summaryrefslogtreecommitdiff
path: root/src/devices/oprom/yabel
diff options
context:
space:
mode:
authorStefan Reinauer <stepan@coresystems.de>2010-03-16 23:07:29 +0000
committerStefan Reinauer <stepan@openbios.org>2010-03-16 23:07:29 +0000
commit859e94a30420c726a0043a00a73abb946cfb94c3 (patch)
tree37d7924bc8dbf8d28662f1d17c40acea811d9727 /src/devices/oprom/yabel
parent11b1eb994cedef869618bff5368859d9b3c99b1d (diff)
it was reason for workaround rules already, and it's somewhat ugly:
util/x86emu is the only part of coreboot that is linked into coreboot itself that lives in util/. It's not a utility and it does not really belong where it lives. ---> svn mv util/x86emu src/devices/oprom plus necessary Makefile changes to get it building again Signed-off-by: Stefan Reinauer <stepan@coresystems.de> Acked-by: Ronald G. Minnich <rminnich@gmail.com> Acked-by: Peter Stuge <peter@stuge.se> git-svn-id: svn://svn.coreboot.org/coreboot/trunk@5228 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1
Diffstat (limited to 'src/devices/oprom/yabel')
-rw-r--r--src/devices/oprom/yabel/Makefile.inc9
-rw-r--r--src/devices/oprom/yabel/biosemu.c386
-rw-r--r--src/devices/oprom/yabel/biosemu.h52
-rw-r--r--src/devices/oprom/yabel/compat/Makefile.inc1
-rw-r--r--src/devices/oprom/yabel/compat/functions.c69
-rw-r--r--src/devices/oprom/yabel/compat/of.h55
-rw-r--r--src/devices/oprom/yabel/compat/rtas.h45
-rw-r--r--src/devices/oprom/yabel/compat/time.h18
-rw-r--r--src/devices/oprom/yabel/debug.c54
-rw-r--r--src/devices/oprom/yabel/debug.h105
-rw-r--r--src/devices/oprom/yabel/device.c453
-rw-r--r--src/devices/oprom/yabel/device.h182
-rw-r--r--src/devices/oprom/yabel/interrupt.c677
-rw-r--r--src/devices/oprom/yabel/interrupt.h21
-rw-r--r--src/devices/oprom/yabel/io.c574
-rw-r--r--src/devices/oprom/yabel/io.h30
-rw-r--r--src/devices/oprom/yabel/mem.c493
-rw-r--r--src/devices/oprom/yabel/mem.h36
-rw-r--r--src/devices/oprom/yabel/pmm.c442
-rw-r--r--src/devices/oprom/yabel/pmm.h46
-rw-r--r--src/devices/oprom/yabel/vbe.c852
-rw-r--r--src/devices/oprom/yabel/vbe.h16
22 files changed, 4616 insertions, 0 deletions
diff --git a/src/devices/oprom/yabel/Makefile.inc b/src/devices/oprom/yabel/Makefile.inc
new file mode 100644
index 0000000000..f89de9b7dd
--- /dev/null
+++ b/src/devices/oprom/yabel/Makefile.inc
@@ -0,0 +1,9 @@
+obj-y += biosemu.o
+obj-y += debug.o
+obj-y += device.o
+obj-y += interrupt.o
+obj-y += io.o
+obj-y += mem.o
+obj-y += pmm.o
+obj-y += vbe.o
+subdirs-y += compat
diff --git a/src/devices/oprom/yabel/biosemu.c b/src/devices/oprom/yabel/biosemu.c
new file mode 100644
index 0000000000..294d81f279
--- /dev/null
+++ b/src/devices/oprom/yabel/biosemu.c
@@ -0,0 +1,386 @@
+/******************************************************************************
+ * Copyright (c) 2004, 2008 IBM Corporation
+ * Copyright (c) 2008, 2009 Pattrick Hueper <phueper@hueper.net>
+ * Copyright (c) 2010 coresystems GmbH
+ * All rights reserved.
+ * This program and the accompanying materials
+ * are made available under the terms of the BSD License
+ * which accompanies this distribution, and is available at
+ * http://www.opensource.org/licenses/bsd-license.php
+ *
+ * Contributors:
+ * IBM Corporation - initial implementation
+ *****************************************************************************/
+
+#include <string.h>
+#include <types.h>
+
+#include "debug.h"
+
+#include <x86emu/x86emu.h>
+#include <x86emu/regs.h>
+#include "../x86emu/prim_ops.h"
+
+#include "biosemu.h"
+#include "io.h"
+#include "mem.h"
+#include "interrupt.h"
+#include "device.h"
+#include "pmm.h"
+
+#include <device/device.h>
+#include "compat/rtas.h"
+
+static X86EMU_memFuncs my_mem_funcs = {
+ my_rdb, my_rdw, my_rdl,
+ my_wrb, my_wrw, my_wrl
+};
+
+static X86EMU_pioFuncs my_pio_funcs = {
+ my_inb, my_inw, my_inl,
+ my_outb, my_outw, my_outl
+};
+
+/* interrupt function override array (see biosemu.h) */
+yabel_handleIntFunc yabel_intFuncArray[256];
+
+/* main entry into YABEL biosemu, arguments are:
+ * *biosmem = pointer to virtual memory
+ * biosmem_size = size of the virtual memory
+ * *dev = pointer to the device to be initialised
+ * rom_addr = address of the OptionROM to be executed, if this is = 0, YABEL
+ * will look for an ExpansionROM BAR and use the code from there.
+ */
+u32
+biosemu(u8 *biosmem, u32 biosmem_size, struct device * dev, unsigned long rom_addr)
+{
+ u8 *rom_image;
+ int i = 0;
+#if CONFIG_X86EMU_DEBUG
+ debug_flags = 0;
+#if defined(CONFIG_X86EMU_DEBUG_JMP) && CONFIG_X86EMU_DEBUG_JMP
+ debug_flags |= DEBUG_JMP;
+#endif
+#if defined(CONFIG_X86EMU_DEBUG_TRACE) && CONFIG_X86EMU_DEBUG_TRACE
+ debug_flags |= DEBUG_TRACE_X86EMU;
+#endif
+#if defined(CONFIG_X86EMU_DEBUG_PNP) && CONFIG_X86EMU_DEBUG_PNP
+ debug_flags |= DEBUG_PNP;
+#endif
+#if defined(CONFIG_X86EMU_DEBUG_DISK) && CONFIG_X86EMU_DEBUG_DISK
+ debug_flags |= DEBUG_DISK;
+#endif
+#if defined(CONFIG_X86EMU_DEBUG_PMM) && CONFIG_X86EMU_DEBUG_PMM
+ debug_flags |= DEBUG_PMM;
+#endif
+#if defined(CONFIG_X86EMU_DEBUG_VBE) && CONFIG_X86EMU_DEBUG_VBE
+ debug_flags |= DEBUG_VBE;
+#endif
+#if defined(CONFIG_X86EMU_DEBUG_INT10) && CONFIG_X86EMU_DEBUG_INT10
+ debug_flags |= DEBUG_PRINT_INT10;
+#endif
+#if defined(CONFIG_X86EMU_DEBUG_INTERRUPTS) && CONFIG_X86EMU_DEBUG_INTERRUPTS
+ debug_flags |= DEBUG_INTR;
+#endif
+#if defined(CONFIG_X86EMU_DEBUG_CHECK_VMEM_ACCESS) && CONFIG_X86EMU_DEBUG_CHECK_VMEM_ACCESS
+ debug_flags |= DEBUG_CHECK_VMEM_ACCESS;
+#endif
+#if defined(CONFIG_X86EMU_DEBUG_MEM) && CONFIG_X86EMU_DEBUG_MEM
+ debug_flags |= DEBUG_MEM;
+#endif
+#if defined(CONFIG_X86EMU_DEBUG_IO) && CONFIG_X86EMU_DEBUG_IO
+ debug_flags |= DEBUG_IO;
+#endif
+
+#endif
+ if (biosmem_size < MIN_REQUIRED_VMEM_SIZE) {
+ printf("Error: Not enough virtual memory: %x, required: %x!\n",
+ biosmem_size, MIN_REQUIRED_VMEM_SIZE);
+ return -1;
+ }
+ if (biosemu_dev_init(dev) != 0) {
+ printf("Error initializing device!\n");
+ return -1;
+ }
+ if (biosemu_dev_check_exprom(rom_addr) != 0) {
+ printf("Error: Device Expansion ROM invalid!\n");
+ return -1;
+ }
+ rom_image = (u8 *) bios_device.img_addr;
+ DEBUG_PRINTF("executing rom_image from %p\n", rom_image);
+ DEBUG_PRINTF("biosmem at %p\n", biosmem);
+
+ DEBUG_PRINTF("Image Size: %d\n", bios_device.img_size);
+
+ // in case we jump somewhere unexpected, or execution is finished,
+ // fill the biosmem with hlt instructions (0xf4)
+ // But we have to be careful: If biosmem is 0x00000000 we're running
+ // in the lower 1MB and we must not wipe memory like that.
+ if (biosmem) {
+ DEBUG_PRINTF("Clearing biosmem\n");
+ memset(biosmem, 0xf4, biosmem_size);
+ }
+
+ X86EMU_setMemBase(biosmem, biosmem_size);
+
+ DEBUG_PRINTF("membase set: %08x, size: %08x\n", (int) M.mem_base,
+ (int) M.mem_size);
+
+ // copy expansion ROM image to segment OPTION_ROM_CODE_SEGMENT
+ // NOTE: this sometimes fails, some bytes are 0x00... so we compare
+ // after copying and do some retries...
+ u8 *mem_img = biosmem + (OPTION_ROM_CODE_SEGMENT << 4);
+ u8 copy_count = 0;
+ u8 cmp_result = 0;
+ do {
+#if 0
+ set_ci();
+ memcpy(mem_img, rom_image, len);
+ clr_ci();
+#else
+ // memcpy fails... try copy byte-by-byte with set/clr_ci
+ u8 c;
+ for (i = 0; i < bios_device.img_size; i++) {
+ set_ci();
+ c = *(rom_image + i);
+ if (c != *(rom_image + i)) {
+ clr_ci();
+ printf("Copy failed at: %x/%x\n", i,
+ bios_device.img_size);
+ printf("rom_image(%x): %x, mem_img(%x): %x\n",
+ i, *(rom_image + i), i, *(mem_img + i));
+ break;
+ }
+ clr_ci();
+ *(mem_img + i) = c;
+ }
+#endif
+ copy_count++;
+ set_ci();
+ cmp_result = memcmp(mem_img, rom_image, bios_device.img_size);
+ clr_ci();
+ }
+ while ((copy_count < 5) && (cmp_result != 0));
+ if (cmp_result != 0) {
+ printf
+ ("\nCopying Expansion ROM Image to Memory failed after %d retries! (%x)\n",
+ copy_count, cmp_result);
+ dump(rom_image, 0x20);
+ dump(mem_img, 0x20);
+ return 0;
+ }
+ // setup default Interrupt Vectors
+ // some expansion ROMs seem to check for these addresses..
+ // each handler is only an IRET (0xCF) instruction
+ // ROM BIOS Int 10 Handler F000:F065
+ my_wrl(0x10 * 4, 0xf000f065);
+ my_wrb(0x000ff065, 0xcf);
+ // ROM BIOS Int 11 Handler F000:F84D
+ my_wrl(0x11 * 4, 0xf000f84d);
+ my_wrb(0x000ff84d, 0xcf);
+ // ROM BIOS Int 12 Handler F000:F841
+ my_wrl(0x12 * 4, 0xf000f841);
+ my_wrb(0x000ff841, 0xcf);
+ // ROM BIOS Int 13 Handler F000:EC59
+ my_wrl(0x13 * 4, 0xf000ec59);
+ my_wrb(0x000fec59, 0xcf);
+ // ROM BIOS Int 14 Handler F000:E739
+ my_wrl(0x14 * 4, 0xf000e739);
+ my_wrb(0x000fe739, 0xcf);
+ // ROM BIOS Int 15 Handler F000:F859
+ my_wrl(0x15 * 4, 0xf000f859);
+ my_wrb(0x000ff859, 0xcf);
+ // ROM BIOS Int 16 Handler F000:E82E
+ my_wrl(0x16 * 4, 0xf000e82e);
+ my_wrb(0x000fe82e, 0xcf);
+ // ROM BIOS Int 17 Handler F000:EFD2
+ my_wrl(0x17 * 4, 0xf000efd2);
+ my_wrb(0x000fefd2, 0xcf);
+ // ROM BIOS Int 1A Handler F000:FE6E
+ my_wrl(0x1a * 4, 0xf000fe6e);
+ my_wrb(0x000ffe6e, 0xcf);
+
+ // setup BIOS Data Area (0000:04xx, or 0040:00xx)
+ // we currently 0 this area, meaning "we dont have
+ // any hardware" :-) no serial/parallel ports, floppys, ...
+ memset(biosmem + 0x400, 0x0, 0x100);
+
+ // at offset 13h in BDA is the memory size in kbytes
+ my_wrw(0x413, biosmem_size / 1024);
+ // at offset 0eh in BDA is the segment of the Extended BIOS Data Area
+ // see setup further down
+ my_wrw(0x40e, INITIAL_EBDA_SEGMENT);
+ // TODO: setup BDA Video Data ( offset 49h-66h)
+ // e.g. to store video mode, cursor position, ...
+ // in int10 (done) handler and VBE Functions
+
+ // TODO: setup BDA Fixed Disk Data
+ // 74h: Fixed Disk Last Operation Status
+ // 75h: Fixed Disk Number of Disk Drives
+
+ // TODO: check BDA for further needed data...
+
+ //setup Extended BIOS Data Area
+ //we currently 0 this area
+ memset(biosmem + (INITIAL_EBDA_SEGMENT << 4), 0, INITIAL_EBDA_SIZE);
+ // at offset 0h in EBDA is the size of the EBDA in KB
+ my_wrw((INITIAL_EBDA_SEGMENT << 4) + 0x0, INITIAL_EBDA_SIZE / 1024);
+ //TODO: check for further needed EBDA data...
+
+ // setup original ROM BIOS Area (F000:xxxx)
+ const char *date = "06/11/99";
+ for (i = 0; date[i]; i++)
+ my_wrb(0xffff5 + i, date[i]);
+ // set up eisa ident string
+ const char *ident = "PCI_ISA";
+ for (i = 0; ident[i]; i++)
+ my_wrb(0xfffd9 + i, ident[i]);
+
+ // write system model id for IBM-AT
+ // according to "Ralf Browns Interrupt List" Int15 AH=C0 Table 515,
+ // model FC is the original AT and also used in all DOSEMU Versions.
+ my_wrb(0xFFFFE, 0xfc);
+
+ //setup interrupt handler
+ X86EMU_intrFuncs intrFuncs[256];
+ for (i = 0; i < 256; i++)
+ intrFuncs[i] = handleInterrupt;
+ X86EMU_setupIntrFuncs(intrFuncs);
+ X86EMU_setupPioFuncs(&my_pio_funcs);
+ X86EMU_setupMemFuncs(&my_mem_funcs);
+
+ //setup PMM struct in BIOS_DATA_SEGMENT, offset 0x0
+ u8 pmm_length = pmm_setup(BIOS_DATA_SEGMENT, 0x0);
+ if (pmm_length <= 0) {
+ printf ("\nYABEL: Warning: PMM Area could not be setup. PMM not available (%x)\n",
+ pmm_length);
+ return 0;
+ } else {
+ CHECK_DBG(DEBUG_PMM) {
+ /* test the PMM */
+ pmm_test();
+ /* and clean it again by calling pmm_setup... */
+ pmm_length = pmm_setup(BIOS_DATA_SEGMENT, 0x0);
+ }
+ }
+ // setup the CPU
+ M.x86.R_AH = bios_device.bus;
+ M.x86.R_AL = bios_device.devfn;
+ M.x86.R_DX = 0x80;
+ M.x86.R_EIP = 3;
+ M.x86.R_CS = OPTION_ROM_CODE_SEGMENT;
+
+ // Initialize stack and data segment
+ M.x86.R_SS = STACK_SEGMENT;
+ M.x86.R_SP = STACK_START_OFFSET;
+ M.x86.R_DS = DATA_SEGMENT;
+
+ // push a HLT instruction and a pointer to it onto the stack
+ // any return will pop the pointer and jump to the HLT, thus
+ // exiting (more or less) cleanly
+ push_word(0xf4f4); // F4=HLT
+ push_word(M.x86.R_SS);
+ push_word(M.x86.R_SP + 2);
+
+ CHECK_DBG(DEBUG_TRACE_X86EMU) {
+ X86EMU_trace_on();
+#if 0
+ } else {
+ M.x86.debug |= DEBUG_SAVE_IP_CS_F;
+ M.x86.debug |= DEBUG_DECODE_F;
+ M.x86.debug |= DEBUG_DECODE_NOPRINT_F;
+#endif
+ }
+ CHECK_DBG(DEBUG_JMP) {
+ M.x86.debug |= DEBUG_TRACEJMP_F;
+ M.x86.debug |= DEBUG_TRACEJMP_REGS_F;
+ M.x86.debug |= DEBUG_TRACECALL_F;
+ M.x86.debug |= DEBUG_TRACECALL_REGS_F;
+ }
+
+ DEBUG_PRINTF("Executing Initialization Vector...\n");
+ X86EMU_exec();
+ DEBUG_PRINTF("done\n");
+
+ /* According to the PNP BIOS Spec, Option ROMs should upon exit, return
+ * some boot device status in AX (see PNP BIOS Spec Section 3.3
+ */
+ DEBUG_PRINTF_CS_IP("Option ROM Exit Status: %04x\n", M.x86.R_AX);
+#if defined(CONFIG_X86EMU_DEBUG) && CONFIG_X86EMU_DEBUG
+ DEBUG_PRINTF("Exit Status Decode:\n");
+ if (M.x86.R_AX & 0x100) { // bit 8
+ DEBUG_PRINTF
+ (" IPL Device supporting INT 13h Block Device Format:\n");
+ switch (((M.x86.R_AX >> 4) & 0x3)) { // bits 5:4
+ case 0:
+ DEBUG_PRINTF(" No IPL Device attached\n");
+ break;
+ case 1:
+ DEBUG_PRINTF(" IPL Device status unknown\n");
+ break;
+ case 2:
+ DEBUG_PRINTF(" IPL Device attached\n");
+ break;
+ case 3:
+ DEBUG_PRINTF(" IPL Device status RESERVED!!\n");
+ break;
+ }
+ }
+ if (M.x86.R_AX & 0x80) { // bit 7
+ DEBUG_PRINTF
+ (" Output Device supporting INT 10h Character Output:\n");
+ switch (((M.x86.R_AX >> 4) & 0x3)) { // bits 5:4
+ case 0:
+ DEBUG_PRINTF(" No Display Device attached\n");
+ break;
+ case 1:
+ DEBUG_PRINTF(" Display Device status unknown\n");
+ break;
+ case 2:
+ DEBUG_PRINTF(" Display Device attached\n");
+ break;
+ case 3:
+ DEBUG_PRINTF(" Display Device status RESERVED!!\n");
+ break;
+ }
+ }
+ if (M.x86.R_AX & 0x40) { // bit 6
+ DEBUG_PRINTF
+ (" Input Device supporting INT 9h Character Input:\n");
+ switch (((M.x86.R_AX >> 4) & 0x3)) { // bits 5:4
+ case 0:
+ DEBUG_PRINTF(" No Input Device attached\n");
+ break;
+ case 1:
+ DEBUG_PRINTF(" Input Device status unknown\n");
+ break;
+ case 2:
+ DEBUG_PRINTF(" Input Device attached\n");
+ break;
+ case 3:
+ DEBUG_PRINTF(" Input Device status RESERVED!!\n");
+ break;
+ }
+ }
+#endif
+ /* Check whether the stack is "clean" i.e. containing the HLT
+ * instruction we pushed before executing and pointing to the original
+ * stack address... indicating that the initialization probably was
+ * successful
+ */
+ if ((pop_word() == 0xf4f4) && (M.x86.R_SS == STACK_SEGMENT)
+ && (M.x86.R_SP == STACK_START_OFFSET)) {
+ DEBUG_PRINTF("Stack is clean, initialization successfull!\n");
+ } else {
+ printf("Stack unclean, initialization probably NOT COMPLETE!\n");
+ DEBUG_PRINTF("SS:SP = %04x:%04x, expected: %04x:%04x\n",
+ M.x86.R_SS, M.x86.R_SP, STACK_SEGMENT,
+ STACK_START_OFFSET);
+ }
+
+ // TODO: according to the BIOS Boot Spec initializations may be ended using INT18h and setting
+ // the status.
+ // We need to implement INT18 accordingly, pseudo code is in specsbbs101.pdf page 30
+ // (also for Int19)
+ return 0;
+}
diff --git a/src/devices/oprom/yabel/biosemu.h b/src/devices/oprom/yabel/biosemu.h
new file mode 100644
index 0000000000..09ace729ec
--- /dev/null
+++ b/src/devices/oprom/yabel/biosemu.h
@@ -0,0 +1,52 @@
+/******************************************************************************
+ * Copyright (c) 2004, 2008 IBM Corporation
+ * Copyright (c) 2009 Pattrick Hueper <phueper@hueper.net>
+ * All rights reserved.
+ * This program and the accompanying materials
+ * are made available under the terms of the BSD License
+ * which accompanies this distribution, and is available at
+ * http://www.opensource.org/licenses/bsd-license.php
+ *
+ * Contributors:
+ * IBM Corporation - initial implementation
+ *****************************************************************************/
+
+#ifndef _BIOSEMU_BIOSEMU_H_
+#define _BIOSEMU_BIOSEMU_H_
+
+#define MIN_REQUIRED_VMEM_SIZE 0x100000 // 1MB
+
+//define default segments for different components
+#define STACK_SEGMENT 0x1000 //1000:xxxx
+#define STACK_START_OFFSET 0xfffe
+
+#define DATA_SEGMENT 0x2000
+#define VBE_SEGMENT 0x3000
+
+#define PMM_CONV_SEGMENT 0x4000 // 4000:xxxx is PMM conventional memory area, extended memory area
+ // will be anything beyound MIN_REQUIRED_MEMORY_SIZE
+#define PNP_DATA_SEGMENT 0x5000
+
+#define OPTION_ROM_CODE_SEGMENT 0xc000
+
+#define BIOS_DATA_SEGMENT 0xF000
+// both EBDA values are _initial_ values, they may (and will be) changed at runtime by option ROMs!!
+#define INITIAL_EBDA_SEGMENT 0xF600 // segment of the Extended BIOS Data Area
+#define INITIAL_EBDA_SIZE 0x400 // size of the EBDA (at least 1KB!! since size is stored in KB!)
+
+#define PMM_INT_NUM 0xFC // we misuse INT FC for PMM functionality, at the PMM Entry Point
+ // Address, there will only be a call to this INT and a RETF
+#define PNP_INT_NUM 0xFD
+
+/* array of funtion pointers to override generic interrupt handlers
+ * a YABEL caller can add functions to this array before calling YABEL
+ * if a interrupt occurs, YABEL checks wether a function is set in
+ * this array and only runs the generic interrupt handler code, if
+ * the function pointer is NULL */
+typedef int (* yabel_handleIntFunc)(void);
+extern yabel_handleIntFunc yabel_intFuncArray[256];
+
+struct device;
+
+u32 biosemu(u8 *biosmem, u32 biosmem_size, struct device *dev, unsigned long rom_addr);
+#endif
diff --git a/src/devices/oprom/yabel/compat/Makefile.inc b/src/devices/oprom/yabel/compat/Makefile.inc
new file mode 100644
index 0000000000..00080f5406
--- /dev/null
+++ b/src/devices/oprom/yabel/compat/Makefile.inc
@@ -0,0 +1 @@
+obj-y += functions.o
diff --git a/src/devices/oprom/yabel/compat/functions.c b/src/devices/oprom/yabel/compat/functions.c
new file mode 100644
index 0000000000..6367fb025d
--- /dev/null
+++ b/src/devices/oprom/yabel/compat/functions.c
@@ -0,0 +1,69 @@
+/****************************************************************************
+ * YABEL BIOS Emulator
+ *
+ * This program and the accompanying materials
+ * are made available under the terms of the BSD License
+ * which accompanies this distribution, and is available at
+ * http://www.opensource.org/licenses/bsd-license.php
+ *
+ * Copyright (c) 2008 Pattrick Hueper <phueper@hueper.net>
+ ****************************************************************************/
+
+/* this file contains functions provided by SLOF, that the current biosemu implementation needs
+ * they should go away inthe future...
