1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
|
#!/usr/bin/env python
#===============================================================================
#
# MBN TOOLS
#
# GENERAL DESCRIPTION
# Contains all MBN Utilities for image generation
#
# Copyright (c) 2016, The Linux Foundation. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided
# with the distribution.
# * Neither the name of The Linux Foundation nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
# WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
# BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
# BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
# OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
# IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
#-------------------------------------------------------------------------------
# EDIT HISTORY FOR FILE
#
# This section contains comments describing changes made to the module.
# Notice that changes are listed in reverse chronological order.
#
# when who what, where, why
# -------- --- ---------------------------------------------------------
# 06/06/13 yliong CR 497042: Signed and encrypted image is corrupted. MRC features.
# 03/18/13 dhaval Add support for hashing elf segments with SHA256 and
# sync up to mpss, adsp mbn-tools
# 01/14/13 kedara Remove dependency on .builds, cust<bid>.h, targ<bid>.h files
# 08/30/12 kedara Add virtual block suppport
# 02/24/12 dh Add ssd side effect file names
# 07/08/11 aus Added support for image_id in SBL image header as required by PBL
# Sahara mode
# 10/20/11 dxiang Clean up
#===============================================================================
import stat
import csv
import itertools
import struct
import os
import shutil
import hashlib
#----------------------------------------------------------------------------
# GLOBAL VARIABLES BEGIN
#----------------------------------------------------------------------------
PAD_BYTE_1 = 255 # Padding byte 1s
PAD_BYTE_0 = 0 # Padding byte 0s
SHA256_SIGNATURE_SIZE = 256 # Support SHA256
MAX_NUM_ROOT_CERTS = 4 # Maximum number of OEM root certificates
MI_BOOT_IMG_HDR_SIZE = 40 # sizeof(mi_boot_image_header_type)
MI_BOOT_SBL_HDR_SIZE = 80 # sizeof(sbl_header)
BOOT_HEADER_LENGTH = 20 # Boot Header Number of Elements
SBL_HEADER_LENGTH = 20 # SBL Header Number of Elements
FLASH_PARTI_VERSION = 3 # Flash Partition Version Number
MAX_PHDR_COUNT = 100 # Maximum allowable program headers
CERT_CHAIN_ONEROOT_MAXSIZE = 6*1024 # Default Cert Chain Max Size for one root
VIRTUAL_BLOCK_SIZE = 131072 # Virtual block size for MCs insertion in SBL1 if ENABLE_VIRTUAL_BLK ON
MAGIC_COOKIE_LENGTH = 12 # Length of magic Cookie inserted per VIRTUAL_BLOCK_SIZE
MIN_IMAGE_SIZE_WITH_PAD = 256*1024 # Minimum image size for sbl1 Nand based OTA feature
SBL_AARCH64 = 0xF # Indicate that SBL is a Aarch64 image
SBL_AARCH32 = 0x0 # Indicate that SBL is a Aarch32 image
# Magic numbers filled in for boot headers
FLASH_CODE_WORD = 0x844BDCD1
UNIFIED_BOOT_COOKIE_MAGIC_NUMBER = 0x33836685
MAGIC_NUM = 0x73D71034
AUTODETECT_PAGE_SIZE_MAGIC_NUM = 0x7D0B435A
AUTODETECT_PAGE_SIZE_MAGIC_NUM64 = 0x7D0B5436
AUTODETECT_PAGE_SIZE_MAGIC_NUM128 = 0x7D0B6577
SBL_VIRTUAL_BLOCK_MAGIC_NUM = 0xD48B54C6
# ELF Definitions
ELF_HDR_COMMON_SIZE = 24
ELF32_HDR_SIZE = 52
ELF32_PHDR_SIZE = 32
ELF64_HDR_SIZE = 64
ELF64_PHDR_SIZE = 56
ELFINFO_MAG0_INDEX = 0
ELFINFO_MAG1_INDEX = 1
ELFINFO_MAG2_INDEX = 2
ELFINFO_MAG3_INDEX = 3
ELFINFO_MAG0 = '\x7f'
ELFINFO_MAG1 = 'E'
ELFINFO_MAG2 = 'L'
ELFINFO_MAG3 = 'F'
ELFINFO_CLASS_INDEX = 4
ELFINFO_CLASS_32 = '\x01'
ELFINFO_CLASS_64 = '\x02'
ELFINFO_VERSION_INDEX = 6
ELFINFO_VERSION_CURRENT = '\x01'
ELF_BLOCK_ALIGN = 0x1000
ALIGNVALUE_1MB = 0x100000
ALIGNVALUE_4MB = 0x400000
ELFINFO_DATA2LSB = '\x01'
ELFINFO_EXEC_ETYPE = '\x02\x00'
ELFINFO_ARM_MACHINETYPE = '\x28\x00'
ELFINFO_VERSION_EV_CURRENT = '\x01\x00\x00\x00'
ELFINFO_SHOFF = 0x00
ELFINFO_PHNUM = '\x01\x00'
ELFINFO_RESERVED = 0x00
# ELF Program Header Types
NULL_TYPE = 0x0
LOAD_TYPE = 0x1
DYNAMIC_TYPE = 0x2
INTERP_TYPE = 0x3
NOTE_TYPE = 0x4
SHLIB_TYPE = 0x5
PHDR_TYPE = 0x6
TLS_TYPE = 0x7
"""
The eight bits between 20 and 27 in the p_flags field in ELF program headers
is not used by the standard ELF format. We use this byte to hold OS and processor
specific fields as recommended by ARM.
