges->entries[i].base,
				 mmu_ranges->entries[i].size,
				 mmu_ranges->entries[i].type);

	printf("Libpayload ARM64: MMU init done\n");
	return 0;
}

static uint32_t is_mmu_enabled(void)
{
	uint32_t sctlr;

	sctlr = raw_read_sctlr_el2();

	return (sctlr & SCTLR_M);
}

/*
 * Func: mmu_enable
 * Desc: Initialize MAIR, TCR, TTBR and enable MMU by setting appropriate bits
 * in SCTLR
 */
void mmu_enable(void)
{
	uint32_t sctlr;

	/* Initialize MAIR indices */
	raw_write_mair_el2(MAIR_ATTRIBUTES);

	/* Invalidate TLBs */
	tlbiall_el2();

	/* Initialize TCR flags */
	raw_write_tcr_el2(TCR_TOSZ | TCR_IRGN0_NM_WBWAC | TCR_ORGN0_NM_WBWAC |
			      TCR_SH0_IS | TCR_TG0_4KB | TCR_PS_256TB |
			      TCR_TBI_USED);

	/* Initialize TTBR */
	raw_write_ttbr0_el2((uintptr_t)xlat_addr);

	/* Ensure system register writes are committed before enabling MMU */
	isb();

	/* Enable MMU */
	sctlr = raw_read_sctlr_el2();
	sctlr |= SCTLR_C | SCTLR_M | SCTLR_I;
	raw_write_sctlr_el2(sctlr);

	isb();

	if(is_mmu_enabled())
		printf("ARM64: MMU enable done\n");
	else
		printf("ARM64: MMU enable failed\n");
}

/*
 * Func: mmu_add_memrange
 * Desc: Adds a new memory range
 */
static struct mmu_memrange *mmu_add_memrange(struct mmu_ranges *r,
					     uint64_t base, uint64_t size,
					     uint64_t type)
{
	struct mmu_memrange *curr = NULL;
	int i = r->used;

	if (i < ARRAY_SIZE(r->entries)) {
		curr = &r->entries[i];
		curr->base = base;
		curr->size = size;
		curr->type = type;

		r->used = i + 1;
	}

	return curr;
}

/* Structure to define properties of new memrange request */
struct mmu_new_range_prop {
	/* Type of memrange */
	uint64_t type;
	/* Size of the range */
	uint64_t size;
	/*
	 * If any restrictions on the max addr limit(This addr is exclusive for
	 * the range), else 0
	 */
	uint64_t lim_excl;
	/* If any restrictions on alignment of the range base, else 0 */
	uint64_t align;
	/*
	 * Function to test whether selected range is fine.
	 * NULL=any range is fine
	 * Return value 1=valid range, 0=otherwise
	 */
	int (*is_valid_range)(uint64_t, uint64_t);
	/* From what type of source range should this range be extracted */
	uint64_t src_type;
};

/*
 * Func: mmu_is_range_free
 * Desc: We need to ensure that the new range being allocated doesn't overlap
 * with any used memory range. Basically:
 * 1. Memory ranges used by the payload (usedmem_ranges)
 * 2. Any area that falls below _end symbol in linker script (Kernel needs to be
 * loaded in lower areas of memory, So, the payload linker script can have
 * kernel memory below _start and _end. Thus, we want to make sure we do not
 * step in those areas as well.
 * Returns: 1 on success, 0 on error
 * ASSUMPTION: All the memory used by payload resides below the program
 * proper. If there is any memory used above the _end symbol, then it should be
 * marked as used memory in usedmem_ranges during the presysinfo_scan.
 */
static int mmu_is_range_free(uint64_t r_base,
			     uint64_t r_end)
{
	uint64_t payload_end = (uint64_t)&_end;
	uint64_t i;
	struct mmu_memrange *r = &usedmem_ranges.entries[0];

	/* Allocate memranges only above payload */
	if ((r_base <= payload_end) || (r_end <= payload_end))
		return 0;

	for (i = 0; i < usedmem_ranges.used; i++) {
		uint64_t start = r[i].base;
		uint64_t end = start + r[i].size;

		if ((start < r_end) && (end > r_base))
			return 0;
	}

	return 1;
}

/*
 * Func: mmu_get_new_range
 * Desc: Add a requested new memrange. We take as input set of all memranges and
 * a structure to define the new memrange properties i.e. its type, size,
 * max_addr it can grow upto, alignment restrictions, source type to take range
 * from and finally a function pointer to check if the chosen range is valid.
 */
static struct mmu_memrange *mmu_get_new_range(struct mmu_ranges *mmu_ranges,
					      struct mmu_new_range_prop *new)
{
	int i = 0;
	struct mmu_memrange *r = &mmu_ranges->entries[0];

