aboutsummaryrefslogtreecommitdiff
path: root/src/vendorcode/amd/agesa/f15/Proc/Recovery/Mem/NB/mrndct.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/vendorcode/amd/agesa/f15/Proc/Recovery/Mem/NB/mrndct.c')
-rw-r--r--src/vendorcode/amd/agesa/f15/Proc/Recovery/Mem/NB/mrndct.c1577
1 files changed, 1577 insertions, 0 deletions
diff --git a/src/vendorcode/amd/agesa/f15/Proc/Recovery/Mem/NB/mrndct.c b/src/vendorcode/amd/agesa/f15/Proc/Recovery/Mem/NB/mrndct.c
new file mode 100644
index 0000000000..2333be70d5
--- /dev/null
+++ b/src/vendorcode/amd/agesa/f15/Proc/Recovery/Mem/NB/mrndct.c
@@ -0,0 +1,1577 @@
+/* $NoKeywords:$ */
+/**
+ * @file
+ *
+ * mrndct.c
+ *
+ * Northbridge common DCT support for Recovery
+ *
+ * @xrefitem bom "File Content Label" "Release Content"
+ * @e project: AGESA
+ * @e sub-project: (Proc/Recovery/Mem/NB)
+ * @e \$Revision: 50454 $ @e \$Date: 2011-04-10 21:20:37 -0600 (Sun, 10 Apr 2011) $
+ *
+ **/
+/*****************************************************************************
+*
+* Copyright (C) 2012 Advanced Micro Devices, Inc.
+* All rights reserved.
+*
+* Redistribution and use in source and binary forms, with or without
+* modification, are permitted provided that the following conditions are met:
+* * Redistributions of source code must retain the above copyright
+* notice, this list of conditions and the following disclaimer.
+* * Redistributions in binary form must reproduce the above copyright
+* notice, this list of conditions and the following disclaimer in the
+* documentation and/or other materials provided with the distribution.
+* * Neither the name of Advanced Micro Devices, Inc. nor the names of
+* its contributors may be used to endorse or promote products derived
+* from this software without specific prior written permission.
+*
+* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
+* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+* DISCLAIMED. IN NO EVENT SHALL ADVANCED MICRO DEVICES, INC. BE LIABLE FOR ANY
+* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
+* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*
+* ***************************************************************************
+*
+*/
+
+
+/*
+ *----------------------------------------------------------------------------
+ * MODULES USED
+ *
+ *----------------------------------------------------------------------------
+ */
+
+
+
+#include "AGESA.h"
+#include "OptionMemory.h"
+#include "PlatformMemoryConfiguration.h"
+#include "Ids.h"
+#include "mrport.h"
+#include "cpuFamRegisters.h"
+#include "mm.h"
+#include "mn.h"
+#include "mt.h"
+#include "mru.h"
+#include "ma.h"
+#include "Filecode.h"
+#define FILECODE PROC_RECOVERY_MEM_NB_MRNDCT_FILECODE
+/*----------------------------------------------------------------------------
+ * DEFINITIONS AND MACROS
+ *
+ *----------------------------------------------------------------------------
+ */
+#define RECDEF_CSMASK_REG 0x00083FE0
+#define RECDEF_DRAM_BASE_REG 0x00000003
+
+
+/*----------------------------------------------------------------------------
+ * TYPEDEFS AND STRUCTURES
+ *
+ *----------------------------------------------------------------------------
+ */
+/// Type of an entry for processing phy init compensation for client NB
+typedef struct {
+ BIT_FIELD_NAME IndexBitField; ///< Bit field on which the value is decided
+ BIT_FIELD_NAME StartTargetBitField; ///< First bit field to be modified
+ BIT_FIELD_NAME EndTargetBitField; ///< Last bit field to be modified
+ UINT16 ExtraValue; ///< Extra value needed to be written to bit field
+ CONST UINT16 (*TxPrePN)[4]; ///< Pointer to slew rate table
+} REC_PHY_COMP_INIT_CLIENTNB;
+
+/*----------------------------------------------------------------------------
+ * PROTOTYPES OF LOCAL FUNCTIONS
+ *
+ *----------------------------------------------------------------------------
+ */
+VOID
+STATIC
+MemRecTCtlOnDimmMirrorNb (
+ IN OUT MEM_NB_BLOCK *NBPtr,
+ IN BOOLEAN SetFlag
+ );
+
+VOID
+STATIC
+MemRecNSwapBitsNb (
+ IN OUT MEM_NB_BLOCK *NBPtr
+ );
+
+VOID
+STATIC
+MemRecNProgNbPstateDependentRegClientNb (
+ IN OUT MEM_NB_BLOCK *NBPtr
+ );
+
+VOID
+STATIC
+MemRecNTrainPhyFenceNb (
+ IN OUT MEM_NB_BLOCK *NBPtr
+ );
+
+VOID
+STATIC
+MemRecNCommonReadWritePatternUnb (
+ IN OUT MEM_NB_BLOCK *NBPtr,
+ IN UINT8 CmdType,
+ IN UINT16 ClCount
+ );
+
+/*----------------------------------------------------------------------------
+ * EXPORTED FUNCTIONS
+ *
+ *----------------------------------------------------------------------------
+ */
+
+/* -----------------------------------------------------------------------------*/
+/**
+ *
+ * This function programs the memory controller with configuration parameters
+ *
+ *
+ * @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
+ *
+ * @return TRUE - An Error value lower than AGESA_ERROR may have occurred
+ * @return FALSE - An Error value greater than or equal to AGESA_ERROR may have occurred
+ */
+
+BOOLEAN
+MemRecNAutoConfigNb (
+ IN OUT MEM_NB_BLOCK *NBPtr
+ )
+{
+ UINT8 Dimm;
+ UINT8 Dct;
+ UINT8 ChipSel;
+ UINT32 CSBase;
+ DCT_STRUCT *DCTPtr;
+ CH_DEF_STRUCT *ChannelPtr;
+ UINT16 i;
+
+ Dct = NBPtr->Dct;
+ DCTPtr = NBPtr->DCTPtr;
+ ChannelPtr = NBPtr->ChannelPtr;
+
+ //Prepare variables for future usage.
+ for (Dimm = 0; Dimm < MAX_DIMMS_PER_CHANNEL; Dimm++) {
+ if ((ChannelPtr->ChDimmValid & (UINT8) 1 << Dimm) != 0) {
+ DCTPtr->Timings.CsPresent |= (UINT16) 1 << (Dimm * 2);
+ if (((ChannelPtr->DimmDrPresent & (UINT8) 1 << Dimm) == 0) && ((ChannelPtr->DimmQrPresent & (UINT8) 1 << Dimm) == 0)) {
+ continue;
+ } else {
+ DCTPtr->Timings.CsPresent |= (UINT16) 1 << (Dimm * 2 + 1);
+ }
+ }
+ }
+
+ Dimm = NBPtr->DimmToBeUsed;
+
+ //Temporarily set all CS Base/Limit registers (corresponding to Dimms exist on a channel) with 256MB size for WL training.
+ CSBase = 0;
+ for (ChipSel = 0; ChipSel < MAX_CS_PER_CHANNEL; ChipSel++) {
+ if (DCTPtr->Timings.CsPresent & (UINT8) 1 << ChipSel) {
+
+ CSBase &= (UINT32) ~0x08; //Clear OnDimmMirror bit.
+ if (((ChipSel & 1) != 0) && ((ChannelPtr->DimmMirrorPresent & (UINT8) 1 << (ChipSel >> 1)) != 0)) {
+ CSBase |= (UINT32) 0x08; //Set OnDimmMirror bit.
+ }
+ MemRecNSetBitFieldNb (NBPtr, (BFCSBaseAddr0Reg + ChipSel), (CSBase | 0x01));
+ CSBase += 0x100000;
+ if ((ChipSel & 1) == 0) {
+ MemRecNSetBitFieldNb (NBPtr, (BFCSMask0Reg + (ChipSel >> 1)), RECDEF_CSMASK_REG);
+ }
+ }
+ }
+ MemRecNSetBitFieldNb (NBPtr, BFDramBaseReg0, RECDEF_DRAM_BASE_REG);
+ MemRecNSetBitFieldNb (NBPtr, BFDramLimitReg0, 0x70000);
+
+ // Disable the other DCT
+ NBPtr->MemRecNSwitchDctNb (NBPtr, Dct ^ 0x01);
+ MemRecNSetBitFieldNb (NBPtr, BFDisDramInterface, 1);
+ NBPtr->MemRecNSwitchDctNb (NBPtr, Dct);
+ if (Dct != 0) {
+ // If DCT 1, set DctSelBase registers
+ MemRecNSetBitFieldNb (NBPtr, BFDctSelBaseAddrReg, 0x00000003);
+ MemRecNSetBitFieldNb (NBPtr, BFDctSelBaseOffsetReg, 0x00000000);
+ }
+
+ // Use default values for common registers
+ i = 0;
+ while (NBPtr->RecModeDefRegArray[i] != NULL) {
+ MemRecNSetBitFieldNb (NBPtr, NBPtr->RecModeDefRegArray[i], NBPtr->RecModeDefRegArray[i + 1]);
+ i += 2;
+ }
+
+ // Other specific settings
+ MemRecNSetBitFieldNb (NBPtr, BFX4Dimm, ChannelPtr->Dimmx4Present );
+
+ if ((ChannelPtr->RegDimmPresent == 0) && (ChannelPtr->SODimmPresent == 0)) {
+ MemRecNSetBitFieldNb (NBPtr, BFUnBuffDimm, 1);
+ }
+
+ if ((NBPtr->ChannelPtr->RegDimmPresent != 0) && (NBPtr->ChannelPtr->TechType == DDR3_TECHNOLOGY)) {
+ MemRecNSetBitFieldNb (NBPtr, BFSubMemclkRegDly, 1);
+ }
+ MemRecNSetBitFieldNb (NBPtr, BFOdtSwizzle, 1);
+
+ return TRUE;
+}
+
+
+/* -----------------------------------------------------------------------------*/
+/**
+ *
+ * This function gets platform specific config/timing values from the interface layer and
+ * programs them into DCT.
