aboutsummaryrefslogtreecommitdiff
path: root/src/vendorcode/amd/agesa/f15/Proc/HT/Features/htFeatOptimization.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/vendorcode/amd/agesa/f15/Proc/HT/Features/htFeatOptimization.c')
-rw-r--r--src/vendorcode/amd/agesa/f15/Proc/HT/Features/htFeatOptimization.c890
1 files changed, 0 insertions, 890 deletions
diff --git a/src/vendorcode/amd/agesa/f15/Proc/HT/Features/htFeatOptimization.c b/src/vendorcode/amd/agesa/f15/Proc/HT/Features/htFeatOptimization.c
deleted file mode 100644
index c1e20bde3f..0000000000
--- a/src/vendorcode/amd/agesa/f15/Proc/HT/Features/htFeatOptimization.c
+++ /dev/null
@@ -1,890 +0,0 @@
-/* $NoKeywords:$ */
-/**
- * @file
- *
- * Link Optimization Routines.
- *
- * Contains routines for determining width, frequency, and other
- * Link features
- *
- * @xrefitem bom "File Content Label" "Release Content"
- * @e project: AGESA
- * @e sub-project: HyperTransport
- * @e \$Revision: 56279 $ @e \$Date: 2011-07-11 13:11:28 -0600 (Mon, 11 Jul 2011) $
- *
- */
-/*
-*****************************************************************************
-*
-* Copyright (C) 2012 Advanced Micro Devices, Inc.
-* All rights reserved.
-*
-* Redistribution and use in source and binary forms, with or without
-* modification, are permitted provided that the following conditions are met:
-* * Redistributions of source code must retain the above copyright
-* notice, this list of conditions and the following disclaimer.
-* * Redistributions in binary form must reproduce the above copyright
-* notice, this list of conditions and the following disclaimer in the
-* documentation and/or other materials provided with the distribution.
-* * Neither the name of Advanced Micro Devices, Inc. nor the names of
-* its contributors may be used to endorse or promote products derived
-* from this software without specific prior written permission.
-*
-* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
-* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-* DISCLAIMED. IN NO EVENT SHALL ADVANCED MICRO DEVICES, INC. BE LIABLE FOR ANY
-* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
-* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-*
-* ***************************************************************************
-*
-*/
-
-/*
- *----------------------------------------------------------------------------
- * MODULES USED
- *
- *----------------------------------------------------------------------------
- */
-
-
-
-#include "AGESA.h"
-#include "amdlib.h"
-#include "Ids.h"
-#include "Topology.h"
-#include "htFeat.h"
-#include "IdsHt.h"
-#include "htInterface.h"
-#include "htNb.h"
-#include "htFeatOptimization.h"
-#include "htNotify.h"
-#include "Filecode.h"
-CODE_GROUP (G1_PEICC)
-RDATA_GROUP (G2_PEI)
-
-#define FILECODE PROC_HT_FEATURES_HTFEATOPTIMIZATION_FILECODE
-
-extern CONST PF_HtIdsGetPortOverride ROMDATA pf_HtIdsGetPortOverride;
-
-/*----------------------------------------------------------------------------
- * DEFINITIONS AND MACROS
- *
- *----------------------------------------------------------------------------
- */
-#define PCI_CONFIG_COMMAND_REG04 4
-#define PCI_CONFIG_REVISION_REG08 8
-
-/*----------------------------------------------------------------------------
- * TYPEDEFS AND STRUCTURES
- *
- *----------------------------------------------------------------------------
- */
-
-/*----------------------------------------------------------------------------
- * PROTOTYPES OF LOCAL FUNCTIONS
- *
- *----------------------------------------------------------------------------
- */
-
-/*----------------------------------------------------------------------------
- * EXPORTED FUNCTIONS
- *
- *----------------------------------------------------------------------------
- */
-
-/*----------------------------------------------------------------------------
- * LOCAL FUNCTIONS
- *
- *----------------------------------------------------------------------------
- */
-
-/***************************************************************************
- *** Link Optimization ***
- ***************************************************************************/
-
-/*----------------------------------------------------------------------------------------*/
-/**
- * Given the bits set in the register field, return the width it represents.
- *
- * As invalid width values or encodings are rare except during debug, catch those using
- * ASSERT(). This means theoretically we are returning an incorrect result if that
- * happens. The default chosen for the result is arbitrarily 8 bits. This is likely
- * not to be the actual correct width and may cause a crash, hang, or incorrect operation.
- * Hardware often ignores writes of invalid width encodings.
- *
- * @note This routine is used for CPUs as well as IO devices, as all comply to the
- * "HyperTransport I/O Link Specification ".