+ */
+
+#include <types.h>
+#include <string.h>
+#include <device/device.h>
+#include "../debug.h"
+#include "../biosemu.h"
+#include "../compat/time.h"
+
+#define VMEM_SIZE (1024 * 1024) /* 1 MB */
+
+#if !defined(CONFIG_YABEL_DIRECTHW) || (!CONFIG_YABEL_DIRECTHW)
+#ifdef CONFIG_YABEL_VIRTMEM_LOCATION
+u8* vmem = (u8 *) CONFIG_YABEL_VIRTMEM_LOCATION;
+#else
+u8* vmem = (u8 *) (16*1024*1024); /* default to 16MB */
+#endif
+#else
+u8* vmem = NULL;
+#endif
+
+#if CONFIG_BOOTSPLASH
+void vbe_set_graphics(void);
+#endif
+
+void run_bios(struct device * dev, unsigned long addr)
+{
+
+ biosemu(vmem, VMEM_SIZE, dev, addr);
+
+#if CONFIG_BOOTSPLASH
+ vbe_set_graphics();
+#endif
+
+ if (vmem != NULL) {
+ printf("Copying legacy memory from %p to the lower 1MB\n", vmem);
+ memcpy((void *)0x00000, vmem + 0x00000, 0x400); // IVT
+ memcpy((void *)0x00400, vmem + 0x00400, 0x100); // BDA
+ memcpy((void *)0xc0000, vmem + 0xc0000, 0x10000); // VGA OPROM
+ }
+}
+
+unsigned long tb_freq = 0;
+
+u64 get_time(void)
+{
+ u64 act;
+ u32 eax, edx;
+
+ __asm__ __volatile__(
+ "rdtsc"
+ : "=a"(eax), "=d"(edx)
+ : /* no inputs, no clobber */);
+ act = ((u64) edx << 32) | eax;
+ return act;
+}
diff --git a/src/devices/oprom/yabel/compat/of.h b/src/devices/oprom/yabel/compat/of.h
new file mode 100644
index 0000000000..907139951f
--- /dev/null
+++ b/src/devices/oprom/yabel/compat/of.h
@@ -0,0 +1,55 @@
+/******************************************************************************
+ * Copyright (c) 2004, 2008 IBM Corporation
+ * All rights reserved.
+ * This program and the accompanying materials
+ * are made available under the terms of the BSD License
+ * which accompanies this distribution, and is available at
+ * http://www.opensource.org/licenses/bsd-license.php
+ *
+ * Contributors:
+ * IBM Corporation - initial implementation
+ *****************************************************************************/
+
+
+#ifndef OF_H
+#define OF_H
+#define p32 int
+#define p32cast (int) (unsigned long) (void*)
+
+#define phandle_t p32
+#define ihandle_t p32
+
+typedef struct
+{
+ unsigned int serv;
+ int nargs;
+ int nrets;
+ unsigned int args[16];
+} of_arg_t;
+
+
+phandle_t of_finddevice (const char *);
+phandle_t of_peer (phandle_t);
+phandle_t of_child (phandle_t);
+phandle_t of_parent (phandle_t);
+int of_getprop (phandle_t, const char *, void *, int);
+void * of_call_method_3 (const char *, ihandle_t, int);
+
+
+ihandle_t of_open (const char *);
+void of_close(ihandle_t);
+int of_read (ihandle_t , void*, int);
+int of_write (ihandle_t, void*, int);
+int of_seek (ihandle_t, int, int);
+
+void * of_claim(void *, unsigned int , unsigned int );
+void of_release(void *, unsigned int );
+
+int of_yield(void);
+void * of_set_callback(void *);
+
+int vpd_read(unsigned int , unsigned int , char *);
+int vpd_write(unsigned int , unsigned int , char *);
+int write_mm_log(char *, unsigned int , unsigned short );
+
+#endif
diff --git a/src/devices/oprom/yabel/compat/rtas.h b/src/devices/oprom/yabel/compat/rtas.h
new file mode 100644
index 0000000000..25cabf4d6a
--- /dev/null
+++ b/src/devices/oprom/yabel/compat/rtas.h
@@ -0,0 +1,45 @@
+/******************************************************************************
+ * Copyright (c) 2004, 2008 IBM Corporation
+ * All rights reserved.
+ * This program and the accompanying materials
+ * are made available under the terms of the BSD License
+ * which accompanies this distribution, and is available at
+ * http://www.opensource.org/licenses/bsd-license.php
+ *
+ * Contributors:
+ * IBM Corporation - initial implementation
+ *****************************************************************************/
+
+
+#ifndef RTAS_H
+#define RTAS_H
+
+#include "of.h"
+
+typedef struct dtime {
+ unsigned int year;
+ unsigned int month;
+ unsigned int day;
+ unsigned int hour;
+ unsigned int minute;
+ unsigned int second;
+ unsigned int nano;
+} dtime;
+
+typedef void (*thread_t) (int);
+
+int rtas_token(const char *);
+int rtas_call(int, int, int, int *, ...);
+void rtas_init(void);
+int rtas_pci_config_read (long long, int, int, int, int);
+int rtas_pci_config_write (long long, int, int, int, int, int);
+int rtas_set_time_of_day(dtime *);
+int rtas_get_time_of_day(dtime *);
+int rtas_ibm_update_flash_64(long long, long long);
+int rtas_ibm_update_flash_64_and_reboot(long long, long long);
+int rtas_system_reboot(void);
+int rtas_start_cpu (int, thread_t, int);
+int rtas_stop_self (void);
+int rtas_ibm_manage_flash(int);
+
+#endif
diff --git a/src/devices/oprom/yabel/compat/time.h b/src/devices/oprom/yabel/compat/time.h
new file mode 100644
index 0000000000..6f7099bd86
--- /dev/null
+++ b/src/devices/oprom/yabel/compat/time.h
@@ -0,0 +1,18 @@
+/****************************************************************************
+ * YABEL BIOS Emulator
+ *
+ * This program and the accompanying materials
+ * are made available under the terms of the BSD License
+ * which accompanies this distribution, and is available at
+ * http://www.opensource.org/licenses/bsd-license.php
+ *
+ * Copyright (c) 2008 Pattrick Hueper <phueper@hueper.net>
+ ****************************************************************************/
+
+#ifndef _BIOSEMU_COMPAT_TIME_H
+#define _BIOSEMU_COMPAT_TIME_H
+
+/* TODO: check how this works in x86 */
+extern unsigned long tb_freq;
+u64 get_time(void);
+#endif
diff --git a/src/devices/oprom/yabel/debug.c b/src/devices/oprom/yabel/debug.c
new file mode 100644
index 0000000000..7cda8af0b1
--- /dev/null
+++ b/src/devices/oprom/yabel/debug.c
@@ -0,0 +1,54 @@
+/******************************************************************************
+ * Copyright (c) 2004, 2008 IBM Corporation
+ * Copyright (c) 2008, 2009 Pattrick Hueper <phueper@hueper.net>
+ * All rights reserved.
+ * This program and the accompanying materials
+ * are made available under the terms of the BSD License
+ * which accompanies this distribution, and is available at
+ * http://www.opensource.org/licenses/bsd-license.php
+ *
+ * Contributors:
+ * IBM Corporation - initial implementation
+ *****************************************************************************/
+
+#include "debug.h"
+
+u32 debug_flags = 0;
+
+void
+dump(u8 * addr, u32 len)
+{
+ printf("\n%s(%p, %x):\n", __func__, addr, len);
+ while (len) {
+ unsigned int tmpCnt = len;
+ unsigned char x;
+ if (tmpCnt > 8)
+ tmpCnt = 8;
+ printf("\n%p: ", addr);
+ // print hex
+ while (tmpCnt--) {
+ set_ci();
+ x = *addr++;
+ clr_ci();
+ printf("%02x ", x);
+ }
+ tmpCnt = len;
+ if (tmpCnt > 8)
+ tmpCnt = 8;
+ len -= tmpCnt;
+ //reset addr ptr to print ascii
+ addr = addr - tmpCnt;
+ // print ascii
+ while (tmpCnt--) {
+ set_ci();
+ x = *addr++;
+ clr_ci();
+ if ((x < 32) || (x >= 127)) {
+ //non-printable char
+ x = '.';
+ }
+ printf("%c", x);
+ }
+ }
+ printf("\n");
+}
diff --git a/src/devices/oprom/yabel/debug.h b/src/devices/oprom/yabel/debug.h
new file mode 100644
index 0000000000..d02930809d
--- /dev/null
+++ b/src/devices/oprom/yabel/debug.h
@@ -0,0 +1,105 @@
+/******************************************************************************
+ * Copyright (c) 2004, 2008 IBM Corporation
+ * Copyright (c) 2009 Pattrick Hueper <phueper@hueper.net>
+ * All rights reserved.
+ * This program and the accompanying materials
+ * are made available under the terms of the BSD License
+ * which accompanies this distribution, and is available at
+ * http://www.opensource.org/licenses/bsd-license.php
+ *
+ * Contributors:
+ * IBM Corporation - initial implementation
+ *****************************************************************************/
+#ifndef _BIOSEMU_DEBUG_H_
+#define _BIOSEMU_DEBUG_H_
+
+#include <types.h>
+
+extern u32 debug_flags;
+// from x86emu...needed for debugging
+extern void x86emu_dump_xregs(void);
+
+/* printf is not available in coreboot... use printk */
+#include <console/console.h>
+#include "x86emu/x86emu.h"
+#define printf(x...) printk(BIOS_DEBUG, x)
+
+/* PH: empty versions of set/clr_ci
+ * TODO: remove! */
+static inline void clr_ci(void) {};
+static inline void set_ci(void) {};
+
+/* debug_flags is a binary switch that allows you to select the following items
+ * to debug. 1=on 0=off. After you decide what you want to debug create the
+ * binary value, convert to hex and set the option. These options can be
+ * selected in Kconfig.
+ *
+ * |-DEBUG_JMP - print info about JMP and RETF opcodes from x86emu
+ * ||-DEBUG_TRACE_X86EMU - print _all_ opcodes that are executed by x86emu (WARNING: this will produce a LOT of output)
+ * |||-Currently unused
+ * ||||-Currently unused
+ * |||||-Currently unused
+ * ||||||-DEBUG_PNP - Print Plug And Play access made by option rom
+ * |||||||-DEBUG_DISK - Print Disk I/O related messages, currently unused
+ * ||||||||-DEBUG_PMM - Print messages related to POST Memory Manager (PMM)
+ * |||||||||-DEBUG_VBE - Print messages related to VESA BIOS Extension (VBE) functions
+ * ||||||||||-DEBUG_PRINT_INT10 - let INT10 (i.e. character output) calls print messages to Debug output
+ * |||||||||||-DEBUG_INTR - Print messages related to interrupt handling
+ * ||||||||||||-DEBUG_CHECK_VMEM_ACCESS - Print messages related to accesse to certain areas of the virtual Memory (e.g. BDA (BIOS Data Area) or Interrupt Vectors)
+ * |||||||||||||-DEBUG_MEM - Print memory access made by option rom (NOTE: this also includes accesses to fetch instructions)
+ * ||||||||||||||-DEBUG_IO - Print I/O access made by option rom
+ * 11000111111111 - Max Binary Value, Debug All (WARNING: - This could run for hours)
+ */
+
+#define DEBUG_IO 0x1
+#define DEBUG_MEM 0x2
+// set this to print messages for certain virtual memory accesses (Interrupt Vectors, ...)
+#define DEBUG_CHECK_VMEM_ACCESS 0x4
+#define DEBUG_INTR 0x8
+#define DEBUG_PRINT_INT10 0x10 // set to have the INT10 routine print characters
+#define DEBUG_VBE 0x20
+#define DEBUG_PMM 0x40
+#define DEBUG_DISK 0x80
+#define DEBUG_PNP 0x100
+
+#define DEBUG_TRACE_X86EMU 0x1000
+// set to enable tracing of JMPs in x86emu
+#define DEBUG_JMP 0x2000
+
+#if defined(CONFIG_X86EMU_DEBUG) && CONFIG_X86EMU_DEBUG
+
+#define CHECK_DBG(_flag) if (debug_flags & _flag)
+
+#define DEBUG_PRINTF(_x...) printf(_x);
+// prints the CS:IP before the printout, NOTE: actually its CS:IP of the _next_ instruction
+// to be executed, since the x86emu advances CS:IP _before_ actually executing an instruction
+#define DEBUG_PRINTF_CS_IP(_x...) DEBUG_PRINTF("%x:%x ", M.x86.R_CS, M.x86.R_IP); DEBUG_PRINTF(_x);
+
+#define DEBUG_PRINTF_IO(_x...) CHECK_DBG(DEBUG_IO) { DEBUG_PRINTF_CS_IP(_x) }
+#define DEBUG_PRINTF_MEM(_x...) CHECK_DBG(DEBUG_MEM) { DEBUG_PRINTF_CS_IP(_x) }
+#define DEBUG_PRINTF_INTR(_x...) CHECK_DBG(DEBUG_INTR) { DEBUG_PRINTF_CS_IP(_x) }
+#define DEBUG_PRINTF_VBE(_x...) CHECK_DBG(DEBUG_VBE) { DEBUG_PRINTF_CS_IP(_x) }
+#define DEBUG_PRINTF_PMM(_x...) CHECK_DBG(DEBUG_PMM) { DEBUG_PRINTF_CS_IP(_x) }
+#define DEBUG_PRINTF_DISK(_x...) CHECK_DBG(DEBUG_DISK) { DEBUG_PRINTF_CS_IP(_x) }
+#define DEBUG_PRINTF_PNP(_x...) CHECK_DBG(DEBUG_PNP) { DEBUG_PRINTF_CS_IP(_x) }
+
+#else
+
+#define CHECK_DBG(_flag) if (0)
+
+#define DEBUG_PRINTF(_x...)
+#define DEBUG_PRINTF_CS_IP(_x...)
+
+#define DEBUG_PRINTF_IO(_x...)
+#define DEBUG_PRINTF_MEM(_x...)
+#define DEBUG_PRINTF_INTR(_x...)
+#define DEBUG_PRINTF_VBE(_x...)
+#define DEBUG_PRINTF_PMM(_x...)
+#define DEBUG_PRINTF_DISK(_x...)
+#define DEBUG_PRINTF_PNP(_x...)
+
+#endif //DEBUG
+
+void dump(u8 * addr, u32 len);
+
+#endif
diff --git a/src/devices/oprom/yabel/device.c b/src/devices/oprom/yabel/device.c
new file mode 100644
index 0000000000..7e71a45e97
--- /dev/null
+++ b/src/devices/oprom/yabel/device.c
@@ -0,0 +1,453 @@
+/******************************************************************************
+ * Copyright (c) 2004, 2008 IBM Corporation
+ * Copyright (c) 2008, 2009 Pattrick Hueper <phueper@hueper.net>
+ * All rights reserved.
+ * This program and the accompanying materials
+ * are made available under the terms of the BSD License
+ * which accompanies this distribution, and is available at
+ * http://www.opensource.org/licenses/bsd-license.php
+ *
+ * Contributors:
+ * IBM Corporation - initial implementation
+ *****************************************************************************/
+
+
+#include "device.h"
+#include "compat/rtas.h"
+#include <string.h>
+#include "debug.h"
+
+#include <device/device.h>
+#include <device/pci.h>
+#include <device/pci_ops.h>
+#include <device/resource.h>
+
+/* the device we are working with... */
+biosemu_device_t bios_device;
+//max. 6 BARs and 1 Exp.ROM plus CfgSpace and 3 legacy ranges
+translate_address_t translate_address_array[11];
+u8 taa_last_entry;
+
+typedef struct {
+ u8 info;
+ u8 bus;
+ u8 devfn;
+ u8 cfg_space_offset;
+ u64 address;
+ u64 size;
+} __attribute__ ((__packed__)) assigned_address_t;
+
+#ifdef CONFIG_PCI_OPTION_ROM_RUN_YABEL
+/* coreboot version */
+
+static void
+biosemu_dev_get_addr_info(void)
+{
+ int taa_index = 0;
+ int i = 0;
+ struct resource *r;
+ u8 bus = bios_device.dev->bus->link;
+ u16 devfn = bios_device.dev->path.pci.devfn;
+
+ bios_device.bus = bus;
+ bios_device.devfn = devfn;
+
+ DEBUG_PRINTF("bus: %x, devfn: %x\n", bus, devfn);
+ for (i = 0; i < bios_device.dev->resources; i++) {
+ r = &bios_device.dev->resource[i];
+ translate_address_array[taa_index].info = r->flags;
+ translate_address_array[taa_index].bus = bus;
+ translate_address_array[taa_index].devfn = devfn;
+ translate_address_array[taa_index].cfg_space_offset =
+ r->index;
+ translate_address_array[taa_index].address = r->base;
+ translate_address_array[taa_index].size = r->size;
+ /* dont translate addresses... all addresses are 1:1 */
+ translate_address_array[taa_index].address_offset = 0;
+ taa_index++;
+ }
+ /* Expansion ROM */
+ translate_address_array[taa_index].info = IORESOURCE_MEM | IORESOURCE_READONLY;
+ translate_address_array[taa_index].bus = bus;
+ translate_address_array[taa_index].devfn = devfn;
+ translate_address_array[taa_index].cfg_space_offset = 0x30;
+ translate_address_array[taa_index].address = bios_device.img_addr;
+ translate_address_array[taa_index].size = 0; /* TODO: do we need the size? */
+ /* dont translate addresses... all addresses are 1:1 */
+ translate_address_array[taa_index].address_offset = 0;
+ taa_index++;
+ /* legacy ranges if its a VGA card... */
+ if ((bios_device.dev->class & 0xFF0000) == 0x030000) {
+ DEBUG_PRINTF("%s: VGA device found, adding legacy resources... \n", __func__);
+ /* I/O 0x3B0-0x3BB */
+ translate_address_array[taa_index].info = IORESOURCE_FIXED | IORESOURCE_IO;
+ translate_address_array[taa_index].bus = bus;
+ translate_address_array[taa_index].devfn = devfn;
+ translate_address_array[taa_index].cfg_space_offset = 0;
+ translate_address_array[taa_index].address = 0x3b0;
+ translate_address_array[taa_index].size = 0xc;
+ /* dont translate addresses... all addresses are 1:1 */
+ translate_address_array[taa_index].address_offset = 0;
+ taa_index++;
+ /* I/O 0x3C0-0x3DF */
+ translate_address_array[taa_index].info = IORESOURCE_FIXED | IORESOURCE_IO;
+ translate_address_array[taa_index].bus = bus;
+ translate_address_array[taa_index].devfn = devfn;
+ translate_address_array[taa_index].cfg_space_offset = 0;
+ translate_address_array[taa_index].address = 0x3c0;
+ translate_address_array[taa_index].size = 0x20;
+ /* dont translate addresses... all addresses are 1:1 */
+ translate_address_array[taa_index].address_offset = 0;
+ taa_index++;
+ /* Mem 0xA0000-0xBFFFF */
+ translate_address_array[taa_index].info = IORESOURCE_FIXED | IORESOURCE_MEM;
+ translate_address_array[taa_index].bus = bus;
+ translate_address_array[taa_index].devfn = devfn;
+ translate_address_array[taa_index].cfg_space_offset = 0;
+ translate_address_array[taa_index].address = 0xa0000;
+ translate_address_array[taa_index].size = 0x20000;
+ /* dont translate addresses... all addresses are 1:1 */
+ translate_address_array[taa_index].address_offset = 0;
+ taa_index++;
+ }
+ // store last entry index of translate_address_array
+ taa_last_entry = taa_index - 1;
+#if defined(CONFIG_X86EMU_DEBUG) && CONFIG_X86EMU_DEBUG
+ //dump translate_address_array
+ printf("translate_address_array: \n");
+ translate_address_t ta;
+ for (i = 0; i <= taa_last_entry; i++) {
+ ta = translate_address_array[i];
+ printf
+ ("%d: info: %08lx bus: %02x devfn: %02x cfg_space_offset: %02x\n\taddr: %016llx\n\toffs: %016llx\n\tsize: %016llx\n",
+ i, ta.info, ta.bus, ta.devfn, ta.cfg_space_offset,
+ ta.address, ta.address_offset, ta.size);
+ }
+#endif
+}
+#else
+// use translate_address_dev and get_puid from net-snk's net_support.c
+void translate_address_dev(u64 *, phandle_t);
+u64 get_puid(phandle_t node);
+
+
+// scan all adresses assigned to the device ("assigned-addresses" and "reg")
+// store in translate_address_array for faster translation using dev_translate_address
+void
+biosemu_dev_get_addr_info(void)
+{
+ // get bus/dev/fn from assigned-addresses
+ int32_t len;
+ //max. 6 BARs and 1 Exp.ROM plus CfgSpace and 3 legacy ranges
+ assigned_address_t buf[11];
+ len =
+ of_getprop(bios_device.phandle, "assigned-addresses", buf,
+ sizeof(buf));
+ bios_device.bus = buf[0].bus;
+ bios_device.devfn = buf[0].devfn;
+ DEBUG_PRINTF("bus: %x, devfn: %x\n", bios_device.bus,
+ bios_device.devfn);
+ //store address translations for all assigned-addresses and regs in
+ //translate_address_array for faster translation later on...
+ int i = 0;
+ // index to insert data into translate_address_array
+ int taa_index = 0;
+ u64 address_offset;
+ for (i = 0; i < (len / sizeof(assigned_address_t)); i++, taa_index++) {
+ //copy all info stored in assigned-addresses
+ translate_address_array[taa_index].info = buf[i].info;
+ translate_address_array[taa_index].bus = buf[i].bus;
+ translate_address_array[taa_index].devfn = buf[i].devfn;
+ translate_address_array[taa_index].cfg_space_offset =
+ buf[i].cfg_space_offset;
+ translate_address_array[taa_index].address = buf[i].address;
+ translate_address_array[taa_index].size = buf[i].size;
+ // translate first address and store it as address_offset
+ address_offset = buf[i].address;
+ translate_address_dev(&address_offset, bios_device.phandle);
+ translate_address_array[taa_index].address_offset =
+ address_offset - buf[i].address;
+ }
+ //get "reg" property
+ len = of_getprop(bios_device.phandle, "reg", buf, sizeof(buf));
+ for (i = 0; i < (len / sizeof(assigned_address_t)); i++) {
+ if ((buf[i].size == 0) || (buf[i].cfg_space_offset != 0)) {
+ // we dont care for ranges with size 0 and
+ // BARs and Expansion ROM must be in assigned-addresses... so in reg
+ // we only look for those without config space offset set...
