1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
|
// SPDX-License-Identifier: BSD-3-Clause
#include <utility>
#include <cstring>
#include <sstream>
#include <iomanip>
#include <typeinfo>
#include "response.h"
#include "exceptions.h"
#include "../logging.h"
#define RETURN_TABLE(...) \
return std::shared_ptr<formatter::Table<VariantHolder>>( \
new formatter::Table<VariantHolder>(format, __VA_ARGS__) \
);
#define RETURN_STATUS(...) \
return std::shared_ptr<formatter::Status>( \
new formatter::Status(format, __VA_ARGS__) \
);
namespace p18::response_type {
typedef formatter::TableItem<VariantHolder> LINE;
using formatter::Unit;
/**
* Base responses
*/
BaseResponse::BaseResponse(std::shared_ptr<char> raw, size_t rawSize)
: raw_(std::move(raw)), rawSize_(rawSize) {}
bool GetResponse::validate() {
if (rawSize_ < 5)
return false;
const char* raw = raw_.get();
if (raw[0] != '^' || raw[1] != 'D')
return false;
char lenbuf[4];
memcpy(lenbuf, &raw[2], 3);
lenbuf[3] = '\0';
auto len = static_cast<size_t>(std::stoul(lenbuf));
return rawSize_ >= len-5 /* exclude ^Dxxx*/;
}
const char* GetResponse::getData() const {
return raw_.get() + 5;
}
size_t GetResponse::getDataSize() const {
return rawSize_ - 5;
}
std::vector<std::string> GetResponse::getList(std::vector<size_t> itemLengths) const {
std::string buf(getData(), getDataSize());
auto list = ::split(buf, ',');
if (!itemLengths.empty()) {
// check list length
if (list.size() < itemLengths.size()) {
std::ostringstream error;
error << "while parsing " << demangle_type_name(typeid(*this).name());
error << ": list is expected to be " << itemLengths.size() << " items long, ";
error << "got only " << list.size() << " items";
throw ParseError(error.str());
}
// check each item's length
for (int i = 0; i < itemLengths.size(); i++) {
if (list[i].size() != itemLengths[i]) {
std::ostringstream error;
error << "while parsing " << demangle_type_name(typeid(*this).name());
error << ": item " << i << " is expected to be " << itemLengths[i] << " characters long, ";
error << "got " << list[i].size() << " characters";
throw ParseError(error.str());
}
}
}
return list;
}
bool SetResponse::validate() {
if (rawSize_ < 2)
return false;
const char* raw = raw_.get();
return raw[0] == '^' && (raw[1] == '0' || raw[1] == '1');
}
bool SetResponse::get() {
return raw_.get()[1] == '1';
}
void SetResponse::unpack() {}
formattable_ptr SetResponse::format(formatter::Format format) {
RETURN_STATUS(get(), "");
}
formattable_ptr ErrorResponse::format(formatter::Format format) {
return std::shared_ptr<formatter::Status>(
new formatter::Status(format, false, error_)
);
}
/**
* Actual typed responses
*/
void ProtocolID::unpack() {
auto data = getData();
char s[4];
strncpy(s, data, 2);
s[2] = '\0';
id = stou(s);
}
formattable_ptr ProtocolID::format(formatter::Format format) {
RETURN_TABLE({
LINE("id", "Protocol ID", id),
});
}
void CurrentTime::unpack() {
auto data = getData();
std::string buf;
buf = std::string(data, 4);
year = stou(buf);
for (int i = 0; i < 5; i++) {
buf = std::string(data + 4 + (i * 2), 2);
auto n = stou(buf);
switch (i) {
case 0:
month = n;
break;
case 1:
day = n;
break;
case 2:
hour = n;
break;
case 3:
minute = n;
break;
case 4:
second = n;
break;
default:
std::ostringstream error;
error << "unexpected value while parsing CurrentTime (i = " << i << ")";
throw ParseError(error.str());
}
}
}
formattable_ptr CurrentTime::format(formatter::Format format) {
RETURN_TABLE({
LINE("year", "Year", year),
LINE("month", "Month", month),
LINE("day", "Day", day),
LINE("hour", "Hour", hour),