+ *
+ *
+ * @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
+ *
+ * @return TRUE - An Error value lower than AGESA_ERROR may have occurred
+ * @return FALSE - An Error value greater than or equal to AGESA_ERROR may have occurred
+ */
+
+BOOLEAN
+MemRecNPlatformSpecNb (
+ IN OUT MEM_NB_BLOCK *NBPtr
+ )
+{
+ UINT8 p;
+
+ p = 0;
+ for (p = 0; p < MAX_PLATFORM_TYPES; p++) {
+ if (NBPtr->MemPtr->GetPlatformCfg[p] (NBPtr->MemPtr, NBPtr->MCTPtr->SocketId, NBPtr->ChannelPtr) == AGESA_SUCCESS) {
+ MemRecNSetBitFieldNb (NBPtr, BFODCControl, NBPtr->ChannelPtr->DctOdcCtl);
+ MemRecNSetBitFieldNb (NBPtr, BFAddrTmgControl, NBPtr->ChannelPtr->DctAddrTmg);
+ return TRUE;
+ }
+ }
+ return FALSE;
+}
+
+
+/* -----------------------------------------------------------------------------*/
+/**
+ *
+ * This function reads MemClkFreqVal bit to see if the DIMMs are present in this node.
+ * If the DIMMs are present then set the DRAM Enable bit for this node.
+ *
+ * Setting dram init starts up the DCT state machine, initializes the
+ * dram devices with MRS commands, and kicks off any
+ * HW memory clear process that the chip is capable of. The sooner
+ * that dram init is set for all nodes, the faster the memory system
+ * initialization can complete. Thus, the init loop is unrolled into
+ * two loops so as to start the processes for non BSP nodes sooner.
+ * This procedure will not wait for the process to finish. Synchronization is
+ * handled elsewhere.
+ *
+ * @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
+ *
+ */
+
+VOID
+MemRecNStartupDCTNb (
+ IN OUT MEM_NB_BLOCK *NBPtr
+ )
+{
+ // 1. Ensure F2x[1, 0]9C_x08[DisAutoComp] = 1.
+ // 2. BIOS waits 5 us for the disabling of the compensation engine to complete.
+ // ------- Done in InitPhyComp_Nb -------
+ //
+ MemRecNSetBitFieldNb (NBPtr, BFDisAutoComp, 1);
+ MemRecUWait10ns (500, NBPtr->MemPtr);
+
+ //MemRecNSetBitFieldNb (NBPtr, BFInitDram, 1); // HW Dram init
+ AGESA_TESTPOINT (TpProcMemDramInit, &(NBPtr->MemPtr->StdHeader));
+ NBPtr->TechPtr->DramInit (NBPtr->TechPtr);
+
+ // 7. Program F2x[1, 0]9C_x08[DisAutoComp] = 0.
+ // 8. BIOS must wait 750 us for the phy compensation engine
+ // to reinitialize.
+ //
+ MemRecNSetBitFieldNb (NBPtr, BFDisAutoComp, 0);
+ MemRecUWait10ns (75000, NBPtr->MemPtr);
+
+ while (MemRecNGetBitFieldNb (NBPtr, BFDramEnabled) == 0);
+}
+
+/* -----------------------------------------------------------------------------*/
+/**
+ *
+ * This function initializes the DRAM devices on all DCTs at the same time
+ *
+ * @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
+ *
+ */
+
+VOID
+MemRecNStartupDCTClientNb (
+ IN OUT MEM_NB_BLOCK *NBPtr
+ )
+{
+ IDS_HDT_CONSOLE (MEM_STATUS, "\tDct %d\n", NBPtr->Dct);
+
+ // Program D18F2x[1,0]9C_x0000_000B = 80000000h. #109999.
+ MemRecNSetBitFieldNb (NBPtr, BFDramPhyStatusReg, 0x80000000);
+
+ // Program D18F2x[1,0]9C_x0D0F_E013[PllRegWaitTime] = 0118h. #193770.
+ MemRecNSetBitFieldNb (NBPtr, BFPllRegWaitTime, 0x118);
+
+ // Phy Voltage Level Programming
+ MemRecNPhyVoltageLevelNb (NBPtr);
+
+ // Run frequency change sequence
+ MemRecNSetBitFieldNb (NBPtr, BFPllLockTime, NBPtr->FreqChangeParam->PllLockTimeDefault);
+ MemRecNSetBitFieldNb (NBPtr, BFMemClkFreq, 6);
+ MemRecNProgNbPstateDependentRegClientNb (NBPtr);
+ MemRecNSetBitFieldNb (NBPtr, BFMemClkFreqVal, 1);
+ MemRecNSetBitFieldNb (NBPtr, BFPllLockTime, 0x000F);
+
+ IDS_HDT_CONSOLE (MEM_FLOW, "\tMemClkAlign=0\n");
+ IDS_HDT_CONSOLE (MEM_FLOW, "\tEnDramInit = 1 for DCT%d\n", NBPtr->Dct);
+ MemRecNSetBitFieldNb (NBPtr, BFDbeGskMemClkAlignMode, 0);
+ MemRecNSetBitFieldNb (NBPtr, BFEnDramInit, 1);
+
+ // Run DramInit sequence
+ AGESA_TESTPOINT (TpProcMemDramInit, &(NBPtr->MemPtr->StdHeader));
+ NBPtr->TechPtr->DramInit (NBPtr->TechPtr);
+ IDS_HDT_CONSOLE (MEM_FLOW, "\nMemClkFreq: %d MHz\n", DDR800_FREQUENCY);
+}
+
+/* -----------------------------------------------------------------------------*/
+/**
+ *
+ * This function sets the maximum round-trip latency in the system from the processor to the DRAM
+ * devices and back.
+
+ *
+ * @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
+ * @param[in] MaxRcvEnDly - Maximum receiver enable delay value
+ *
+ */
+
+VOID
+MemRecNSetMaxLatencyNb (
+ IN OUT MEM_NB_BLOCK *NBPtr,
+ IN UINT16 MaxRcvEnDly
+ )
+{
+ UINT16 SubTotal;
+
+ AGESA_TESTPOINT (TpProcMemRcvrCalcLatency, &(NBPtr->MemPtr->StdHeader));
+
+ // Multiply the CAS Latency by two to get a number of 1/2 MEMCLKs UINTs.
+ SubTotal = 6 * 2;
+
+ // If registered DIMMs are being used then add 1 MEMCLK to the sub-total.
+ if (MemRecNGetBitFieldNb (NBPtr, BFUnBuffDimm) == 0) {
+ SubTotal += 2;
+ }
+
+ // if (AddrCmdSetup || CsOdtSetup || CkeSetup) then K := K + 2;
+ SubTotal += 2;
+
+ // If the F2x[1, 0]78[RdPtrInit] field is 4, 5, 6 or 7 MEMCLKs,
+ // then add 4, 3, 2, or 1 MEMCLKs, respectively to the sub-total.
+ //
+ SubTotal += 8 - 5;
+
+ // Add the maximum (worst case) delay value of DqsRcvEnGrossDelay
+ // that exists across all DIMMs and byte lanes.
+ //
+ SubTotal += MaxRcvEnDly >> 5;
+
+ // Add 5.5 to the sub-total. 5.5 represents part of the processor
+ // specific constant delay value in the DRAM clock domain.
+ //
+ SubTotal += 5; // add 5.5 1/2MemClk
+
+ // Convert the sub-total (in 1/2 MEMCLKs) to northbridge clocks (NCLKs)
+ // as follows (assuming DDR400 and assuming that no P-state or link speed
+ // changes have occurred).