+ // i.e. the legacy ranges
+ continue;
+ }
+ //copy all info stored in assigned-addresses
+ translate_address_array[taa_index].info = buf[i].info;
+ translate_address_array[taa_index].bus = buf[i].bus;
+ translate_address_array[taa_index].devfn = buf[i].devfn;
+ translate_address_array[taa_index].cfg_space_offset =
+ buf[i].cfg_space_offset;
+ translate_address_array[taa_index].address = buf[i].address;
+ translate_address_array[taa_index].size = buf[i].size;
+ // translate first address and store it as address_offset
+ address_offset = buf[i].address;
+ translate_address_dev(&address_offset, bios_device.phandle);
+ translate_address_array[taa_index].address_offset =
+ address_offset - buf[i].address;
+ taa_index++;
+ }
+ // store last entry index of translate_address_array
+ taa_last_entry = taa_index - 1;
+#if defined(CONFIG_X86EMU_DEBUG) && CONFIG_X86EMU_DEBUG
+ //dump translate_address_array
+ printf("translate_address_array: \n");
+ translate_address_t ta;
+ for (i = 0; i <= taa_last_entry; i++) {
+ ta = translate_address_array[i];
+ printf
+ ("%d: %02x%02x%02x%02x\n\taddr: %016llx\n\toffs: %016llx\n\tsize: %016llx\n",
+ i, ta.info, ta.bus, ta.devfn, ta.cfg_space_offset,
+ ta.address, ta.address_offset, ta.size);
+ }
+#endif
+}
+#endif
+
+#ifndef CONFIG_PCI_OPTION_ROM_RUN_YABEL
+// to simulate accesses to legacy VGA Memory (0xA0000-0xBFFFF)
+// we look for the first prefetchable memory BAR, if no prefetchable BAR found,
+// we use the first memory BAR
+// dev_translate_addr will translate accesses to the legacy VGA Memory into the found vmem BAR
+static void
+biosemu_dev_find_vmem_addr(void)
+{
+ int i = 0;
+ translate_address_t ta;
+ s8 tai_np = -1, tai_p = -1; // translate_address_array index for non-prefetchable and prefetchable memory
+ //search backwards to find first entry
+ for (i = taa_last_entry; i >= 0; i--) {
+ ta = translate_address_array[i];
+ if ((ta.cfg_space_offset >= 0x10)
+ && (ta.cfg_space_offset <= 0x24)) {
+ //only BARs
+ if ((ta.info & 0x03) >= 0x02) {
+ //32/64bit memory
+ tai_np = i;
+ if ((ta.info & 0x40) != 0) {
+ // prefetchable
+ tai_p = i;
+ }
+ }
+ }
+ }
+ if (tai_p != -1) {
+ ta = translate_address_array[tai_p];
+ bios_device.vmem_addr = ta.address;
+ bios_device.vmem_size = ta.size;
+ DEBUG_PRINTF
+ ("%s: Found prefetchable Virtual Legacy Memory BAR: %llx, size: %llx\n",
+ __func__, bios_device.vmem_addr,
+ bios_device.vmem_size);
+ } else if (tai_np != -1) {
+ ta = translate_address_array[tai_np];
+ bios_device.vmem_addr = ta.address;
+ bios_device.vmem_size = ta.size;
+ DEBUG_PRINTF
+ ("%s: Found non-prefetchable Virtual Legacy Memory BAR: %llx, size: %llx",
+ __func__, bios_device.vmem_addr,
+ bios_device.vmem_size);
+ }
+ // disable vmem
+ //bios_device.vmem_size = 0;
+}
+
+void
+biosemu_dev_get_puid(void)
+{
+ // get puid
+ bios_device.puid = get_puid(bios_device.phandle);
+ DEBUG_PRINTF("puid: 0x%llx\n", bios_device.puid);
+}
+#endif
+
+static void
+biosemu_dev_get_device_vendor_id(void)
+{
+
+ u32 pci_config_0;
+#ifdef CONFIG_PCI_OPTION_ROM_RUN_YABEL
+ pci_config_0 = pci_read_config32(bios_device.dev, 0x0);
+#else
+ pci_config_0 =
+ rtas_pci_config_read(bios_device.puid, 4, bios_device.bus,
+ bios_device.devfn, 0x0);
+#endif
+ bios_device.pci_device_id =
+ (u16) ((pci_config_0 & 0xFFFF0000) >> 16);
+ bios_device.pci_vendor_id = (u16) (pci_config_0 & 0x0000FFFF);
+ DEBUG_PRINTF("PCI Device ID: %04x, PCI Vendor ID: %x\n",
+ bios_device.pci_device_id, bios_device.pci_vendor_id);
+}
+
+/* Check whether the device has a valid Expansion ROM and search the PCI Data
+ * Structure and any Expansion ROM Header (using dev_scan_exp_header()) for
+ * needed information. If the rom_addr parameter is != 0, it is the address of
+ * the Expansion ROM image and will be used, if it is == 0, the Expansion ROM
+ * BAR address will be used.
+ */
+u8
+biosemu_dev_check_exprom(unsigned long rom_base_addr)
+{
+ int i = 0;
+ translate_address_t ta;
+ u16 pci_ds_offset;
+ pci_data_struct_t pci_ds;
+ if (rom_base_addr == 0) {
+ // check for ExpROM Address (Offset 30) in taa
+ for (i = 0; i <= taa_last_entry; i++) {
+ ta = translate_address_array[i];
+ if (ta.cfg_space_offset == 0x30) {
+ //translated address
+ rom_base_addr = ta.address + ta.address_offset;
+ break;
+ }
+ }
+ }
+ /* In the ROM there could be multiple Expansion ROM Images... start
+ * searching them for an x86 image.
+ */
+ do {
+ if (rom_base_addr == 0) {
+ printf("Error: no Expansion ROM address found!\n");
+ return -1;
+ }
+ set_ci();
+ u16 rom_signature = in16le((void *) rom_base_addr);
+ clr_ci();
+ if (rom_signature != 0xaa55) {
+ printf
+ ("Error: invalid Expansion ROM signature: %02x!\n",
+ *((u16 *) rom_base_addr));
+ return -1;
+ }
+ set_ci();
+ // at offset 0x18 is the (16bit little-endian) pointer to the PCI Data Structure
+ pci_ds_offset = in16le((void *) (rom_base_addr + 0x18));
+ //copy the PCI Data Structure
+ memcpy(&pci_ds, (void *) (rom_base_addr + pci_ds_offset),
+ sizeof(pci_ds));
+ clr_ci();
+#if defined(CONFIG_X86EMU_DEBUG) && CONFIG_X86EMU_DEBUG
+ DEBUG_PRINTF("PCI Data Structure @%lx:\n",
+ rom_base_addr + pci_ds_offset);
+ dump((void *) &pci_ds, sizeof(pci_ds));
+#endif
+ if (strncmp((const char *) pci_ds.signature, "PCIR", 4) != 0) {
+ printf("Invalid PCI Data Structure found!\n");
+ break;
+ }
+ //little-endian conversion
+ pci_ds.vendor_id = in16le(&pci_ds.vendor_id);
+ pci_ds.device_id = in16le(&pci_ds.device_id);
+ pci_ds.img_length = in16le(&pci_ds.img_length);
+ pci_ds.pci_ds_length = in16le(&pci_ds.pci_ds_length);
+ if (pci_ds.vendor_id != bios_device.pci_vendor_id) {
+ printf
+ ("Image has invalid Vendor ID: %04x, expected: %04x\n",
+ pci_ds.vendor_id, bios_device.pci_vendor_id);
+ break;
+ }
+ if (pci_ds.device_id != bios_device.pci_device_id) {
+ printf
+ ("Image has invalid Device ID: %04x, expected: %04x\n",
+ pci_ds.device_id, bios_device.pci_device_id);
+ break;
+ }
+ DEBUG_PRINTF("Image Length: %d\n", pci_ds.img_length * 512);
+ DEBUG_PRINTF("Image Code Type: %d\n", pci_ds.code_type);
+ if (pci_ds.code_type == 0) {
+ //x86 image
+ //store image address and image length in bios_device struct
+ bios_device.img_addr = rom_base_addr;
+ bios_device.img_size = pci_ds.img_length * 512;
+ // we found the image, exit the loop
+ break;
+ } else {
+ // no x86 image, check next image (if any)
+ rom_base_addr += pci_ds.img_length * 512;
+ }
+ if ((pci_ds.indicator & 0x80) == 0x80) {
+ //last image found, exit the loop
+ DEBUG_PRINTF("Last PCI Expansion ROM Image found.\n");
+ break;
+ }
+ }
+ while (bios_device.img_addr == 0);
+ // in case we did not find a valid x86 Expansion ROM Image
+ if (bios_device.img_addr == 0) {
+ printf("Error: no valid x86 Expansion ROM Image found!\n");
+ return -1;
+ }
+ return 0;
+}
+
+u8
+biosemu_dev_init(struct device * device)
+{
+ u8 rval = 0;
+ //init bios_device struct
+ DEBUG_PRINTF("%s\n", __func__);
+ memset(&bios_device, 0, sizeof(bios_device));
+
+#ifndef CONFIG_PCI_OPTION_ROM_RUN_YABEL
+ bios_device.ihandle = of_open(device_name);
+ if (bios_device.ihandle == 0) {
+ DEBUG_PRINTF("%s is no valid device!\n", device_name);
+ return -1;
+ }
+ bios_device.phandle = of_finddevice(device_name);
+#else
+ bios_device.dev = device;
+#endif
+ biosemu_dev_get_addr_info();
+#ifndef CONFIG_PCI_OPTION_ROM_RUN_YABEL
+ biosemu_dev_find_vmem_addr();
+ biosemu_dev_get_puid();
+#endif
+ biosemu_dev_get_device_vendor_id();
+ return rval;
+}
+
+// translate address function using translate_address_array assembled
+// by dev_get_addr_info... MUCH faster than calling translate_address_dev
+// and accessing client interface for every translation...
+// returns: 0 if addr not found in translate_address_array, 1 if found.
+u8
+biosemu_dev_translate_address(unsigned long * addr)
+{
+ int i = 0;
+ translate_address_t ta;
+#ifndef CONFIG_PCI_OPTION_ROM_RUN_YABEL
+ /* we dont need this hack for coreboot... we can access legacy areas */
+ //check if it is an access to legacy VGA Mem... if it is, map the address
+ //to the vmem BAR and then translate it...
+ // (translation info provided by Ben Herrenschmidt)
+ // NOTE: the translation seems to only work for NVIDIA cards... but it is needed
+ // to make some NVIDIA cards work at all...
+ if ((bios_device.vmem_size > 0)
+ && ((*addr >= 0xA0000) && (*addr < 0xB8000))) {
+ *addr = (*addr - 0xA0000) * 4 + 2 + bios_device.vmem_addr;
+ }
+ if ((bios_device.vmem_size > 0)
+ && ((*addr >= 0xB8000) && (*addr < 0xC0000))) {
+ u8 shift = *addr & 1;
+ *addr &= 0xfffffffe;
+ *addr = (*addr - 0xB8000) * 4 + shift + bios_device.vmem_addr;
+ }
+#endif
+ for (i = 0; i <= taa_last_entry; i++) {
+ ta = translate_address_array[i];
+ if ((*addr >= ta.address) && (*addr <= (ta.address + ta.size))) {
+ *addr += ta.address_offset;
+ return 1;
+ }
+ }
+ return 0;
+}
diff --git a/src/devices/oprom/yabel/device.h b/src/devices/oprom/yabel/device.h
new file mode 100644
index 0000000000..dbbd28d5e8
--- /dev/null
+++ b/src/devices/oprom/yabel/device.h
@@ -0,0 +1,182 @@
+/******************************************************************************
+ * Copyright (c) 2004, 2008 IBM Corporation
+ * Copyright (c) 2008, 2009 Pattrick Hueper <phueper@hueper.net>
+ * All rights reserved.
+ * This program and the accompanying materials
+ * are made available under the terms of the BSD License
+ * which accompanies this distribution, and is available at
+ * http://www.opensource.org/licenses/bsd-license.php
+ *
+ * Contributors:
+ * IBM Corporation - initial implementation
+ *****************************************************************************/
+
+#ifndef DEVICE_LIB_H
+#define DEVICE_LIB_H
+
+#include <types.h>
+#include <arch/byteorder.h>
+#include "compat/of.h"
+#include "debug.h"
+
+
+// a Expansion Header Struct as defined in Plug and Play BIOS Spec 1.0a Chapter 3.2
+typedef struct {
+ char signature[4]; // signature
+ u8 structure_revision;
+ u8 length; // in 16 byte blocks
+ u16 next_header_offset; // offset to next Expansion Header as 16bit little-endian value, as offset from the start of the Expansion ROM
+ u8 reserved;
+ u8 checksum; // the sum of all bytes of the Expansion Header must be 0
+ u32 device_id; // PnP Device ID as 32bit little-endian value
+ u16 p_manufacturer_string; //16bit little-endian offset from start of Expansion ROM
+ u16 p_product_string; //16bit little-endian offset from start of Expansion ROM
+ u8 device_base_type;
+ u8 device_sub_type;
+ u8 device_if_type;
+ u8 device_indicators;
+ // the following vectors are all 16bit little-endian offsets from start of Expansion ROM
+ u16 bcv; // Boot Connection Vector
+ u16 dv; // Disconnect Vector
+ u16 bev; // Bootstrap Entry Vector
+ u16 reserved_2;
+ u16 sriv; // Static Resource Information Vector
+} __attribute__ ((__packed__)) exp_header_struct_t;
+
+// a PCI Data Struct as defined in PCI 2.3 Spec Chapter 6.3.1.2
+typedef struct {
+ u8 signature[4]; // signature, the String "PCIR"
+ u16 vendor_id;
+ u16 device_id;
+ u16 reserved;
+ u16 pci_ds_length; // PCI Data Structure Length, 16bit little-endian value
+ u8 pci_ds_revision;
+ u8 class_code[3];
+ u16 img_length; // length of the Exp.ROM Image, 16bit little-endian value in 512 bytes
+ u16 img_revision;
+ u8 code_type;
+ u8 indicator;
+ u16 reserved_2;
+} __attribute__ ((__packed__)) pci_data_struct_t;
+
+typedef struct {
+ u8 bus;
+ u8 devfn;
+#ifdef CONFIG_PCI_OPTION_ROM_RUN_YABEL
+ struct device* dev;
+#else
+ u64 puid;
+ phandle_t phandle;
+ ihandle_t ihandle;
+#endif
+ // store the address of the BAR that is used to simulate
+ // legacy VGA memory accesses
+ u64 vmem_addr;
+ u64 vmem_size;
+ // used to buffer I/O Accesses, that do not access the I/O Range of the device...
+ // 64k might be overkill, but we can buffer all I/O accesses...
+ u8 io_buffer[64 * 1024];
+ u16 pci_vendor_id;
+ u16 pci_device_id;
+ // translated address of the "PC-Compatible" Expansion ROM Image for this device
+ unsigned long img_addr;
+ u32 img_size; // size of the Expansion ROM Image (read from the PCI Data Structure)
+} biosemu_device_t;
+
+typedef struct {
+#ifdef CONFIG_PCI_OPTION_ROM_RUN_YABEL
+ unsigned long info;
+#else
+ u8 info;
+#endif
+ u8 bus;
+ u8 devfn;
+ u8 cfg_space_offset;
+ u64 address;
+ u64 address_offset;
+ u64 size;
+} __attribute__ ((__packed__)) translate_address_t;
+
+// array to store address translations for this
+// device. Needed for faster address translation, so
+// not every I/O or Memory Access needs to call translate_address_dev
+// and access the device tree
+// 6 BARs, 1 Exp. ROM, 1 Cfg.Space, and 3 Legacy
+// translations are supported... this should be enough for
+// most devices... for VGA it is enough anyways...
+extern translate_address_t translate_address_array[11];
+
+// index of last translate_address_array entry
+// set by get_dev_addr_info function
+extern u8 taa_last_entry;
+
+/* the device we are working with... */
+extern biosemu_device_t bios_device;
+
+u8 biosemu_dev_init(struct device * device);
+// NOTE: for dev_check_exprom to work, biosemu_dev_init MUST be called first!
+u8 biosemu_dev_check_exprom(unsigned long rom_base_addr);
+
+u8 biosemu_dev_translate_address(unsigned long * addr);
+
+/* endianness swap functions for 16 and 32 bit words
+ * copied from axon_pciconfig.c
+ */
+static inline void
+out32le(void *addr, u32 val)
+{
+#ifdef __i386
+ *((u32*) addr) = cpu_to_le32(val);
+#else
+ asm volatile ("stwbrx %0, 0, %1"::"r" (val), "r"(addr));
+#endif
+}
+
+static inline u32
+in32le(void *addr)
+{
+ u32 val;
+#ifdef __i386
+ val = cpu_to_le32(*((u32 *) addr));
+#else
+ asm volatile ("lwbrx %0, 0, %1":"=r" (val):"r"(addr));
+#endif
+ return val;
+}
+
+static inline void
+out16le(void *addr, u16 val)
+{
+#ifdef __i386
+ *((u16*) addr) = cpu_to_le16(val);
+#else
+ asm volatile ("sthbrx %0, 0, %1"::"r" (val), "r"(addr));
+#endif
+}
+
+static inline u16
+in16le(void *addr)
+{
+ u16 val;
+#ifdef __i386
+ val = cpu_to_le16(*((u16*) addr));
+#else
+ asm volatile ("lhbrx %0, 0, %1":"=r" (val):"r"(addr));
+#endif
+ return val;
+}
+
+/* debug function, dumps HID1 and HID4 to detect whether caches are on/off */
+static inline void
+dumpHID(void)
+{
+ u64 hid;
+ //HID1 = 1009
+ __asm__ __volatile__("mfspr %0, 1009":"=r"(hid));
+ printf("HID1: %016llx\n", hid);
+ //HID4 = 1012
+ __asm__ __volatile__("mfspr %0, 1012":"=r"(hid));
+ printf("HID4: %016llx\n", hid);
+}
+
+#endif
diff --git a/src/devices/oprom/yabel/interrupt.c b/src/devices/oprom/yabel/interrupt.c
new file mode 100644
index 0000000000..9a796005bb
--- /dev/null
+++ b/src/devices/oprom/yabel/interrupt.c
@@ -0,0 +1,677 @@
+/******************************************************************************
+ * Copyright (c) 2004, 2008 IBM Corporation
+ * Copyright (c) 2008, 2009 Pattrick Hueper <phueper@hueper.net>
+ * All rights reserved.
+ * This program and the accompanying materials
+ * are made available under the terms of the BSD License
+ * which accompanies this distribution, and is available at
+ * http://www.opensource.org/licenses/bsd-license.php
+ *
+ * Contributors:
+ * IBM Corporation - initial implementation
+ *****************************************************************************/
+
+#include <types.h>
+#include "compat/rtas.h"
+
+#include "biosemu.h"
+#include "mem.h"
+#include "device.h"
+#include "debug.h"
+#include "pmm.h"
+#include "interrupt.h"
+
+#include <x86emu/x86emu.h>
+#include "../x86emu/prim_ops.h"
+
+#ifdef CONFIG_PCI_OPTION_ROM_RUN_YABEL
+#include <device/pci.h>
+#include <device/pci_ops.h>
+#endif
+
+
+//setup to run the code at the address, that the Interrupt Vector points to...
+static void
+setupInt(int intNum)
+{
+ DEBUG_PRINTF_INTR("%s(%x): executing interrupt handler @%08x\n",
+ __func__, intNum, my_rdl(intNum * 4));
+ // push current R_FLG... will be popped by IRET
+ push_word((u16) M.x86.R_FLG);
+ CLEAR_FLAG(F_IF);
+ CLEAR_FLAG(F_TF);
+ // push current CS:IP to the stack, will be popped by IRET
+ push_word(M.x86.R_CS);
+ push_word(M.x86.R_IP);
+ // set CS:IP to the interrupt handler address... so the next executed instruction will
+ // be the interrupt handler
+ M.x86.R_CS = my_rdw(intNum * 4 + 2);
+ M.x86.R_IP = my_rdw(intNum * 4);
+}
+
+// handle int10 (VGA BIOS Interrupt)
+static void
+handleInt10(void)
+{
+ // the data for INT10 is stored in BDA (0000:0400h) offset 49h-66h
+ // function number in AH
+ //DEBUG_PRINTF_CS_IP("%s:\n", __func__);
+ //x86emu_dump_xregs();
+ //if ((M.x86.R_IP == 0x32c2) && (M.x86.R_SI == 0x1ce2)){
+ //X86EMU_trace_on();
+ //M.x86.debug &= ~DEBUG_DECODE_NOPRINT_F;
+ //}
+ switch (M.x86.R_AH) {
+ case 0x00:
+ // set video mode
+ // BDA offset 49h is current video mode
+ my_wrb(0x449, M.x86.R_AL);
+ if (M.x86.R_AL > 7)
+ M.x86.R_AL = 0x20;
+ else if (M.x86.R_AL == 6)
+ M.x86.R_AL = 0x3f;
+ else
+ M.x86.R_AL = 0x30;
+ break;
+ case 0x01:
+ // set cursor shape
+ // ignore
+ break;
+ case 0x02:
+ // set cursor position
+ // BH: pagenumber, DX: cursor_pos (DH:row, DL:col)
+ // BDA offset 50h-60h are 8 cursor position words for
+ // eight possible video pages
+ my_wrw(0x450 + (M.x86.R_BH * 2), M.x86.R_DX);
+ break;
+ case 0x03:
+ //get cursor position
+ // BH: pagenumber
+ // BDA offset 50h-60h are 8 cursor position words for
+ // eight possible video pages
+ M.x86.R_AX = 0;
+ M.x86.R_CH = 0; // start scan line ???
+ M.x86.R_CL = 0; // end scan line ???
+ M.x86.R_DX = my_rdw(0x450 + (M.x86.R_BH * 2));
+ break;
+ case 0x05:
+ // set active page
+ // BDA offset 62h is current page number
+ my_wrb(0x462, M.x86.R_AL);
+ break;
+ case 0x06:
+ //scroll up windows
+ break;
+ case 0x07:
+ //scroll down windows
+ break;
+ case 0x08:
+ //read character and attribute at position
+ M.x86.R_AH = 0x07; // white-on-black
+ M.x86.R_AL = 0x20; // a space...
+ break;
+ case 0x09:
+ // write character and attribute
+ //AL: char, BH: page number, BL: attribute, CX: number of times to write
+ //BDA offset 62h is current page number
+ CHECK_DBG(DEBUG_PRINT_INT10) {
+ u32 i = 0;
+ if (M.x86.R_BH == my_rdb(0x462)) {
+ for (i = 0; i < M.x86.R_CX; i++)
+ printf("%c", M.x86.R_AL);
+ }
+ }
+ break;
+ case 0x0a:
+ // write character
+ //AL: char, BH: page number, BL: attribute, CX: number of times to write
+ //BDA offset 62h is current page number
+ CHECK_DBG(DEBUG_PRINT_INT10) {
+ u32 i = 0;
+ if (M.x86.R_BH == my_rdb(0x462)) {
+ for (i = 0; i < M.x86.R_CX; i++)
+ printf("%c", M.x86.R_AL);
+ }
+ }
+ break;
+ case 0x0e:
+ // teletype output: write character and advance cursor...
+ //AL: char, BH: page number, BL: attribute
+ //BDA offset 62h is current page number
+ CHECK_DBG(DEBUG_PRINT_INT10) {
+ // we ignore the pagenumber on this call...
+ //if (M.x86.R_BH == my_rdb(0x462))
+ {
+ printf("%c", M.x86.R_AL);
+ // for debugging, to read all lines
+ //if (M.x86.R_AL == 0xd) // carriage return
+ // printf("\n");
+ }
+ }
+ break;
+ case 0x0f:
+ // get video mode
+ // BDA offset 49h is current video mode
+ // BDA offset 62h is current page number
+ // BDA offset 4ah is columns on screen
+ M.x86.R_AH = 80; //number of character columns... we hardcode it to 80
+ M.x86.R_AL = my_rdb(0x449);
+ M.x86.R_BH = my_rdb(0x462);
+ break;
+ default:
+ printf("%s(): unknown function (%x) for int10 handler.\n",
+ __func__, M.x86.R_AH);
+ DEBUG_PRINTF_INTR("AX=%04x BX=%04x CX=%04x DX=%04x\n",
+ M.x86.R_AX, M.x86.R_BX, M.x86.R_CX,
+ M.x86.R_DX);
+ HALT_SYS();
+ break;
+ }
+}
+
+// this table translates ASCII chars into their XT scan codes:
+static u8 keycode_table[256] = {
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0 - 7
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 8 - 15
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 16 - 23
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 24 - 31
+ 0x39, 0x02, 0x28, 0x04, 0x05, 0x06, 0x08, 0x28, // 32 - 39
+ 0x0a, 0x0b, 0x09, 0x2b, 0x33, 0x0d, 0x34, 0x35, // 40 - 47
+ 0x0b, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, // 48 - 55
+ 0x09, 0x0a, 0x27, 0x27, 0x33, 0x2b, 0x34, 0x35, // 56 - 63
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 64 - 71
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 72 - 79
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 80 - 87
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 88 - 95
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 96 - 103
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 104 - 111
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 112 - 119
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 120 - 127
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // ...