- *
- * @param[in] Value The bits for the register
- *
- * @return The width
- */
-UINT8
-STATIC
-ConvertBitsToWidth (
- IN UINT8 Value
- )
-{
- UINT8 Result;
-
- Result = 0;
-
- switch (Value) {
-
- case 1:
- Result = 16;
- break;
-
- case 0:
- Result = 8;
- break;
-
- case 3:
- Result = 32;
- break;
-
- case 5:
- Result = 4;
- break;
-
- case 4:
- Result = 2;
- break;
-
- default:
- ASSERT (FALSE);
- }
- return Result;
-}
-
-/*----------------------------------------------------------------------------------------*/
-/**
- * Translate a desired width setting to the bits to set in the register field.
- *
- * As invalid width values or encodings are rare except during debug, catch those using
- * ASSERT(). This means theoretically we are returning an incorrect result if that
- * happens. The default chosen for the result is arbitrarily 8 bits. This is likely
- * not to be the actual correct width and may cause a crash, hang, or incorrect operation.
- * Hardware often ignores writes of invalid width encodings.
- *
- * @note This routine is used for CPUs as well as IO devices, as all comply to the
- * "HyperTransport I/O Link Specification ".
- *
- * @param[in] Value the width Value
- *
- * @return The bits for the register
- */
-UINT8
-ConvertWidthToBits (
- IN UINT8 Value
- )
-{
- UINT8 Result;
-
- Result = 8;
-
- switch (Value) {
-
- case 16:
- Result = 1;
- break;
-
- case 8:
- Result = 0;
- break;
-
- case 32:
- Result = 3;
- break;
-
- case 4:
- Result = 5;
- break;
-
- case 2:
- Result = 4;
- break;
-
- default:
- ASSERT (FALSE);
- }
- return Result;
-}
-
-/*----------------------------------------------------------------------------------------*/
-/**
- * Access HT Link Control Register.
- *
- * @HtFeatMethod{::F_SET_HT_CONTROL_REGISTER_BITS}
- *
- * Provide a common routine for accessing the HT Link Control registers (84, a4, c4,
- * e4), to enforce not clearing the HT CRC error bits. Replaces direct use of
- * AmdPCIWriteBits().
- *
- * @note: This routine is called for CPUs as well as IO Devices! All comply to the
- * "HyperTransport I/O Link Specification ".
- *
- * @param[in] Reg the PCI config address the control register
- * @param[in] HiBit the high bit number
- * @param[in] LoBit the low bit number
- * @param[in] Value the value to write to that bit range. Bit 0 => loBit.
- * @param[in] State Our state, config handle for lib
- */
-VOID
-SetHtControlRegisterBits (
- IN PCI_ADDR Reg,
- IN UINT8 HiBit,
- IN UINT8 LoBit,
- IN UINT32 *Value,
- IN STATE_DATA *State
- )
-{
- UINT32 Temp;
- UINT32 mask;
-
- ASSERT ((HiBit < 32) && (LoBit < 32) && (HiBit >= LoBit) && ((Reg.AddressValue & 0x3) == 0));
- ASSERT ((HiBit < 8) || (LoBit > 9));
-
- // A 1 << 32 == 1 << 0 due to x86 SHL instruction, so skip if that is the case
- if ((HiBit - LoBit) != 31) {
- mask = (((UINT32)1 << (HiBit - LoBit + 1)) - 1);
- } else {
- mask = (UINT32)0xFFFFFFFF;
- }
-
- LibAmdPciRead (AccessWidth32, Reg, &Temp, State->ConfigHandle);
- Temp &= ~(mask << LoBit);
- Temp |= (*Value & mask) << LoBit;
- Temp &= (UINT32)HT_CONTROL_CLEAR_CRC;
- LibAmdPciWrite (AccessWidth32, Reg, &Temp, State->ConfigHandle);
-}
-
-/*----------------------------------------------------------------------------------------*/
-/**
- * Set HT Frequency register for IO Devices
- *
- * Provide a common routine for accessing the HT Link Frequency registers at offset 8
- * and 0x10, to enforce not clearing the HT Link error bits. Replaces direct use of
- * AmdPCIWriteBits().
- *
- * @note This routine is called for IO Devices only!! All comply to the
- * "HyperTransport I/O Link Specification ".
- *
- * @param[in] Reg the PCI config address the control register
- * @param[in] Hibit the high bit number
- * @param[in] Lobit the low bit number
- * @param[in] Value the value to write to that bit range. Bit 0 => loBit.