+ //
+ // Simplified formula:
+ // SubTotal *= (Fn2xD4[NBFid]+4)/4
+ //
+ SubTotal = SubTotal * ((UINT16) MemRecNGetBitFieldNb (NBPtr, BFNbFid) + 4);
+ SubTotal /= 4;
+
+ // Add 5 NCLKs to the sub-total. 5 represents part of the processor
+ // specific constant value in the northbridge clock domain.
+ //
+ SubTotal += 5;
+
+ // Program the F2x[1, 0]78[MaxRdLatency] register with the total delay value
+ MemRecNSetBitFieldNb (NBPtr, BFMaxLatency, SubTotal);
+}
+
+
+/* -----------------------------------------------------------------------------*/
+/**
+ *
+ * Set Dram ODT for mission mode and write leveling mode.
+ *
+ * @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
+ * @param[in] OdtMode - Mission mode or write leveling mode
+ * @param[in] ChipSelect - Chip select number
+ * @param[in] TargetCS - Chip select number that is being trained
+ *
+ */
+
+VOID
+MemRecNSetDramOdtNb (
+ IN OUT MEM_NB_BLOCK *NBPtr,
+ IN ODT_MODE OdtMode,
+ IN UINT8 ChipSelect,
+ IN UINT8 TargetCS
+ )
+{
+ UINT8 DramTerm;
+ UINT8 DramTermDyn;
+
+ DramTerm = NBPtr->ChannelPtr->Reserved[0];
+ DramTermDyn = NBPtr->ChannelPtr->Reserved[1];
+
+ if (OdtMode == WRITE_LEVELING_MODE) {
+ if (ChipSelect == TargetCS) {
+ DramTerm = DramTermDyn;
+ MemRecNSetBitFieldNb (NBPtr, BFWrLvOdt, NBPtr->ChannelPtr->PhyWLODT[TargetCS >> 1]);
+ }
+ }
+ MemRecNSetBitFieldNb (NBPtr, BFDramTerm, DramTerm);
+ MemRecNSetBitFieldNb (NBPtr, BFDramTermDyn, DramTermDyn);
+}
+
+/*----------------------------------------------------------------------------
+ * LOCAL FUNCTIONS
+ *
+ *----------------------------------------------------------------------------
+ */
+
+/* -----------------------------------------------------------------------------*/
+/**
+ *
+ * This function sends an MRS command
+ *
+ * @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
+ *
+ */
+
+VOID
+MemRecNSendMrsCmdNb (
+ IN OUT MEM_NB_BLOCK *NBPtr
+ )
+{
+ BOOLEAN ClearODM;
+ ClearODM = FALSE;
+ if (NBPtr->IsSupported[CheckClearOnDimmMirror]) {
+ ClearODM = FALSE;
+ if ((NBPtr->MCTPtr->LogicalCpuid.Revision & AMD_F10_C0) != 0) {
+ if (NBPtr->IsSupported[CheckClearOnDimmMirror]) {
+ if (MemRecNGetBitFieldNb (NBPtr, BFEnDramInit) == 0) {
+ // For C0, if EnDramInit bit is cleared, ODM needs to be cleared before sending MRS
+ MemRecTCtlOnDimmMirrorNb (NBPtr, FALSE);
+ ClearODM = TRUE;
+ }
+ }
+ }
+ }
+
+ MemRecNSwapBitsNb (NBPtr);
+
+ IDS_HDT_CONSOLE (MEM_FLOW, "\t\t\tCS%d MR%d %04x\n",
+ MemRecNGetBitFieldNb (NBPtr, BFMrsChipSel),
+ MemRecNGetBitFieldNb (NBPtr, BFMrsBank),
+ MemRecNGetBitFieldNb (NBPtr, BFMrsAddress));
+
+ // 1.Set SendMrsCmd=1
+ MemRecNSetBitFieldNb (NBPtr, BFSendMrsCmd, 1);
+
+ // 2.Wait for SendMrsCmd=0
+ while (MemRecNGetBitFieldNb (NBPtr, BFSendMrsCmd)) {}
+
+ if (NBPtr->IsSupported[CheckClearOnDimmMirror]) {
+ if (ClearODM) {
+ // Restore ODM if necessary
+ MemRecTCtlOnDimmMirrorNb (NBPtr, TRUE);
+ }
+ }
+}
+
+/* -----------------------------------------------------------------------------*/
+/**
+ *
+ * This function sends the ZQCL command
+ *
+ * @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
+ *
+ */
+
+VOID
+MemRecNSendZQCmdNb (
+ IN OUT MEM_NB_BLOCK *NBPtr
+ )
+{
+ // 1.Program MrsAddress[10]=1
+ MemRecNSetBitFieldNb (NBPtr, BFMrsAddress, (UINT32) 1 << 10);
+
+ // 2.Set SendZQCmd=1
+ MemRecNSetBitFieldNb (NBPtr, BFSendZQCmd, 1);
+
+ // 3.Wait for SendZQCmd=0
+ while (MemRecNGetBitFieldNb (NBPtr, BFSendZQCmd)) {}
+
+ // 4.Wait 512 MEMCLKs
+ MemRecUWait10ns (128, NBPtr->MemPtr); // 512*2.5ns=1280, wait 1280ns
+}
+
+
+/* -----------------------------------------------------------------------------*/
+/**
+ *
+ * This function disables/enables F2x[1, 0][5C:40][OnDimmMirror]
+ *
+ * @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
+ * @param[in] SetFlag - Enable or disable flag - TRUE - Enable, FALSE - DISABLE
+ *
+ */
+
+VOID
+STATIC
+MemRecTCtlOnDimmMirrorNb (
+ IN OUT MEM_NB_BLOCK *NBPtr,
+ IN BOOLEAN SetFlag
+ )
+{
+ UINT8 Chipsel;
+ UINT32 CSBaseAddrReg;
+
+ for (Chipsel = 0; Chipsel < MAX_CS_PER_CHANNEL; Chipsel += 2) {
+ CSBaseAddrReg = MemRecNGetBitFieldNb (NBPtr, BFCSBaseAddr1Reg + Chipsel);
+ if ((CSBaseAddrReg & 1) == 1) {
+ if (SetFlag && ((NBPtr->ChannelPtr->DimmMirrorPresent & ((UINT8) 1 << (Chipsel >> 1))) != 0)) {
+ CSBaseAddrReg |= ((UINT32) 1 << BFOnDimmMirror);
+ } else {
+ CSBaseAddrReg &= ~((UINT32) 1 << BFOnDimmMirror);
+ }
+ MemRecNSetBitFieldNb (NBPtr, BFCSBaseAddr1Reg + Chipsel, CSBaseAddrReg);
+ }
+ }
+}
+/* -----------------------------------------------------------------------------*/
+/**
+ *
+ *
+ * This function swaps bits for OnDimmMirror support
+ *
+ * @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
+ *
+ */
+
+VOID
+STATIC
+MemRecNSwapBitsNb (
+ IN OUT MEM_NB_BLOCK *NBPtr
+ )
+{
+ UINT8 ChipSel;
+ UINT32 MRSReg;
+
+ ChipSel = (UINT8) MemRecNGetBitFieldNb (NBPtr, BFMrsChipSel);
+ if ((ChipSel & 1) != 0) {
+ MRSReg = MemRecNGetBitFieldNb (NBPtr, BFDramInitRegReg);
+ if ((NBPtr->ChannelPtr->DimmMirrorPresent & (UINT8) 1 << (ChipSel >> 1)) != 0) {
+ MRSReg = (MRSReg & 0xFFFCFE07) | ((MRSReg&0x100A8) << 1) | ((MRSReg&0x20150) >> 1);
+ MemRecNSetBitFieldNb (NBPtr, BFDramInitRegReg, MRSReg);
+ }
+ }
+}
+
+/* -----------------------------------------------------------------------------*/
+/**
+ *
+ *
+ * This function gets the total of sync components for Max Read Latency calculation
+ *
+ * @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
+ *
+ * @return Total in 1/2 MEMCLKs
+ */
+
+UINT32
+MemRecNTotalSyncComponentsClientNb (
+ IN OUT MEM_NB_BLOCK *NBPtr
+ )
+{
+ UINT32 T;
+ UINT32 P;
+ UINT32 AddrTmgCtl;
+ UINT32 MemClkPeriod;
+
+ AGESA_TESTPOINT (TpProcMemRcvrCalcLatency , &(NBPtr->MemPtr->StdHeader));
+
+ // P = P + ((16 + RdPtrInitMin - D18F2x[1,0]78[RdPtrInit]) MOD 16) where RdPtrInitMin = RdPtrInit
+ P = 0;
+
+ AddrTmgCtl = MemRecNGetBitFieldNb (NBPtr, BFAddrTmgControl);
+ if (((AddrTmgCtl >> 16) & 0x20) != (AddrTmgCtl & 0x20)) {
+ P += 1;
+ }
+
+ // IF (DbeGskMemClkAlignMode==01b || (DbeGskMemClkAlignMode==00b && !(AddrCmdSetup==CsOdtSetup==CkeSetup)))
+ // THEN P = P + 1
+
+ // IF (SlowAccessMode==1) THEN P = P + 2
+
+ // T = T + (0.5 * MemClkPeriod) - 786 ps
+ MemClkPeriod = 1000000 / DDR800_FREQUENCY;
+ T = MemClkPeriod / 2 - 768;
+
+ // If (AddrCmdSetup==0 && CsOdtSetup==0 && CkeSetup==0)
+ // then P = P + 1
+ // else P = P + 2
+ if ((AddrTmgCtl & 0x0202020) == 0) {
+ P += 1;
+ } else {
+ P += 2;
+ }
+
+ // P = P + (2 * (D18F2x[1,0]88[Tcl] clocks - 1))
+ P += 2 * 5; // Tcl = 6 clocks
+
+ // (DisCutThroughMode = 0), so P = P + 3
+ P += 3;
+
+ return ((P * MemClkPeriod + 1) / 2) + T;
+}
+
+/* -----------------------------------------------------------------------------*/
+/**
+ *
+ * This function programs the phy registers according to the desired phy VDDIO voltage level
+ *
+ * @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
+ *
+ */
+
+VOID
+MemRecNPhyVoltageLevelNb (
+ IN OUT MEM_NB_BLOCK *NBPtr
+ )
+{
+ BIT_FIELD_NAME BitField;
+ UINT16 Value;
+ UINT16 Mask;
+
+ Mask = 0xFFE7;
+ Value = (UINT16) CONVERT_VDDIO_TO_ENCODED (NBPtr->RefPtr->DDR3Voltage) << 3;
+
+ for (BitField = BFDataRxVioLvl; BitField <= BFCmpVioLvl; BitField++) {
+ if (BitField == BFCmpVioLvl) {
+ Mask = 0x3FFF;
+ Value <<= (14 - 3);
+ }
+ MemRecNSetBitFieldNb (NBPtr, BitField, ((MemRecNGetBitFieldNb (NBPtr, BitField) & Mask)) | Value);
+ }
+}
+
+/* -----------------------------------------------------------------------------*/
+/**
+ *
+ *
+ * This function executes Phy fence training
+ *
+ * @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
+ *
+ */
+
+VOID
+STATIC
+MemRecNTrainPhyFenceNb (
+ IN OUT MEM_NB_BLOCK *NBPtr
+ )
+{
+ UINT8 Byte;
+ UINT16 Avg;
+ UINT8 PREvalue;
+
+ if (MemRecNGetBitFieldNb (NBPtr, BFDisDramInterface)) {
+ return;
+ }
+
+ // 1. BIOS first programs a seed value to the phase recovery
+ // engine registers.