The bits in this byte are defined as follows:
Pool Indx Segment type Access type Page/non page
bits in p_flags /-----27-----/----26-24-------/---- 23-21----/------20-------/
After parsing segment description strings in the SCL file, the appropriate segment
flag values are chosen from the follow definitions. The mask defined below is then
used to update the existing p_flags field in the program headers with the updated
values.
"""
# Mask for bits 20-27 to parse program header p_flags
MI_PBT_FLAGS_MASK = 0x0FF00000
# Helper defines to help parse ELF program headers
MI_PROG_BOOT_DIGEST_SIZE = 20
MI_PBT_FLAG_SEGMENT_TYPE_MASK = 0x07000000
MI_PBT_FLAG_SEGMENT_TYPE_SHIFT = 0x18
MI_PBT_FLAG_PAGE_MODE_MASK = 0x00100000
MI_PBT_FLAG_PAGE_MODE_SHIFT = 0x14
MI_PBT_FLAG_ACCESS_TYPE_MASK = 0x00E00000
MI_PBT_FLAG_ACCESS_TYPE_SHIFT = 0x15
MI_PBT_FLAG_POOL_INDEX_MASK = 0x08000000
MI_PBT_FLAG_POOL_INDEX_SHIFT = 0x1B
# Segment Type
MI_PBT_L4_SEGMENT = 0x0
MI_PBT_AMSS_SEGMENT = 0x1
MI_PBT_HASH_SEGMENT = 0x2
MI_PBT_BOOT_SEGMENT = 0x3
MI_PBT_L4BSP_SEGMENT = 0x4
MI_PBT_SWAPPED_SEGMENT = 0x5
MI_PBT_SWAP_POOL_SEGMENT = 0x6
MI_PBT_PHDR_SEGMENT = 0x7
# Page/Non-Page Type
MI_PBT_NON_PAGED_SEGMENT = 0x0
MI_PBT_PAGED_SEGMENT = 0x1
# Access Type
MI_PBT_RW_SEGMENT = 0x0
MI_PBT_RO_SEGMENT = 0x1
MI_PBT_ZI_SEGMENT = 0x2
MI_PBT_NOTUSED_SEGMENT = 0x3
MI_PBT_SHARED_SEGMENT = 0x4
MI_PBT_RWE_SEGMENT = 0x7
# ELF Segment Flag Definitions
MI_PBT_ELF_AMSS_NON_PAGED_RO_SEGMENT = 0x01200000
MI_PBT_ELF_AMSS_PAGED_RO_SEGMENT = 0x01300000
MI_PBT_ELF_SWAP_POOL_NON_PAGED_ZI_SEGMENT_INDEX0 = 0x06400000
MI_PBT_ELF_SWAPPED_PAGED_RO_SEGMENT_INDEX0 = 0x05300000
MI_PBT_ELF_SWAP_POOL_NON_PAGED_ZI_SEGMENT_INDEX1 = 0x0E400000
MI_PBT_ELF_SWAPPED_PAGED_RO_SEGMENT_INDEX1 = 0x0D300000
MI_PBT_ELF_AMSS_NON_PAGED_ZI_SEGMENT = 0x01400000
MI_PBT_ELF_AMSS_PAGED_ZI_SEGMENT = 0x01500000
MI_PBT_ELF_AMSS_NON_PAGED_RW_SEGMENT = 0x01000000
MI_PBT_ELF_AMSS_PAGED_RW_SEGMENT = 0x01100000
MI_PBT_ELF_AMSS_NON_PAGED_NOTUSED_SEGMENT = 0x01600000
MI_PBT_ELF_AMSS_PAGED_NOTUSED_SEGMENT = 0x01700000
MI_PBT_ELF_AMSS_NON_PAGED_SHARED_SEGMENT = 0x01800000
MI_PBT_ELF_AMSS_PAGED_SHARED_SEGMENT = 0x01900000
MI_PBT_ELF_HASH_SEGMENT = 0x02200000
MI_PBT_ELF_BOOT_SEGMENT = 0x03200000
MI_PBT_ELF_PHDR_SEGMENT = 0x07000000
MI_PBT_ELF_NON_PAGED_L4BSP_SEGMENT = 0x04000000
MI_PBT_ELF_PAGED_L4BSP_SEGMENT = 0x04100000
MI_PBT_ELF_AMSS_RELOCATABLE_IMAGE = 0x8000000
# New definitions for EOS demap paging requirement
# Bit 20 (0b) Bit 24-26(000): Non Paged = 0x0000_0000
# Bit 20 (1b) Bit 24-26(000): Locked Paged = 0x0010_0000
# Bit 20 (1b) Bit 24-26(001): Unlocked Paged = 0x0110_0000
# Bit 20 (0b) Bit 24-26(011): non secure = 0x0310_0000
MI_PBT_ELF_RESIDENT_SEGMENT = 0x00000000
MI_PBT_ELF_PAGED_LOCKED_SEGMENT = 0x00100000
MI_PBT_ELF_PAGED_UNLOCKED_SEGMENT = 0x01100000
MI_PBT_ELF_UNSECURE_SEGMENT = 0x03100000
#----------------------------------------------------------------------------
# GLOBAL VARIABLES END
#----------------------------------------------------------------------------
#----------------------------------------------------------------------------
# CLASS DEFINITIONS BEGIN
#----------------------------------------------------------------------------
#----------------------------------------------------------------------------