- * @param[in] State Our state, config handle for lib
- */
-VOID
-STATIC
-SetHtIoFrequencyRegisterBits (
- IN PCI_ADDR Reg,
- IN UINT8 Hibit,
- IN UINT8 Lobit,
- IN UINT32 *Value,
- IN STATE_DATA *State
- )
-{
- UINT32 Mask;
- UINT32 Temp;
-
- ASSERT ((Hibit < 32) && (Lobit < 32) && (Hibit >= Lobit) && ((Reg.AddressValue & 0x3) == 0));
- ASSERT ((Hibit < 12) || (Lobit > 14));
-
- // A 1<<32 == 1<<0 due to x86 SHL instruction, so skip if that is the case
- if ((Hibit - Lobit) != 31) {
- Mask = (((UINT32)1 << ((Hibit - Lobit) + 1)) - 1);
- } else {
- Mask = (UINT32)0xFFFFFFFF;
- }
-
- LibAmdPciRead (AccessWidth32, Reg, &Temp, State->ConfigHandle);
- Temp &= ~(Mask << Lobit);
- Temp |= (*Value & Mask) << Lobit;
- Temp &= (UINT32)HT_FREQUENCY_CLEAR_LINK_ERRORS;
- LibAmdPciWrite (AccessWidth32, Reg, &Temp, State->ConfigHandle);
-}
-
-/*----------------------------------------------------------------------------------------*/
-/**
- * Get Link features into system data structure.
- *
- * @HtFeatMethod{::F_GATHER_LINK_DATA}
- *
- * For all discovered Links, populate the port list with the frequency and width
- * capabilities. Gather support data for:
- * - Unit ID Clumping
- *
- * @param[in] State our global state, port list
- */
-VOID
-GatherLinkData (
- IN STATE_DATA *State
- )
-{
- UINT8 i;
- PCI_ADDR LinkBase;
- PCI_ADDR Reg;
- UINT32 Bits;
- UINT8 Revision;
-
- // Get the capability base for whatever device type the link port is on
- for (i = 0; i < (State->TotalLinks * 2); i++) {
- if ((*State->PortList)[i].Type == PORTLIST_TYPE_CPU) {
- LinkBase = State->Nb->MakeLinkBase ((*State->PortList)[i].NodeID, (*State->PortList)[i].Link, State->Nb);
- (*State->PortList)[i].Pointer = LinkBase;
- } else {
- LinkBase = (*State->PortList)[i].Pointer;
- if ((*State->PortList)[i].Link == 1) {
- LinkBase.Address.Register += HTSLAVE_LINK01_OFFSET;
- }
- }
-
- // Getting the Width is standard across device types
- Reg = LinkBase;
- Reg.Address.Register += HTSLAVE_LINK_CONTROL_0_REG;
- LibAmdPciReadBits (Reg, 22, 20, &Bits, State->ConfigHandle);
- (*State->PortList)[i].PrvWidthOutCap = ConvertBitsToWidth ((UINT8)Bits);
-
- LibAmdPciReadBits (Reg, 18, 16, &Bits, State->ConfigHandle);
- (*State->PortList)[i].PrvWidthInCap = ConvertBitsToWidth ((UINT8)Bits);
-
- // Get Frequency and other device type specific features
- if ((*State->PortList)[i].Type == PORTLIST_TYPE_CPU) {
- State->Nb->GatherLinkFeatures (&(*State->PortList)[i], State->HtInterface, State->PlatformConfiguration, State->Nb);
- } else {
- Reg = LinkBase;
- Reg.Address.Register += HTSLAVE_FREQ_REV_0_REG;
- LibAmdPciReadBits (Reg, 31, 16, &Bits, State->ConfigHandle);
- (*State->PortList)[i].PrvFrequencyCap = Bits;
-
- // Unit ID Clumping Support
- if (State->IsUsingUnitIdClumping) {
- if (DoesDeviceHaveHtSubtypeCap (LinkBase, HT_UNITID_CAPABILITY, &Reg, State)) {
- Reg.Address.Register += HTUNIT_SUPPORT_REG;
- LibAmdPciReadBits (Reg, 31, 0, &Bits, State->ConfigHandle);
- } else {
- // Not there, that's ok, we don't know that it should have one.
- // Check for Passive support. (Bit 0 won't be set if full support is implemented,
- // so we can use it to indicate passive support in our portlist struct).