LINE("minute", "Minute", minute),
LINE("second", "Second", second),
});
}
void TotalGenerated::unpack() {
auto data = getData();
std::string buf(data, 8);
wh = stou(buf);
}
formattable_ptr TotalGenerated::format(formatter::Format format) {
RETURN_TABLE({
LINE("wh", "Wh", wh)
});
}
void SeriesNumber::unpack() {
auto data = getData();
std::string buf(data, 2);
size_t len = std::stoul(buf);
id = std::string(data+2, len);
}
formattable_ptr SeriesNumber::format(formatter::Format format) {
RETURN_TABLE({
LINE("sn", "Series number", id)
});
}
void CPUVersion::unpack() {
auto list = getList({5, 5, 5});
main_cpu_version = list[0];
slave1_cpu_version = list[1];
slave2_cpu_version = list[2];
}
formattable_ptr CPUVersion::format(formatter::Format format) {
RETURN_TABLE({
LINE("main_v", "Main CPU version", main_cpu_version),
LINE("slave1_v", "Slave 1 CPU version", slave1_cpu_version),
LINE("slave2_v", "Slave 2 CPU version", slave2_cpu_version)
});
}
void RatedInformation::unpack() {
auto list = getList({
4, // AAAA
3, // BBB
4, // CCCC
3, // DDD
3, // EEE
4, // FFFF
4, // GGGG
3, // HHH
3, // III
3, // JJJ
3, // KKK
3, // LLL
3, // MMM
1, // N
2, // OO
3, // PPP
1, // O
1, // R
1, // S
1, // T
1, // U
1, // V
1, // W
1, // Z
1, // a
});
ac_input_rating_voltage = stou(list[0]);
ac_input_rating_current = stou(list[1]);
ac_output_rating_voltage = stou(list[2]);
ac_output_rating_freq = stou(list[3]);
ac_output_rating_current = stou(list[4]);
ac_output_rating_apparent_power = stou(list[5]);
ac_output_rating_active_power = stou(list[6]);
battery_rating_voltage = stou(list[7]);
battery_recharge_voltage = stou(list[8]);
battery_redischarge_voltage = stou(list[9]);
battery_under_voltage = stou(list[10]);
battery_bulk_voltage = stou(list[11]);
battery_float_voltage = stou(list[12]);
battery_type = static_cast<BatteryType>(stou(list[13]));
max_ac_charging_current = stou(list[14]);
max_charging_current = stou(list[15]);
input_voltage_range = static_cast<InputVoltageRange>(stou(list[16]));
output_source_priority = static_cast<OutputModelSetting>(stou(list[17]));
charger_source_priority = static_cast<ChargerSourcePriority>(stou(list[18]));
parallel_max_num = stou(list[19]);
machine_type = static_cast<MachineType>(stou(list[20]));
topology = static_cast<Topology>(stou(list[21]));
output_model_setting = static_cast<OutputModelSetting>(stou(list[22]));
solar_power_priority = static_cast<SolarPowerPriority>(stou(list[23]));
mppt = list[24];
}
formattable_ptr RatedInformation::format(formatter::Format format) {
RETURN_TABLE({
LINE("ac_input_rating_voltage", "AC input rating voltage", ac_input_rating_voltage / 10.0, Unit::V),
LINE("ac_input_rating_current", "AC input rating current", ac_input_rating_current / 10.0, Unit::A),
LINE("ac_output_rating_voltage", "AC output rating voltage", ac_output_rating_voltage / 10.0, Unit::V),
LINE("ac_output_rating_freq", "AC output rating frequency", ac_output_rating_freq / 10.0, Unit::Hz),
LINE("ac_output_rating_current", "AC output rating current", ac_output_rating_current / 10.0, Unit::A),
LINE("ac_output_rating_apparent_power", "AC output rating apparent power", ac_output_rating_apparent_power, Unit::VA),
LINE("ac_output_rating_active_power", "AC output rating active power", ac_output_rating_active_power, Unit::Wh),
LINE("battery_rating_voltage", "Battery rating voltage", battery_rating_voltage / 10.0, Unit::V),
LINE("battery_recharge_voltage", "Battery re-charge voltage", battery_recharge_voltage / 10.0, Unit::V),
LINE("battery_redischarge_voltage", "Battery re-discharge voltage", battery_redischarge_voltage / 10.0, Unit::V),