	if (new->size == 0) {
		printf("MMU Error: Invalid range size\n");
		return NULL;
	}

	for (; i < mmu_ranges->used; i++) {

		if ((r[i].type != new->src_type) ||
		    (r[i].size < new->size) ||
		    (new->lim_excl && (r[i].base >= new->lim_excl)))
			continue;

		uint64_t base_addr;
		uint64_t range_end_addr = r[i].base + r[i].size;
		uint64_t end_addr = range_end_addr;

		/* Make sure we do not go above max if it is non-zero */
		if (new->lim_excl && (end_addr >= new->lim_excl))
			end_addr = new->lim_excl;

		while (1) {
			/*
			 * In case of alignment requirement,
			 * if end_addr is aligned, then base_addr will be too.
			 */
			if (new->align)
				end_addr = ALIGN_DOWN(end_addr, new->align);

			base_addr = end_addr - new->size;

			if (base_addr < r[i].base)
				break;

			/*
			 * If the selected range is not used and valid for the
			 * user, move ahead with it
			 */
			if (mmu_is_range_free(base_addr, end_addr) &&
			    ((new->is_valid_range == NULL) ||
			     new->is_valid_range(base_addr, end_addr)))
				break;

			/* Drop to the next address. */
			end_addr -= 1;
		}

		if (base_addr < r[i].base)
			continue;

		if (end_addr != range_end_addr) {
			/* Add a new memrange since we split up one
			 * range crossing the 4GiB boundary or doing an
			 * ALIGN_DOWN on end_addr.
			 */
			r[i].size -= (range_end_addr - end_addr);
			if (mmu_add_memrange(mmu_ranges, end_addr,
					     range_end_addr - end_addr,
					     r[i].type) == NULL)
				mmu_error();
		}

		if (r[i].size == new->size) {
			r[i].type = new->type;
			return &r[i];
		}

		r[i].size -= new->size;

		r = mmu_add_memrange(mmu_ranges, base_addr, new->size,
				     new->type);

		if (r == NULL)
			mmu_error();

		return r;
	}

	/* Should never reach here if everything went fine */
	printf("ARM64 ERROR: No region allocated\n");
	return NULL;
}

/*
 * Func: mmu_alloc_range
 * Desc: Call get_new_range to get a new memrange which is unused and mark it as
 * used to avoid same range being allocated for different purposes.
 */
static struct mmu_memrange *mmu_alloc_range(struct mmu_ranges *mmu_ranges,
					    struct mmu_new_range_prop *p)
{
	struct mmu_memrange *r = mmu_get_new_range(mmu_ranges, p);

	if (r == NULL)
		return NULL;

	/*
	 * Mark this memrange as used memory. Important since function
	 * can be called multiple times and we do not want to reuse some
	 * range already allocated.
	 */
	if (mmu_add_memrange(&usedmem_ranges, r->base, r->size, r->type)
	    == NULL)
		mmu_error();

	return r;
}

/*
 * Func: mmu_add_dma_range
 * Desc: Add a memrange for dma operations. This is special because we want to
 * initialize this memory as non-cacheable. We have a constraint that the DMA
 * buffer should be below 4GiB(32-bit only). So, we lookup a TYPE_NORMAL_MEM
 * from the lowest available addresses and align it to page size i.e. 64KiB.
 */
static struct mmu_memrange *mmu_add_dma_range(struct mmu_ranges *mmu_ranges)
{
	struct mmu_new_range_prop prop;

	prop.type = TYPE_DMA_MEM;
	/* DMA_DEFAULT_SIZE is multiple of GRANULE_SIZE */
	assert((DMA_DEFAULT_SIZE % GRANULE_SIZE) == 0);
	prop.size = DMA_DEFAULT_SIZE;
	prop.lim_excl = (uint64_t)CONFIG_LP_DMA_LIM_EXCL * MiB;
	prop.align = GRANULE_SIZE;
	prop.is_valid_range = NULL;
	prop.src_type = TYPE_NORMAL_MEM;

	return mmu_alloc_range(mmu_ranges, &prop);
}

static struct mmu_memrange *_mmu_add_fb_range(
		uint32_t size,
		struct mmu_ranges *mmu_ranges)
{
	struct mmu_new_range_prop prop;

	prop.type = TYPE_DMA_MEM;