- Reg = LinkBase;
- Reg.Address.Register += HTSLAVE_FEATURECAP_REG;
- Bits = 1;
- LibAmdPciWriteBits (Reg, 5, 5, &Bits, State->ConfigHandle);
- LibAmdPciReadBits (Reg, 5, 5, &Bits, State->ConfigHandle);
- }
- (*State->PortList)[i].ClumpingSupport = Bits;
- } else {
- (*State->PortList)[i].ClumpingSupport = HT_CLUMPING_DISABLE;
- }
-
- Reg = LinkBase;
- Reg.Address.Register = PCI_CONFIG_REVISION_REG08;
- LibAmdPciReadBits ( LinkBase, 7, 0, &Bits, State->ConfigHandle);
- Revision = (UINT8) Bits;
-
- LinkBase.Address.Register = 0;
- LibAmdPciRead (AccessWidth32, LinkBase, &Bits, State->ConfigHandle);
-
- State->HtInterface->GetDeviceCapOverride ((*State->PortList)[i].NodeID,
- (*State->PortList)[i].HostLink,
- (*State->PortList)[i].HostDepth,
- (*State->PortList)[i].Pointer,
- Bits,
- Revision,
- (*State->PortList)[i].Link,
- &((*State->PortList)[i].PrvWidthInCap),
- &((*State->PortList)[i].PrvWidthOutCap),
- &((*State->PortList)[i].PrvFrequencyCap),
- &((*State->PortList)[i].ClumpingSupport),
- State);
- }
- }
-}
-
-/*----------------------------------------------------------------------------------------*/
-/**
- * Optimize Links.
- *
- * @HtFeatMethod{::F_SELECT_OPTIMAL_WIDTH_AND_FREQUENCY}
- *
- * For all Links:
- * Examine both sides of a Link and determine the optimal frequency and width,
- * taking into account externally provided limits and enforcing any other limit
- * or matching rules as applicable except subLink balancing. Update the port
- * list data with the optimal settings.
- *
- * @note no hardware state changes in this routine.
- *
- * @param[in,out] State Process and update portlist
- */
-VOID
-SelectOptimalWidthAndFrequency (
- IN OUT STATE_DATA *State
- )
-{
- UINT8 i;
- UINT8 j;
- UINT8 Freq;
- UINT32 Temp;
- UINT32 CbPcbFreqLimit;
- UINT8 CbPcbABDownstreamWidth;
- UINT8 CbPcbBAUpstreamWidth;
-
- for (i = 0; i < (State->TotalLinks * 2); i += 2) {
- CbPcbFreqLimit = HT_FREQUENCY_NO_LIMIT;
- CbPcbABDownstreamWidth = HT_WIDTH_16_BITS;
- CbPcbBAUpstreamWidth = HT_WIDTH_16_BITS;
-
- if (((*State->PortList)[i].Type == PORTLIST_TYPE_CPU) && ((*State->PortList)[i + 1].Type == PORTLIST_TYPE_CPU)) {
- State->HtInterface->GetCpu2CpuPcbLimits ((*State->PortList)[i].NodeID,
- (*State->PortList)[i].Link,
- (*State->PortList)[i + 1].NodeID,
- (*State->PortList)[i + 1].Link,
- &CbPcbABDownstreamWidth,
- &CbPcbBAUpstreamWidth,
- &CbPcbFreqLimit,
- State
- );
- } else {
- State->HtInterface->GetIoPcbLimits ((*State->PortList)[i + 1].NodeID,
- (*State->PortList)[i + 1].HostLink,
- (*State->PortList)[i + 1].HostDepth,
- &CbPcbABDownstreamWidth,
- &CbPcbBAUpstreamWidth,
- &CbPcbFreqLimit,
- State
- );
- }
-
- Temp = (*State->PortList)[i].PrvFrequencyCap;
- Temp &= (*State->PortList)[i + 1].PrvFrequencyCap;
- Temp &= CbPcbFreqLimit;
- (*State->PortList)[i].CompositeFrequencyCap = (UINT32)Temp;
- (*State->PortList)[i + 1].CompositeFrequencyCap = (UINT32)Temp;
-
- ASSERT (Temp != 0);
- Freq = LibAmdBitScanReverse (Temp);
- (*State->PortList)[i].SelFrequency = Freq;
- (*State->PortList)[i + 1].SelFrequency = Freq;
-
- Temp = (*State->PortList)[i].PrvWidthOutCap;
- if ((*State->PortList)[i + 1].PrvWidthInCap < Temp) {
- Temp = (*State->PortList)[i + 1].PrvWidthInCap;
- }
- if (CbPcbABDownstreamWidth < Temp) {
- Temp = CbPcbABDownstreamWidth;
- }
- (*State->PortList)[i].SelWidthOut = (UINT8)Temp;
- (*State->PortList)[i + 1].SelWidthIn = (UINT8)Temp;
-
- Temp = (*State->PortList)[i].PrvWidthInCap;
- if ((*State->PortList)[i + 1].PrvWidthOutCap < Temp) {
- Temp = (*State->PortList)[i + 1].PrvWidthOutCap;
- }
- if (CbPcbBAUpstreamWidth < Temp) {
- Temp = CbPcbBAUpstreamWidth;
- }
- (*State->PortList)[i].SelWidthIn = (UINT8)Temp;
- (*State->PortList)[i + 1].SelWidthOut = (UINT8)Temp;
- }
- // Calculate unit id clumping
- //
- // Find the root of each IO Chain, process the chain for clumping support.