LINE("battery_under_voltage", "Battery under voltage", battery_under_voltage / 10.0, Unit::V),
LINE("battery_bulk_voltage", "Battery bulk voltage", battery_bulk_voltage / 10.0, Unit::V),
LINE("battery_float_voltage", "Battery float voltage", battery_float_voltage / 10.0, Unit::V),
LINE("battery_type", "Battery type", battery_type),
LINE("max_charging_current", "Max charging current", max_charging_current, Unit::A),
LINE("max_ac_charging_current", "Max AC charging current", max_ac_charging_current, Unit::A),
LINE("input_voltage_range", "Input voltage range", input_voltage_range),
LINE("output_source_priority", "Output source priority", output_source_priority),
LINE("charge_source_priority", "Charge source priority", charger_source_priority),
LINE("parallel_max_num", "Parallel max num", parallel_max_num),
LINE("machine_type", "Machine type", machine_type),
LINE("topology", "Topology", topology),
LINE("output_model_setting", "Output model setting", output_model_setting),
LINE("solar_power_priority", "Solar power priority", solar_power_priority),
LINE("mppt", "MPPT string", mppt)
});
}
void GeneralStatus::unpack() {
auto list = getList({
4, // AAAA
3, // BBB
4, // CCCC
3, // DDD
4, // EEEE
4, // FFFF
3, // GGG
3, // HHH
3, // III
3, // JJJ
3, // KKK
3, // LLL
3, // MMM
3, // NNN
3, // OOO
3, // PPP
4, // QQQQ
4, // RRRR
4, // SSSS
4, // TTTT
1, // U
1, // V
1, // W
1, // X
1, // Y
1, // Z
1, // a
1, // b
});
grid_voltage = stou(list[0]);
grid_freq = stou(list[1]);
ac_output_voltage = stou(list[2]);
ac_output_freq = stou(list[3]);
ac_output_apparent_power = stou(list[4]);
ac_output_active_power = stou(list[5]);
output_load_percent = stou(list[6]);
battery_voltage = stou(list[7]);
battery_voltage_scc = stou(list[8]);
battery_voltage_scc2 = stou(list[9]);
battery_discharge_current = stou(list[10]);
battery_charging_current = stou(list[11]);
battery_capacity = stou(list[12]);
inverter_heat_sink_temp = stou(list[13]);
mppt1_charger_temp = stou(list[14]);
mppt2_charger_temp = stou(list[15]);
pv1_input_power = stou(list[16]);
pv2_input_power = stou(list[17]);
pv1_input_voltage = stou(list[18]);
pv2_input_voltage = stou(list[19]);
configuration_status = static_cast<ConfigurationStatus>(stou(list[20]));
mppt1_charger_status = static_cast<MPPTChargerStatus>(stou(list[21]));
mppt2_charger_status = static_cast<MPPTChargerStatus>(stou(list[22]));
load_connected = static_cast<LoadConnectionStatus>(stou(list[23]));
battery_power_direction = static_cast<BatteryPowerDirection>(stou(list[24]));
dc_ac_power_direction = static_cast<DC_AC_PowerDirection>(stou(list[25]));
line_power_direction = static_cast<LinePowerDirection>(stou(list[26]));
local_parallel_id = stou(list[27]);
}
formattable_ptr GeneralStatus::format(formatter::Format format) {
RETURN_TABLE({
LINE("grid_voltage", "Grid voltage", grid_voltage / 10.0, Unit::V),
LINE("grid_freq", "Grid frequency", grid_freq / 10.0, Unit::Hz),
LINE("ac_output_voltage", "AC output voltage", ac_output_voltage / 10.0, Unit::V),
LINE("ac_output_freq", "AC output frequency", ac_output_freq / 10.0, Unit::Hz),
LINE("ac_output_apparent_power", "AC output apparent power", ac_output_apparent_power, Unit::VA),
LINE("ac_output_active_power", "AC output active power", ac_output_active_power, Unit::Wh),
LINE("output_load_percent", "Output load percent", output_load_percent, Unit::Percentage),
LINE("battery_voltage", "Battery voltage", battery_voltage / 10.0, Unit::V),
LINE("battery_voltage_scc", "Battery voltage from SCC", battery_voltage_scc / 10.0, Unit::V),