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+}
+
+;
+
+static void
+translate_keycode(u64 * keycode)
+{
+ u8 scan_code = 0;
+ u8 char_code = 0;
+ if (*keycode < 256) {
+ scan_code = keycode_table[*keycode];
+ char_code = (u8) * keycode & 0xff;
+ } else {
+ switch (*keycode) {
+ case 0x1b50:
+ // F1
+ scan_code = 0x3b;
+ char_code = 0x0;
+ break;
+ default:
+ printf("%s(): unknown multibyte keycode: %llx\n",
+ __func__, *keycode);
+ break;
+ }
+ }
+ //assemble scan/char code in keycode
+ *keycode = (u64) ((((u16) scan_code) << 8) | char_code);
+}
+
+// handle int16 (Keyboard BIOS Interrupt)
+static void
+handleInt16(void)
+{
+ // keyboard buffer is in BIOS Memory Area:
+ // offset 0x1a (WORD) pointer to next char in keybuffer
+ // offset 0x1c (WORD) pointer to next insert slot in keybuffer
+ // offset 0x1e-0x3e: 16 WORD Ring Buffer
+ // since we currently always read the char from the FW buffer,
+ // we misuse the ring buffer, we use it as pointer to a u64 that stores
+ // multi-byte keys (e.g. special keys in VT100 terminal)
+ // and as long as a key is available (not 0) we dont read further keys
+ u64 *keycode = (u64 *) (M.mem_base + 0x41e);
+ s8 c;
+ // function number in AH
+ DEBUG_PRINTF_INTR("%s(): Keyboard Interrupt: function: %x.\n",
+ __func__, M.x86.R_AH);
+ DEBUG_PRINTF_INTR("AX=%04x BX=%04x CX=%04x DX=%04x\n", M.x86.R_AX,
+ M.x86.R_BX, M.x86.R_CX, M.x86.R_DX);
+ switch (M.x86.R_AH) {
+ case 0x00:
+ // get keystroke
+ if (*keycode) {
+ M.x86.R_AX = (u16) * keycode;
+ // clear keycode
+ *keycode = 0;
+ } else {
+ M.x86.R_AH = 0x61; // scancode for space key
+ M.x86.R_AL = 0x20; // a space
+ }
+ break;
+ case 0x01:
+ // check keystroke
+ // ZF set = no keystroke
+ // read first byte of key code
+ if (*keycode) {
+ // already read, but not yet taken
+ CLEAR_FLAG(F_ZF);
+ M.x86.R_AX = (u16) * keycode;
+ } else {
+ /* TODO: we need getchar... */
+ c = -1; //getchar();
+ if (c == -1) {
+ // no key available
+ SET_FLAG(F_ZF);
+ } else {
+ *keycode = c;
+
+ // since after an ESC it may take a while to receive the next char,
+ // we send something that is not shown on the screen, and then try to get
+ // the next char
+ // TODO: only after ESC?? what about other multibyte keys
+ printf("tt%c%c", 0x08, 0x08); // 0x08 == Backspace
+
+ /* TODO: we need getchar... */
+ while ((c = -1 /*getchar()*/) != -1) {
+ *keycode = (*keycode << 8) | c;
+ DEBUG_PRINTF(" key read: %0llx\n",
+ *keycode);
+ }
+ translate_keycode(keycode);
+ DEBUG_PRINTF(" translated key: %0llx\n",
+ *keycode);
+ if (*keycode == 0) {
+ //not found
+ SET_FLAG(F_ZF);
+ } else {
+ CLEAR_FLAG(F_ZF);
+ M.x86.R_AX = (u16) * keycode;
+ //X86EMU_trace_on();
+ //M.x86.debug &= ~DEBUG_DECODE_NOPRINT_F;
+ }
+ }
+ }
+ break;
+ default:
+ printf("%s(): unknown function (%x) for int16 handler.\n",
+ __func__, M.x86.R_AH);
+ DEBUG_PRINTF_INTR("AX=%04x BX=%04x CX=%04x DX=%04x\n",
+ M.x86.R_AX, M.x86.R_BX, M.x86.R_CX,
+ M.x86.R_DX);
+ HALT_SYS();
+ break;
+ }
+}
+
+// handle int1a (PCI BIOS Interrupt)
+static void
+handleInt1a(void)
+{
+ // function number in AX
+ u8 bus, devfn, offs;
+ struct device* dev;
+ switch (M.x86.R_AX) {
+ case 0xb101:
+ // Installation check
+ CLEAR_FLAG(F_CF); // clear CF
+ M.x86.R_EDX = 0x20494350; // " ICP" endian swapped "PCI "
+ M.x86.R_AL = 0x1; // Config Space Mechanism 1 supported
+ M.x86.R_BX = 0x0210; // PCI Interface Level Version 2.10
+ M.x86.R_CL = 0xff; // number of last PCI Bus in system TODO: check!
+ break;
+ case 0xb102:
+ // Find PCI Device
+ // device_id in CX, vendor_id in DX
+ // device index in SI (i.e. if multiple devices with same vendor/device id
+ // are connected). We currently only support device index 0
+ //
+ DEBUG_PRINTF_INTR("%s(): function: %x: PCI Find Device\n",
+ __func__, M.x86.R_AX);
+ /* FixME: support SI != 0 */
+#if defined(CONFIG_YABEL_PCI_ACCESS_OTHER_DEVICES) && CONFIG_YABEL_PCI_ACCESS_OTHER_DEVICES==1
+ dev = dev_find_device(M.x86.R_DX, M.x86.R_CX, 0);
+ if (dev != 0) {
+ DEBUG_PRINTF_INTR
+ ("%s(): function %x: PCI Find Device --> 0x%04x\n",
+ __func__, M.x86.R_AX, M.x86.R_BX);
+
+ M.x86.R_BH = dev->bus->secondary;
+ M.x86.R_BL = dev->path.pci.devfn;
+ M.x86.R_AH = 0x00; // return code: success
+ CLEAR_FLAG(F_CF);
+#else
+ // only allow the device to find itself...
+ if ((M.x86.R_CX == bios_device.pci_device_id)
+ && (M.x86.R_DX == bios_device.pci_vendor_id)
+ // device index must be 0
+ && (M.x86.R_SI == 0)) {
+ CLEAR_FLAG(F_CF);
+ M.x86.R_AH = 0x00; // return code: success
+ M.x86.R_BH = bios_device.bus;
+ M.x86.R_BL = bios_device.devfn;
+#endif
+ } else {
+ DEBUG_PRINTF_INTR
+ ("%s(): function %x: invalid device/vendor/device index! (%04x/%04x/%02x expected: %04x/%04x/00) \n",
+ __func__, M.x86.R_AX, M.x86.R_CX, M.x86.R_DX,
+ M.x86.R_SI, bios_device.pci_device_id,
+ bios_device.pci_vendor_id);
+
+ SET_FLAG(F_CF);
+ M.x86.R_AH = 0x86; // return code: device not found
+ }
+ break;
+ case 0xb108: //read configuration byte
+ case 0xb109: //read configuration word
+ case 0xb10a: //read configuration dword
+ bus = M.x86.R_BH;
+ devfn = M.x86.R_BL;
+ offs = M.x86.R_DI;
+ DEBUG_PRINTF_INTR("%s(): function: %x: PCI Config Read from device: bus: %02x, devfn: %02x, offset: %02x\n",
+ __func__, M.x86.R_AX, bus, devfn, offs);
+#if defined(CONFIG_YABEL_PCI_ACCESS_OTHER_DEVICES) && CONFIG_YABEL_PCI_ACCESS_OTHER_DEVICES==1
+ dev = dev_find_slot(bus, devfn);
+ DEBUG_PRINTF_INTR("%s(): function: %x: dev_find_slot() returned: %s\n",
+ __func__, M.x86.R_AX, dev_path(dev));
+ if (dev == 0) {
+ // fail accesses to non-existent devices...
+#else
+ dev = bios_device.dev;
+ if ((bus != bios_device.bus)
+ || (devfn != bios_device.devfn)) {
+ // fail accesses to any device but ours...
+#endif
+ printf
+ ("%s(): Config read access invalid device! bus: %02x (%02x), devfn: %02x (%02x), offs: %02x\n",
+ __func__, bus, bios_device.bus, devfn,
+ bios_device.devfn, offs);
+ SET_FLAG(F_CF);
+ M.x86.R_AH = 0x87; //return code: bad pci register
+ HALT_SYS();
+ return;
+ } else {
+ switch (M.x86.R_AX) {
+ case 0xb108:
+ M.x86.R_CL =
+#ifdef CONFIG_PCI_OPTION_ROM_RUN_YABEL
+ pci_read_config8(dev, offs);
+#else
+ (u8) rtas_pci_config_read(bios_device.
+ puid, 1,
+ bus, devfn,
+ offs);
+#endif
+ DEBUG_PRINTF_INTR
+ ("%s(): function %x: PCI Config Read @%02x --> 0x%02x\n",
+ __func__, M.x86.R_AX, offs,
+ M.x86.R_CL);
+ break;
+ case 0xb109:
+ M.x86.R_CX =
+#ifdef CONFIG_PCI_OPTION_ROM_RUN_YABEL
+ pci_read_config16(dev, offs);
+#else
+ (u16) rtas_pci_config_read(bios_device.
+ puid, 2,
+ bus, devfn,
+ offs);
+#endif
+ DEBUG_PRINTF_INTR
+ ("%s(): function %x: PCI Config Read @%02x --> 0x%04x\n",
+ __func__, M.x86.R_AX, offs,
+ M.x86.R_CX);
+ break;
+ case 0xb10a:
+ M.x86.R_ECX =
+#ifdef CONFIG_PCI_OPTION_ROM_RUN_YABEL
+ pci_read_config32(dev, offs);
+#else
+ (u32) rtas_pci_config_read(bios_device.
+ puid, 4,
+ bus, devfn,
+ offs);
+#endif
+ DEBUG_PRINTF_INTR
+ ("%s(): function %x: PCI Config Read @%02x --> 0x%08x\n",
+ __func__, M.x86.R_AX, offs,
+ M.x86.R_ECX);
+ break;
+ }
+ CLEAR_FLAG(F_CF);
+ M.x86.R_AH = 0x0; // return code: success
+ }
+ break;
+ case 0xb10b: //write configuration byte
+ case 0xb10c: //write configuration word
+ case 0xb10d: //write configuration dword
+ bus = M.x86.R_BH;
+ devfn = M.x86.R_BL;
+ offs = M.x86.R_DI;
+ if ((bus != bios_device.bus)
+ || (devfn != bios_device.devfn)) {
+ // fail accesses to any device but ours...
+ printf
+ ("%s(): Config read access invalid! bus: %x (%x), devfn: %x (%x), offs: %x\n",
+ __func__, bus, bios_device.bus, devfn,
+ bios_device.devfn, offs);
+ SET_FLAG(F_CF);
+ M.x86.R_AH = 0x87; //return code: bad pci register
+ HALT_SYS();
+ return;
+ } else {
+ switch (M.x86.R_AX) {
+ case 0xb10b:
+#ifdef CONFIG_PCI_OPTION_ROM_RUN_YABEL
+ pci_write_config8(bios_device.dev, offs, M.x86.R_CL);
+#else
+ rtas_pci_config_write(bios_device.puid, 1, bus,
+ devfn, offs, M.x86.R_CL);
+#endif
+ DEBUG_PRINTF_INTR
+ ("%s(): function %x: PCI Config Write @%02x <-- 0x%02x\n",
+ __func__, M.x86.R_AX, offs,
+ M.x86.R_CL);
+ break;
+ case 0xb10c:
+#ifdef CONFIG_PCI_OPTION_ROM_RUN_YABEL
+ pci_write_config16(bios_device.dev, offs, M.x86.R_CX);
+#else
+ rtas_pci_config_write(bios_device.puid, 2, bus,
+ devfn, offs, M.x86.R_CX);
+#endif
+ DEBUG_PRINTF_INTR
+ ("%s(): function %x: PCI Config Write @%02x <-- 0x%04x\n",
+ __func__, M.x86.R_AX, offs,
+ M.x86.R_CX);
+ break;
+ case 0xb10d:
+#ifdef CONFIG_PCI_OPTION_ROM_RUN_YABEL
+ pci_write_config32(bios_device.dev, offs, M.x86.R_ECX);
+#else
+ rtas_pci_config_write(bios_device.puid, 4, bus,
+ devfn, offs, M.x86.R_ECX);
+#endif
+ DEBUG_PRINTF_INTR
+ ("%s(): function %x: PCI Config Write @%02x <-- 0x%08x\n",
+ __func__, M.x86.R_AX, offs,
+ M.x86.R_ECX);
+ break;
+ }
+ CLEAR_FLAG(F_CF);
+ M.x86.R_AH = 0x0; // return code: success
+ }
+ break;
+ default:
+ printf("%s(): unknown function (%x) for int1a handler.\n",
+ __func__, M.x86.R_AX);
+ DEBUG_PRINTF_INTR("AX=%04x BX=%04x CX=%04x DX=%04x\n",
+ M.x86.R_AX, M.x86.R_BX, M.x86.R_CX,
+ M.x86.R_DX);
+ HALT_SYS();
+ break;
+ }
+}
+
+// main Interrupt Handler routine, should be registered as x86emu interrupt handler
+void
+handleInterrupt(int intNum)
+{
+ u8 int_handled = 0;
+#ifndef DEBUG_PRINT_INT10
+ // this printf makes output by int 10 unreadable...
+ // so we only enable it, if int10 print is disabled
+ DEBUG_PRINTF_INTR("%s(%x)\n", __func__, intNum);
+#endif
+
+ /* check wether this interrupt has a function pointer set in yabel_intFuncArray and run that */
+ if (yabel_intFuncArray[intNum]) {
+ DEBUG_PRINTF_INTR("%s(%x) intHandler overridden, calling it...\n", __func__, intNum);
+ int_handled = (*yabel_intFuncArray[intNum])();
+ } else {
+ switch (intNum) {
+ case 0x10: //BIOS video interrupt
+ case 0x42: // INT 10h relocated by EGA/VGA BIOS
+ case 0x6d: // INT 10h relocated by VGA BIOS
+ // get interrupt vector from IDT (4 bytes per Interrupt starting at address 0
+ if ((my_rdl(intNum * 4) == 0xF000F065) || //F000:F065 is default BIOS interrupt handler address
+ (my_rdl(intNum * 4) == 0xF4F4F4F4)) //invalid
+ {
+#if 0
+ // ignore interrupt...
+ DEBUG_PRINTF_INTR
+ ("%s(%x): invalid interrupt Vector (%08x) found, interrupt ignored...\n",
+ __func__, intNum, my_rdl(intNum * 4));
+ DEBUG_PRINTF_INTR("AX=%04x BX=%04x CX=%04x DX=%04x\n",
+ M.x86.R_AX, M.x86.R_BX, M.x86.R_CX,
+ M.x86.R_DX);
+ //HALT_SYS();
+#endif
+ handleInt10();
+ int_handled = 1;
+ }
+ break;
+ case 0x16:
+ // Keyboard BIOS Interrupt
+ handleInt16();
+ int_handled = 1;
+ break;
+ case 0x1a:
+ // PCI BIOS Interrupt
+ handleInt1a();
+ int_handled = 1;
+ break;
+ case PMM_INT_NUM:
+ /* the selfdefined PMM INT number, this is called by the code in PMM struct, it
+ * is handled by pmm_handleInt()
+ */
+ pmm_handleInt();
+ int_handled = 1;
+ break;
+ default:
+ printf("Interrupt %#x (Vector: %x) not implemented\n", intNum,
+ my_rdl(intNum * 4));
+ DEBUG_PRINTF_INTR("AX=%04x BX=%04x CX=%04x DX=%04x\n",
+ M.x86.R_AX, M.x86.R_BX, M.x86.R_CX,
+ M.x86.R_DX);
+ int_handled = 1;
+ HALT_SYS();
+ break;
+ }
+ }
+ // if we did not handle the interrupt, jump to the interrupt vector...
+ if (!int_handled) {
+ setupInt(intNum);
+ }
+}
+
+// prepare and execute Interrupt 10 (VGA Interrupt)
+void
+runInt10(void)
+{
+ // Initialize stack and data segment
+ M.x86.R_SS = STACK_SEGMENT;
+ M.x86.R_DS = DATA_SEGMENT;
+ M.x86.R_SP = STACK_START_OFFSET;
+
+ // push a HLT instruction and a pointer to it onto the stack
+ // any return will pop the pointer and jump to the HLT, thus
+ // exiting (more or less) cleanly
+ push_word(0xf4f4); //F4=HLT
+ //push_word(M.x86.R_SS);
+ //push_word(M.x86.R_SP + 2);
+
+ // setupInt will push the current CS and IP to the stack to return to it,
+ // but we want to halt, so set CS:IP to the HLT instruction we just pushed
+ // to the stack
+ M.x86.R_CS = M.x86.R_SS;
+ M.x86.R_IP = M.x86.R_SP; // + 4;
+
+ CHECK_DBG(DEBUG_TRACE_X86EMU) {
+ X86EMU_trace_on();
+ }
+ CHECK_DBG(DEBUG_JMP) {
+ M.x86.debug |= DEBUG_TRACEJMP_REGS_F;
+ M.x86.debug |= DEBUG_TRACEJMP_REGS_F;
+ M.x86.debug |= DEBUG_TRACECALL_F;
+ M.x86.debug |= DEBUG_TRACECALL_REGS_F;
+ }
+ setupInt(0x10);
+ DEBUG_PRINTF_INTR("%s(): starting execution of INT10...\n",
+ __func__);
+ X86EMU_exec();
+ DEBUG_PRINTF_INTR("%s(): execution finished\n", __func__);
+}
+
+// prepare and execute Interrupt 13 (Disk Interrupt)
+void
+runInt13(void)
+{
+ // Initialize stack and data segment
+ M.x86.R_SS = STACK_SEGMENT;
+ M.x86.R_DS = DATA_SEGMENT;
+ M.x86.R_SP = STACK_START_OFFSET;
+
+ // push a HLT instruction and a pointer to it onto the stack
+ // any return will pop the pointer and jump to the HLT, thus
+ // exiting (more or less) cleanly
+ push_word(0xf4f4); //F4=HLT
+ //push_word(M.x86.R_SS);
+ //push_word(M.x86.R_SP + 2);
+
+ // setupInt will push the current CS and IP to the stack to return to it,
+ // but we want to halt, so set CS:IP to the HLT instruction we just pushed
+ // to the stack
+ M.x86.R_CS = M.x86.R_SS;
+ M.x86.R_IP = M.x86.R_SP;
+
+ CHECK_DBG(DEBUG_TRACE_X86EMU) {
+ X86EMU_trace_on();
+ }
+ CHECK_DBG(DEBUG_JMP) {
+ M.x86.debug |= DEBUG_TRACEJMP_REGS_F;
+ M.x86.debug |= DEBUG_TRACEJMP_REGS_F;
+ M.x86.debug |= DEBUG_TRACECALL_F;
+ M.x86.debug |= DEBUG_TRACECALL_REGS_F;
+ }
+
+ setupInt(0x13);
+ DEBUG_PRINTF_INTR("%s(): starting execution of INT13...\n",
+ __func__);
+ X86EMU_exec();
+ DEBUG_PRINTF_INTR("%s(): execution finished\n", __func__);
+}
diff --git a/src/devices/oprom/yabel/interrupt.h b/src/devices/oprom/yabel/interrupt.h
new file mode 100644
index 0000000000..11755e102a
--- /dev/null
+++ b/src/devices/oprom/yabel/interrupt.h
@@ -0,0 +1,21 @@
+/******************************************************************************
+ * Copyright (c) 2004, 2008 IBM Corporation
+ * All rights reserved.
+ * This program and the accompanying materials
+ * are made available under the terms of the BSD License
+ * which accompanies this distribution, and is available at
+ * http://www.opensource.org/licenses/bsd-license.php
+ *
+ * Contributors:
+ * IBM Corporation - initial implementation
+ *****************************************************************************/
+#ifndef _BIOSEMU_INTERRUPT_H_
+#define _BIOSEMU_INTERRUPT_H_
+
+void handleInterrupt(int intNum);
+
+void runInt10(void);
+
+void runInt13(void);
+
+#endif
diff --git a/src/devices/oprom/yabel/io.c b/src/devices/oprom/yabel/io.c
new file mode 100644
index 0000000000..38a5d32c7c
--- /dev/null
+++ b/src/devices/oprom/yabel/io.c
@@ -0,0 +1,574 @@
+/******************************************************************************
+ * Copyright (c) 2004, 2008 IBM Corporation
+ * Copyright (c) 2009 Pattrick Hueper <phueper@hueper.net>
+ * All rights reserved.
+ * This program and the accompanying materials
+ * are made available under the terms of the BSD License
+ * which accompanies this distribution, and is available at
+ * http://www.opensource.org/licenses/bsd-license.php
+ *
+ * Contributors:
+ * IBM Corporation - initial implementation
+ *****************************************************************************/
+
+#include <types.h>
+#include "compat/rtas.h"
+#include "compat/time.h"
+#include "device.h"
+#include "debug.h"
+#include <x86emu/x86emu.h>
+#include "io.h"
+
+#ifdef CONFIG_PCI_OPTION_ROM_RUN_YABEL
+#include <device/pci.h>
+#include <device/pci_ops.h>
+#endif
+
+static unsigned int
+read_io(void *addr, size_t sz)
+{
+ unsigned int ret;
+ /* since we are using inb instructions, we need the port number as 16bit value */
+ u16 port = (u16)(u32) addr;
+
+ switch (sz) {
+ case 1:
+ asm volatile ("inb %1, %b0" : "=a"(ret) : "d" (port));
+ break;
+ case 2:
+ asm volatile ("inw %1, %w0" : "=a"(ret) : "d" (port));
+ break;
+ case 4:
+ asm volatile ("inl %1, %0" : "=a"(ret) : "d" (port));
+ break;
+ default:
+ ret = 0;
+ }
+
+ return ret;
+}
+
+static int
+write_io(void *addr, unsigned int value, size_t sz)
+{
+ u16 port = (u16)(u32) addr;
+ switch (sz) {
+ /* since we are using inb instructions, we need the port number as 16bit value */
+ case 1:
+ asm volatile ("outb %b0, %1" : : "a"(value), "d" (port));
+ break;
+ case 2:
+ asm volatile ("outw %w0, %1" : : "a"(value), "d" (port));
+ break;
+ case 4:
+ asm volatile ("outl %0, %1" : : "a"(value), "d" (port));
+ break;
+ default:
+ return -1;
+ }
+
+ return 0;
+}
+
+#ifdef CONFIG_ARCH_X86
+#include <arch/io.h>
+#else
+// these are not used, only needed for linking, must be overridden using X86emu_setupPioFuncs
+// with the functions and struct below
+void
+outb(u8 val, u16 port)
+{
+ printf("WARNING: outb not implemented!\n");
+ HALT_SYS();
+}
+
+void
+outw(u16 val, u16 port)
+{
+ printf("WARNING: outw not implemented!\n");
+ HALT_SYS();
+}
+
+void
+outl(u32 val, u16 port)
+{
+ printf("WARNING: outl not implemented!\n");
+ HALT_SYS();
+}
+
+u8
+inb(u16 port)
+{
+ printf("WARNING: inb not implemented!\n");
+ HALT_SYS();
+ return 0;
+}
+
+u16
+inw(u16 port)
+{
+ printf("WARNING: inw not implemented!\n");
+ HALT_SYS();
+ return 0;
+}
+
+u32
+inl(u16 port)
+{
+ printf("WARNING: inl not implemented!\n");
+ HALT_SYS();
+ return 0;
+}
+#endif
+
+#if defined(CONFIG_YABEL_DIRECTHW) && (CONFIG_YABEL_DIRECTHW == 1)
+u8 my_inb(X86EMU_pioAddr addr)
+{
+ u8 val;
+
+ val = inb(addr);
+ DEBUG_PRINTF_IO("inb(0x%04x) = 0x%02x\n", addr, val);
+
+ return val;
+}
+
+u16 my_inw(X86EMU_pioAddr addr)
+{
+ u16 val;
+
+ val = inw(addr);
+ DEBUG_PRINTF_IO("inw(0x%04x) = 0x%04x\n", addr, val);
+
+ return val;
+}
+
+u32 my_inl(X86EMU_pioAddr addr)
+{
+ u32 val;
+
+ val = inl(addr);
+ DEBUG_PRINTF_IO("inl(0x%04x) = 0x%08x\n", addr, val);
+
+ return val;
+}
+
+void my_outb(X86EMU_pioAddr addr, u8 val)
+{
+ DEBUG_PRINTF_IO("outb(0x%02x, 0x%04x)\n", val, addr);
+ outb(val, addr);
+}
+
+void my_outw(X86EMU_pioAddr addr, u16 val)
+{
+ DEBUG_PRINTF_IO("outw(0x%04x, 0x%04x)\n", val, addr);
+ outw(val, addr);
+}
+
+void my_outl(X86EMU_pioAddr addr, u32 val)
+{
+ DEBUG_PRINTF_IO("outl(0x%08x, 0x%04x)\n", val, addr);
+ outl(val, addr);
+}
+
+#else
+
+u32 pci_cfg_read(X86EMU_pioAddr addr, u8 size);
+void pci_cfg_write(X86EMU_pioAddr addr, u32 val, u8 size);
+u8 handle_port_61h(void);
+
+u8
+my_inb(X86EMU_pioAddr addr)
+{
+ u8 rval = 0xFF;
+ unsigned long translated_addr = addr;
+ u8 translated = biosemu_dev_translate_address(&translated_addr);
+ if (translated != 0) {
+ //translation successfull, access Device I/O (BAR or Legacy...)