- // The root is always the first link of the chain in the port list.
- // Clumping is not device link specific, so we can just look at the upstream ports (j+1). Use ASSERTs to sanity
- // check the downstream ports (j). If any device on the chain does not support clumping, the entire chain will be
- // disabled for clumping.
- // After analyzing the clumping support on the chain the CPU's portlist has the enable mask. Update all the
- // IO Devices on the chain with the enable mask. If any device's only have passive support, that is already enabled.
- //
- if (State->IsUsingUnitIdClumping) {
- for (i = 0; i < (State->TotalLinks * 2); i += 2) {
- if (((*State->PortList)[i].Type == PORTLIST_TYPE_CPU) && ((*State->PortList)[i + 1].Type == PORTLIST_TYPE_IO)) {
- (*State->PortList)[i].ClumpingSupport = HT_CLUMPING_DISABLE;
- if ((*State->PortList)[i + 1].ClumpingSupport != HT_CLUMPING_DISABLE) {
- (*State->PortList)[i].ClumpingSupport |= (*State->PortList)[i + 1].ClumpingSupport;
- for (j = i + 2; j < (State->TotalLinks * 2); j += 2) {
- if (((*State->PortList)[j].Type == PORTLIST_TYPE_IO) && ((*State->PortList)[j + 1].Type == PORTLIST_TYPE_IO)) {
- if (((*State->PortList)[i].NodeID == (*State->PortList)[j + 1].NodeID) &&
- ((*State->PortList)[i].Link == (*State->PortList)[j + 1].HostLink)) {
- ASSERT (((*State->PortList)[i].NodeID == (*State->PortList)[j + 1].NodeID) &&
- ((*State->PortList)[i].Link == (*State->PortList)[j].HostLink));
- if ((*State->PortList)[j + 1].ClumpingSupport != HT_CLUMPING_DISABLE) {
- ASSERT ((((*State->PortList)[j + 1].ClumpingSupport & HT_CLUMPING_PASSIVE) == 0) ||
- (((*State->PortList)[j + 1].ClumpingSupport & ~(HT_CLUMPING_PASSIVE)) == 0));
- (*State->PortList)[i].ClumpingSupport |= (*State->PortList)[j + 1].ClumpingSupport;
- } else {
- (*State->PortList)[i].ClumpingSupport = HT_CLUMPING_DISABLE;
- break;
- }
- }
- }
- }
- if ((*State->PortList)[i + 1].ClumpingSupport != HT_CLUMPING_PASSIVE) {
- (*State->PortList)[i + 1].ClumpingSupport = (*State->PortList)[i].ClumpingSupport;
- }
- for (j = i + 2; j < (State->TotalLinks * 2); j += 2) {
- if (((*State->PortList)[j].Type == PORTLIST_TYPE_IO) && ((*State->PortList)[j + 1].Type == PORTLIST_TYPE_IO)) {
- if (((*State->PortList)[i].NodeID == (*State->PortList)[j + 1].NodeID) &&
- ((*State->PortList)[i].Link == (*State->PortList)[j + 1].HostLink)) {
- if ((*State->PortList)[j + 1].ClumpingSupport != HT_CLUMPING_PASSIVE) {
- (*State->PortList)[j + 1].ClumpingSupport = (*State->PortList)[i].ClumpingSupport;
- // The downstream isn't really passive, just mark it so in order to write the device only once.
- (*State->PortList)[j].ClumpingSupport = HT_CLUMPING_PASSIVE;
- }
- }
- }
- }
- }
- }
- }
- }
-}
-
-/*----------------------------------------------------------------------------------------*/
-/**
- * Change the hardware state for all Links according to the now optimized data in the
- * port list data structure.