LINE("battery_voltage_scc2", "Battery voltage from SCC2", battery_voltage_scc2 / 10.0, Unit::V),
LINE("battery_discharging_current", "Battery discharging current", battery_discharge_current, Unit::A),
LINE("battery_charging_current", "Battery charging current", battery_charging_current, Unit::A),
LINE("battery_capacity", "Battery capacity", battery_capacity, Unit::Percentage),
LINE("inverter_heat_sink_temp", "Inverter heat sink temperature", inverter_heat_sink_temp, Unit::Celsius),
LINE("mppt1_charger_temp", "MPPT1 charger temperature", mppt1_charger_temp, Unit::Celsius),
LINE("mppt2_charger_temp", "MPPT2 charger temperature", mppt2_charger_temp, Unit::Celsius),
LINE("pv1_input_power", "PV1 input power", pv1_input_power, Unit::Wh),
LINE("pv2_input_power", "PV2 input power", pv2_input_power, Unit::Wh),
LINE("pv1_input_voltage", "PV1 input voltage", pv1_input_voltage / 10.0, Unit::V),
LINE("pv2_input_voltage", "PV2 input voltage", pv2_input_voltage / 10.0, Unit::V),
LINE("configuration_status", "Configuration state", configuration_status),
LINE("mppt1_charger_status", "MPPT1 charger status", mppt1_charger_status),
LINE("mppt2_charger_status", "MPPT2 charger status", mppt2_charger_status),
LINE("load_connected", "Load connection", load_connected),
LINE("battery_power_direction", "Battery power direction", battery_power_direction),
LINE("dc_ac_power_direction", "DC/AC power direction", dc_ac_power_direction),
LINE("line_power_direction", "LINE power direction", line_power_direction),
LINE("local_parallel_id", "Local parallel ID", local_parallel_id),
});
}
void WorkingMode::unpack() {
auto data = getData();
mode = static_cast<p18::WorkingMode>(stou(std::string(data, 2)));
}
formattable_ptr WorkingMode::format(formatter::Format format) {
RETURN_TABLE({
LINE("mode", "Working mode", mode)
})
}
void FaultsAndWarnings::unpack() {
auto list = getList({2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1});
fault_code = stou(list[0]);
line_fail = stou(list[1]) > 0;
output_circuit_short = stou(list[2]) > 0;
inverter_over_temperature = stou(list[3]) > 0;
fan_lock = stou(list[4]) > 0;
battery_voltage_high = stou(list[5]) > 0;
battery_low = stou(list[6]) > 0;
battery_under = stou(list[7]) > 0;
over_load = stou(list[8]) > 0;
eeprom_fail = stou(list[9]) > 0;
power_limit = stou(list[10]) > 0;
pv1_voltage_high = stou(list[11]) > 0;
pv2_voltage_high = stou(list[12]) > 0;
mppt1_overload_warning = stou(list[13]) > 0;
mppt2_overload_warning = stou(list[14]) > 0;
battery_too_low_to_charge_for_scc1 = stou(list[15]) > 0;
battery_too_low_to_charge_for_scc2 = stou(list[16]) > 0;
}
formattable_ptr FaultsAndWarnings::format(formatter::Format format) {
RETURN_TABLE({
LINE("fault_code", "Fault code", fault_code),
LINE("line_fail", "Line fail", line_fail),
LINE("output_circuit_short", "Output circuit short", output_circuit_short),
LINE("inverter_over_temperature", "Inverter over temperature", inverter_over_temperature),
LINE("fan_lock", "Fan lock", fan_lock),
LINE("battery_voltage_high", "Battery voltage high", battery_voltage_high),
LINE("battery_low", "Battery low", battery_low),
LINE("battery_under", "Battery under", battery_under),
LINE("over_load", "Over load", over_load),
LINE("eeprom_fail", "EEPROM fail", eeprom_fail),
LINE("power_limit", "Power limit", power_limit),
LINE("pv1_voltage_high", "PV1 voltage high", pv1_voltage_high),
LINE("pv2_voltage_high", "PV2 voltage high", pv2_voltage_high),
LINE("mppt1_overload_warning", "MPPT1 overload warning", mppt1_overload_warning),
LINE("mppt2_overload_warning", "MPPT2 overload warning", mppt2_overload_warning),