# OS Type ID Class
#----------------------------------------------------------------------------
class OSType:
BMP_BOOT_OS = 0
WM_BOOT_OS = 1
ANDROID_BOOT_OS = 2
CHROME_BOOT_OS = 3
SYMBIAN_BOOT_OS = 4
LINUX_BOOT_OS = 5
#----------------------------------------------------------------------------
# Image Type ID Class - These values must be kept consistent with mibib.h
#----------------------------------------------------------------------------
class ImageType:
NONE_IMG = 0
OEM_SBL_IMG = 1
AMSS_IMG = 2
QCSBL_IMG = 3
HASH_IMG = 4
APPSBL_IMG = 5
APPS_IMG = 6
HOSTDL_IMG = 7
DSP1_IMG = 8
FSBL_IMG = 9
DBL_IMG = 10
OSBL_IMG = 11
DSP2_IMG = 12
EHOSTDL_IMG = 13
NANDPRG_IMG = 14
NORPRG_IMG = 15
RAMFS1_IMG = 16
RAMFS2_IMG = 17
ADSP_Q5_IMG = 18
APPS_KERNEL_IMG = 19
BACKUP_RAMFS_IMG = 20
SBL1_IMG = 21
SBL2_IMG = 22
RPM_IMG = 23
SBL3_IMG = 24
TZ_IMG = 25
PSI_IMG = 32
#----------------------------------------------------------------------------
# Global Image Type Table
# Format of the look-up table:
# KEY - IMAGE_TYPE string as passed into mbn_builder.py
# VALUE - [Specific ImageType ID enum, Template key string, MBN Type]
#----------------------------------------------------------------------------
image_id_table = {
'appsbl': [ImageType.APPSBL_IMG, 'APPSBL_IMG', 'bin'],
'dbl': [ImageType.DBL_IMG, 'DBL_IMG', 'bin'],
'osbl': [ImageType.OSBL_IMG, 'OSBL_IMG', 'bin'],
'amss': [ImageType.AMSS_IMG, 'AMSS_IMG', 'elf'],
'amss_mbn': [ImageType.HASH_IMG, 'HASH_IMG', 'elf'],
'apps': [ImageType.APPS_IMG, 'APPS_IMG', 'bin'],
'hostdl': [ImageType.HOSTDL_IMG, 'HOSTDL_IMG', 'bin'],
'ehostdl': [ImageType.EHOSTDL_IMG, 'EHOSTDL_IMG', 'bin'],
'emmcbld': [ImageType.EHOSTDL_IMG, 'EMMCBLD_IMG', 'bin'],
'qdsp6fw': [ImageType.DSP1_IMG, 'DSP1_IMG', 'elf'],
'qdsp6sw': [ImageType.DSP2_IMG, 'DSP2_IMG', 'elf'],
'qdsp5': [ImageType.ADSP_Q5_IMG, 'ADSP_Q5_IMG', 'bin'],
'tz': [ImageType.TZ_IMG, 'TZ_IMG', 'elf'],
'tz_rumi': [ImageType.TZ_IMG, 'TZ_IMG', 'elf'],
'tz_virtio': [ImageType.TZ_IMG, 'TZ_IMG', 'elf'],
'tzbsp_no_xpu': [ImageType.TZ_IMG, 'TZ_IMG', 'elf'],
'tzbsp_with_test': [ImageType.TZ_IMG, 'TZ_IMG', 'elf'],
'rpm': [ImageType.RPM_IMG, 'RPM_IMG', 'elf'],
'sbl1': [ImageType.SBL1_IMG, 'SBL1_IMG', 'bin'],
'sbl2': [ImageType.SBL2_IMG, 'SBL2_IMG', 'bin'],
'sbl3': [ImageType.SBL3_IMG, 'SBL3_IMG', 'bin'],
'efs1': [ImageType.RAMFS1_IMG, 'RAMFS1_IMG', 'bin'],
'efs2': [ImageType.RAMFS2_IMG, 'RAMFS2_IMG', 'bin'],
'pmic': [ImageType.PSI_IMG, 'PSI_IMG', 'elf'],
# DO NOT add any additional image information
}
#----------------------------------------------------------------------------
# Header Class Notes:
# In order to properly read and write the header structures as binary data,
# the Python Struct library is used to align and package up the header objects
# All Struct objects are initialized by a special string with the following
# notation. These structure objects are then used to decode binary data in order
# to fill out the appropriate class in Python, or they are used to package up
# the Python class so that we may write the binary data out.
#----------------------------------------------------------------------------
"""
Format | C Type | Python Type | Standard Size
-----------------------------------------------------
1) 'X's | char * | string | 'X' bytes
2) H | unsigned short | integer | 2 bytes
3) I | unsigned int | integer | 4 bytes
"""