- *
- * @HtFeatMethod{::F_SET_LINK_DATA}
- *
- * @param[in] State our global state, port list
- */
-VOID
-SetLinkData (
- IN STATE_DATA *State
- )
-{
- UINT8 i;
- PCI_ADDR LinkBase;
- PCI_ADDR Reg;
- UINT32 Temp;
- UINT32 Widthin;
- UINT32 Widthout;
- UINT32 Bits;
- PCI_ADDR CurrentPtr;
- HTIDS_PORT_OVERRIDE_LIST PortOverrides;
-
- PortOverrides = NULL;
-
- for (i = 0; i < (State->TotalLinks * 2); i++) {
-
- ASSERT ((*State->PortList)[i & 0xFE].SelWidthOut == (*State->PortList)[ (i & 0xFE) + 1].SelWidthIn);
- ASSERT ((*State->PortList)[i & 0xFE].SelWidthIn == (*State->PortList)[ (i & 0xFE) + 1].SelWidthOut);
- ASSERT ((*State->PortList)[i & 0xFE].SelFrequency == (*State->PortList)[ (i & 0xFE) + 1].SelFrequency);
-
- if ((*State->PortList)[i].SelRegang) {
- ASSERT ((*State->PortList)[i].Type == PORTLIST_TYPE_CPU);
- ASSERT ((*State->PortList)[i].Link < 4);
- State->Nb->SetLinkRegang (
- (*State->PortList)[i].NodeID,
- (*State->PortList)[i].Link,
- State->Nb
- );
- }
-
- //
- // IDS port override for CPUs and IO Devices
- //
- pf_HtIdsGetPortOverride ((BOOLEAN) ((i & 1) == 0), &(*State->PortList)[i], &(*State->PortList)[i + 1], &PortOverrides, State);
-
- LinkBase = (*State->PortList)[i].Pointer;
- if (((*State->PortList)[i].Type == PORTLIST_TYPE_IO) && ((*State->PortList)[i].Link == 1)) {
- LinkBase.Address.Register += HTSLAVE_LINK01_OFFSET;
- }
-
- // HT CRC Feature, set if configured. The default is not to set it, because with some chipsets it
- // will lock up if done here.
- if (State->IsSetHtCrcFlood) {
- Temp = 1;
- Reg = LinkBase;
- Reg.Address.Register += HTHOST_LINK_CONTROL_REG;
- State->HtFeatures->SetHtControlRegisterBits (Reg, 1, 1, &Temp, State);
- if ((*State->PortList)[i].Type == PORTLIST_TYPE_IO) {
- // IO Devices also need to have SERR enabled.
- Reg = LinkBase;
- Reg.Address.Register = PCI_CONFIG_COMMAND_REG04;
- LibAmdPciWriteBits (Reg, 8, 8, &Temp, State->ConfigHandle);
- }
- }
-
- // Some IO devices don't work properly when setting widths, so write them in a single operation,
- // rather than individually.
- //
- Widthout = ConvertWidthToBits ((*State->PortList)[i].SelWidthOut);
- ASSERT (Widthout == 1 || Widthout == 0 || Widthout == 5 || Widthout == 4);
- Widthin = ConvertWidthToBits ((*State->PortList)[i].SelWidthIn);
- ASSERT (Widthin == 1 || Widthin == 0 || Widthin == 5 || Widthin == 4);
-
- Temp = (Widthin & 7) | ((Widthout & 7) << 4);
- Reg = LinkBase;
- Reg.Address.Register += HTHOST_LINK_CONTROL_REG;
- State->HtFeatures->SetHtControlRegisterBits (Reg, 31, 24, &Temp, State);
-
- Temp = (*State->PortList)[i].SelFrequency;
- IDS_HDT_CONSOLE (HT_TRACE, "Link Frequency: Node %02d: Link %02d: is running at %2d00MHz\n",
- (*State->PortList)[i].NodeID, (*State->PortList)[i].Link,
- (Temp < HT_FREQUENCY_800M) ? Temp + 2 : ((Temp < HT_FREQUENCY_2800M) ? 2 * (Temp - 1) : 2 * (Temp - 3)));
-
- if ((*State->PortList)[i].Type == PORTLIST_TYPE_CPU) {
- State->Nb->SetLinkFrequency (
- (*State->PortList)[i].NodeID,
- (*State->PortList)[i].Link,
- (UINT8)Temp,
- State->Nb
- );
- } else {
- ASSERT (Temp <= HT_FREQUENCY_2600M);
- // Write the frequency setting
- Reg = LinkBase;
- Reg.Address.Register += HTSLAVE_FREQ_REV_0_REG;
- SetHtIoFrequencyRegisterBits (Reg, 11, 8, &Temp, State);
-
- // Handle additional HT3 frequency requirements, if needed,
- // or clear them if switching down to ht1 on a warm reset.
- // Gen1 = 200Mhz -> 1000MHz, Gen3 = 1200MHz -> 2600MHz
- //
- // Even though we assert if debugging, we need to check that the capability was
- // found always, since this is an unknown hardware device, also we are taking
- // unqualified frequency from the external interface (could be trying to do ht3
- // on an ht1 IO device).