LINE("battery_too_low_to_charge_for_scc1", "Battery too low to charge for SCC1", battery_too_low_to_charge_for_scc1),
LINE("battery_too_low_to_charge_for_scc2", "Battery too low to charge for SCC2", battery_too_low_to_charge_for_scc2),
})
}
void FlagsAndStatuses::unpack() {
auto list = getList({1, 1, 1, 1, 1, 1, 1, 1, 1});
buzzer = stou(list[0]) > 0;
overload_bypass = stou(list[1]) > 0;
lcd_escape_to_default_page_after_1min_timeout = stou(list[2]) > 0;
overload_restart = stou(list[3]) > 0;
over_temp_restart = stou(list[4]) > 0;
backlight_on = stou(list[5]) > 0;
alarm_on_primary_source_interrupt = stou(list[6]) > 0;
fault_code_record = stou(list[7]) > 0;
reserved = *list[8].c_str();
}
formattable_ptr FlagsAndStatuses::format(formatter::Format format) {
RETURN_TABLE({
LINE("buzzer",
"Buzzer",
buzzer),
LINE("overload_bypass",
"Overload bypass function",
overload_bypass),
LINE("escape_to_default_screen_after_1min_timeout",
"Escape to default screen after 1min timeout",
lcd_escape_to_default_page_after_1min_timeout),
LINE("overload_restart",
"Overload restart",
overload_restart),
LINE("over_temp_restart",
"Over temperature restart",
over_temp_restart),
LINE("backlight_on",
"Backlight on",
backlight_on),
LINE("alarm_on_on_primary_source_interrupt",
"Alarm on on primary source interrupt",
alarm_on_primary_source_interrupt),
LINE("fault_code_record",
"Fault code record",
fault_code_record)
})
}
void Defaults::unpack() {
auto list = getList({
4, // AAAA
3, // BBB
1, // C
3, // DDD
3, // EEE
3, // FFF
3, // GGG
3, // HHH
3, // III
2, // JJ
1, // K
1, // L
1, // M
1, // N
1, // O
1, // P
1, // S
1, // T
1, // U
1, // V
1, // W
1, // X
1, // Y
1, // Z
});
ac_output_voltage = stou(list[0]);
ac_output_freq = stou(list[1]);
ac_input_voltage_range = static_cast<InputVoltageRange>(stou(list[2]));
battery_under_voltage = stou(list[3]);
charging_float_voltage = stou(list[4]);
charging_bulk_voltage = stou(list[5]);
battery_recharge_voltage = stou(list[6]);
battery_redischarge_voltage = stou(list[7]);
max_charging_current = stou(list[8]);
max_ac_charging_current = stou(list[9]);
battery_type = static_cast<BatteryType>(stou(list[10]));
output_source_priority = static_cast<OutputSourcePriority>(stou(list[11]));
charger_source_priority = static_cast<ChargerSourcePriority>(stou(list[12]));
solar_power_priority = static_cast<SolarPowerPriority>(stou(list[13]));
machine_type = static_cast<MachineType>(stou(list[14]));
output_model_setting = static_cast<OutputModelSetting>(stou(list[15]));
flag_buzzer = stou(list[16]) > 0;
flag_overload_restart = stou(list[17]) > 0;
flag_over_temp_restart = stou(list[18]) > 0;
flag_backlight_on = stou(list[19]) > 0;
flag_alarm_on_primary_source_interrupt = stou(list[20]) > 0;
flag_fault_code_record = stou(list[21]) > 0;
flag_overload_bypass = stou(list[22]) > 0;
flag_lcd_escape_to_default_page_after_1min_timeout = stou(list[23]) > 0;
}
formattable_ptr Defaults::format(formatter::Format format) {
RETURN_TABLE({
LINE("ac_output_voltage", "AC output voltage", ac_output_voltage / 10.0, Unit::V),
LINE("ac_output_freq", "AC output frequency", ac_output_freq / 10.0, Unit::Hz),
LINE("ac_input_voltage_range", "AC input voltage range", ac_input_voltage_range),
LINE("battery_under_voltage", "Battery under voltage", battery_under_voltage / 10.0, Unit::V),
LINE("battery_bulk_voltage", "Charging bulk voltage", charging_bulk_voltage / 10.0, Unit::V),
LINE("battery_float_voltage", "Charging float voltage", charging_float_voltage / 10.0, Unit::V),