+ DEBUG_PRINTF_IO("%s(%x): access to Device I/O\n", __func__,
+ addr);
+ //DEBUG_PRINTF_IO("%s(%04x): translated_addr: %llx\n", __func__, addr, translated_addr);
+ rval = read_io((void *)translated_addr, 1);
+ DEBUG_PRINTF_IO("%s(%04x) Device I/O --> %02x\n", __func__,
+ addr, rval);
+ return rval;
+ } else {
+ switch (addr) {
+ case 0x61:
+ //8254 KB Controller / Timer Port
+ // rval = handle_port_61h();
+ rval = inb(0x61);
+ //DEBUG_PRINTF_IO("%s(%04x) KB / Timer Port B --> %02x\n", __func__, addr, rval);
+ return rval;
+ break;
+ case 0xCFC:
+ case 0xCFD:
+ case 0xCFE:
+ case 0xCFF:
+ // PCI Config Mechanism 1 Ports
+ return (u8) pci_cfg_read(addr, 1);
+ break;
+ case 0x0a:
+ CHECK_DBG(DEBUG_INTR) {
+ X86EMU_trace_on();
+ }
+ M.x86.debug &= ~DEBUG_DECODE_NOPRINT_F;
+ //HALT_SYS();
+ // no break, intentional fall-through to default!!
+ default:
+ DEBUG_PRINTF_IO
+ ("%s(%04x) reading from bios_device.io_buffer\n",
+ __func__, addr);
+ rval = *((u8 *) (bios_device.io_buffer + addr));
+ DEBUG_PRINTF_IO("%s(%04x) I/O Buffer --> %02x\n",
+ __func__, addr, rval);
+ return rval;
+ break;
+ }
+ }
+}
+
+u16
+my_inw(X86EMU_pioAddr addr)
+{
+ unsigned long translated_addr = addr;
+ u8 translated = biosemu_dev_translate_address(&translated_addr);
+ if (translated != 0) {
+ //translation successfull, access Device I/O (BAR or Legacy...)
+ DEBUG_PRINTF_IO("%s(%x): access to Device I/O\n", __func__,
+ addr);
+ //DEBUG_PRINTF_IO("%s(%04x): translated_addr: %llx\n", __func__, addr, translated_addr);
+ u16 rval;
+ if ((translated_addr & (u64) 0x1) == 0) {
+ // 16 bit aligned access...
+ u16 tempval = read_io((void *)translated_addr, 2);
+ //little endian conversion
+ rval = in16le((void *) &tempval);
+ } else {
+ // unaligned access, read single bytes, little-endian
+ rval = (read_io((void *)translated_addr, 1) << 8)
+ | (read_io((void *)(translated_addr + 1), 1));
+ }
+ DEBUG_PRINTF_IO("%s(%04x) Device I/O --> %04x\n", __func__,
+ addr, rval);
+ return rval;
+ } else {
+ switch (addr) {
+ case 0xCFC:
+ case 0xCFE:
+ //PCI Config Mechanism 1
+ return (u16) pci_cfg_read(addr, 2);
+ break;
+ default:
+ DEBUG_PRINTF_IO
+ ("%s(%04x) reading from bios_device.io_buffer\n",
+ __func__, addr);
+ u16 rval =
+ in16le((void *) bios_device.io_buffer + addr);
+ DEBUG_PRINTF_IO("%s(%04x) I/O Buffer --> %04x\n",
+ __func__, addr, rval);
+ return rval;
+ break;
+ }
+ }
+}
+
+u32
+my_inl(X86EMU_pioAddr addr)
+{
+ unsigned long translated_addr = addr;
+ u8 translated = biosemu_dev_translate_address(&translated_addr);
+ if (translated != 0) {
+ //translation successfull, access Device I/O (BAR or Legacy...)
+ DEBUG_PRINTF_IO("%s(%x): access to Device I/O\n", __func__,
+ addr);
+ //DEBUG_PRINTF_IO("%s(%04x): translated_addr: %llx\n", __func__, addr, translated_addr);
+ u32 rval;
+ if ((translated_addr & (u64) 0x3) == 0) {
+ // 32 bit aligned access...
+ u32 tempval = read_io((void *) translated_addr, 4);
+ //little endian conversion
+ rval = in32le((void *) &tempval);
+ } else {
+ // unaligned access, read single bytes, little-endian
+ rval = (read_io((void *)(translated_addr), 1) << 24)
+ | (read_io((void *)(translated_addr + 1), 1) << 16)
+ | (read_io((void *)(translated_addr + 2), 1) << 8)
+ | (read_io((void *)(translated_addr + 3), 1));
+ }
+ DEBUG_PRINTF_IO("%s(%04x) Device I/O --> %08x\n", __func__,
+ addr, rval);
+ return rval;
+ } else {
+ switch (addr) {
+ case 0xCFC:
+ //PCI Config Mechanism 1
+ return pci_cfg_read(addr, 4);
+ break;
+ default:
+ DEBUG_PRINTF_IO
+ ("%s(%04x) reading from bios_device.io_buffer\n",
+ __func__, addr);
+ u32 rval =
+ in32le((void *) bios_device.io_buffer + addr);
+ DEBUG_PRINTF_IO("%s(%04x) I/O Buffer --> %08x\n",
+ __func__, addr, rval);
+ return rval;
+ break;
+ }
+ }
+}
+
+void
+my_outb(X86EMU_pioAddr addr, u8 val)
+{
+ unsigned long translated_addr = addr;
+ u8 translated = biosemu_dev_translate_address(&translated_addr);
+ if (translated != 0) {
+ //translation successfull, access Device I/O (BAR or Legacy...)
+ DEBUG_PRINTF_IO("%s(%x, %x): access to Device I/O\n",
+ __func__, addr, val);
+ //DEBUG_PRINTF_IO("%s(%04x): translated_addr: %llx\n", __func__, addr, translated_addr);
+ write_io((void *) translated_addr, val, 1);
+ DEBUG_PRINTF_IO("%s(%04x) Device I/O <-- %02x\n", __func__,
+ addr, val);
+ } else {
+ switch (addr) {
+ case 0xCFC:
+ case 0xCFD:
+ case 0xCFE:
+ case 0xCFF:
+ // PCI Config Mechanism 1 Ports
+ pci_cfg_write(addr, val, 1);
+ break;
+ default:
+ DEBUG_PRINTF_IO
+ ("%s(%04x,%02x) writing to bios_device.io_buffer\n",
+ __func__, addr, val);
+ *((u8 *) (bios_device.io_buffer + addr)) = val;
+ break;
+ }
+ }
+}
+
+void
+my_outw(X86EMU_pioAddr addr, u16 val)
+{
+ unsigned long translated_addr = addr;
+ u8 translated = biosemu_dev_translate_address(&translated_addr);
+ if (translated != 0) {
+ //translation successfull, access Device I/O (BAR or Legacy...)
+ DEBUG_PRINTF_IO("%s(%x, %x): access to Device I/O\n",
+ __func__, addr, val);
+ //DEBUG_PRINTF_IO("%s(%04x): translated_addr: %llx\n", __func__, addr, translated_addr);
+ if ((translated_addr & (u64) 0x1) == 0) {
+ // little-endian conversion
+ u16 tempval = in16le((void *) &val);
+ // 16 bit aligned access...
+ write_io((void *) translated_addr, tempval, 2);
+ } else {
+ // unaligned access, write single bytes, little-endian
+ write_io(((void *) (translated_addr + 1)),
+ (u8) ((val & 0xFF00) >> 8), 1);
+ write_io(((void *) translated_addr),
+ (u8) (val & 0x00FF), 1);
+ }
+ DEBUG_PRINTF_IO("%s(%04x) Device I/O <-- %04x\n", __func__,
+ addr, val);
+ } else {
+ switch (addr) {
+ case 0xCFC:
+ case 0xCFE:
+ // PCI Config Mechanism 1 Ports
+ pci_cfg_write(addr, val, 2);
+ break;
+ default:
+ DEBUG_PRINTF_IO
+ ("%s(%04x,%04x) writing to bios_device.io_buffer\n",
+ __func__, addr, val);
+ out16le((void *) bios_device.io_buffer + addr, val);
+ break;
+ }
+ }
+}
+
+void
+my_outl(X86EMU_pioAddr addr, u32 val)
+{
+ unsigned long translated_addr = addr;
+ u8 translated = biosemu_dev_translate_address(&translated_addr);
+ if (translated != 0) {
+ //translation successfull, access Device I/O (BAR or Legacy...)
+ DEBUG_PRINTF_IO("%s(%x, %x): access to Device I/O\n",
+ __func__, addr, val);
+ //DEBUG_PRINTF_IO("%s(%04x): translated_addr: %llx\n", __func__, addr, translated_addr);
+ if ((translated_addr & (u64) 0x3) == 0) {
+ // little-endian conversion
+ u32 tempval = in32le((void *) &val);
+ // 32 bit aligned access...
+ write_io((void *) translated_addr, tempval, 4);
+ } else {
+ // unaligned access, write single bytes, little-endian
+ write_io(((void *) translated_addr + 3),
+ (u8) ((val & 0xFF000000) >> 24), 1);
+ write_io(((void *) translated_addr + 2),
+ (u8) ((val & 0x00FF0000) >> 16), 1);
+ write_io(((void *) translated_addr + 1),
+ (u8) ((val & 0x0000FF00) >> 8), 1);
+ write_io(((void *) translated_addr),
+ (u8) (val & 0x000000FF), 1);
+ }
+ DEBUG_PRINTF_IO("%s(%04x) Device I/O <-- %08x\n", __func__,
+ addr, val);
+ } else {
+ switch (addr) {
+ case 0xCFC:
+ // PCI Config Mechanism 1 Ports
+ pci_cfg_write(addr, val, 4);
+ break;
+ default:
+ DEBUG_PRINTF_IO
+ ("%s(%04x,%08x) writing to bios_device.io_buffer\n",
+ __func__, addr, val);
+ out32le((void *) bios_device.io_buffer + addr, val);
+ break;
+ }
+ }
+}
+
+u32
+pci_cfg_read(X86EMU_pioAddr addr, u8 size)
+{
+ u32 rval = 0xFFFFFFFF;
+ struct device * dev;
+ if ((addr >= 0xCFC) && ((addr + size) <= 0xD00)) {
+ // PCI Configuration Mechanism 1 step 1
+ // write to 0xCF8, sets bus, device, function and Config Space offset
+ // later read from 0xCFC-0xCFF returns the value...
+ u8 bus, devfn, offs;
+ u32 port_cf8_val = my_inl(0xCF8);
+ if ((port_cf8_val & 0x80000000) != 0) {
+ //highest bit enables config space mapping
+ bus = (port_cf8_val & 0x00FF0000) >> 16;
+ devfn = (port_cf8_val & 0x0000FF00) >> 8;
+ offs = (port_cf8_val & 0x000000FF);
+ offs += (addr - 0xCFC); // if addr is not 0xcfc, the offset is moved accordingly
+ DEBUG_PRINTF_INTR("%s(): PCI Config Read from device: bus: %02x, devfn: %02x, offset: %02x\n",
+ __func__, bus, devfn, offs);
+#if defined(CONFIG_YABEL_PCI_ACCESS_OTHER_DEVICES) && CONFIG_YABEL_PCI_ACCESS_OTHER_DEVICES==1
+ dev = dev_find_slot(bus, devfn);
+ DEBUG_PRINTF_INTR("%s(): dev_find_slot() returned: %s\n",
+ __func__, dev_path(dev));
+ if (dev == 0) {
+ // fail accesses to non-existent devices...
+#else
+ dev = bios_device.dev;
+ if ((bus != bios_device.bus)
+ || (devfn != bios_device.devfn)) {
+ // fail accesses to any device but ours...
+#endif
+ printf
+ ("%s(): Config read access invalid device! bus: %02x (%02x), devfn: %02x (%02x), offs: %02x\n",
+ __func__, bus, bios_device.bus, devfn,
+ bios_device.devfn, offs);
+ SET_FLAG(F_CF);
+ HALT_SYS();
+ return 0;
+ } else {
+#ifdef CONFIG_PCI_OPTION_ROM_RUN_YABEL
+ switch (size) {
+ case 1:
+ rval = pci_read_config8(dev, offs);
+ break;
+ case 2:
+ rval = pci_read_config16(dev, offs);
+ break;
+ case 4:
+ rval = pci_read_config32(dev, offs);
+ break;
+ }
+#else
+ rval =
+ (u32) rtas_pci_config_read(bios_device.
+ puid, size,
+ bus, devfn,
+ offs);
+#endif
+ DEBUG_PRINTF_IO
+ ("%s(%04x) PCI Config Read @%02x, size: %d --> 0x%08x\n",
+ __func__, addr, offs, size, rval);
+ }
+ }
+ }
+ return rval;
+}
+
+void
+pci_cfg_write(X86EMU_pioAddr addr, u32 val, u8 size)
+{
+ if ((addr >= 0xCFC) && ((addr + size) <= 0xD00)) {
+ // PCI Configuration Mechanism 1 step 1
+ // write to 0xCF8, sets bus, device, function and Config Space offset
+ // later write to 0xCFC-0xCFF sets the value...
+ u8 bus, devfn, offs;
+ u32 port_cf8_val = my_inl(0xCF8);
+ if ((port_cf8_val & 0x80000000) != 0) {
+ //highest bit enables config space mapping
+ bus = (port_cf8_val & 0x00FF0000) >> 16;
+ devfn = (port_cf8_val & 0x0000FF00) >> 8;
+ offs = (port_cf8_val & 0x000000FF);
+ offs += (addr - 0xCFC); // if addr is not 0xcfc, the offset is moved accordingly
+ if ((bus != bios_device.bus)
+ || (devfn != bios_device.devfn)) {
+ // fail accesses to any device but ours...
+ printf
+ ("Config write access invalid! PCI device %x:%x.%x, offs: %x\n",
+ bus, devfn >> 3, devfn & 7, offs);
+ HALT_SYS();
+ } else {
+#ifdef CONFIG_PCI_OPTION_ROM_RUN_YABEL
+ switch (size) {
+ case 1:
+ pci_write_config8(bios_device.dev, offs, val);
+ break;
+ case 2:
+ pci_write_config16(bios_device.dev, offs, val);
+ break;
+ case 4:
+ pci_write_config32(bios_device.dev, offs, val);
+ break;
+ }
+#else
+ rtas_pci_config_write(bios_device.puid,
+ size, bus, devfn, offs,
+ val);
+#endif
+ DEBUG_PRINTF_IO
+ ("%s(%04x) PCI Config Write @%02x, size: %d <-- 0x%08x\n",
+ __func__, addr, offs, size, val);
+ }
+ }
+ }
+}
+
+u8
+handle_port_61h(void)
+{
+ static u64 last_time = 0;
+ u64 curr_time = get_time();
+ u64 time_diff; // time since last call
+ u32 period_ticks; // length of a period in ticks
+ u32 nr_periods; //number of periods passed since last call
+ // bit 4 should toggle with every (DRAM) refresh cycle... (66kHz??)
+ time_diff = curr_time - last_time;
+ // at 66kHz a period is ~ 15 ns long, converted to ticks: (tb_freq is ticks/second)
+ // TODO: as long as the frequency does not change, we should not calculate this every time
+ period_ticks = (15 * tb_freq) / 1000000;
+ nr_periods = time_diff / period_ticks;
+ // if the number if ticks passed since last call is odd, we toggle bit 4
+ if ((nr_periods % 2) != 0) {
+ *((u8 *) (bios_device.io_buffer + 0x61)) ^= 0x10;
+ }
+ //finally read the value from the io_buffer
+ return *((u8 *) (bios_device.io_buffer + 0x61));
+}
+#endif
diff --git a/src/devices/oprom/yabel/io.h b/src/devices/oprom/yabel/io.h
new file mode 100644
index 0000000000..6b2dcc4504
--- /dev/null
+++ b/src/devices/oprom/yabel/io.h
@@ -0,0 +1,30 @@
+/******************************************************************************
+ * Copyright (c) 2004, 2008 IBM Corporation
+ * All rights reserved.
+ * This program and the accompanying materials
+ * are made available under the terms of the BSD License
+ * which accompanies this distribution, and is available at
+ * http://www.opensource.org/licenses/bsd-license.php
+ *
+ * Contributors:
+ * IBM Corporation - initial implementation
+ *****************************************************************************/
+
+#ifndef _BIOSEMU_IO_H_
+#define _BIOSEMU_IO_H_
+#include <x86emu/x86emu.h>
+#include <types.h>
+
+u8 my_inb(X86EMU_pioAddr addr);
+
+u16 my_inw(X86EMU_pioAddr addr);
+
+u32 my_inl(X86EMU_pioAddr addr);
+
+void my_outb(X86EMU_pioAddr addr, u8 val);
+
+void my_outw(X86EMU_pioAddr addr, u16 val);
+
+void my_outl(X86EMU_pioAddr addr, u32 val);
+
+#endif
diff --git a/src/devices/oprom/yabel/mem.c b/src/devices/oprom/yabel/mem.c
new file mode 100644
index 0000000000..8bcc9e12c2
--- /dev/null
+++ b/src/devices/oprom/yabel/mem.c
@@ -0,0 +1,493 @@
+/******************************************************************************
+ * Copyright (c) 2004, 2008 IBM Corporation
+ * Copyright (c) 2009 Pattrick Hueper <phueper@hueper.net>
+ * All rights reserved.
+ * This program and the accompanying materials
+ * are made available under the terms of the BSD License
+ * which accompanies this distribution, and is available at
+ * http://www.opensource.org/licenses/bsd-license.php
+ *
+ * Contributors:
+ * IBM Corporation - initial implementation
+ *****************************************************************************/
+
+#include <types.h>
+#include "debug.h"
+#include "device.h"
+#include "x86emu/x86emu.h"
+#include "biosemu.h"
+#include "mem.h"
+#include "compat/time.h"
+
+// define a check for access to certain (virtual) memory regions (interrupt handlers, BIOS Data Area, ...)
+#if CONFIG_X86EMU_DEBUG
+static u8 in_check = 0; // to avoid recursion...
+u16 ebda_segment;
+u32 ebda_size;
+
+//TODO: these macros have grown so large, that they should be changed to an inline function,
+//just for the sake of readability...
+
+#define DEBUG_CHECK_VMEM_READ(_addr, _rval) \
+ if ((debug_flags & DEBUG_CHECK_VMEM_ACCESS) && (in_check == 0)) { \
+ in_check = 1; \
+ /* determine ebda_segment and size \
+ * since we are using my_rdx calls, make sure, this is after setting in_check! */ \
+ /* offset 03 in BDA is EBDA segment */ \
+ ebda_segment = my_rdw(0x40e); \
+ /* first value in ebda is size in KB */ \
+ ebda_size = my_rdb(ebda_segment << 4) * 1024; \
+ /* check Interrupt Vector Access (0000:0000h - 0000:0400h) */ \
+ if (_addr < 0x400) { \
+ DEBUG_PRINTF_CS_IP("%s: read from Interrupt Vector %x --> %x\n", \
+ __func__, _addr / 4, _rval); \
+ } \
+ /* access to BIOS Data Area (0000:0400h - 0000:0500h)*/ \
+ else if ((_addr >= 0x400) && (addr < 0x500)) { \
+ DEBUG_PRINTF_CS_IP("%s: read from BIOS Data Area: addr: %x --> %x\n", \
+ __func__, _addr, _rval); \
+ /* dump registers */ \
+ /* x86emu_dump_xregs(); */ \
+ } \
+ /* access to first 64k of memory... */ \
+ else if (_addr < 0x10000) { \
+ DEBUG_PRINTF_CS_IP("%s: read from segment 0000h: addr: %x --> %x\n", \
+ __func__, _addr, _rval); \
+ /* dump registers */ \
+ /* x86emu_dump_xregs(); */ \
+ } \
+ /* read from PMM_CONV_SEGMENT */ \
+ else if ((_addr <= ((PMM_CONV_SEGMENT << 4) | 0xffff)) && (_addr >= (PMM_CONV_SEGMENT << 4))) { \
+ DEBUG_PRINTF_CS_IP("%s: read from PMM Segment %04xh: addr: %x --> %x\n", \
+ __func__, PMM_CONV_SEGMENT, _addr, _rval); \
+ /* HALT_SYS(); */ \
+ /* dump registers */ \
+ /* x86emu_dump_xregs(); */ \
+ } \
+ /* read from PNP_DATA_SEGMENT */ \
+ else if ((_addr <= ((PNP_DATA_SEGMENT << 4) | 0xffff)) && (_addr >= (PNP_DATA_SEGMENT << 4))) { \
+ DEBUG_PRINTF_CS_IP("%s: read from PnP Data Segment %04xh: addr: %x --> %x\n", \
+ __func__, PNP_DATA_SEGMENT, _addr, _rval); \
+ /* HALT_SYS(); */ \
+ /* dump registers */ \
+ /* x86emu_dump_xregs(); */ \
+ } \
+ /* read from EBDA Segment */ \
+ else if ((_addr <= ((ebda_segment << 4) | (ebda_size - 1))) && (_addr >= (ebda_segment << 4))) { \
+ DEBUG_PRINTF_CS_IP("%s: read from Extended BIOS Data Area %04xh, size: %04x: addr: %x --> %x\n", \
+ __func__, ebda_segment, ebda_size, _addr, _rval); \
+ } \
+ /* read from BIOS_DATA_SEGMENT */ \
+ else if ((_addr <= ((BIOS_DATA_SEGMENT << 4) | 0xffff)) && (_addr >= (BIOS_DATA_SEGMENT << 4))) { \
+ DEBUG_PRINTF_CS_IP("%s: read from BIOS Data Segment %04xh: addr: %x --> %x\n", \
+ __func__, BIOS_DATA_SEGMENT, _addr, _rval); \
+ /* for PMM debugging */ \
+ /*if (_addr == BIOS_DATA_SEGMENT << 4) { \
+ X86EMU_trace_on(); \
+ M.x86.debug &= ~DEBUG_DECODE_NOPRINT_F; \
+ }*/ \
+ /* dump registers */ \
+ /* x86emu_dump_xregs(); */ \
+ } \
+ in_check = 0; \
+ }
+#define DEBUG_CHECK_VMEM_WRITE(_addr, _val) \
+ if ((debug_flags & DEBUG_CHECK_VMEM_ACCESS) && (in_check == 0)) { \
+ in_check = 1; \
+ /* determine ebda_segment and size \
+ * since we are using my_rdx calls, make sure, this is after setting in_check! */ \
+ /* offset 03 in BDA is EBDA segment */ \
+ ebda_segment = my_rdw(0x40e); \
+ /* first value in ebda is size in KB */ \
+ ebda_size = my_rdb(ebda_segment << 4) * 1024; \
+ /* check Interrupt Vector Access (0000:0000h - 0000:0400h) */ \
+ if (_addr < 0x400) { \
+ DEBUG_PRINTF_CS_IP("%s: write to Interrupt Vector %x <-- %x\n", \
+ __func__, _addr / 4, _val); \
+ } \
+ /* access to BIOS Data Area (0000:0400h - 0000:0500h)*/ \
+ else if ((_addr >= 0x400) && (addr < 0x500)) { \
+ DEBUG_PRINTF_CS_IP("%s: write to BIOS Data Area: addr: %x <-- %x\n", \
+ __func__, _addr, _val); \
+ /* dump registers */ \
+ /* x86emu_dump_xregs(); */ \
+ } \
+ /* access to first 64k of memory...*/ \
+ else if (_addr < 0x10000) { \
+ DEBUG_PRINTF_CS_IP("%s: write to segment 0000h: addr: %x <-- %x\n", \
+ __func__, _addr, _val); \
+ /* dump registers */ \
+ /* x86emu_dump_xregs(); */ \
+ } \
+ /* write to PMM_CONV_SEGMENT... */ \
+ else if ((_addr <= ((PMM_CONV_SEGMENT << 4) | 0xffff)) && (_addr >= (PMM_CONV_SEGMENT << 4))) { \
+ DEBUG_PRINTF_CS_IP("%s: write to PMM Segment %04xh: addr: %x <-- %x\n", \
+ __func__, PMM_CONV_SEGMENT, _addr, _val); \
+ /* dump registers */ \
+ /* x86emu_dump_xregs(); */ \
+ } \
+ /* write to PNP_DATA_SEGMENT... */ \
+ else if ((_addr <= ((PNP_DATA_SEGMENT << 4) | 0xffff)) && (_addr >= (PNP_DATA_SEGMENT << 4))) { \
+ DEBUG_PRINTF_CS_IP("%s: write to PnP Data Segment %04xh: addr: %x <-- %x\n", \
+ __func__, PNP_DATA_SEGMENT, _addr, _val); \
+ /* dump registers */ \
+ /* x86emu_dump_xregs(); */ \
+ } \
+ /* write to EBDA Segment... */ \
+ else if ((_addr <= ((ebda_segment << 4) | (ebda_size - 1))) && (_addr >= (ebda_segment << 4))) { \
+ DEBUG_PRINTF_CS_IP("%s: write to Extended BIOS Data Area %04xh, size: %04x: addr: %x <-- %x\n", \
+ __func__, ebda_segment, ebda_size, _addr, _val); \
+ } \
+ /* write to BIOS_DATA_SEGMENT... */ \
+ else if ((_addr <= ((BIOS_DATA_SEGMENT << 4) | 0xffff)) && (_addr >= (BIOS_DATA_SEGMENT << 4))) { \
+ DEBUG_PRINTF_CS_IP("%s: write to BIOS Data Segment %04xh: addr: %x <-- %x\n", \
+ __func__, BIOS_DATA_SEGMENT, _addr, _val); \
+ /* dump registers */ \
+ /* x86emu_dump_xregs(); */ \
+ } \
+ /* write to current CS segment... */ \
+ else if ((_addr < ((M.x86.R_CS << 4) | 0xffff)) && (_addr > (M.x86.R_CS << 4))) { \
+ DEBUG_PRINTF_CS_IP("%s: write to CS segment %04xh: addr: %x <-- %x\n", \
+ __func__, M.x86.R_CS, _addr, _val); \
+ /* dump registers */ \
+ /* x86emu_dump_xregs(); */ \
+ } \
+ in_check = 0; \
+ }
+#else
+#define DEBUG_CHECK_VMEM_READ(_addr, _rval)
+#define DEBUG_CHECK_VMEM_WRITE(_addr, _val)
+#endif
+
+void update_time(u32);
+
+#if !defined(CONFIG_YABEL_DIRECTHW) || (!CONFIG_YABEL_DIRECTHW)
+// read byte from memory
+u8
+my_rdb(u32 addr)
+{
+ unsigned long translated_addr = addr;
+ u8 translated = biosemu_dev_translate_address(&translated_addr);
+ u8 rval;
+ if (translated != 0) {
+ //translation successfull, access VGA Memory (BAR or Legacy...)