#----------------------------------------------------------------------------
# ELF Header Class
#----------------------------------------------------------------------------
class Elf_Ehdr_common:
# Structure object to align and package the ELF Header
s = struct.Struct('16sHHI')
def __init__(self, data):
unpacked_data = (Elf_Ehdr_common.s).unpack(data)
self.unpacked_data = unpacked_data
self.e_ident = unpacked_data[0]
self.e_type = unpacked_data[1]
self.e_machine = unpacked_data[2]
self.e_version = unpacked_data[3]
def printValues(self):
print "ATTRIBUTE / VALUE"
for attr, value in self.__dict__.iteritems():
print attr, value
#----------------------------------------------------------------------------
# ELF Header Class
#----------------------------------------------------------------------------
class Elf32_Ehdr:
# Structure object to align and package the ELF Header
s = struct.Struct('16sHHIIIIIHHHHHH')
def __init__(self, data):
unpacked_data = (Elf32_Ehdr.s).unpack(data)
self.unpacked_data = unpacked_data
self.e_ident = unpacked_data[0]
self.e_type = unpacked_data[1]
self.e_machine = unpacked_data[2]
self.e_version = unpacked_data[3]
self.e_entry = unpacked_data[4]
self.e_phoff = unpacked_data[5]
self.e_shoff = unpacked_data[6]
self.e_flags = unpacked_data[7]
self.e_ehsize = unpacked_data[8]
self.e_phentsize = unpacked_data[9]
self.e_phnum = unpacked_data[10]
self.e_shentsize = unpacked_data[11]
self.e_shnum = unpacked_data[12]
self.e_shstrndx = unpacked_data[13]
def printValues(self):
print "ATTRIBUTE / VALUE"
for attr, value in self.__dict__.iteritems():
print attr, value
def getPackedData(self):
values = [self.e_ident,
self.e_type,
self.e_machine,
self.e_version,
self.e_entry,
self.e_phoff,
self.e_shoff,
self.e_flags,
self.e_ehsize,
self.e_phentsize,
self.e_phnum,
self.e_shentsize,
self.e_shnum,
self.e_shstrndx
]
return (Elf32_Ehdr.s).pack(*values)
#----------------------------------------------------------------------------
# ELF Program Header Class
#----------------------------------------------------------------------------
class Elf32_Phdr:
# Structure object to align and package the ELF Program Header
s = struct.Struct('I' * 8)
def __init__(self, data):
unpacked_data = (Elf32_Phdr.s).unpack(data)
self.unpacked_data = unpacked_data
self.p_type = unpacked_data[0]
self.p_offset = unpacked_data[1]
self.p_vaddr = unpacked_data[2]
self.p_paddr = unpacked_data[3]
self.p_filesz = unpacked_data[4]
self.p_memsz = unpacked_data[5]
self.p_flags = unpacked_data[6]
self.p_align = unpacked_data[7]
def printValues(self):
print "ATTRIBUTE / VALUE"
for attr, value in self.__dict__.iteritems():
print attr, value
def getPackedData(self):
values = [self.p_type,
self.p_offset,
self.p_vaddr,
self.p_paddr,
self.p_filesz,
self.p_memsz,
self.p_flags,
self.p_align
]
return (Elf32_Phdr.s).pack(*values)
#----------------------------------------------------------------------------
# ELF Header Class
#----------------------------------------------------------------------------
class Elf64_Ehdr:
# Structure object to align and package the ELF Header
s = struct.Struct('16sHHIQQQIHHHHHH')
def __init__(self, data):
unpacked_data = (Elf64_Ehdr.s).unpack(data)
self.unpacked_data = unpacked_data
self.e_ident = unpacked_data[0]
self.e_type = unpacked_data[1]
self.e_machine = unpacked_data[2]
self.e_version = unpacked_data[3]