LINE("battery_recharging_voltage", "Battery re-charging voltage", battery_recharge_voltage / 10.0, Unit::V),
LINE("battery_redischarging_voltage", "Battery re-discharging voltage", battery_redischarge_voltage / 10.0, Unit::V),
LINE("max_charging_current", "Max charging current", max_charging_current, Unit::A),
LINE("max_ac_charging_current", "Max AC charging current", max_ac_charging_current, Unit::A),
LINE("battery_type", "Battery type", battery_type),
LINE("output_source_priority", "Output source priority", output_source_priority),
LINE("charger_source_priority", "Charger source priority", charger_source_priority),
LINE("solar_power_priority", "Solar power priority", solar_power_priority),
LINE("machine_type", "Machine type", machine_type),
LINE("output_model_setting", "Output model setting", output_model_setting),
LINE("buzzer_flag", "Buzzer flag", flag_buzzer),
LINE("overload_bypass_flag", "Overload bypass function flag", flag_overload_bypass),
LINE("escape_to_default_screen_after_1min_timeout_flag", "Escape to default screen after 1min timeout flag", flag_lcd_escape_to_default_page_after_1min_timeout),
LINE("overload_restart_flag", "Overload restart flag", flag_overload_restart),
LINE("over_temp_restart_flag", "Over temperature restart flag", flag_over_temp_restart),
LINE("backlight_on_flag", "Backlight on flag", flag_backlight_on),
LINE("alarm_on_on_primary_source_interrupt_flag", "Alarm on on primary source interrupt flag", flag_alarm_on_primary_source_interrupt),
LINE("fault_code_record_flag", "Fault code record flag", flag_fault_code_record),
})
}
void AllowedChargingCurrents::unpack() {
auto list = getList({});
for (const std::string& i: list) {
amps.emplace_back(stou(i));
}
}
formattable_ptr AllowedChargingCurrents::format(formatter::Format format) {
std::vector<formatter::ListItem<VariantHolder>> v;
for (const auto& n: amps)
v.emplace_back(n);
return std::shared_ptr<formatter::List<VariantHolder>>(
new formatter::List<VariantHolder>(format, v)
);
}
void ParallelRatedInformation::unpack() {
auto list = getList({
1, // A
2, // BB
20, // CCCCCCCCCCCCCCCCCCCC
1, // D
3, // EEE
2, // FF
1 // G
});
parallel_id_connection_status = static_cast<ParallelConnectionStatus>(stou(list[0]));
serial_number_valid_length = stou(list[1]);
serial_number = std::string(list[2], serial_number_valid_length);
charger_source_priority = static_cast<ChargerSourcePriority>(stou(list[3]));
max_charging_current = stou(list[4]);
max_ac_charging_current = stou(list[5]);
output_model_setting = static_cast<OutputModelSetting>(stou(list[6]));
}
formattable_ptr ParallelRatedInformation::format(formatter::Format format) {
RETURN_TABLE({
LINE("parallel_id_connection_status", "Parallel ID connection status", parallel_id_connection_status),
LINE("serial_number", "Serial number", serial_number),
LINE("charger_source_priority", "Charger source priority", charger_source_priority),
LINE("max_charging_current", "Max charging current", max_charging_current, Unit::A),
LINE("max_ac_charging_current", "Max AC charging current", max_ac_charging_current, Unit::A),
LINE("output_model_setting", "Output model setting", output_model_setting),
})
}
void ParallelGeneralStatus::unpack() {
auto list = getList({
1, // A
1, // B
2, // CC
4, // DDDD
3, // EEE
4, // FFFF
3, // GGG
4, // HHHH
4, // IIII
5, // JJJJJ
5, // KKKKK
3, // LLL
3, // MMM
3, // NNN
3, // OOO
3, // PPP
3, // QQQ
3, // MMM. It's not my mistake, it's per the doc.
4, // RRRR
4, // SSSS
4, // TTTT
4, // UUUU
1, // V
1, // W
1, // X
1, // Y
1, // Z
1, // a
3, // bbb. Note: this one is marked in red in the doc. I don't know what that means.