+ DEBUG_PRINTF_MEM("%s(%08x): access to VGA Memory\n",
+ __func__, addr);
+ //DEBUG_PRINTF_MEM("%s(%08x): translated_addr: %llx\n", __func__, addr, translated_addr);
+ set_ci();
+ rval = *((u8 *) translated_addr);
+ clr_ci();
+ DEBUG_PRINTF_MEM("%s(%08x) VGA --> %02x\n", __func__, addr,
+ rval);
+ return rval;
+ } else if (addr > M.mem_size) {
+ DEBUG_PRINTF("%s(%08x): Memory Access out of range!\n",
+ __func__, addr);
+ //disassemble_forward(M.x86.saved_cs, M.x86.saved_ip, 1);
+ HALT_SYS();
+ } else {
+ /* read from virtual memory */
+ rval = *((u8 *) (M.mem_base + addr));
+ DEBUG_CHECK_VMEM_READ(addr, rval);
+ return rval;
+ }
+ return -1;
+}
+
+//read word from memory
+u16
+my_rdw(u32 addr)
+{
+ unsigned long translated_addr = addr;
+ u8 translated = biosemu_dev_translate_address(&translated_addr);
+ u16 rval;
+ if (translated != 0) {
+ //translation successfull, access VGA Memory (BAR or Legacy...)
+ DEBUG_PRINTF_MEM("%s(%08x): access to VGA Memory\n",
+ __func__, addr);
+ //DEBUG_PRINTF_MEM("%s(%08x): translated_addr: %llx\n", __func__, addr, translated_addr);
+ // check for legacy memory, because of the remapping to BARs, the reads must
+ // be byte reads...
+ if ((addr >= 0xa0000) && (addr < 0xc0000)) {
+ //read bytes a using my_rdb, because of the remapping to BARs
+ //words may not be contiguous in memory, so we need to translate
+ //every address...
+ rval = ((u8) my_rdb(addr)) |
+ (((u8) my_rdb(addr + 1)) << 8);
+ } else {
+ if ((translated_addr & (u64) 0x1) == 0) {
+ // 16 bit aligned access...
+ set_ci();
+ rval = in16le((void *) translated_addr);
+ clr_ci();
+ } else {
+ // unaligned access, read single bytes
+ set_ci();
+ rval = (*((u8 *) translated_addr)) |
+ (*((u8 *) translated_addr + 1) << 8);
+ clr_ci();
+ }
+ }
+ DEBUG_PRINTF_MEM("%s(%08x) VGA --> %04x\n", __func__, addr,
+ rval);
+ return rval;
+ } else if (addr > M.mem_size) {
+ DEBUG_PRINTF("%s(%08x): Memory Access out of range!\n",
+ __func__, addr);
+ //disassemble_forward(M.x86.saved_cs, M.x86.saved_ip, 1);
+ HALT_SYS();
+ } else {
+ /* read from virtual memory */
+ rval = in16le((void *) (M.mem_base + addr));
+ DEBUG_CHECK_VMEM_READ(addr, rval);
+ return rval;
+ }
+ return -1;
+}
+
+//read long from memory
+u32
+my_rdl(u32 addr)
+{
+ unsigned long translated_addr = addr;
+ u8 translated = biosemu_dev_translate_address(&translated_addr);
+ u32 rval;
+ if (translated != 0) {
+ //translation successfull, access VGA Memory (BAR or Legacy...)
+ DEBUG_PRINTF_MEM("%s(%x): access to VGA Memory\n",
+ __func__, addr);
+ //DEBUG_PRINTF_MEM("%s(%08x): translated_addr: %llx\n", __func__, addr, translated_addr);
+ // check for legacy memory, because of the remapping to BARs, the reads must
+ // be byte reads...
+ if ((addr >= 0xa0000) && (addr < 0xc0000)) {
+ //read bytes a using my_rdb, because of the remapping to BARs
+ //dwords may not be contiguous in memory, so we need to translate
+ //every address...
+ rval = ((u8) my_rdb(addr)) |
+ (((u8) my_rdb(addr + 1)) << 8) |
+ (((u8) my_rdb(addr + 2)) << 16) |
+ (((u8) my_rdb(addr + 3)) << 24);
+ } else {
+ if ((translated_addr & (u64) 0x3) == 0) {
+ // 32 bit aligned access...
+ set_ci();
+ rval = in32le((void *) translated_addr);
+ clr_ci();
+ } else {
+ // unaligned access, read single bytes
+ set_ci();
+ rval = (*((u8 *) translated_addr)) |
+ (*((u8 *) translated_addr + 1) << 8) |
+ (*((u8 *) translated_addr + 2) << 16) |
+ (*((u8 *) translated_addr + 3) << 24);
+ clr_ci();
+ }
+ }
+ DEBUG_PRINTF_MEM("%s(%08x) VGA --> %08x\n", __func__, addr,
+ rval);
+ //HALT_SYS();
+ return rval;
+ } else if (addr > M.mem_size) {
+ DEBUG_PRINTF("%s(%08x): Memory Access out of range!\n",
+ __func__, addr);
+ //disassemble_forward(M.x86.saved_cs, M.x86.saved_ip, 1);
+ HALT_SYS();
+ } else {
+ /* read from virtual memory */
+ rval = in32le((void *) (M.mem_base + addr));
+ switch (addr) {
+ case 0x46c:
+ //BDA Time Data, update it, before reading
+ update_time(rval);
+ rval = in32le((void *) (M.mem_base + addr));
+ break;
+ }
+ DEBUG_CHECK_VMEM_READ(addr, rval);
+ return rval;
+ }
+ return -1;
+}
+
+//write byte to memory
+void
+my_wrb(u32 addr, u8 val)
+{
+ unsigned long translated_addr = addr;
+ u8 translated = biosemu_dev_translate_address(&translated_addr);
+ if (translated != 0) {
+ //translation successfull, access VGA Memory (BAR or Legacy...)
+ DEBUG_PRINTF_MEM("%s(%x, %x): access to VGA Memory\n",
+ __func__, addr, val);
+ //DEBUG_PRINTF_MEM("%s(%08x): translated_addr: %llx\n", __func__, addr, translated_addr);
+ set_ci();
+ *((u8 *) translated_addr) = val;
+ clr_ci();
+ } else if (addr > M.mem_size) {
+ DEBUG_PRINTF("%s(%08x): Memory Access out of range!\n",
+ __func__, addr);
+ //disassemble_forward(M.x86.saved_cs, M.x86.saved_ip, 1);
+ HALT_SYS();
+ } else {
+ /* write to virtual memory */
+ DEBUG_CHECK_VMEM_WRITE(addr, val);
+ *((u8 *) (M.mem_base + addr)) = val;
+ }
+}
+
+void
+my_wrw(u32 addr, u16 val)
+{
+ unsigned long translated_addr = addr;
+ u8 translated = biosemu_dev_translate_address(&translated_addr);
+ if (translated != 0) {
+ //translation successfull, access VGA Memory (BAR or Legacy...)
+ DEBUG_PRINTF_MEM("%s(%x, %x): access to VGA Memory\n",
+ __func__, addr, val);
+ //DEBUG_PRINTF_MEM("%s(%08x): translated_addr: %llx\n", __func__, addr, translated_addr);
+ // check for legacy memory, because of the remapping to BARs, the reads must
+ // be byte reads...
+ if ((addr >= 0xa0000) && (addr < 0xc0000)) {
+ //read bytes a using my_rdb, because of the remapping to BARs
+ //words may not be contiguous in memory, so we need to translate
+ //every address...
+ my_wrb(addr, (u8) (val & 0x00FF));
+ my_wrb(addr + 1, (u8) ((val & 0xFF00) >> 8));
+ } else {
+ if ((translated_addr & (u64) 0x1) == 0) {
+ // 16 bit aligned access...
+ set_ci();
+ out16le((void *) translated_addr, val);
+ clr_ci();
+ } else {
+ // unaligned access, write single bytes
+ set_ci();
+ *((u8 *) translated_addr) =
+ (u8) (val & 0x00FF);
+ *((u8 *) translated_addr + 1) =
+ (u8) ((val & 0xFF00) >> 8);
+ clr_ci();
+ }
+ }
+ } else if (addr > M.mem_size) {
+ DEBUG_PRINTF("%s(%08x): Memory Access out of range!\n",
+ __func__, addr);
+ //disassemble_forward(M.x86.saved_cs, M.x86.saved_ip, 1);
+ HALT_SYS();
+ } else {
+ /* write to virtual memory */
+ DEBUG_CHECK_VMEM_WRITE(addr, val);
+ out16le((void *) (M.mem_base + addr), val);
+ }
+}
+void
+my_wrl(u32 addr, u32 val)
+{
+ unsigned long translated_addr = addr;
+ u8 translated = biosemu_dev_translate_address(&translated_addr);
+ if (translated != 0) {
+ //translation successfull, access VGA Memory (BAR or Legacy...)
+ DEBUG_PRINTF_MEM("%s(%x, %x): access to VGA Memory\n",
+ __func__, addr, val);
+ //DEBUG_PRINTF_MEM("%s(%08x): translated_addr: %llx\n", __func__, addr, translated_addr);
+ // check for legacy memory, because of the remapping to BARs, the reads must
+ // be byte reads...
+ if ((addr >= 0xa0000) && (addr < 0xc0000)) {
+ //read bytes a using my_rdb, because of the remapping to BARs
+ //words may not be contiguous in memory, so we need to translate
+ //every address...
+ my_wrb(addr, (u8) (val & 0x000000FF));
+ my_wrb(addr + 1, (u8) ((val & 0x0000FF00) >> 8));
+ my_wrb(addr + 2, (u8) ((val & 0x00FF0000) >> 16));
+ my_wrb(addr + 3, (u8) ((val & 0xFF000000) >> 24));
+ } else {
+ if ((translated_addr & (u64) 0x3) == 0) {
+ // 32 bit aligned access...
+ set_ci();
+ out32le((void *) translated_addr, val);
+ clr_ci();
+ } else {
+ // unaligned access, write single bytes
+ set_ci();
+ *((u8 *) translated_addr) =
+ (u8) (val & 0x000000FF);
+ *((u8 *) translated_addr + 1) =
+ (u8) ((val & 0x0000FF00) >> 8);
+ *((u8 *) translated_addr + 2) =
+ (u8) ((val & 0x00FF0000) >> 16);
+ *((u8 *) translated_addr + 3) =
+ (u8) ((val & 0xFF000000) >> 24);
+ clr_ci();
+ }
+ }
+ } else if (addr > M.mem_size) {
+ DEBUG_PRINTF("%s(%08x): Memory Access out of range!\n",
+ __func__, addr);
+ //disassemble_forward(M.x86.saved_cs, M.x86.saved_ip, 1);
+ HALT_SYS();
+ } else {
+ /* write to virtual memory */
+ DEBUG_CHECK_VMEM_WRITE(addr, val);
+ out32le((void *) (M.mem_base + addr), val);
+ }
+}
+#else
+u8
+my_rdb(u32 addr)
+{
+ return rdb(addr);
+}
+
+u16
+my_rdw(u32 addr)
+{
+ return rdw(addr);
+}
+
+u32
+my_rdl(u32 addr)
+{
+ return rdl(addr);
+}
+
+void
+my_wrb(u32 addr, u8 val)
+{
+ wrb(addr, val);
+}
+
+void
+my_wrw(u32 addr, u16 val)
+{
+ wrw(addr, val);
+}
+
+void
+my_wrl(u32 addr, u32 val)
+{
+ wrl(addr, val);
+}
+#endif
+
+//update time in BIOS Data Area
+//DWord at offset 0x6c is the timer ticks since midnight, timer is running at 18Hz
+//byte at 0x70 is timer overflow (set if midnight passed since last call to interrupt 1a function 00
+//cur_val is the current value, of offset 6c...
+void
+update_time(u32 cur_val)
+{
+ //for convenience, we let the start of timebase be at midnight, we currently dont support
+ //real daytime anyway...
+ u64 ticks_per_day = tb_freq * 60 * 24;
+ // at 18Hz a period is ~55ms, converted to ticks (tb_freq is ticks/second)
+ u32 period_ticks = (55 * tb_freq) / 1000;
+ u64 curr_time = get_time();
+ u64 ticks_since_midnight = curr_time % ticks_per_day;
+ u32 periods_since_midnight = ticks_since_midnight / period_ticks;
+ // if periods since midnight is smaller than last value, set overflow
+ // at BDA Offset 0x70
+ if (periods_since_midnight < cur_val) {
+ my_wrb(0x470, 1);
+ }
+ // store periods since midnight at BDA offset 0x6c
+ my_wrl(0x46c, periods_since_midnight);
+}
diff --git a/src/devices/oprom/yabel/mem.h b/src/devices/oprom/yabel/mem.h
new file mode 100644
index 0000000000..dca8cfc192
--- /dev/null
+++ b/src/devices/oprom/yabel/mem.h
@@ -0,0 +1,36 @@
+/******************************************************************************
+ * Copyright (c) 2004, 2008 IBM Corporation
+ * All rights reserved.
+ * This program and the accompanying materials
+ * are made available under the terms of the BSD License
+ * which accompanies this distribution, and is available at
+ * http://www.opensource.org/licenses/bsd-license.php
+ *
+ * Contributors:
+ * IBM Corporation - initial implementation
+ *****************************************************************************/
+
+#ifndef _BIOSEMU_MEM_H_
+#define _BIOSEMU_MEM_H_
+#include <x86emu/x86emu.h>
+#include <types.h>
+
+// read byte from memory
+u8 my_rdb(u32 addr);
+
+//read word from memory
+u16 my_rdw(u32 addr);
+
+//read long from memory
+u32 my_rdl(u32 addr);
+
+//write byte to memory
+void my_wrb(u32 addr, u8 val);
+
+//write word to memory
+void my_wrw(u32 addr, u16 val);
+
+//write long to memory
+void my_wrl(u32 addr, u32 val);
+
+#endif
diff --git a/src/devices/oprom/yabel/pmm.c b/src/devices/oprom/yabel/pmm.c
new file mode 100644
index 0000000000..ad4dc6834c
--- /dev/null
+++ b/src/devices/oprom/yabel/pmm.c
@@ -0,0 +1,442 @@
+/****************************************************************************
+ * YABEL BIOS Emulator
+ *
+ * This program and the accompanying materials
+ * are made available under the terms of the BSD License
+ * which accompanies this distribution, and is available at
+ * http://www.opensource.org/licenses/bsd-license.php
+ *
+ * Copyright (c) 2008 Pattrick Hueper <phueper@hueper.net>
+ ****************************************************************************/
+
+#include <x86emu/x86emu.h>
+#include "../x86emu/prim_ops.h"
+#include <string.h>
+
+#include "biosemu.h"
+#include "pmm.h"
+#include "debug.h"
+#include "device.h"
+
+/* this struct is used to remember which PMM spaces
+ * have been assigned. MAX_PMM_AREAS defines how many
+ * PMM areas we can assign.
+ * All areas are assigned in PMM_CONV_SEGMENT
+ */
+typedef struct {
+ u32 handle; /* handle that is returned to PMM caller */
+ u32 offset; /* in PMM_CONV_SEGMENT */
+ u32 length; /* length of this area */
+} pmm_allocation_t;
+
+#define MAX_PMM_AREAS 10
+
+/* array to store the above structs */
+static pmm_allocation_t pmm_allocation_array[MAX_PMM_AREAS];
+
+/* index into pmm_allocation_array */
+static u32 curr_pmm_allocation_index = 0;
+
+/* This function is used to setup the PMM struct in virtual memory
+ * at a certain offset, the length of the PMM struct is returned */
+u8 pmm_setup(u16 segment, u16 offset)
+{
+ /* setup the PMM structure */
+ pmm_information_t *pis =
+ (pmm_information_t *) (M.mem_base + (((u32) segment) << 4) +
+ offset);
+ memset(pis, 0, sizeof(pmm_information_t));
+ /* set signature to $PMM */
+ pis->signature[0] = '$';
+ pis->signature[1] = 'P';
+ pis->signature[2] = 'M';
+ pis->signature[3] = 'M';
+ /* revision as specified */
+ pis->struct_rev = 0x01;
+ /* internal length, excluding code */
+ pis->length = ((void *)&(pis->code) - (void *)&(pis->signature));
+ /* the code to be executed, pointed to by entry_point_offset */
+ pis->code[0] = 0xCD; /* INT */
+ pis->code[1] = PMM_INT_NUM; /* my selfdefined PMM INT number */
+ pis->code[2] = 0xCB; /* RETF */
+ /* set the entry_point_offset, it should point to pis->code, segment is the segment of
+ * this struct. Since pis->length is the length of the struct excluding code, offset+pis->length
+ * points to the code... it's that simple ;-)
+ */
+ out32le(&(pis->entry_point_offset),
+ (u32) segment << 16 | (u32) (offset + pis->length));
+ /* checksum calculation */
+ u8 i;
+ u8 checksum = 0;
+ for (i = 0; i < pis->length; i++) {
+ checksum += *(((u8 *) pis) + i);
+ }
+ pis->checksum = ((u8) 0) - checksum;
+ CHECK_DBG(DEBUG_PMM) {
+ DEBUG_PRINTF_PMM("PMM Structure:\n");
+ dump((void *)pis, sizeof(pmm_information_t));
+ }
+ return sizeof(pmm_information_t);
+}
+
+/* handle the selfdefined interrupt, this is executed, when the PMM Entry Point
+ * is executed, it must handle all PMM requests
+ */
+void pmm_handleInt()
+{
+ u32 rval = 0;
+ u16 function, flags;
+ u32 handle, length;
+ u32 i, j;
+ u32 buffer;
+ /* !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
+ * according to the PMM Spec "the flags and all registers, except DX and AX
+ * are preserved across calls to PMM"
+ * so we save M.x86 and in :exit label we restore it, however, this means that no
+ * returns must be used in this function, any exit must use goto exit!
+ * !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
+ */
+ X86EMU_regs backup_regs = M.x86;
+ pop_long(); /* pop the return address, this is already saved in INT handler, we don't need
+ to remember this. */
+ function = pop_word();
+ switch (function) {
+ case 0:
+ /* function pmmAllocate */
+ length = pop_long();
+ length *= 16; /* length is passed in "paragraphs" of 16 bytes each */
+ handle = pop_long();
+ flags = pop_word();
+ DEBUG_PRINTF_PMM
+ ("%s: pmmAllocate: Length: %x, Handle: %x, Flags: %x\n",
+ __func__, length, handle, flags);
+ if ((flags & 0x1) != 0) {
+ /* request to allocate in conventional memory */
+ if (curr_pmm_allocation_index >= MAX_PMM_AREAS) {
+ printf
+ ("%s: pmmAllocate: Maximum Number of allocatable areas reached (%d), cannot allocate more memory!\n",
+ __func__, MAX_PMM_AREAS);
+ rval = 0;
+ goto exit;
+ }
+ /* some ROMs seem to be confused by offset 0, so lets start at 0x100 */
+ u32 next_offset = 0x100;
+ pmm_allocation_t *pmm_alloc =
+ &(pmm_allocation_array[curr_pmm_allocation_index]);
+ if (curr_pmm_allocation_index != 0) {
+ /* we have already allocated... get the new next_offset
+ * from the previous pmm_allocation_t */
+ next_offset =
+ pmm_allocation_array
+ [curr_pmm_allocation_index - 1].offset +
+ pmm_allocation_array
+ [curr_pmm_allocation_index - 1].length;
+ }
+ DEBUG_PRINTF_PMM("%s: next_offset: 0x%x\n",
+ __func__, next_offset);
+ if (length == 0) {
+ /* largest possible block size requested, we have on segment
+ * to allocate, so largest possible is segment size (0xFFFF)
+ * minus next_offset
+ */
+ rval = 0xFFFF - next_offset;
+ goto exit;
+ }
+ u32 align = 0;
+ if (((flags & 0x4) != 0) && (length > 0)) {
+ /* align to least significant bit set in length param */
+ u8 lsb = 0;
+ while (((length >> lsb) & 0x1) == 0) {
+ lsb++;
+ }
+ align = 1 << lsb;
+ }
+ /* always align at least to paragraph (16byte) boundary
+ * hm... since the length is always in paragraphs, we cannot
+ * align outside of paragraphs anyway... so this check might
+ * be unnecessary...*/
+ if (align < 0x10) {
+ align = 0x10;
+ }
+ DEBUG_PRINTF_PMM("%s: align: 0x%x\n", __func__,
+ align);
+ if ((next_offset & (align - 1)) != 0) {
+ /* not yet aligned... align! */
+ next_offset += align;
+ next_offset &= ~(align - 1);
+ }
+ if ((next_offset + length) > 0xFFFF) {
+ rval = 0;
+ printf
+ ("%s: pmmAllocate: Not enough memory available for allocation!\n",
+ __func__);
+ goto exit;
+ }
+ curr_pmm_allocation_index++;
+ /* remember the values in pmm_allocation_array */
+ pmm_alloc->handle = handle;
+ pmm_alloc->offset = next_offset;
+ pmm_alloc->length = length;
+ /* return the 32bit "physical" address, i.e. combination of segment and offset */
+ rval = ((u32) (PMM_CONV_SEGMENT << 16)) | next_offset;
+ DEBUG_PRINTF_PMM
+ ("%s: pmmAllocate: allocated memory at %x\n",
+ __func__, rval);
+ } else {
+ rval = 0;
+ printf
+ ("%s: pmmAllocate: allocation in extended memory not supported!\n",
+ __func__);
+ }
+ goto exit;
+ case 1:
+ /* function pmmFind */
+ handle = pop_long(); /* the handle to lookup */
+ DEBUG_PRINTF_PMM("%s: pmmFind: Handle: %x\n", __func__,
+ handle);
+ i = 0;
+ for (i = 0; i < curr_pmm_allocation_index; i++) {
+ if (pmm_allocation_array[i].handle == handle) {
+ DEBUG_PRINTF_PMM
+ ("%s: pmmFind: found allocated memory at %x\n",
+ __func__, rval);
+ /* return the 32bit "physical" address, i.e. combination of segment and offset */
+ rval =
+ ((u32) (PMM_CONV_SEGMENT << 16)) |
+ pmm_allocation_array[i].offset;
+ }
+ }
+ if (rval == 0) {
+ DEBUG_PRINTF_PMM
+ ("%s: pmmFind: handle (%x) not found!\n",
+ __func__, handle);
+ }
+ goto exit;
+ case 2:
+ /* function pmmDeallocate */
+ buffer = pop_long();
+ /* since argument is the address of the PMM block (including the segment,
+ * we need to remove the segment to get the offset
+ */
+ buffer = buffer ^ ((u32) PMM_CONV_SEGMENT << 16);
+ DEBUG_PRINTF_PMM("%s: pmmDeallocate: PMM segment offset: %x\n",
+ __func__, buffer);
+ i = 0;
+ /* rval = 0 means we deallocated the buffer, so set it to 1 in case we dont find it and
+ * thus cannot deallocate
+ */
+ rval = 1;
+ for (i = 0; i < curr_pmm_allocation_index; i++) {
+ DEBUG_PRINTF_PMM("%d: %x\n", i,
+ pmm_allocation_array[i].handle);
+ if (pmm_allocation_array[i].offset == buffer) {
+ /* we found the requested buffer, rval = 0 */
+ rval = 0;
+ DEBUG_PRINTF_PMM
+ ("%s: pmmDeallocate: found allocated memory at index: %d\n",
+ __func__, i);
+ /* copy the remaining elements in pmm_allocation_array one position up */
+ j = i;
+ for (; j < curr_pmm_allocation_index; j++) {
+ pmm_allocation_array[j] =
+ pmm_allocation_array[j + 1];
+ }
+ /* move curr_pmm_allocation_index one up, too */
+ curr_pmm_allocation_index--;
+ /* finally clean last element */
+ pmm_allocation_array[curr_pmm_allocation_index].