+ //
+ IDS_HDT_CONSOLE (MEM_FLOW, "\t\tSeeds: ");
+ for (Byte = 0; Byte < 9; Byte++) {
+ // This includes ECC as byte 8
+ MemRecNSetTrainDlyNb (NBPtr, AccessPhRecDly, DIMM_BYTE_ACCESS (0, Byte), 19);
+ IDS_HDT_CONSOLE (MEM_FLOW, "%02x ", 19);
+ }
+
+ IDS_HDT_CONSOLE (MEM_FLOW, "\n\t\tPhyFenceTrEn = 1");
+ // 2. Set F2x[1, 0]9C_x08[PhyFenceTrEn]=1.
+ MemRecNSetBitFieldNb (NBPtr, BFPhyFenceTrEn, 1);
+
+ MemRecUWait10ns (5000, NBPtr->MemPtr);
+
+ // 4. Clear F2x[1, 0]9C_x08[PhyFenceTrEn]=0.
+ MemRecNSetBitFieldNb (NBPtr, BFPhyFenceTrEn, 0);
+
+ // 5. BIOS reads the phase recovery engine registers
+ // F2x[1, 0]9C_x[51:50] and F2x[1, 0]9C_x52.
+ // 6. Calculate the average value of the fine delay and subtract 8.
+ //
+ Avg = 0;
+ for (Byte = 0; Byte < 9; Byte++) {
+ // This includes ECC as byte 8
+ PREvalue = (UINT8) (0x1F & MemRecNGetTrainDlyNb (NBPtr, AccessPhRecDly, DIMM_BYTE_ACCESS (0, Byte)));
+ Avg = Avg + ((UINT16) PREvalue);
+ }
+ Avg = ((Avg + 8) / 9); // round up
+ Avg -= 6;
+
+ // 7. Write the value to F2x[1, 0]9C_x0C[PhyFence].
+ MemRecNSetBitFieldNb (NBPtr, BFPhyFence, Avg);
+
+ // 8. BIOS rewrites F2x[1, 0]9C_x04, DRAM Address/Command Timing Control
+ // Register delays for both channels. This forces the phy to recompute
+ // the fence.
+ //
+ MemRecNSetBitFieldNb (NBPtr, BFAddrTmgControl, MemRecNGetBitFieldNb (NBPtr, BFAddrTmgControl));
+}
+
+/* -----------------------------------------------------------------------------*/
+/**
+ *
+ * This function calculates and programs NB P-state dependent registers
+ *
+ * @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
+ *
+ */
+
+VOID
+STATIC
+MemRecNProgNbPstateDependentRegClientNb (
+ IN OUT MEM_NB_BLOCK *NBPtr
+ )
+{
+ UINT8 i;
+ UINT8 NclkFid;
+ UINT16 MemClkDid;
+ UINT8 PllMult;
+ UINT8 NclkDiv;
+ UINT8 RdPtrInit;
+ UINT32 NclkPeriod;
+ UINT32 MemClkPeriod;
+ INT32 PartialSum2x;
+ INT32 PartialSumSlotI2x;
+ INT32 RdPtrInitRmdr2x;
+
+ NclkFid = (UINT8) (MemRecNGetBitFieldNb (NBPtr, BFMainPllOpFreqId) + 0x10);
+ MemClkDid = 2; //BKDG recommended value for DDR800
+ PllMult = 16; //BKDG recommended value for DDR800
+ NclkDiv = (UINT8) MemRecNGetBitFieldNb (NBPtr, BFNbPs0NclkDiv);
+
+ NclkPeriod = (2500 * NclkDiv) / NclkFid;
+ MemClkPeriod = 1000000 / DDR800_FREQUENCY;
+ NBPtr->NBClkFreq = ((UINT32) NclkFid * 400) / NclkDiv;
+
+ IDS_HDT_CONSOLE (MEM_FLOW, "\n\tNB P%d Freq: %dMHz\n", 0, NBPtr->NBClkFreq);
+ IDS_HDT_CONSOLE (MEM_FLOW, "\tMemClk Freq: %dMHz\n", DDR800_FREQUENCY);
+
+ // D18F2x[1,0]78[RdPtrInit] = IF (D18F2x[1,0]94[MemClkFreq] >= 667 MHz) THEN 7 ELSE 8 ENDIF (Llano)
+ // THEN 2 ELSE 3 ENDIF (Ontario)
+ RdPtrInit = NBPtr->FreqChangeParam->RdPtrInitLower667;
+ MemRecNSetBitFieldNb (NBPtr, BFRdPtrInit, RdPtrInit);
+ IDS_HDT_CONSOLE (MEM_FLOW, "\t\tRdPtr: %d\n", RdPtrInit);
+
+ // Program D18F2x[1,0]F4_x30[DbeGskFifoNumerator] and D18F2x[1,0]F4_x31[DbeGskFifoDenominator].
+ MemRecNSetBitFieldNb (NBPtr, BFDbeGskFifoNumerator, NclkFid * MemClkDid * 16);
+ MemRecNSetBitFieldNb (NBPtr, BFDbeGskFifoDenominator, PllMult * NclkDiv);
+
+ IDS_HDT_CONSOLE (MEM_FLOW, "\t\tDbeGskFifoNumerator: %d\n", NclkFid * MemClkDid * 16);
+ IDS_HDT_CONSOLE (MEM_FLOW, "\t\tDbeGskFifoDenominator: %d\n", PllMult * NclkDiv);
+
+ // Program D18F2x[1,0]F4_x32[DataTxFifoSchedDlyNegSlot1, DataTxFifoSchedDlySlot1,
+ // DataTxFifoSchedDlyNegSlot0, DataTxFifoSchedDlySlot0].