	prop.size = size;
	prop.lim_excl = MIN_64_BIT_ADDR;
	prop.align = MB_SIZE;
	prop.is_valid_range = NULL;
	prop.src_type = TYPE_NORMAL_MEM;

	return mmu_alloc_range(mmu_ranges, &prop);
}

/*
 * Func: mmu_extract_ranges
 * Desc: Assumption is that coreboot tables have memranges in sorted
 * order. So, if there is an opportunity to combine ranges, we do that as
 * well. Memranges are initialized for both CB_MEM_RAM and CB_MEM_TABLE as
 * TYPE_NORMAL_MEM.
 */
static void mmu_extract_ranges(struct memrange *cb_ranges,
			       uint64_t ncb,
			       struct mmu_ranges *mmu_ranges)
{
	int i = 0;
	struct mmu_memrange *prev_range = NULL;

	/* Extract memory ranges to be mapped */
	for (; i < ncb; i++) {
		switch (cb_ranges[i].type) {
		case CB_MEM_RAM:
		case CB_MEM_TABLE:
			if (prev_range && (prev_range->base + prev_range->size
					   == cb_ranges[i].base)) {
				prev_range->size += cb_ranges[i].size;
			} else {
				prev_range = mmu_add_memrange(mmu_ranges,
							      cb_ranges[i].base,
							      cb_ranges[i].size,
							      TYPE_NORMAL_MEM);
				if (prev_range == NULL)
					mmu_error();
			}
			break;
		default:
			break;
		}
	}
}

static void mmu_add_fb_range(struct mmu_ranges *mmu_ranges)
{
	struct mmu_memrange *fb_range;
	struct cb_framebuffer *framebuffer = &lib_sysinfo.framebuffer;
	uint32_t fb_size;

	/* Check whether framebuffer is needed */
	fb_size = framebuffer->bytes_per_line * framebuffer->y_resolution;
	if (!fb_size)
		return;

	/* make sure to allocate a size of multiple of GRANULE_SIZE */
	fb_size = ALIGN_UP(fb_size, GRANULE_SIZE);

	/* framebuffer address has been set already, so just add it as DMA */
	if (framebuffer->physical_address) {
		if (mmu_add_memrange(mmu_ranges,
		    framebuffer->physical_address,
		    fb_size,
		    TYPE_DMA_MEM) == NULL)
			mmu_error();
		return;
	}

	/* Allocate framebuffer */
	fb_range = _mmu_add_fb_range(fb_size, mmu_ranges);
	if (fb_range == NULL)
		mmu_error();

	framebuffer->physical_address = fb_range->base;
}

/*
 * Func: mmu_init_ranges
 * Desc: Initialize mmu_memranges based on the memranges obtained from coreboot
 * tables. Also, initialize dma memrange and xlat_addr for ttb buffer.
 */
struct mmu_memrange *mmu_init_ranges_from_sysinfo(struct memrange *cb_ranges,
						  uint64_t ncb,
						  struct mmu_ranges *mmu_ranges)
{
	struct mmu_memrange *dma_range;

	/* Initialize mmu_ranges to contain no entries. */
	mmu_ranges->used = 0;

	/* Extract ranges from memrange in lib_sysinfo */
	mmu_extract_ranges(cb_ranges, ncb, mmu_ranges);

	/* Get a range for dma */
	dma_range = mmu_add_dma_range(mmu_ranges);

	/* Get a range for framebuffer */
	mmu_add_fb_range(mmu_ranges);

	if (dma_range == NULL)
		mmu_error();

	return dma_range;
}

/*
 * Func: mmu_presysinfo_memory_used
 * Desc: Initializes all the memory used for presysinfo page table
 * initialization and enabling of MMU. All these ranges are stored in
 * usedmem_ranges. usedmem_ranges plays an important role in selecting the dma
 * buffer as well since we check the dma buffer range against the used memory
 * ranges to prevent any overstepping.
 */
void mmu_presysinfo_memory_used(uint64_t base, uint64_t size)
{
	uint64_t range_base;

	range_base = ALIGN_DOWN(base, GRANULE_SIZE);

	size += (base - range_base);
	size = ALIGN_UP(size, GRANULE_SIZE);

	mmu_add_memrange(&usedmem_ranges, range_base, size, TYPE_NORMAL_MEM);
}

void mmu_presysinfo_enable(void)
{
	mmu_init(&usedmem_ranges);
	mmu_enable();
}

const struct mmu_ranges *mmu_get_used_ranges(void)
{
	return &usedmem_ranges;
}