self.e_entry = unpacked_data[4]
self.e_phoff = unpacked_data[5]
self.e_shoff = unpacked_data[6]
self.e_flags = unpacked_data[7]
self.e_ehsize = unpacked_data[8]
self.e_phentsize = unpacked_data[9]
self.e_phnum = unpacked_data[10]
self.e_shentsize = unpacked_data[11]
self.e_shnum = unpacked_data[12]
self.e_shstrndx = unpacked_data[13]
def printValues(self):
print "ATTRIBUTE / VALUE"
for attr, value in self.__dict__.iteritems():
print attr, value
def getPackedData(self):
values = [self.e_ident,
self.e_type,
self.e_machine,
self.e_version,
self.e_entry,
self.e_phoff,
self.e_shoff,
self.e_flags,
self.e_ehsize,
self.e_phentsize,
self.e_phnum,
self.e_shentsize,
self.e_shnum,
self.e_shstrndx
]
return (Elf64_Ehdr.s).pack(*values)
#----------------------------------------------------------------------------
# ELF Program Header Class
#----------------------------------------------------------------------------
class Elf64_Phdr:
# Structure object to align and package the ELF Program Header
s = struct.Struct('IIQQQQQQ')
def __init__(self, data):
unpacked_data = (Elf64_Phdr.s).unpack(data)
self.unpacked_data = unpacked_data
self.p_type = unpacked_data[0]
self.p_flags = unpacked_data[1]
self.p_offset = unpacked_data[2]
self.p_vaddr = unpacked_data[3]
self.p_paddr = unpacked_data[4]
self.p_filesz = unpacked_data[5]
self.p_memsz = unpacked_data[6]
self.p_align = unpacked_data[7]
def printValues(self):
print "ATTRIBUTE / VALUE"
for attr, value in self.__dict__.iteritems():
print attr, value
def getPackedData(self):
values = [self.p_type,
self.p_flags,
self.p_offset,
self.p_vaddr,
self.p_paddr,
self.p_filesz,
self.p_memsz,
self.p_align
]
return (Elf64_Phdr.s).pack(*values)
#----------------------------------------------------------------------------
# ELF Segment Information Class
#----------------------------------------------------------------------------
class SegmentInfo:
def __init__(self):
self.flag = 0
def printValues(self):
print 'Flag: ' + str(self.flag)
#----------------------------------------------------------------------------
# Regular Boot Header Class
#----------------------------------------------------------------------------
class Boot_Hdr:
def __init__(self, init_val):
self.image_id = ImageType.NONE_IMG
self.flash_parti_ver = FLASH_PARTI_VERSION
self.image_src = init_val
self.image_dest_ptr = init_val
self.image_size = init_val
self.code_size = init_val
self.sig_ptr = init_val
self.sig_size = init_val
self.cert_chain_ptr = init_val
self.cert_chain_size = init_val
self.magic_number1 = init_val
self.version = init_val
self.OS_type = init_val
self.boot_apps_parti_entry = init_val
self.boot_apps_size_entry = init_val
self.boot_apps_ram_loc = init_val
self.reserved_ptr = init_val
self.reserved_1 = init_val
self.reserved_2 = init_val
self.reserved_3 = init_val
def getLength(self):
return BOOT_HEADER_LENGTH
def writePackedData(self, target, write_full_hdr):
values = [self.image_id,
self.flash_parti_ver,
self.image_src,
self.image_dest_ptr,
self.image_size,
self.code_size ,
self.sig_ptr,
self.sig_size,
self.cert_chain_ptr,
self.cert_chain_size,
self.magic_number1,
self.version,
self.OS_type,
self.boot_apps_parti_entry,
self.boot_apps_size_entry,
self.boot_apps_ram_loc,
self.reserved_ptr,
self.reserved_1,
self.reserved_2,
self.reserved_3 ]
if self.image_dest_ptr >= 0x100000000:
values[3] = 0xFFFFFFFF
if self.cert_chain_ptr >= 0x100000000:
values[6] = 0xFFFFFFFF
if self.sig_ptr >= 0x100000000:
values[8] = 0xFFFFFFFF
# Write 10 entries(40B) or 20 entries(80B) of boot header
if write_full_hdr is False:
s = struct.Struct('I'* 10)
values = values[:10]
else:
s = struct.Struct('I' * self.getLength())
packed_data = s.pack(*values)
fp = OPEN(target,'wb')
fp.write(packed_data)
fp.close()
return s.size
#----------------------------------------------------------------------------
# SBL Boot Header Class
#----------------------------------------------------------------------------
class Sbl_Hdr:
def __init__(self, init_val):
self.codeword = init_val
self.magic = init_val
self.image_id = init_val
self.reserved_1 = init_val
self.reserved_2 = init_val
self.image_src = init_val
self.image_dest_ptr = init_val
self.image_size = init_val
self.code_size = init_val
self.sig_ptr = init_val
self.sig_size = init_val
self.cert_chain_ptr = init_val
self.cert_chain_size = init_val
self.oem_root_cert_sel = init_val
self.oem_num_root_certs = init_val
self.booting_image_config = init_val
self.reserved_6 = init_val
self.reserved_7 = init_val
self.reserved_8 = init_val
self.reserved_9 = init_val
def getLength(self):
return SBL_HEADER_LENGTH
def writePackedData(self, target):
values = [self.codeword,
self.magic,
self.image_id,
self.reserved_1,
self.reserved_2,
self.image_src,
self.image_dest_ptr,
self.image_size,
self.code_size,
self.sig_ptr,
self.sig_size,
self.cert_chain_ptr,
self.cert_chain_size,
self.oem_root_cert_sel,
self.oem_num_root_certs,
self.booting_image_config,
self.reserved_6,
self.reserved_7,
self.reserved_8,
self.reserved_9 ]
s = struct.Struct('I' * self.getLength())
packed_data = s.pack(*values)
fp = OPEN(target,'wb')
fp.write(packed_data)
fp.close()
return s.size
#----------------------------------------------------------------------------
# CLASS DEFINITIONS END
#----------------------------------------------------------------------------
#------------------------------------------------------------------------------
# Hooks for Scons
#------------------------------------------------------------------------------
def exists(env):
return env.Detect('mbn_tools')
def generate(env):
#----------------------------------------------------------------------------
# Generate Global Dictionary
#----------------------------------------------------------------------------
generate_global_dict(env)
#----------------------------------------------------------------------------
# Assign Build Configurable Values
#----------------------------------------------------------------------------
init_build_vars(env)
#----------------------------------------------------------------------------
# Add Methods to Environment
#----------------------------------------------------------------------------
env.AddMethod(filter_dictionary, "FilterDictionary")
env.AddMethod(image_auth, "ImageAuth")
env.AddMethod(image_header, "ImageHeader")
env.AddMethod(pboot_gen_elf, "PBootGenElf")
env.AddMethod(pboot_add_hash, "PBootAddHash")
env.AddMethod(modify_elf_flags, "ModifyElfFlags")
env.AddMethod(generate_code_hash, "GenerateCodeHash")
env.AddMethod(insert_SBL1_magicCookie, "InsertSBLMagicCookie")
env.AddMethod(modify_relocatable_flags, "ModifyRelocatableFlags")