+ handle = 0;
+ pmm_allocation_array[curr_pmm_allocation_index].
+ offset = 0;
+ pmm_allocation_array[curr_pmm_allocation_index].
+ length = 0;
+ break;
+ }
+ }
+ if (rval != 0) {
+ DEBUG_PRINTF_PMM
+ ("%s: pmmDeallocate: offset (%x) not found, cannot deallocate!\n",
+ __func__, buffer);
+ }
+ goto exit;
+ default:
+ /* invalid/unimplemented function */
+ printf("%s: invalid PMM function (0x%04x) called!\n",
+ __func__, function);
+ /* PMM spec says if function is invalid, return 0xFFFFFFFF */
+ rval = 0xFFFFFFFF;
+ goto exit;
+ }
+ exit:
+ /* exit handler of this function, restore registers, put return value in DX:AX */
+ M.x86 = backup_regs;
+ M.x86.R_DX = (u16) ((rval >> 16) & 0xFFFF);
+ M.x86.R_AX = (u16) (rval & 0xFFFF);
+ CHECK_DBG(DEBUG_PMM) {
+ DEBUG_PRINTF_PMM("%s: dump of pmm_allocation_array:\n",
+ __func__);
+ for (i = 0; i < MAX_PMM_AREAS; i++) {
+ DEBUG_PRINTF_PMM
+ ("%d:\n\thandle: %x\n\toffset: %x\n\tlength: %x\n",
+ i, pmm_allocation_array[i].handle,
+ pmm_allocation_array[i].offset,
+ pmm_allocation_array[i].length);
+ }
+ }
+ return;
+}
+
+/* This function tests the pmm_handleInt() function above. */
+void pmm_test(void)
+{
+ u32 handle, length, addr;
+ u16 function, flags;
+ /*-------------------- Test simple allocation/find/deallocation ----------------------------- */
+ function = 0; /* pmmAllocate */
+ handle = 0xdeadbeef;
+ length = 16; /* in 16byte paragraphs, so we allocate 256 bytes... */
+ flags = 0x1; /* conventional memory, unaligned */
+ /* setup stack for call to pmm_handleInt() */
+ push_word(flags);
+ push_long(handle);
+ push_long(length);
+ push_word(function);
+ push_long(0); /* This is the return address for the ABI, unused in this implementation */
+ pmm_handleInt();
+ addr = ((u32) M.x86.R_DX << 16) | M.x86.R_AX;
+ DEBUG_PRINTF_PMM("%s: allocated memory at: %04x:%04x\n", __func__,
+ M.x86.R_DX, M.x86.R_AX);
+ function = 1; /* pmmFind */
+ push_long(handle);
+ push_word(function);
+ push_long(0); /* This is the return address for the ABI, unused in this implementation */
+ pmm_handleInt();
+ DEBUG_PRINTF_PMM("%s: found memory at: %04x:%04x (expected: %08x)\n",
+ __func__, M.x86.R_DX, M.x86.R_AX, addr);
+ function = 2; /* pmmDeallocate */
+ push_long(addr);
+ push_word(function);
+ push_long(0); /* This is the return address for the ABI, unused in this implementation */
+ pmm_handleInt();
+ DEBUG_PRINTF_PMM
+ ("%s: freed memory rval: %04x:%04x (expected: 0000:0000)\n",
+ __func__, M.x86.R_DX, M.x86.R_AX);
+ /*-------------------- Test aligned allocation/deallocation ----------------------------- */
+ function = 0; /* pmmAllocate */
+ handle = 0xdeadbeef;
+ length = 257; /* in 16byte paragraphs, so we allocate 4KB + 16 bytes... */
+ flags = 0x1; /* conventional memory, unaligned */
+ /* setup stack for call to pmm_handleInt() */
+ push_word(flags);
+ push_long(handle);
+ push_long(length);
+ push_word(function);
+ push_long(0); /* This is the return address for the ABI, unused in this implementation */
+ pmm_handleInt();
+ addr = ((u32) M.x86.R_DX << 16) | M.x86.R_AX;
+ DEBUG_PRINTF_PMM("%s: allocated memory at: %04x:%04x\n", __func__,
+ M.x86.R_DX, M.x86.R_AX);
+ function = 0; /* pmmAllocate */
+ handle = 0xf00d4b0b;
+ length = 128; /* in 16byte paragraphs, so we allocate 2KB... */
+ flags = 0x5; /* conventional memory, aligned */
+ /* setup stack for call to pmm_handleInt() */
+ push_word(flags);
+ push_long(handle);
+ push_long(length);
+ push_word(function);
+ push_long(0); /* This is the return address for the ABI, unused in this implementation */
+ pmm_handleInt();
+ /* the address should be aligned to 0x800, so probably it is at offset 0x1800... */
+ addr = ((u32) M.x86.R_DX << 16) | M.x86.R_AX;
+ DEBUG_PRINTF_PMM("%s: allocated memory at: %04x:%04x\n", __func__,
+ M.x86.R_DX, M.x86.R_AX);
+ function = 1; /* pmmFind */
+ push_long(handle);
+ push_word(function);
+ push_long(0); /* This is the return address for the ABI, unused in this implementation */
+ pmm_handleInt();
+ addr = ((u32) M.x86.R_DX << 16) | M.x86.R_AX;
+ function = 2; /* pmmDeallocate */
+ push_long(addr);
+ push_word(function);
+ push_long(0); /* This is the return address for the ABI, unused in this implementation */
+ pmm_handleInt();
+ DEBUG_PRINTF_PMM
+ ("%s: freed memory rval: %04x:%04x (expected: 0000:0000)\n",
+ __func__, M.x86.R_DX, M.x86.R_AX);
+ handle = 0xdeadbeef;
+ function = 1; /* pmmFind */
+ push_long(handle);
+ push_word(function);
+ push_long(0); /* This is the return address for the ABI, unused in this implementation */
+ pmm_handleInt();
+ addr = ((u32) M.x86.R_DX << 16) | M.x86.R_AX;
+ function = 2; /* pmmDeallocate */
+ push_long(addr);
+ push_word(function);
+ push_long(0); /* This is the return address for the ABI, unused in this implementation */
+ pmm_handleInt();
+ DEBUG_PRINTF_PMM
+ ("%s: freed memory rval: %04x:%04x (expected: 0000:0000)\n",
+ __func__, M.x86.R_DX, M.x86.R_AX);
+ /*-------------------- Test out of memory allocation ----------------------------- */
+ function = 0; /* pmmAllocate */
+ handle = 0xdeadbeef;
+ length = 0; /* length zero means, give me the largest possible block */
+ flags = 0x1; /* conventional memory, unaligned */
+ /* setup stack for call to pmm_handleInt() */
+ push_word(flags);
+ push_long(handle);
+ push_long(length);
+ push_word(function);
+ push_long(0); /* This is the return address for the ABI, unused in this implementation */
+ pmm_handleInt();
+ length = ((u32) M.x86.R_DX << 16) | M.x86.R_AX;
+ length /= 16; /* length in paragraphs */
+ DEBUG_PRINTF_PMM("%s: largest possible length: %08x\n", __func__,
+ length);
+ function = 0; /* pmmAllocate */
+ flags = 0x1; /* conventional memory, aligned */
+ /* setup stack for call to pmm_handleInt() */
+ push_word(flags);
+ push_long(handle);
+ push_long(length);
+ push_word(function);
+ push_long(0); /* This is the return address for the ABI, unused in this implementation */
+ pmm_handleInt();
+ addr = ((u32) M.x86.R_DX << 16) | M.x86.R_AX;
+ DEBUG_PRINTF_PMM("%s: allocated memory at: %04x:%04x\n", __func__,
+ M.x86.R_DX, M.x86.R_AX);
+ function = 0; /* pmmAllocate */
+ length = 1;
+ handle = 0xf00d4b0b;
+ flags = 0x1; /* conventional memory, aligned */
+ /* setup stack for call to pmm_handleInt() */
+ push_word(flags);
+ push_long(handle);
+ push_long(length);
+ push_word(function);
+ push_long(0); /* This is the return address for the ABI, unused in this implementation */
+ pmm_handleInt();
+ /* this should fail, so 0x0 should be returned */
+ addr = ((u32) M.x86.R_DX << 16) | M.x86.R_AX;
+ DEBUG_PRINTF_PMM
+ ("%s: allocated memory at: %04x:%04x expected: 0000:0000\n",
+ __func__, M.x86.R_DX, M.x86.R_AX);
+ handle = 0xdeadbeef;
+ function = 1; /* pmmFind */
+ push_long(handle);
+ push_word(function);
+ push_long(0); /* This is the return address for the ABI, unused in this implementation */
+ pmm_handleInt();
+ addr = ((u32) M.x86.R_DX << 16) | M.x86.R_AX;
+ function = 2; /* pmmDeallocate */
+ push_long(addr);
+ push_word(function);
+ push_long(0); /* This is the return address for the ABI, unused in this implementation */
+ pmm_handleInt();
+ DEBUG_PRINTF_PMM
+ ("%s: freed memory rval: %04x:%04x (expected: 0000:0000)\n",
+ __func__, M.x86.R_DX, M.x86.R_AX);
+}
diff --git a/src/devices/oprom/yabel/pmm.h b/src/devices/oprom/yabel/pmm.h
new file mode 100644
index 0000000000..95645dffdc
--- /dev/null
+++ b/src/devices/oprom/yabel/pmm.h
@@ -0,0 +1,46 @@
+/****************************************************************************
+ * YABEL BIOS Emulator
+ *
+ * This program and the accompanying materials
+ * are made available under the terms of the BSD License
+ * which accompanies this distribution, and is available at
+ * http://www.opensource.org/licenses/bsd-license.php
+ *
+ * Copyright (c) 2008 Pattrick Hueper <phueper@hueper.net>
+ ****************************************************************************/
+
+#ifndef _YABEL_PMM_H_
+#define _YABEL_PMM_H_
+
+#include <types.h>
+
+/* PMM Structure see PMM Spec Version 1.01 Chapter 3.1.1
+ * (search web for specspmm101.pdf)
+ */
+typedef struct {
+ u8 signature[4];
+ u8 struct_rev;
+ u8 length;
+ u8 checksum;
+ u32 entry_point_offset;
+ u8 reserved[5];
+ /* Code is not part of the speced PMM struct, however, since I cannot
+ * put the handling of PMM in the virtual memory (I dont want to hack it
+ * together in x86 assembly ;-)) this code array is pointed to by
+ * entry_point_offset, in code there is only a INT call and a RETF,
+ * thus every PMM call will issue a PMM INT (only defined in YABEL,
+ * see interrupt.c) and the INT Handler will do the actual PMM work.
+ */
+ u8 code[3];
+} __attribute__ ((__packed__)) pmm_information_t;
+
+/* This function is used to setup the PMM struct in virtual memory
+ * at a certain offset */
+u8 pmm_setup(u16 segment, u16 offset);
+
+/* This is the INT Handler mentioned above, called by my special PMM INT. */
+void pmm_handleInt(void);
+
+void pmm_test(void);
+
+#endif // _YABEL_PMM_H
diff --git a/src/devices/oprom/yabel/vbe.c b/src/devices/oprom/yabel/vbe.c
new file mode 100644
index 0000000000..6326a9c214
--- /dev/null
+++ b/src/devices/oprom/yabel/vbe.c
@@ -0,0 +1,852 @@
+/******************************************************************************
+ * Copyright (c) 2004, 2008 IBM Corporation
+ * Copyright (c) 2009 Pattrick Hueper <phueper@hueper.net>
+ * All rights reserved.
+ * This program and the accompanying materials
+ * are made available under the terms of the BSD License
+ * which accompanies this distribution, and is available at
+ * http://www.opensource.org/licenses/bsd-license.php
+ *
+ * Contributors:
+ * IBM Corporation - initial implementation
+ *****************************************************************************/
+
+#include <string.h>
+#include <types.h>
+#if CONFIG_BOOTSPLASH
+#include <boot/coreboot_tables.h>
+#endif
+
+#include <arch/byteorder.h>
+#define ntohl(x) be32_to_cpu(x)
+
+#include "debug.h"
+
+#include <x86emu/x86emu.h>
+#include <x86emu/regs.h>
+#include "../x86emu/prim_ops.h"
+
+#include "biosemu.h"
+#include "io.h"
+#include "mem.h"
+#include "interrupt.h"
+#include "device.h"
+
+#include <cbfs.h>
+
+#include <delay.h>
+#include "../../src/lib/jpeg.h"
+
+// pointer to VBEInfoBuffer, set by vbe_prepare
+u8 *vbe_info_buffer = 0;
+
+// virtual BIOS Memory
+u8 *biosmem;
+u32 biosmem_size;
+
+// these structs are for input from and output to OF
+typedef struct {
+ u8 display_type; // 0=NONE, 1= analog, 2=digital
+ u16 screen_width;
+ u16 screen_height;
+ u16 screen_linebytes; // bytes per line in framebuffer, may be more than screen_width
+ u8 color_depth; // color depth in bpp
+ u32 framebuffer_address;
+ u8 edid_block_zero[128];
+} __attribute__ ((__packed__)) screen_info_t;
+
+typedef struct {
+ u8 signature[4];
+ u16 size_reserved;
+ u8 monitor_number;
+ u16 max_screen_width;
+ u8 color_depth;
+} __attribute__ ((__packed__)) screen_info_input_t;
+
+// these structs only store a subset of the VBE defined fields
+// only those needed.
+typedef struct {
+ char signature[4];
+ u16 version;
+ u8 *oem_string_ptr;
+ u32 capabilities;
+ u16 video_mode_list[256]; // lets hope we never have more than 256 video modes...
+ u16 total_memory;
+} vbe_info_t;
+
+typedef struct {
+ u16 mode_attributes; // 00
+ u8 win_a_attributes; // 02
+ u8 win_b_attributes; // 03
+ u16 win_granularity; // 04
+ u16 win_size; // 06
+ u16 win_a_segment; // 08
+ u16 win_b_segment; // 0a
+ u32 win_func_ptr; // 0c
+ u16 bytes_per_scanline; // 10
+ u16 x_resolution; // 12
+ u16 y_resolution; // 14
+ u8 x_charsize; // 16
+ u8 y_charsize; // 17
+ u8 number_of_planes; // 18
+ u8 bits_per_pixel; // 19
+ u8 number_of_banks; // 20
+ u8 memory_model; // 21
+ u8 bank_size; // 22
+ u8 number_of_image_pages; // 23
+ u8 reserved_page;
+ u8 red_mask_size;
+ u8 red_mask_pos;
+ u8 green_mask_size;
+ u8 green_mask_pos;
+ u8 blue_mask_size;
+ u8 blue_mask_pos;
+ u8 reserved_mask_size;
+ u8 reserved_mask_pos;
+ u8 direct_color_mode_info;
+ u32 phys_base_ptr;
+ u32 offscreen_mem_offset;
+ u16 offscreen_mem_size;
+ u8 reserved[206];
+} __attribute__ ((__packed__)) vesa_mode_info_t;
+
+typedef struct {
+ u16 video_mode;
+ union {
+ vesa_mode_info_t vesa;
+ u8 mode_info_block[256];
+ };
+ // our crap
+ //u16 attributes;
+ //u16 linebytes;
+ //u16 x_resolution;
+ //u16 y_resolution;
+ //u8 x_charsize;
+ //u8 y_charsize;
+ //u8 bits_per_pixel;
+ //u8 memory_model;
+ //u32 framebuffer_address;
+} vbe_mode_info_t;
+
+typedef struct {
+ u8 port_number; // i.e. monitor number
+ u8 edid_transfer_time;
+ u8 ddc_level;
+ u8 edid_block_zero[128];
+} vbe_ddc_info_t;
+
+static inline u8
+vbe_prepare(void)
+{
+ vbe_info_buffer = biosmem + (VBE_SEGMENT << 4); // segment:offset off VBE Data Area
+ //clear buffer
+ memset(vbe_info_buffer, 0, 512);
+ //set VbeSignature to "VBE2" to indicate VBE 2.0+ request
+ vbe_info_buffer[0] = 'V';
+ vbe_info_buffer[0] = 'B';
+ vbe_info_buffer[0] = 'E';
+ vbe_info_buffer[0] = '2';
+ // ES:DI store pointer to buffer in virtual mem see vbe_info_buffer above...
+ M.x86.R_EDI = 0x0;
+ M.x86.R_ES = VBE_SEGMENT;
+
+ return 0; // successfull init
+}
+
+// VBE Function 00h
+static u8
+vbe_info(vbe_info_t * info)
+{
+ vbe_prepare();
+ // call VBE function 00h (Info Function)
+ M.x86.R_EAX = 0x4f00;
+
+ // enable trace
+ CHECK_DBG(DEBUG_TRACE_X86EMU) {
+ X86EMU_trace_on();
+ }
+ // run VESA Interrupt
+ runInt10();
+
+ if (M.x86.R_AL != 0x4f) {
+ DEBUG_PRINTF_VBE("%s: VBE Info Function NOT supported! AL=%x\n",
+ __func__, M.x86.R_AL);
+ return -1;
+ }
+
+ if (M.x86.R_AH != 0x0) {
+ DEBUG_PRINTF_VBE
+ ("%s: VBE Info Function Return Code NOT OK! AH=%x\n",
+ __func__, M.x86.R_AH);
+ return M.x86.R_AH;
+ }
+ //printf("VBE Info Dump:");
+ //dump(vbe_info_buffer, 64);
+
+ //offset 0: signature
+ info->signature[0] = vbe_info_buffer[0];
+ info->signature[1] = vbe_info_buffer[1];
+ info->signature[2] = vbe_info_buffer[2];
+ info->signature[3] = vbe_info_buffer[3];
+
+ // offset 4: 16bit le containing VbeVersion
+ info->version = in16le(vbe_info_buffer + 4);
+
+ // offset 6: 32bit le containg segment:offset of OEM String in virtual Mem.