- //
-
- if (Temp > HT_FREQUENCY_1000M) {
- // Enabling features if gen 3
- Bits = 1;
- } else {
- // Disabling features if gen 1
- Bits = 0;
- }
-
- // Retry Enable
- if (DoesDeviceHaveHtSubtypeCap (LinkBase, HT_RETRY_CAPABILITY, &CurrentPtr, State)) {
- ASSERT ((*State->PortList)[i].Link < 2);
- CurrentPtr.Address.Register += HTRETRY_CONTROL_REG;
- LibAmdPciWriteBits (CurrentPtr,
- ((*State->PortList)[i].Link * 16),
- ((*State->PortList)[i].Link * 16),
- &Bits,
- State->ConfigHandle);
- } else {
- // If we are turning it off, that may mean the device was only ht1 capable,
- // so don't complain that we can't do it.
- //
- if (Bits != 0) {
- NotifyWarningOptRequiredCapRetry ((*State->PortList)[i].NodeID,
- (*State->PortList)[i].HostLink,
- (*State->PortList)[i].HostDepth,
- State);
- }
- }
-
- // Scrambling enable
- if (DoesDeviceHaveHtSubtypeCap (LinkBase, HT_GEN3_CAPABILITY, &CurrentPtr, State)) {
- ASSERT ((*State->PortList)[i].Link < 2);
- CurrentPtr.Address.Register = CurrentPtr.Address.Register +
- HTGEN3_LINK_TRAINING_0_REG +
- ((*State->PortList)[i].Link * HTGEN3_LINK01_OFFSET);
- LibAmdPciWriteBits (CurrentPtr, 3, 3, &Bits, State->ConfigHandle);
- } else {
- // If we are turning it off, that may mean the device was only ht1 capable,
- // so don't complain that we can't do it.
- //
- if (Bits != 0) {
- NotifyWarningOptRequiredCapGen3 ((*State->PortList)[i].NodeID,
- (*State->PortList)[i].HostLink,
- (*State->PortList)[i].HostDepth,
- State);
- }
- }
- }
- // Enable Unit ID Clumping if supported.
- if (State->IsUsingUnitIdClumping) {
- if (((*State->PortList)[i].ClumpingSupport != HT_CLUMPING_PASSIVE) &&
- ((*State->PortList)[i].ClumpingSupport != HT_CLUMPING_DISABLE)) {
- Bits = (*State->PortList)[i].ClumpingSupport;
- if ((*State->PortList)[i].Type == PORTLIST_TYPE_CPU) {
- State->Nb->SetLinkUnitIdClumping (
- (*State->PortList)[i].NodeID,
- (*State->PortList)[i].Link,
- (*State->PortList)[i].ClumpingSupport,
- State->Nb
- );
- } else {
- if (DoesDeviceHaveHtSubtypeCap (LinkBase, HT_UNITID_CAPABILITY, &Reg, State)) {
- Reg.Address.Register += HTUNIT_ENABLE_REG;
- LibAmdPciWriteBits (Reg, 31, 0, &Bits, State->ConfigHandle);
- } else {
- // If we found one when gathering support, we have to find one now.
- ASSERT (FALSE);
- }
- }
- }
- }
- }
-}
-
-/*------------------------------------------------------------------------------------------*/
-/**
- * Find a specific HT capability type.
- *
- * Search all the PCI Config space capabilities on any type of device for an
- * HT capability of the specific subtype.
- *
- * @param[in] DevicePointer A PCI Config address somewhere in the device config space
- * @param[in] CapSubType The HT capability subtype to find
- * @param[out] CapabilityBase The Config space base address of the capability, if found.
- * @param[in] State Our State
- *
- * @retval TRUE the capability was found
- * @retval FALSE the capability was not found
- */
-BOOLEAN
-DoesDeviceHaveHtSubtypeCap (
- IN PCI_ADDR DevicePointer,
- IN UINT8 CapSubType,
- OUT PCI_ADDR *CapabilityBase,
- IN STATE_DATA *State
- )
-{
- BOOLEAN IsFound;
- BOOLEAN IsDone;
- PCI_ADDR Reg;
- UINT32 Temp;
- UINT32 RegSubType;
- UINT32 RegSubTypeMask;
-
- // Set the PCI Config Space base and the match value.