+ // PartialSum = ((7 * NclkPeriod) + (1.5 * MemClkPeriod) + 520ps)*MemClkFrequency - tCWL -
+ // CmdSetup - PtrSeparation - 1. (Llano)
+ // PartialSum = ((5 * NclkPeriod) + MemClkPeriod) + 520ps)*MemClkFrequency - tCWL -
+ // CmdSetup - PtrSeparation - 1. (Ontario)
+ PartialSum2x = NBPtr->FreqChangeParam->NclkPeriodMul2x * NclkPeriod;
+ PartialSum2x += NBPtr->FreqChangeParam->MemClkPeriodMul2x * MemClkPeriod;
+ PartialSum2x += 520 * 2;
+
+ // PtrSeparation = ((16 + RdPtrInitMin - D18F2x[1,0]78[RdPtrInit]) MOD 16)/2 + RdPtrInitRmdr
+ // RdPtrInitRmdr = (((2.25 * MemClkPeriod) - 1520ps) MOD MemClkPeriod)/MemClkPeriod
+ RdPtrInitRmdr2x = ((NBPtr->FreqChangeParam->SyncTimeMul4x * MemClkPeriod) / 2) - 2 * (NBPtr->FreqChangeParam->TDataPropLower800 + 520);
+ RdPtrInitRmdr2x %= MemClkPeriod;
+ PartialSum2x -= RdPtrInitRmdr2x;
+ PartialSum2x = (PartialSum2x + MemClkPeriod - 1) / MemClkPeriod; // round-up here
+ PartialSum2x -= 2 * 5; //Tcwl + 5
+
+ if ((MemRecNGetBitFieldNb (NBPtr, BFAddrTmgControl) & 0x0202020) == 0) {
+ PartialSum2x -= 1;
+ } else {
+ PartialSum2x -= 2;
+ }
+ PartialSum2x -= 2;
+
+ // If PartialSumSlotN is positive:
+ // DataTxFifoSchedDlySlotN=CEIL(PartialSumSlotN).
+ // DataTxFifoSchedDlyNegSlotN=0.
+ // Else if PartialSumSlotN is negative:
+ // DataTxFifoSchedDlySlotN=ABS(CEIL(PartialSumSlotN*MemClkPeriod/NclkPeriod)).
+ // DataTxFifoSchedDlyNegSlotN=1.
+ for (i = 0; i < 2; i++) {
+ PartialSumSlotI2x = PartialSum2x;
+ if (i == 0) {
+ PartialSumSlotI2x += 2;
+ }
+ if (PartialSumSlotI2x > 0) {
+ MemRecNSetBitFieldNb (NBPtr, BFDataTxFifoSchedDlyNegSlot0 + i, 0);
+ MemRecNSetBitFieldNb (NBPtr, BFDataTxFifoSchedDlySlot0 + i, (PartialSumSlotI2x + 1) / 2);
+ IDS_HDT_CONSOLE (MEM_FLOW, "\t\tDataTxFifoSchedDlySlot%d: %d\n", i, (PartialSumSlotI2x + 1) / 2);
+ } else {
+ MemRecNSetBitFieldNb (NBPtr, BFDataTxFifoSchedDlyNegSlot0 + i, 1);
+ PartialSumSlotI2x = ((-PartialSumSlotI2x) * MemClkPeriod) / (2 * NclkPeriod);
+ MemRecNSetBitFieldNb (NBPtr, BFDataTxFifoSchedDlySlot0 + i, PartialSumSlotI2x);
+ IDS_HDT_CONSOLE (MEM_FLOW, "\t\tDataTxFifoSchedDlySlot%d: -%d\n", i, PartialSumSlotI2x);
+ }
+ }
+ // Program ProcOdtAdv
+ MemRecNSetBitFieldNb (NBPtr, BFProcOdtAdv, 0);
+}
+
+/* -----------------------------------------------------------------------------*/
+/**
+ *
+ *
+ * This function reads cache lines continuously using TCB CPG engine
+ *
+ * @param[in,out] NBPtr - Pointer to the MEM_NB_BLOCK
+ * @param[in,out] Buffer - Array of bytes to be filled with data read from DRAM
+ * @param[in] Address - System Address [47:16]
+ * @param[in] ClCount - Number of cache lines
+ *
+ */
+
+VOID
+MemRecNContReadPatternClientNb (
+ IN OUT MEM_NB_BLOCK *NBPtr,
+ IN UINT8 Buffer[],
+ IN UINT32 Address,
+ IN UINT16 ClCount
+ )
+{
+ // 1. Program D18F2x1C0[RdDramTrainMode]=1.
+ MemRecNSetBitFieldNb (NBPtr, BFRdDramTrainMode, 1);
+
+ // 2. Program D18F2x1C0[TrainLength] to the appropriate number of cache lines.
+ MemRecNSetBitFieldNb (NBPtr, BFTrainLength, ClCount);
+
+ // 3. Program the DRAM training address as follows:
+ MemRecNSetBitFieldNb (NBPtr, BFWrTrainAdrPtrLo, (Address >> 6));
+
+ // 4. Program D18F2x1D0[WrTrainBufAddr]=000h
+ MemRecNSetBitFieldNb (NBPtr, BFWrTrainBufAddr, 0);
+
+ // 5. Program D18F2x1C0[RdTrainGo]=1.
+ MemRecNSetBitFieldNb (NBPtr, BFRdTrainGo, 1);
+
+ // 6. Wait for D18F2x1C0[RdTrainGo]=0.
+ while (MemRecNGetBitFieldNb (NBPtr, BFRdTrainGo) != 0) {}
+
+ // 7. Read D18F2x1E8[TrainCmpSts] and D18F2x1E8[TrainCmpSts2].
+
+ // 8. Program D18F2x1C0[RdDramTrainMode]=0.
+ MemRecNSetBitFieldNb (NBPtr, BFRdDramTrainMode, 0);
+}
+
+/* -----------------------------------------------------------------------------*/
+/**
+ *
+ * This is function sets the platform specific settings for the systems with UDIMMs configuration
+ *
+ * @param[in,out] *MemData Pointer to MEM_DATA_STRUCTURE
+ * @param[in] SocketID Socket number
+ * @param[in] *CurrentChannel Pointer to CH_DEF_STRUCT
+ *
+ * @return AGESA_SUCCESS
+ * @return CurrentChannel->DctAddrTmg Address Command Timing Settings for specified channel
+ * @return CurrentChannel->DctOdcCtl Drive Strength settings for specified channel
+ * @return CurrentChannel->Reserved[0] Dram Term for specified channel
+ * @return CurrentChannel->Reserved[1] Dynamic Dram Term for specified channel
+ * @return CurrentChannel->PhyWLODT[0] WL ODT for DIMM0
+ * @return CurrentChannel->PhyWLODT[1] WL ODT for DIMM1
+ * @return CurrentChannel->PhyWLODT[2] WL ODT for DIMM2
+ * @return CurrentChannel->PhyWLODT[3] WL ODT for DIMM3
+ *
+ */
+AGESA_STATUS
+MemRecNGetPsCfgUDIMM3Nb (
+ IN OUT MEM_DATA_STRUCT *MemData,
+ IN UINT8 SocketID,
+ IN OUT CH_DEF_STRUCT *CurrentChannel
+ )
+{
+ UINT32 AddrTmgCTL;
+ UINT32 DctOdcCtl;
+ UINT8 Dimms;
+ UINT8 MaxDimmPerCH;
+ UINT8 DramTerm;
+ UINT8 DramTermDyn;
+
+ if ((CurrentChannel->RegDimmPresent != 0) || (CurrentChannel->SODimmPresent != 0)) {
+ return AGESA_UNSUPPORTED;
+ }
+
+ Dimms = CurrentChannel->Dimms;
+ MaxDimmPerCH = RecGetMaxDimmsPerChannel (MemData->ParameterListPtr->PlatformMemoryConfiguration, 0, CurrentChannel->ChannelID);
+
+ if (MaxDimmPerCH == 1) {
+ return AGESA_UNSUPPORTED;
+ } else {
+ DctOdcCtl = 0x20223323;
+ AddrTmgCTL = 0x00390039;
+ if (Dimms == 1) {
+ DctOdcCtl = 0x20113222;
+ AddrTmgCTL = 0x00390039;
+ if (CurrentChannel->Loads == 16) {
+ AddrTmgCTL = 0x003B0000;
+ }
+ }
+ }
+ CurrentChannel->DctAddrTmg = AddrTmgCTL;