+ info->oem_string_ptr =
+ biosmem + ((in16le(vbe_info_buffer + 8) << 4) +
+ in16le(vbe_info_buffer + 6));
+
+ // offset 10: 32bit le capabilities
+ info->capabilities = in32le(vbe_info_buffer + 10);
+
+ // offset 14: 32 bit le containing segment:offset of supported video mode table
+ u16 *video_mode_ptr;
+ video_mode_ptr =
+ (u16 *) (biosmem +
+ ((in16le(vbe_info_buffer + 16) << 4) +
+ in16le(vbe_info_buffer + 14)));
+ u32 i = 0;
+ do {
+ info->video_mode_list[i] = in16le(video_mode_ptr + i);
+ i++;
+ }
+ while ((i <
+ (sizeof(info->video_mode_list) /
+ sizeof(info->video_mode_list[0])))
+ && (info->video_mode_list[i - 1] != 0xFFFF));
+
+ //offset 18: 16bit le total memory in 64KB blocks
+ info->total_memory = in16le(vbe_info_buffer + 18);
+
+ return 0;
+}
+
+// VBE Function 01h
+static u8
+vbe_get_mode_info(vbe_mode_info_t * mode_info)
+{
+ vbe_prepare();
+ // call VBE function 01h (Return VBE Mode Info Function)
+ M.x86.R_EAX = 0x4f01;
+ M.x86.R_CX = mode_info->video_mode;
+
+ // enable trace
+ CHECK_DBG(DEBUG_TRACE_X86EMU) {
+ X86EMU_trace_on();
+ }
+ // run VESA Interrupt
+ runInt10();
+
+ if (M.x86.R_AL != 0x4f) {
+ DEBUG_PRINTF_VBE
+ ("%s: VBE Return Mode Info Function NOT supported! AL=%x\n",
+ __func__, M.x86.R_AL);
+ return -1;
+ }
+
+ if (M.x86.R_AH != 0x0) {
+ DEBUG_PRINTF_VBE
+ ("%s: VBE Return Mode Info (mode: %04x) Function Return Code NOT OK! AH=%02x\n",
+ __func__, mode_info->video_mode, M.x86.R_AH);
+ return M.x86.R_AH;
+ }
+
+ //pointer to mode_info_block is in ES:DI
+ memcpy(mode_info->mode_info_block,
+ biosmem + ((M.x86.R_ES << 4) + M.x86.R_DI),
+ sizeof(mode_info->mode_info_block));
+
+ //printf("Mode Info Dump:");
+ //dump(mode_info_block, 64);
+
+ return 0;
+}
+
+// VBE Function 02h
+static u8
+vbe_set_mode(vbe_mode_info_t * mode_info)
+{
+ vbe_prepare();
+ // call VBE function 02h (Set VBE Mode Function)
+ M.x86.R_EAX = 0x4f02;
+ M.x86.R_BX = mode_info->video_mode;
+ M.x86.R_BX |= 0x4000; // set bit 14 to request linear framebuffer mode
+ M.x86.R_BX &= 0x7FFF; // clear bit 15 to request clearing of framebuffer
+
+ DEBUG_PRINTF_VBE("%s: setting mode: 0x%04x\n", __func__,
+ M.x86.R_BX);
+
+ // enable trace
+ CHECK_DBG(DEBUG_TRACE_X86EMU) {
+ X86EMU_trace_on();
+ }
+ // run VESA Interrupt
+ runInt10();
+
+ if (M.x86.R_AL != 0x4f) {
+ DEBUG_PRINTF_VBE
+ ("%s: VBE Set Mode Function NOT supported! AL=%x\n",
+ __func__, M.x86.R_AL);
+ return -1;
+ }
+
+ if (M.x86.R_AH != 0x0) {
+ DEBUG_PRINTF_VBE
+ ("%s: mode: %x VBE Set Mode Function Return Code NOT OK! AH=%x\n",
+ __func__, mode_info->video_mode, M.x86.R_AH);
+ return M.x86.R_AH;
+ }
+ return 0;
+}
+
+//VBE Function 08h
+static u8
+vbe_set_palette_format(u8 format)
+{
+ vbe_prepare();
+ // call VBE function 09h (Set/Get Palette Data Function)
+ M.x86.R_EAX = 0x4f08;
+ M.x86.R_BL = 0x00; // set format
+ M.x86.R_BH = format;
+
+ DEBUG_PRINTF_VBE("%s: setting palette format: %d\n", __func__,
+ format);
+
+ // enable trace
+ CHECK_DBG(DEBUG_TRACE_X86EMU) {
+ X86EMU_trace_on();
+ }
+ // run VESA Interrupt
+ runInt10();
+
+ if (M.x86.R_AL != 0x4f) {
+ DEBUG_PRINTF_VBE
+ ("%s: VBE Set Palette Format Function NOT supported! AL=%x\n",
+ __func__, M.x86.R_AL);
+ return -1;
+ }
+
+ if (M.x86.R_AH != 0x0) {
+ DEBUG_PRINTF_VBE
+ ("%s: VBE Set Palette Format Function Return Code NOT OK! AH=%x\n",
+ __func__, M.x86.R_AH);
+ return M.x86.R_AH;
+ }
+ return 0;
+}
+
+// VBE Function 09h
+static u8
+vbe_set_color(u16 color_number, u32 color_value)
+{
+ vbe_prepare();
+ // call VBE function 09h (Set/Get Palette Data Function)
+ M.x86.R_EAX = 0x4f09;
+ M.x86.R_BL = 0x00; // set color
+ M.x86.R_CX = 0x01; // set only one entry
+ M.x86.R_DX = color_number;
+ // ES:DI is address where color_value is stored, we store it at 2000:0000
+ M.x86.R_ES = 0x2000;
+ M.x86.R_DI = 0x0;
+
+ // store color value at ES:DI
+ out32le(biosmem + (M.x86.R_ES << 4) + M.x86.R_DI, color_value);
+
+ DEBUG_PRINTF_VBE("%s: setting color #%x: 0x%04x\n", __func__,
+ color_number, color_value);
+
+ // enable trace
+ CHECK_DBG(DEBUG_TRACE_X86EMU) {
+ X86EMU_trace_on();
+ }
+ // run VESA Interrupt
+ runInt10();
+
+ if (M.x86.R_AL != 0x4f) {
+ DEBUG_PRINTF_VBE
+ ("%s: VBE Set Palette Function NOT supported! AL=%x\n",
+ __func__, M.x86.R_AL);
+ return -1;
+ }
+
+ if (M.x86.R_AH != 0x0) {
+ DEBUG_PRINTF_VBE
+ ("%s: VBE Set Palette Function Return Code NOT OK! AH=%x\n",
+ __func__, M.x86.R_AH);
+ return M.x86.R_AH;
+ }
+ return 0;
+}
+
+static u8
+vbe_get_color(u16 color_number, u32 * color_value)
+{
+ vbe_prepare();
+ // call VBE function 09h (Set/Get Palette Data Function)
+ M.x86.R_EAX = 0x4f09;
+ M.x86.R_BL = 0x00; // get color
+ M.x86.R_CX = 0x01; // get only one entry
+ M.x86.R_DX = color_number;
+ // ES:DI is address where color_value is stored, we store it at 2000:0000
+ M.x86.R_ES = 0x2000;
+ M.x86.R_DI = 0x0;
+
+ // enable trace
+ CHECK_DBG(DEBUG_TRACE_X86EMU) {
+ X86EMU_trace_on();
+ }
+ // run VESA Interrupt
+ runInt10();
+
+ if (M.x86.R_AL != 0x4f) {
+ DEBUG_PRINTF_VBE
+ ("%s: VBE Set Palette Function NOT supported! AL=%x\n",
+ __func__, M.x86.R_AL);
+ return -1;
+ }
+
+ if (M.x86.R_AH != 0x0) {
+ DEBUG_PRINTF_VBE
+ ("%s: VBE Set Palette Function Return Code NOT OK! AH=%x\n",
+ __func__, M.x86.R_AH);
+ return M.x86.R_AH;
+ }
+ // read color value from ES:DI
+ *color_value = in32le(biosmem + (M.x86.R_ES << 4) + M.x86.R_DI);
+
+ DEBUG_PRINTF_VBE("%s: getting color #%x --> 0x%04x\n", __func__,
+ color_number, *color_value);
+
+ return 0;
+}
+
+// VBE Function 15h
+static u8
+vbe_get_ddc_info(vbe_ddc_info_t * ddc_info)
+{
+ vbe_prepare();
+ // call VBE function 15h (DDC Info Function)
+ M.x86.R_EAX = 0x4f15;
+ M.x86.R_BL = 0x00; // get DDC Info
+ M.x86.R_CX = ddc_info->port_number;
+ M.x86.R_ES = 0x0;
+ M.x86.R_DI = 0x0;
+
+ // enable trace
+ CHECK_DBG(DEBUG_TRACE_X86EMU) {
+ X86EMU_trace_on();
+ }
+ // run VESA Interrupt
+ runInt10();
+
+ if (M.x86.R_AL != 0x4f) {
+ DEBUG_PRINTF_VBE
+ ("%s: VBE Get DDC Info Function NOT supported! AL=%x\n",
+ __func__, M.x86.R_AL);
+ return -1;
+ }
+
+ if (M.x86.R_AH != 0x0) {
+ DEBUG_PRINTF_VBE
+ ("%s: port: %x VBE Get DDC Info Function Return Code NOT OK! AH=%x\n",
+ __func__, ddc_info->port_number, M.x86.R_AH);
+ return M.x86.R_AH;
+ }
+ // BH = approx. time in seconds to transfer one EDID block
+ ddc_info->edid_transfer_time = M.x86.R_BH;
+ // BL = DDC Level
+ ddc_info->ddc_level = M.x86.R_BL;
+
+ vbe_prepare();
+ // call VBE function 15h (DDC Info Function)
+ M.x86.R_EAX = 0x4f15;
+ M.x86.R_BL = 0x01; // read EDID
+ M.x86.R_CX = ddc_info->port_number;
+ M.x86.R_DX = 0x0; // block number
+ // ES:DI is address where EDID is stored, we store it at 2000:0000
+ M.x86.R_ES = 0x2000;
+ M.x86.R_DI = 0x0;
+
+ // enable trace
+ CHECK_DBG(DEBUG_TRACE_X86EMU) {
+ X86EMU_trace_on();
+ }
+ // run VESA Interrupt
+ runInt10();
+
+ if (M.x86.R_AL != 0x4f) {
+ DEBUG_PRINTF_VBE
+ ("%s: VBE Read EDID Function NOT supported! AL=%x\n",
+ __func__, M.x86.R_AL);
+ return -1;
+ }
+
+ if (M.x86.R_AH != 0x0) {
+ DEBUG_PRINTF_VBE
+ ("%s: port: %x VBE Read EDID Function Return Code NOT OK! AH=%x\n",
+ __func__, ddc_info->port_number, M.x86.R_AH);
+ return M.x86.R_AH;
+ }
+
+ memcpy(ddc_info->edid_block_zero,
+ biosmem + (M.x86.R_ES << 4) + M.x86.R_DI,
+ sizeof(ddc_info->edid_block_zero));
+
+ return 0;
+}
+
+static u32
+vbe_get_info(void)
+{
+ u8 rval;
+ int i;
+
+ // XXX FIXME these need to be filled with sane values
+
+ // get a copy of input struct...
+ screen_info_input_t input;
+ // output is pointer to the address passed as argv[4]
+ screen_info_t local_output;
+ screen_info_t *output = &local_output;
+ // zero input
+ memset(&input, 0, sizeof(screen_info_input_t));
+ // zero output
+ memset(&output, 0, sizeof(screen_info_t));
+
+ vbe_info_t info;
+ rval = vbe_info(&info);
+ if (rval != 0)
+ return rval;
+
+ DEBUG_PRINTF_VBE("VbeSignature: %s\n", info.signature);
+ DEBUG_PRINTF_VBE("VbeVersion: 0x%04x\n", info.version);
+ DEBUG_PRINTF_VBE("OemString: %s\n", info.oem_string_ptr);
+ DEBUG_PRINTF_VBE("Capabilities:\n");
+ DEBUG_PRINTF_VBE("\tDAC: %s\n",
+ (info.capabilities & 0x1) ==
+ 0 ? "fixed 6bit" : "switchable 6/8bit");
+ DEBUG_PRINTF_VBE("\tVGA: %s\n",
+ (info.capabilities & 0x2) ==
+ 0 ? "compatible" : "not compatible");
+ DEBUG_PRINTF_VBE("\tRAMDAC: %s\n",
+ (info.capabilities & 0x4) ==
+ 0 ? "normal" : "use blank bit in Function 09h");
+
+ // argv[4] may be a pointer with enough space to return screen_info_t
+ // as input, it must contain a screen_info_input_t with the following content:
+ // byte[0:3] = "DDC\0" (zero-terminated signature header)
+ // byte[4:5] = reserved space for the return struct... just in case we ever change
+ // the struct and dont have reserved enough memory (and let's hope the struct
+ // never gets larger than 64KB)
+ // byte[6] = monitor port number for DDC requests ("only" one byte... so lets hope we never have more than 255 monitors...
+ // byte[7:8] = max. screen width (OF may want to limit this)
+ // byte[9] = required color depth in bpp
+ if (strncmp((char *) input.signature, "DDC", 4) != 0) {
+ printf
+ ("%s: Invalid input signature! expected: %s, is: %s\n",
+ __func__, "DDC", input.signature);
+ return -1;
+ }
+ if (input.size_reserved != sizeof(screen_info_t)) {
+ printf
+ ("%s: Size of return struct is wrong, required: %d, available: %d\n",
+ __func__, (int) sizeof(screen_info_t),
+ input.size_reserved);
+ return -1;
+ }
+
+ vbe_ddc_info_t ddc_info;
+ ddc_info.port_number = input.monitor_number;
+ vbe_get_ddc_info(&ddc_info);
+
+#if 0
+ DEBUG_PRINTF_VBE("DDC: edid_tranfer_time: %d\n",
+ ddc_info.edid_transfer_time);
+ DEBUG_PRINTF_VBE("DDC: ddc_level: %x\n", ddc_info.ddc_level);
+ DEBUG_PRINTF_VBE("DDC: EDID: \n");
+ CHECK_DBG(DEBUG_VBE) {
+ dump(ddc_info.edid_block_zero,
+ sizeof(ddc_info.edid_block_zero));
+ }
+#endif
+/* This could fail because of alignment issues, so use a longer form.
+ *((u64 *) ddc_info.edid_block_zero) != (u64) 0x00FFFFFFFFFFFF00ULL
+*/
+ if (ddc_info.edid_block_zero[0] != 0x00 ||
+ ddc_info.edid_block_zero[1] != 0xFF ||
+ ddc_info.edid_block_zero[2] != 0xFF ||
+ ddc_info.edid_block_zero[3] != 0xFF ||
+ ddc_info.edid_block_zero[4] != 0xFF ||
+ ddc_info.edid_block_zero[5] != 0xFF ||
+ ddc_info.edid_block_zero[6] != 0xFF ||
+ ddc_info.edid_block_zero[7] != 0x00 ) {
+ // invalid EDID signature... probably no monitor
+
+ output->display_type = 0x0;
+ return 0;
+ } else if ((ddc_info.edid_block_zero[20] & 0x80) != 0) {
+ // digital display
+ output->display_type = 2;
+ } else {
+ // analog
+ output->display_type = 1;
+ }
+ DEBUG_PRINTF_VBE("DDC: found display type %d\n", output->display_type);
+ memcpy(output->edid_block_zero, ddc_info.edid_block_zero,
+ sizeof(ddc_info.edid_block_zero));
+ i = 0;
+ vbe_mode_info_t mode_info;
+ vbe_mode_info_t best_mode_info;
+ // initialize best_mode to 0
+ memset(&best_mode_info, 0, sizeof(best_mode_info));
+ while ((mode_info.video_mode = info.video_mode_list[i]) != 0xFFFF) {
+ //DEBUG_PRINTF_VBE("%x: Mode: %04x\n", i, mode_info.video_mode);
+ vbe_get_mode_info(&mode_info);
+
+ // FIXME all these values are little endian!
+
+ DEBUG_PRINTF_VBE("Video Mode 0x%04x available, %s\n",
+ mode_info.video_mode,
+ (le16_to_cpu(mode_info.vesa.mode_attributes) & 0x1) ==
+ 0 ? "not supported" : "supported");
+ DEBUG_PRINTF_VBE("\tTTY: %s\n",
+ (le16_to_cpu(mode_info.vesa.mode_attributes) & 0x4) ==
+ 0 ? "no" : "yes");
+ DEBUG_PRINTF_VBE("\tMode: %s %s\n",
+ (le16_to_cpu(mode_info.vesa.mode_attributes) & 0x8) ==
+ 0 ? "monochrome" : "color",
+ (le16_to_cpu(mode_info.vesa.mode_attributes) & 0x10) ==
+ 0 ? "text" : "graphics");
+ DEBUG_PRINTF_VBE("\tVGA: %s\n",
+ (le16_to_cpu(mode_info.vesa.mode_attributes) & 0x20) ==
+ 0 ? "compatible" : "not compatible");
+ DEBUG_PRINTF_VBE("\tWindowed Mode: %s\n",
+ (le16_to_cpu(mode_info.vesa.mode_attributes) & 0x40) ==
+ 0 ? "yes" : "no");
+ DEBUG_PRINTF_VBE("\tFramebuffer: %s\n",
+ (le16_to_cpu(mode_info.vesa.mode_attributes) & 0x80) ==
+ 0 ? "no" : "yes");
+ DEBUG_PRINTF_VBE("\tResolution: %dx%d\n",
+ le16_to_cpu(mode_info.vesa.x_resolution),
+ le16_to_cpu(mode_info.vesa.y_resolution));
+ DEBUG_PRINTF_VBE("\tChar Size: %dx%d\n",
+ mode_info.vesa.x_charsize, mode_info.vesa.y_charsize);
+ DEBUG_PRINTF_VBE("\tColor Depth: %dbpp\n",
+ mode_info.vesa.bits_per_pixel);
+ DEBUG_PRINTF_VBE("\tMemory Model: 0x%x\n",
+ mode_info.vesa.memory_model);
+ DEBUG_PRINTF_VBE("\tFramebuffer Offset: %08x\n",
+ le32_to_cpu(mode_info.vesa.phys_base_ptr));
+
+ if ((mode_info.vesa.bits_per_pixel == input.color_depth)
+ && (le16_to_cpu(mode_info.vesa.x_resolution) <= input.max_screen_width)
+ && ((le16_to_cpu(mode_info.vesa.mode_attributes) & 0x80) != 0) // framebuffer mode
+ && ((le16_to_cpu(mode_info.vesa.mode_attributes) & 0x10) != 0) // graphics
+ && ((le16_to_cpu(mode_info.vesa.mode_attributes) & 0x8) != 0) // color
+ && (le16_to_cpu(mode_info.vesa.x_resolution) > le16_to_cpu(best_mode_info.vesa.x_resolution))) // better than previous best_mode
+ {
+ // yiiiihaah... we found a new best mode
+ memcpy(&best_mode_info, &mode_info, sizeof(mode_info));
+ }
+ i++;
+ }
+
+ if (best_mode_info.video_mode != 0) {
+ DEBUG_PRINTF_VBE
+ ("Best Video Mode found: 0x%x, %dx%d, %dbpp, framebuffer_address: 0x%x\n",
+ best_mode_info.video_mode,
+ best_mode_info.vesa.x_resolution,
+ best_mode_info.vesa.y_resolution,
+ best_mode_info.vesa.bits_per_pixel,
+ le32_to_cpu(best_mode_info.vesa.phys_base_ptr));
+
+ //printf("Mode Info Dump:");
+ //dump(best_mode_info.mode_info_block, 64);
+
+ // set the video mode
+ vbe_set_mode(&best_mode_info);
+
+ if ((info.capabilities & 0x1) != 0) {
+ // switch to 8 bit palette format
+ vbe_set_palette_format(8);
+ }
+ // setup a palette:
+ // - first 216 colors are mixed colors for each component in 6 steps
+ // (6*6*6=216)
+ // - then 10 shades of the three primary colors
+ // - then 10 shades of grey
+ // -------
+ // = 256 colors
+ //
+ // - finally black is color 0 and white color FF (because SLOF expects it
+ // this way...)
+ // this resembles the palette that the kernel/X Server seems to expect...
+
+ u8 mixed_color_values[6] =
+ { 0xFF, 0xDA, 0xB3, 0x87, 0x54, 0x00 };
+ u8 primary_color_values[10] =
+ { 0xF3, 0xE7, 0xCD, 0xC0, 0xA5, 0x96, 0x77, 0x66, 0x3F,
+ 0x27
+ };
+ u8 mc_size = sizeof(mixed_color_values);
+ u8 prim_size = sizeof(primary_color_values);
+
+ u8 curr_color_index;
+ u32 curr_color;
+
+ u8 r, g, b;
+ // 216 mixed colors
+ for (r = 0; r < mc_size; r++) {
+ for (g = 0; g < mc_size; g++) {
+ for (b = 0; b < mc_size; b++) {
+ curr_color_index =
+ (r * mc_size * mc_size) +
+ (g * mc_size) + b;
+ curr_color = 0;
+ curr_color |= ((u32) mixed_color_values[r]) << 16; //red value
+ curr_color |= ((u32) mixed_color_values[g]) << 8; //green value
+ curr_color |= (u32) mixed_color_values[b]; //blue value
+ vbe_set_color(curr_color_index,
+ curr_color);
+ }
+ }
+ }
+
+ // 10 shades of each primary color
+ // red
+ for (r = 0; r < prim_size; r++) {
+ curr_color_index = mc_size * mc_size * mc_size + r;
+ curr_color = ((u32) primary_color_values[r]) << 16;
+ vbe_set_color(curr_color_index, curr_color);
+ }
+ //green
+ for (g = 0; g < prim_size; g++) {
+ curr_color_index =
+ mc_size * mc_size * mc_size + prim_size + g;
+ curr_color = ((u32) primary_color_values[g]) << 8;
+ vbe_set_color(curr_color_index, curr_color);
+ }
+ //blue
+ for (b = 0; b < prim_size; b++) {
+ curr_color_index =
+ mc_size * mc_size * mc_size + prim_size * 2 + b;
+ curr_color = (u32) primary_color_values[b];
+ vbe_set_color(curr_color_index, curr_color);
+ }
+ // 10 shades of grey
+ for (i = 0; i < prim_size; i++) {
+ curr_color_index =
+ mc_size * mc_size * mc_size + prim_size * 3 + i;
+ curr_color = 0;
+ curr_color |= ((u32) primary_color_values[i]) << 16; //red
+ curr_color |= ((u32) primary_color_values[i]) << 8; //green
+ curr_color |= ((u32) primary_color_values[i]); //blue
+ vbe_set_color(curr_color_index, curr_color);
+ }
+
+ // SLOF is using color 0x0 (black) and 0xFF (white) to draw to the screen...
+ vbe_set_color(0x00, 0x00000000);
+ vbe_set_color(0xFF, 0x00FFFFFF);
+
+ output->screen_width = le16_to_cpu(best_mode_info.vesa.x_resolution);
+ output->screen_height = le16_to_cpu(best_mode_info.vesa.y_resolution);
+ output->screen_linebytes = le16_to_cpu(best_mode_info.vesa.bytes_per_scanline);
+ output->color_depth = best_mode_info.vesa.bits_per_pixel;
+ output->framebuffer_address =
+ le32_to_cpu(best_mode_info.vesa.phys_base_ptr);
+ } else {
+ printf("%s: No suitable video mode found!\n", __func__);
+ //unset display_type...
+ output->display_type = 0;
+ }
+ return 0;
+}
+
+#if CONFIG_BOOTSPLASH
+vbe_mode_info_t mode_info;
+
+void vbe_set_graphics(void)
+{
+ u8 rval;
+ int i;
+
+ vbe_info_t info;
+ rval = vbe_info(&info);
+ if (rval != 0)
+ return;
+
+ DEBUG_PRINTF_VBE("VbeSignature: %s\n", info.signature);
+ DEBUG_PRINTF_VBE("VbeVersion: 0x%04x\n", info.version);
+ DEBUG_PRINTF_VBE("OemString: %s\n", info.oem_string_ptr);
+ DEBUG_PRINTF_VBE("Capabilities:\n");
+ DEBUG_PRINTF_VBE("\tDAC: %s\n",
+ (info.capabilities & 0x1) ==
+ 0 ? "fixed 6bit" : "switchable 6/8bit");
+ DEBUG_PRINTF_VBE("\tVGA: %s\n",
+ (info.capabilities & 0x2) ==
+ 0 ? "compatible" : "not compatible");
+ DEBUG_PRINTF_VBE("\tRAMDAC: %s\n",
+ (info.capabilities & 0x4) ==
+ 0 ? "normal" : "use blank bit in Function 09h");
+
+ mode_info.video_mode = (1 << 14) | CONFIG_FRAMEBUFFER_VESA_MODE;
+ vbe_get_mode_info(&mode_info);
+ unsigned char *framebuffer =
+ (unsigned char *) le32_to_cpu(mode_info.vesa.phys_base_ptr);
+ DEBUG_PRINTF_VBE("FRAMEBUFFER: 0x%08x\n", framebuffer);
+ vbe_set_mode(&mode_info);
+
+ struct jpeg_decdata *decdata;
+ decdata = malloc(sizeof(*decdata));
+
+ /* Switching Intel IGD to 1MB video memory will break this. Who
+ * cares. */
+ int imagesize = 1024*768*2;
+
+ unsigned char *jpeg = cbfs_find_file("bootsplash.jpg", CBFS_TYPE_BOOTSPLASH);
+ if (!jpeg) {
+ DEBUG_PRINTF_VBE("Could not find bootsplash.jpg\n");
+ return;
+ }
+ DEBUG_PRINTF_VBE("Splash at %08x ...\n", jpeg);
+ dump(jpeg, 64);
+
+ int ret = 0;
+ DEBUG_PRINTF_VBE("Decompressing boot splash screen...\n");
+ ret = jpeg_decode(jpeg, framebuffer, 1024, 768, 16, decdata);
+ DEBUG_PRINTF_VBE("returns %x\n", ret);
+}
+
+void fill_lb_framebuffer(struct lb_framebuffer *framebuffer)
+{
+ framebuffer->physical_address = le32_to_cpu(mode_info.vesa.phys_base_ptr);
+
+ framebuffer->x_resolution = le16_to_cpu(mode_info.vesa.x_resolution);
+ framebuffer->y_resolution = le16_to_cpu(mode_info.vesa.y_resolution);
+ framebuffer->bytes_per_line = le16_to_cpu(mode_info.vesa.bytes_per_scanline);
+ framebuffer->bits_per_pixel = mode_info.vesa.bits_per_pixel;
+
+ framebuffer->red_mask_pos = mode_info.vesa.red_mask_pos;
+ framebuffer->red_mask_size = mode_info.vesa.red_mask_size;
+
+ framebuffer->green_mask_pos = mode_info.vesa.green_mask_pos;
+ framebuffer->green_mask_size = mode_info.vesa.green_mask_size;
+
+ framebuffer->blue_mask_pos = mode_info.vesa.blue_mask_pos;
+ framebuffer->blue_mask_size = mode_info.vesa.blue_mask_size;
+
+ framebuffer->reserved_mask_pos = mode_info.vesa.reserved_mask_pos;
+ framebuffer->reserved_mask_size = mode_info.vesa.reserved_mask_size;
+}
+
+void vbe_textmode_console(void)
+{
+ /* Wait, just a little bit more, pleeeease ;-) */
+ delay(2);
+
+ M.x86.R_EAX = 0x0003;
+ runInt10();
+}
+
+#endif
diff --git a/src/devices/oprom/yabel/vbe.h b/src/devices/oprom/yabel/vbe.h
new file mode 100644
index 0000000000..07daedb672
--- /dev/null
+++ b/src/devices/oprom/yabel/vbe.h
@@ -0,0 +1,16 @@
+/******************************************************************************
+ * Copyright (c) 2004, 2008 IBM Corporation
+ * All rights reserved.
+ * This program and the accompanying materials
+ * are made available under the terms of the BSD License
+ * which accompanies this distribution, and is available at
+ * http://www.opensource.org/licenses/bsd-license.php
+ *
+ * Contributors:
+ * IBM Corporation - initial implementation
+ *****************************************************************************/
+
+#ifndef _BIOSEMU_VBE_H_
+#define _BIOSEMU_VBE_H_
+
+#endif