- IsFound = FALSE;
- IsDone = FALSE;
- Reg = DevicePointer;
- Reg.Address.Register = 0;
- if (CapSubType < (HT_HOST_CAPABILITY + 1)) {
- // HT Interface sub type
- RegSubType = ((UINT32) (CapSubType << 29) | (UINT32)8);
- RegSubTypeMask = HT_INTERFACE_CAP_SUBTYPE_MASK;
- } else {
- // Other HT capability subtype
- RegSubType = ((UINT32) (CapSubType << 27) | (UINT32)8);
- RegSubTypeMask = HT_CAP_SUBTYPE_MASK;
- }
- (*CapabilityBase).AddressValue = (UINT32)ILLEGAL_SBDFO;
-
- // Find it
- do {
- LibAmdPciFindNextCap (&Reg, State->ConfigHandle);
- if (Reg.AddressValue != (UINT32)ILLEGAL_SBDFO) {
- LibAmdPciRead (AccessWidth32, Reg, &Temp, State->ConfigHandle);
- // HyperTransport and subtype capability ?
- if ((Temp & RegSubTypeMask) == RegSubType) {
- *CapabilityBase = Reg;
- IsFound = TRUE;
- }
- // Some other capability, keep looking
- } else {
- // Not there
- IsDone = TRUE;
- }
- } while (!IsFound && !IsDone);
-
- return IsFound;
-}
-
-/*----------------------------------------------------------------------------------------*/
-/**
- * Retry must be enabled on all coherent links if it is enabled on any coherent links.
- *
- * @HtFeatMethod{::F_SET_LINK_DATA}
- *
- * Effectively, this means HT3 on some links cannot be mixed with HT1 on others.
- * Scan the CPU to CPU links for this condition and limit those frequencies to HT1
- * if it is detected.
- * (Non-coherent links are independent.)
- *
- * @param[in,out] State global state, port frequency settings.
- *
- * @retval TRUE Fixup occurred, all coherent links HT1
- * @retval FALSE No changes
- */
-BOOLEAN
-IsCoherentRetryFixup (
- IN STATE_DATA *State
- )
-{
- UINT8 Freq;
- UINT8 i;
- UINT8 DetectedFrequencyState;
- BOOLEAN IsMixed;
- UINT32 Temp;
-
- //
- // detectedFrequencyState:
- // 0 - initial state
- // 1 - HT1 Frequencies detected
- // 2 - HT3 Frequencies detected
- //
- IsMixed = FALSE;
- DetectedFrequencyState = 0;
-
- // Scan coherent links for a mix of HT3 / HT1
- for (i = 0; i < (State->TotalLinks * 2); i += 2) {
- if (((*State->PortList)[i].Type == PORTLIST_TYPE_CPU) && ((*State->PortList)[i + 1].Type == PORTLIST_TYPE_CPU)) {
- // At this point, Frequency of port [i+1] must equal [i], so just check one of them.
- switch (DetectedFrequencyState) {
- case 0:
- // Set current state to indicate what link frequency we found first
- if ((*State->PortList)[i].SelFrequency > HT_FREQUENCY_1000M) {
- // HT3 frequencies
- DetectedFrequencyState = 2;
- } else {
- // HT1 frequencies
- DetectedFrequencyState = 1;
- }
- break;
- case 1:
- // If HT1 frequency detected, fail any HT3 frequency
- if ((*State->PortList)[i].SelFrequency > HT_FREQUENCY_1000M) {
- IsMixed = TRUE;
- }
- break;
- case 2:
- // If HT3 frequency detected, fail any HT1 frequency
- if ((*State->PortList)[i].SelFrequency <= HT_FREQUENCY_1000M) {
- IsMixed = TRUE;
- }
- break;
- default:
- ASSERT (FALSE);
- }
- if (IsMixed) {
- // Don't need to keep checking after we find a mix.
- break;
- }
- }
- }
-
- if (IsMixed) {
- for (i = 0; i < (State->TotalLinks * 2); i += 2) {
- if (((*State->PortList)[i].Type == PORTLIST_TYPE_CPU) && ((*State->PortList)[i + 1].Type == PORTLIST_TYPE_CPU)) {
- // Limit coherent links to HT 1 frequencies.
- Temp = (*State->PortList)[i].CompositeFrequencyCap & (*State->PortList)[i + 1].CompositeFrequencyCap;
- Temp &= HT_FREQUENCY_LIMIT_HT1_ONLY;
- ASSERT (Temp != 0);
- (*State->PortList)[i].CompositeFrequencyCap = Temp;
- (*State->PortList)[i + 1].CompositeFrequencyCap = Temp;
- Freq = LibAmdBitScanReverse (Temp);
- (*State->PortList)[i].SelFrequency = Freq;
- (*State->PortList)[i + 1].SelFrequency = Freq;
- }
- }
- }
- return (IsMixed);
-}