+ CurrentChannel->DctOdcCtl = DctOdcCtl;
+
+ // ODT
+ if (Dimms == 1) {
+ DramTerm = 1; // 60 ohms
+ DramTermDyn = 0; // Disable
+ if ((MaxDimmPerCH == 3) && (CurrentChannel->DimmDrPresent != 0)) {
+ DramTermDyn = 1; // 60 ohms
+ }
+ } else {
+ DramTerm = 3; // 40 ohms
+ DramTermDyn = 2; // 120 ohms
+ }
+ CurrentChannel->Reserved[0] = DramTerm;
+ CurrentChannel->Reserved[1] = DramTermDyn;
+
+ // WL ODT
+ if (Dimms == 1) {
+ CurrentChannel->PhyWLODT[0] = 0;
+ CurrentChannel->PhyWLODT[1] = (CurrentChannel->DimmDrPresent != 0) ? 8 : 2;
+ } else {
+ CurrentChannel->PhyWLODT[0] = 3;
+ CurrentChannel->PhyWLODT[1] = 3;
+ }
+ CurrentChannel->PhyWLODT[2] = 0;
+ CurrentChannel->PhyWLODT[3] = 0;
+
+ return AGESA_SUCCESS;
+}
+
+/* -----------------------------------------------------------------------------*/
+/**
+ *
+ * This is function sets the platform specific settings for the systems with SODIMMs configuration
+ *
+ * @param[in,out] *MemData Pointer to MEM_DATA_STRUCTURE
+ * @param[in] SocketID Socket number
+ * @param[in] *CurrentChannel Pointer to CH_DEF_STRUCT
+ *
+ * @return AGESA_SUCCESS
+ * @return CurrentChannel->DctAddrTmg Address Command Timing Settings for specified channel
+ * @return CurrentChannel->DctOdcCtl Drive Strength settings for specified channel
+ * @return CurrentChannel->Reserved[0] Dram Term for specified channel
+ * @return CurrentChannel->Reserved[1] Dynamic Dram Term for specified channel
+ * @return CurrentChannel->PhyWLODT[0] WL ODT for DIMM0
+ * @return CurrentChannel->PhyWLODT[1] WL ODT for DIMM1
+ * @return CurrentChannel->PhyWLODT[2] WL ODT for DIMM2
+ * @return CurrentChannel->PhyWLODT[3] WL ODT for DIMM3
+ *
+ */
+AGESA_STATUS
+MemRecNGetPsCfgSODIMM3Nb (
+ IN OUT MEM_DATA_STRUCT *MemData,
+ IN UINT8 SocketID,
+ IN OUT CH_DEF_STRUCT *CurrentChannel
+ )
+{
+ UINT32 AddrTmgCTL;
+ UINT32 DctOdcCtl;
+ UINT8 MaxDimmPerCH;
+ UINT8 Dimms;
+ UINT8 DramTerm;
+ UINT8 DramTermDyn;
+
+ if (CurrentChannel->SODimmPresent != CurrentChannel->ChDimmValid) {
+ return AGESA_UNSUPPORTED;
+ }
+
+ Dimms = CurrentChannel->Dimms;
+ MaxDimmPerCH = RecGetMaxDimmsPerChannel (MemData->ParameterListPtr->PlatformMemoryConfiguration, 0, CurrentChannel->ChannelID);
+
+ if (MaxDimmPerCH == 1) {
+ DctOdcCtl = 0x00113222;
+ AddrTmgCTL = 0;
+ } else {
+ DctOdcCtl = 0x00223323;
+ AddrTmgCTL = 0x00000039;
+ if (Dimms == 1) {
+ DctOdcCtl = 0x00113222;
+ AddrTmgCTL = 0;
+ }
+ }
+ CurrentChannel->DctAddrTmg = AddrTmgCTL;
+ CurrentChannel->DctOdcCtl = DctOdcCtl;
+
+ // ODT
+ if (Dimms == 1) {
+ DramTerm = 2; // 120 ohms
+ DramTermDyn = 0; // Disable
+ if (MaxDimmPerCH == 2) {
+ DramTerm = 1; // 60 ohms
+ }
+ } else {
+ DramTerm = 3; // 40 ohms
+ DramTermDyn = 2; // 120 ohms
+ }
+ CurrentChannel->Reserved[0] = DramTerm;
+ CurrentChannel->Reserved[1] = DramTermDyn;
+
+ // WL ODT
+ if (Dimms == 1) {
+ if (MaxDimmPerCH == 1) {
+ CurrentChannel->PhyWLODT[0] = (CurrentChannel->DimmDrPresent != 0) ? 4 : 1;
+ CurrentChannel->PhyWLODT[1] = 0;
+ } else {
+ CurrentChannel->PhyWLODT[0] = 0;
+ CurrentChannel->PhyWLODT[1] = (CurrentChannel->DimmDrPresent != 0) ? 8 : 2;
+ }
+ } else {
+ CurrentChannel->PhyWLODT[0] = 3;
+ CurrentChannel->PhyWLODT[1] = 3;
+ }
+ CurrentChannel->PhyWLODT[2] = 0;
+ CurrentChannel->PhyWLODT[3] = 0;
+
+ return AGESA_SUCCESS;
+}
+
+/* -----------------------------------------------------------------------------*/
+/**
+ *
+ * This is function sets the platform specific settings for the systems with RDIMMs configuration
+ *
+ * @param[in,out] *MemData Pointer to MEM_DATA_STRUCTURE
+ * @param[in] SocketID Socket number
+ * @param[in] *CurrentChannel Pointer to CH_DEF_STRUCT
+ *
+ * @return AGESA_SUCCESS
+ * @return CurrentChannel->DctAddrTmg Address Command Timing Settings for specified channel
+ * @return CurrentChannel->DctOdcCtl Drive Strength settings for specified channel
+ * @return CurrentChannel->Reserved[0] Dram Term for specified channel
+ * @return CurrentChannel->Reserved[1] Dynamic Dram Term for specified channel
+ * @return CurrentChannel->PhyWLODT[0] WL ODT for DIMM0
+ * @return CurrentChannel->PhyWLODT[1] WL ODT for DIMM1
+ * @return CurrentChannel->PhyWLODT[2] WL ODT for DIMM2
+ * @return CurrentChannel->PhyWLODT[3] WL ODT for DIMM3
+ *
+ */
+
+AGESA_STATUS
+MemRecNGetPsCfgRDIMM3Nb (
+ IN OUT MEM_DATA_STRUCT *MemData,
+ IN UINT8 SocketID,
+ IN OUT CH_DEF_STRUCT *CurrentChannel
+ )
+{
+ STATIC CONST ADV_R_PSCFG_WL_ODT_ENTRY RecPSCfg2DIMMsWlODT[] = {
+ {SR_DIMM0, {0x01, 0x00, 0x00, 0x00}, 1},
+ {DR_DIMM0, {0x04, 0x00, 0x00, 0x00}, 1},
+ {QR_DIMM0, {0x05, 0x00, 0x00, 0x00}, 1},
+ {SR_DIMM1, {0x00, 0x02, 0x00, 0x00}, 1},
+ {DR_DIMM1, {0x00, 0x08, 0x00, 0x00}, 1},
+ {QR_DIMM1, {0x00, 0x0A, 0x00, 0x00}, 1},
+ {SR_DIMM0 + DR_DIMM0 + SR_DIMM1 + DR_DIMM1, {0x03, 0x03, 0x00, 0x00}, 2},
+ {SR_DIMM0 + QR_DIMM1, {0x0B, 0x03, 0x00, 0x09}, 2},
+ {DR_DIMM0 + QR_DIMM1, {0x0B, 0x03, 0x00, 0x09}, 2},
+ {QR_DIMM0 + SR_DIMM1, {0x03, 0x07, 0x06, 0x00}, 2},
+ {QR_DIMM0 + DR_DIMM1, {0x03, 0x07, 0x06, 0x00}, 2},
+ {QR_DIMM0 + QR_DIMM1, {0x0B, 0x07, 0x0E, 0x0D}, 2}
+ };
+ STATIC CONST ADV_R_PSCFG_WL_ODT_ENTRY RecPSCfg3DIMMsWlODT[] = {
+ {SR_DIMM2 + DR_DIMM2, {0x00, 0x00, 0x04, 0x00}, 1},
+ {SR_DIMM0 + DR_DIMM0, {0x01, 0x02, 0x00, 0x00}, 1},
+ {SR_DIMM0 + DR_DIMM0 + SR_DIMM2 + DR_DIMM2, {0x05, 0x00, 0x05, 0x00}, 2},
+ {SR_DIMM0 + DR_DIMM0 + SR_DIMM1 + DR_DIMM1 + SR_DIMM2 + DR_DIMM2, {0x07, 0x07, 0x07, 0x00}, 3},