});
parallel_id_connection_status = static_cast<ParallelConnectionStatus>(stou(list[0]));
work_mode = static_cast<p18::WorkingMode>(stou(list[1]));
fault_code = stou(list[2]);
grid_voltage = stou(list[3]);
grid_freq = stou(list[4]);
ac_output_voltage = stou(list[5]);
ac_output_freq = stou(list[6]);
ac_output_apparent_power = stou(list[7]);
ac_output_active_power = stou(list[8]);
total_ac_output_apparent_power = stou(list[9]);
total_ac_output_active_power = stou(list[10]);
output_load_percent = stou(list[11]);
total_output_load_percent = stou(list[12]);
battery_voltage = stou(list[13]);
battery_discharge_current = stou(list[14]);
battery_charging_current = stou(list[15]);
total_battery_charging_current = stou(list[16]);
battery_capacity = stou(list[17]);
pv1_input_power = stou(list[18]);
pv2_input_power = stou(list[19]);
pv1_input_voltage = stou(list[20]);
pv2_input_voltage = stou(list[21]);
mppt1_charger_status = static_cast<MPPTChargerStatus>(stou(list[22]));
mppt2_charger_status = static_cast<MPPTChargerStatus>(stou(list[23]));
load_connected = static_cast<LoadConnectionStatus>(stou(list[24]));
battery_power_direction = static_cast<BatteryPowerDirection>(stou(list[25]));
dc_ac_power_direction = static_cast<DC_AC_PowerDirection>(stou(list[26]));
line_power_direction = static_cast<LinePowerDirection>(stou(list[27]));
max_temp = stou(list[28]);
}
formattable_ptr ParallelGeneralStatus::format(formatter::Format format) {
RETURN_TABLE({
LINE("parallel_id_connection_status", "Parallel ID connection status", parallel_id_connection_status),
LINE("mode", "Working mode", work_mode),
LINE("fault_code", "Fault code", fault_code),
LINE("grid_voltage", "Grid voltage", grid_voltage / 10.0, Unit::V),
LINE("grid_freq", "Grid frequency", grid_freq / 10.0, Unit::Hz),
LINE("ac_output_voltage", "AC output voltage", ac_output_voltage / 10.0, Unit::V),
LINE("ac_output_freq", "AC output frequency", ac_output_freq / 10.0, Unit::Hz),
LINE("ac_output_apparent_power", "AC output apparent power", ac_output_apparent_power, Unit::VA),
LINE("ac_output_active_power", "AC output active power", ac_output_active_power, Unit::Wh),
LINE("total_ac_output_apparent_power", "Total AC output apparent power", total_ac_output_apparent_power, Unit::VA),
LINE("total_ac_output_active_power", "Total AC output active power", total_ac_output_active_power, Unit::Wh),
LINE("output_load_percent", "Output load percent", output_load_percent, Unit::Percentage),
LINE("total_output_load_percent", "Total output load percent", total_output_load_percent, Unit::Percentage),
LINE("battery_voltage", "Battery voltage", battery_voltage / 10.0, Unit::V),
LINE("battery_discharge_current", "Battery discharge current", battery_discharge_current, Unit::A),
LINE("battery_charging_current", "Battery charging current", battery_charging_current, Unit::A),
LINE("pv1_input_power", "PV1 Input power", pv1_input_power, Unit::Wh),
LINE("pv2_input_power", "PV2 Input power", pv2_input_power, Unit::Wh),
LINE("pv1_input_voltage", "PV1 Input voltage", pv1_input_voltage / 10.0, Unit::V),
LINE("pv2_input_voltage", "PV2 Input voltage", pv2_input_voltage / 10.0, Unit::V),
LINE("mppt1_charger_status", "MPPT1 charger status", mppt1_charger_status),
LINE("mppt2_charger_status", "MPPT2 charger status", mppt2_charger_status),
LINE("load_connected", "Load connection", load_connected),
LINE("battery_power_direction", "Battery power direction", battery_power_direction),
LINE("dc_ac_power_direction", "DC/AC power direction", dc_ac_power_direction),
LINE("line_power_direction", "Line power direction", line_power_direction),
LINE("max_temp", "Max. temperature", max_temp),
})
}
void ACChargingTimeBucket::unpack() {
auto list = getList({4 /* AAAA */, 4 /* BBBB */});
start_h = stouh(list[0].substr(0, 2));
start_m = stouh(list[0].substr(2, 2));
end_h = stouh(list[1].substr(0, 2));
end_m = stouh(list[1].substr(2, 2));
}
static inline std::string get_time(unsigned short h, unsigned short m) {
std::ostringstream buf;
buf << std::setfill('0');
buf << std::setw(2) << h << ":" << std::setw(2) << m;
return buf.str();
}
formattable_ptr ACChargingTimeBucket::format(formatter::Format format) {
RETURN_TABLE({
LINE("start_time", "Start time", get_time(start_h, start_m)),
LINE("end_time", "End time", get_time(end_h, end_m)),
})
}
}
|