+ {QR_DIMM1, {0x00, 0x0A, 0x00, 0x0A}, 1},
+ {QR_DIMM1 + SR_DIMM2 + DR_DIMM2, {0x00, 0x06, 0x0E, 0x0C}, 2},
+ {SR_DIMM0 + DR_DIMM0 + QR_DIMM1, {0x0B, 0x03, 0x00, 0x09}, 2},
+ {SR_DIMM0 + DR_DIMM0 + QR_DIMM1 + SR_DIMM2 + DR_DIMM2, {0x0F, 0x07, 0x0F, 0x0D}, 3}
+ };
+ STATIC CONST ADV_R_PSCFG_WL_ODT_ENTRY RecPSCfg4DIMMsWlODT[] = {
+ {ANY_DIMM3, {0x00, 0x00, 0x00, 0x08}, 1},
+ {ANY_DIMM2 + ANY_DIMM3, {0x00, 0x00, 0x0C, 0x0C}, 2},
+ {ANY_DIMM1 + ANY_DIMM2 + ANY_DIMM3, {0x00, 0x0E, 0x0E, 0x0E}, 3},
+ {ANY_DIMM0 + ANY_DIMM1 + ANY_DIMM2 + ANY_DIMM3, {0x0F, 0x0F, 0x0F, 0x0F}, 4}
+ };
+
+ UINT8 i;
+ UINT8 j;
+ UINT8 Dimms;
+ UINT8 DimmQrPresent;
+ UINT32 AddrTmgCTL;
+ UINT32 DctOdcCtl;
+ UINT8 PhyWLODT[4];
+ UINT8 DramTerm;
+ UINT8 DramTermDyn;
+ UINT16 DIMMRankType;
+ UINT16 _DIMMRankType_;
+ UINT8 DimmTpMatch;
+ UINT8 MaxDimmPerCH;
+ UINT8 PSCfgWlODTSize;
+ CONST ADV_R_PSCFG_WL_ODT_ENTRY *PSCfgWlODTPtr;
+
+ if (CurrentChannel->RegDimmPresent != CurrentChannel->ChDimmValid) {
+ return AGESA_UNSUPPORTED;
+ }
+
+ DIMMRankType = MemRecNGetPsRankType (CurrentChannel);
+ MaxDimmPerCH = RecGetMaxDimmsPerChannel (MemData->ParameterListPtr->PlatformMemoryConfiguration, 0, CurrentChannel->ChannelID);
+ Dimms = CurrentChannel->Dimms;
+ PSCfgWlODTPtr = RecPSCfg2DIMMsWlODT;
+ PSCfgWlODTSize = GET_SIZE_OF (RecPSCfg2DIMMsWlODT);
+ PhyWLODT[0] = PhyWLODT[1] = PhyWLODT[2] = PhyWLODT[3] = 0xFF;
+ DimmQrPresent = CurrentChannel->DimmQrPresent;
+
+ if (MaxDimmPerCH == 4) {
+ AddrTmgCTL = (Dimms > 2) ? 0x002F0000 : 0;
+ DctOdcCtl = (Dimms == 1) ? 0x20113222 : 0x20223222;
+ PSCfgWlODTPtr = RecPSCfg4DIMMsWlODT;
+ PSCfgWlODTSize = GET_SIZE_OF (RecPSCfg4DIMMsWlODT);
+ } else if (MaxDimmPerCH == 3) {
+ AddrTmgCTL = 0;
+ DctOdcCtl = 0x20223222;
+ if (Dimms == 3) {
+ AddrTmgCTL = 0x00380038;
+ DctOdcCtl = 0x20113222;
+ }
+ if (Dimms == 1) {
+ DctOdcCtl = 0x20113222;
+ }
+ PSCfgWlODTPtr = RecPSCfg3DIMMsWlODT;
+ PSCfgWlODTSize = GET_SIZE_OF (RecPSCfg3DIMMsWlODT);
+ } else if (MaxDimmPerCH == 2) {
+ AddrTmgCTL = 0;
+ DctOdcCtl = 0x20223222;
+ if ((Dimms == 1) && (DimmQrPresent == 0)) {
+ DctOdcCtl = 0x20113222;
+ }
+ } else {
+ AddrTmgCTL = 0;
+ DctOdcCtl = (DimmQrPresent == 0) ? 0x20113222 : 0x20223222;
+ }
+ CurrentChannel->DctAddrTmg = AddrTmgCTL;
+ CurrentChannel->DctOdcCtl = DctOdcCtl;
+
+ // ODT
+ if (Dimms == 1) {
+ DramTerm = 1; // 60 ohms
+ DramTermDyn = 0; // Disable
+ if (DimmQrPresent != 0) {
+ DramTermDyn = 2; // 120 ohms
+ }
+ } else {
+ DramTerm = 3; // 40 ohms
+ DramTermDyn = 2; // 120 ohms
+ if (DimmQrPresent != 0) {
+ DramTerm = 1; // 60 ohms
+ }
+ }
+ CurrentChannel->Reserved[0] = DramTerm;
+ CurrentChannel->Reserved[1] = DramTermDyn;
+
+ // WL ODT
+ for (i = 0; i < PSCfgWlODTSize; i++, PSCfgWlODTPtr++) {
+ if (Dimms != PSCfgWlODTPtr->Dimms) {
+ continue;
+ }
+ DimmTpMatch = 0;
+ _DIMMRankType_ = DIMMRankType & PSCfgWlODTPtr->DIMMRankType;
+ for (j = 0; j < MAX_DIMMS_PER_CHANNEL; j++) {
+ if ((_DIMMRankType_ & (UINT16) 0x0F << (j << 2)) != 0) {
+ DimmTpMatch++;
+ }
+ }
+ if (DimmTpMatch == PSCfgWlODTPtr->Dimms) {
+ PhyWLODT[0] = PSCfgWlODTPtr->PhyWrLvOdt[0];
+ PhyWLODT[1] = PSCfgWlODTPtr->PhyWrLvOdt[1];
+ PhyWLODT[2] = PSCfgWlODTPtr->PhyWrLvOdt[2];
+ PhyWLODT[3] = PSCfgWlODTPtr->PhyWrLvOdt[3];
+ break;
+ }
+ }
+ CurrentChannel->PhyWLODT[0] = PhyWLODT[0];
+ CurrentChannel->PhyWLODT[1] = PhyWLODT[1];
+ CurrentChannel->PhyWLODT[2] = PhyWLODT[2];
+ CurrentChannel->PhyWLODT[3] = PhyWLODT[3];
+
+ return AGESA_SUCCESS;
+}
+
+
+/* -----------------------------------------------------------------------------*/
+/**
+ *
+ *
+ * This function returns the max dimms for a given memory channel on a given
+ * processor. It first searches the platform override table for the max dimms
+ * value. If it is not provided, the AGESA default value is returned. The target
+ * socket must be a valid present socket.
+ *
+ * @param[in] PlatformMemoryConfiguration - Platform config table
+ * @param[in] SocketID - ID of the processor that owns the channel
+ * @param[in] ChannelID - Channel to get max dimms for
+ *
+ *
+ * @return UINT8 - Max Number of Dimms for that channel
+ */
+UINT8
+RecGetMaxDimmsPerChannel (
+ IN PSO_TABLE *PlatformMemoryConfiguration,
+ IN UINT8 SocketID,
+ IN UINT8 ChannelID
+ )
+{
+ UINT8 *DimmsPerChPtr;
+ UINT8 MaxDimmPerCH;
+
+ DimmsPerChPtr = MemRecFindPSOverrideEntry (PlatformMemoryConfiguration, PSO_MAX_DIMMS, SocketID, ChannelID, 0);
+ if (DimmsPerChPtr != NULL) {
+ MaxDimmPerCH = *DimmsPerChPtr;
+ } else {
+ MaxDimmPerCH = 2;
+ }
+
+ return MaxDimmPerCH;
+}
+
+/* -----------------------------------------------------------------------------*/
+/**
+ *
+ * This is the default return function of the ARDK block. The function always
+ * returns AGESA_UNSUPPORTED
+ *
+ * @param[in,out] *MemData Pointer to MEM_DATA_STRUCTURE
+ * @param[in] SocketID Socket number
+ * @param[in] *CurrentChannel Pointer to CH_DEF_STRUCT
+ *
+ * @return AGESA_UNSUPPORTED AGESA status indicating that default is unsupported
+ *
+ */
+
+AGESA_STATUS
+MemRecNGetPsCfgDef (
+ IN OUT MEM_DATA_STRUCT *MemData,
+ IN UINT8 SocketID,
+ IN OUT CH_DEF_STRUCT *CurrentChannel
+ )
+{
+ return AGESA_UNSUPPORTED;
+}
+
+/* -----------------------------------------------------------------------------*/
+/**
+ *
+ * This function returns the rank type map of a channel.
+ *
+ * @param[in] *CurrentChannel Pointer to CH_DEF_STRUCT
+ *
+ * @return UINT16 - The map of rank type.
+ *
+ */
+UINT16
+MemRecNGetPsRankType (
+ IN CH_DEF_STRUCT *CurrentChannel
+ )
+{
+ UINT8 i;
+ UINT16 DIMMRankType;
+
+ DIMMRankType = 0;
+ for (i = 0; i < MAX_DIMMS_PER_CHANNEL; i++) {
+ if ((CurrentChannel->DimmQrPresent & (UINT8) 1 << i) != 0) {
+ if (i < 2) {
+ DIMMRankType |= (UINT16) 4 << (i << 2);
+ }
+ } else if ((CurrentChannel->DimmDrPresent & (UINT8) 1 << i) != 0) {
+ DIMMRankType |= (UINT16) 2 << (i << 2);
+ } else if ((CurrentChannel->DimmSRPresent & (UINT8) 1 << i) != 0) {
+ DIMMRankType |= (UINT16) 1 << (i << 2);
+ }
+ }
+ return DIMMRankType;
+}
+
+UINT32
+MemRecNcmnGetSetTrainDlyClientNb (
+ IN OUT MEM_NB_BLOCK *NBPtr,
+ IN UINT8 IsSet,
+ IN TRN_DLY_TYPE TrnDly,
+ IN DRBN DrbnVar,
+ IN UINT16 Field
+ )
+{
+ UINT16 Index;
+ UINT16 Offset;
+ UINT32 Value;
+ UINT32 Address;
+ UINT8 Dimm;
+ UINT8 Byte;
+
+ Dimm = DRBN_DIMM (DrbnVar);
+ Byte = DRBN_BYTE (DrbnVar);
+
+ ASSERT (Dimm < 2);
+ ASSERT (Byte <= ECC_DLY);
+
+ if ((Byte > 7)) {
+ // LN and ON do not support ECC delay, so:
+ if (IsSet) {
+ // On write, ignore
+ return 0;
+ } else {
+ // On read, redirect to byte 0 to correct fence averaging
+ Byte = 0;
+ }
+ }
+
+ switch (TrnDly) {
+ case AccessRcvEnDly:
+ Index = 0x10;
+ break;
+ case AccessWrDqsDly:
+ Index = 0x30;
+ break;
+ case AccessWrDatDly:
+ Index = 0x01;
+ break;
+ case AccessRdDqsDly:
+ Index = 0x05;
+ break;
+ case AccessPhRecDly:
+ Index = 0x50;
+ break;
+ default:
+ Index = 0;
+ IDS_ERROR_TRAP;
+ }
+
+ switch (TrnDly) {
+ case AccessRcvEnDly:
+ case AccessWrDqsDly:
+ Index += (Dimm * 3);
+ if (Byte & 0x04) {
+ // if byte 4,5,6,7
+ Index += 0x10;
+ }
+ if (Byte & 0x02) {
+ // if byte 2,3,6,7
+ Index++;
+ }
+ Offset = 16 * (Byte % 2);
+ break;
+
+ case AccessRdDqsDly:
+ case AccessWrDatDly:
+ Index += (Dimm * 0x100);
+ // break is not being used here because AccessRdDqsDly and AccessWrDatDly also need
+ // to run AccessPhRecDly sequence.
+ case AccessPhRecDly:
+ Index += (Byte / 4);
+ Offset = 8 * (Byte % 4);
+ break;
+ default:
+ Offset = 0;
+ IDS_ERROR_TRAP;
+ }
+
+ Address = Index;
+ MemRecNSetBitFieldNb (NBPtr, BFDctAddlOffsetReg, Address);
+ Value = MemRecNGetBitFieldNb (NBPtr, BFDctAddlDataReg);
+
+ if (IsSet) {
+ if (TrnDly == AccessPhRecDly) {
+ Value = NBPtr->DctCachePtr->PhRecReg[Index & 0x03];
+ }
+
+ Value = ((UINT32)Field << Offset) | (Value & (~((UINT32) ((TrnDly == AccessRcvEnDly) ? 0x1FF : 0xFF) << Offset)));
+ MemRecNSetBitFieldNb (NBPtr, BFDctAddlDataReg, Value);
+ Address |= DCT_ACCESS_WRITE;
+ MemRecNSetBitFieldNb (NBPtr, BFDctAddlOffsetReg, Address);
+
+ if (TrnDly == AccessPhRecDly) {
+ NBPtr->DctCachePtr->PhRecReg[Index & 0x03] = Value;
+ }
+ // Gross WrDatDly and WrDqsDly cannot be larger than 4
+ ASSERT (((TrnDly == AccessWrDatDly) || (TrnDly == AccessWrDqsDly)) ? (NBPtr->IsSupported[WLNegativeDelay] || (Field < 0xA0)) : TRUE);
+ } else {
+ Value = (Value >> Offset) & (UINT32) ((TrnDly == AccessRcvEnDly) ? 0x1FF : 0xFF);
+ }
+
+ return Value;
+}
+
+
+/* -----------------------------------------------------------------------------*/
+/**
+ *
+ *
+ * This function reads cache lines continuously using PRBS engine
+ *
+ * @param[in,out] NBPtr - Pointer to the MEM_NB_BLOCK
+ * @param[in,out] Buffer - Array of bytes to be filled with data read from DRAM
+ * @param[in] Address - System Address [47:16]
+ * @param[in] ClCount - Number of cache lines
+ *
+ */
+
+VOID
+MemRecNContReadPatternUnb (
+ IN OUT MEM_NB_BLOCK *NBPtr,
+ IN UINT8 Buffer[],
+ IN UINT32 Address,
+ IN UINT16 ClCount
+ )
+{
+ MemRecNCommonReadWritePatternUnb (NBPtr, CMD_TYPE_READ, ClCount);
+}
+
+/* -----------------------------------------------------------------------------*/
+/**
+ *
+ * This function generates a continuous stream of writes to DRAM using the
+ * Unified Northbridge Reliable Read/Write Engine.
+ *
+ * @param[in,out] NBPtr - Pointer to the MEM_NB_BLOCK
+ * @param[in,out] Address - Unused by this function
+ * @param[in] Pattern - Unused by this function
+ * @param[in] ClCount - Number of cache lines to write
+ *
+ */
+
+VOID
+MemRecNContWritePatternUnb (
+ IN OUT MEM_NB_BLOCK *NBPtr,
+ IN UINT32 Address,
+ IN UINT8 Pattern[],
+ IN UINT16 ClCount
+ )
+{
+ MemRecNCommonReadWritePatternUnb (NBPtr, CMD_TYPE_WRITE, ClCount);
+}
+
+/* -----------------------------------------------------------------------------*/
+/**
+ *
+ * This function generates either read or write DRAM cycles for training
+ * using PRBS engine
+ *
+ * @param[in,out] NBPtr - Pointer to the MEM_NB_BLOCK
+ * @param[in] CmdType - Read/Write
+ * @param[in] ClCount - Number of cache lines to write
+ *
+ */
+
+VOID
+STATIC
+MemRecNCommonReadWritePatternUnb (
+ IN OUT MEM_NB_BLOCK *NBPtr,
+ IN UINT8 CmdType,
+ IN UINT16 ClCount
+ )
+{
+ MEM_TECH_BLOCK *TechPtr;
+
+ TechPtr = NBPtr->TechPtr;
+
+ // Enable PRBS, also set ResetAllErr
+ MemRecNSetBitFieldNb (NBPtr, BFCmdTestEnable, 3);
+
+ // Send activate command
+ MemRecNSetBitFieldNb (NBPtr, BFDramCmd2Reg, (UINT32) 1 << (TechPtr->ChipSel + 22) | ((UINT32) 1 << 31));
+ MemRecUWait10ns (750, NBPtr->MemPtr);
+
+ // Setup test address
+ MemRecNSetBitFieldNb (NBPtr, BFTgtChipSelectA, TechPtr->ChipSel);
+ MemRecNSetBitFieldNb (NBPtr, BFDataPrbsSeed, PRBS_SEED_256);
+ MemRecNSetBitFieldNb (NBPtr, BFCmdCount, ClCount);
+
+ // Select read or write command
+ MemRecNSetBitFieldNb (NBPtr, BFCmdType, CmdType);
+
+ // Send command and wait for completion
+ MemRecNSetBitFieldNb (NBPtr, BFSendCmd, 1);
+ while (MemRecNGetBitFieldNb (NBPtr, BFTestStatus) == 0) {}
+ while (MemRecNGetBitFieldNb (NBPtr, BFCmdSendInProg) != 0) {}
+ MemRecNSetBitFieldNb (NBPtr, BFSendCmd, 0);
+
+ // Send precharge all command
+ MemRecNSetBitFieldNb (NBPtr, BFDramCmd2Reg, (UINT32) 1 << (TechPtr->ChipSel + 22) | ((UINT32) 1 << 30));
+ MemRecUWait10ns (750, NBPtr->MemPtr);
+
+ // Disable PRBS
+ MemRecNSetBitFieldNb (NBPtr, BFCmdTestEnable, 0);
+}
+
+/* -----------------------------------------------------------------------------*/
+/**
+ *
+ * This function checks the Error status bits for comparison results using PRBS
+ *
+ * @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
+ * @param[in] Buffer[] - Not used in this implementation
+ * @param[in] Pattern[] - Not used in this implementation
+ * @param[in] ByteCount - Not used in this implementation
+ *
+ * @return PASS - Bitmap of results of comparison
+ */
+
+UINT16
+MemRecNCompareTestPatternUnb (
+ IN OUT MEM_NB_BLOCK *NBPtr,
+ IN UINT8 Buffer[],
+ IN UINT8 Pattern[],
+ IN UINT16 ByteCount
+ )
+{
+ UINT16 i;
+ UINT16 Pass;
+ UINT32 NibbleErrSts;
+
+ NibbleErrSts = MemRecNGetBitFieldNb (NBPtr, BFNibbleErrSts);
+
+ Pass = 0;
+ for (i = 0; i < 8; i++) {
+ Pass |= ((NibbleErrSts & 0x03) > 0 ) ? (1 << i) : 0;
+ NibbleErrSts >>= 2;
+ }
+ Pass = ~Pass;
+ return Pass;
+}
+