#----------------------------------------------------------------------------
# Load Encryption Tools and Methods if required
#----------------------------------------------------------------------------
if 'USES_ENCRYPT_MBN' in env:
# Add Encryption Tools to environment
env.Tool('pil_encrypt', toolpath = ['${BUILD_ROOT}/core/securemsm/ssd/tools/pil_encrypt'])
env.AddMethod(get_ssd_se_fname, "GetSSDSideEffectFileName")
env.AddMethod(encrypt_elf_segments, "EncryptElfSegments")
env.AddMethod(generate_meta_data, "GenerateMetaData")
env.AddMethod(encrypt_mbn, "EncryptMBN")
return None
#----------------------------------------------------------------------------
# BOOT TOOLS BEGIN
#----------------------------------------------------------------------------
#----------------------------------------------------------------------------
# generate_meta_data
#----------------------------------------------------------------------------
def generate_meta_data(env, meta_out_file_name, add_magic_num = False):
'''
Make call to SSD API to return buffer filled with XML header information.
The XML header which we write contains information regarding the algorithms
being used along with specific key values which are to be used for encrpytion.
'''
xml_header = env.SSDGetMetaData(add_magic_num)
# Initialize
xml_target_file = open(meta_out_file_name,'wb')
xml_header_size = len(xml_header)
# Write XML buffer into target file
xml_target_file.write(xml_header)
# Pad if necessary to the maximum size
if xml_header_size <= XML_HEADER_MAXSIZE:
bytes_to_pad = XML_HEADER_MAXSIZE - xml_header_size
pad_file(xml_target_file, bytes_to_pad, PAD_BYTE_1)
xml_target_file.close()
else:
xml_target_file.close()
raise RuntimeError, "XML Size too large: " + str(xml_header_size)
#----------------------------------------------------------------------------
# encrypt_mbn
#----------------------------------------------------------------------------
def encrypt_mbn(env, mbn_in_file_name, mbn_out_file_name):
# Open Files
mbn_in_fp = OPEN(mbn_in_file_name, "rb")
mbn_out_fp = OPEN(mbn_out_file_name, "wb+")
# encrypt the input file content and write to output file
mbn_file_size = os.path.getsize(mbn_in_file_name)
file_buff = mbn_in_fp.read(mbn_file_size)
encrypted_buf = env.SSDEncryptSegment(0, file_buff, mbn_file_size)
mbn_out_fp.write(encrypted_buf)
# Close Files
mbn_in_fp.close()
mbn_out_fp.close()
# Clean up encryption files
env.SSDDeInit()
#----------------------------------------------------------------------------
# get_ssd_se_fname
#----------------------------------------------------------------------------
def get_ssd_se_fname(env):
return env.SSDGetSideEffectFileName()
#----------------------------------------------------------------------------
# encrypt_elf_segments
#----------------------------------------------------------------------------
def encrypt_elf_segments(env, elf_in_file_name,
elf_out_file_name):
# Open Files
elf_in_fp = OPEN(elf_in_file_name, "rb")
elf_out_fp = OPEN(elf_out_file_name, "wb+")
# Initialize
[elf_header, phdr_table] = preprocess_elf_file(elf_in_file_name)
encrypted_seg_counter = 0
# Copy input file to output file
shutil.copyfileobj(elf_in_fp, elf_out_fp, os.path.getsize(elf_in_file_name))
# Begin ELF segment encryption
for i in range(elf_header.e_phnum):
curr_phdr = phdr_table[i]
# Only encrypt segments of LOAD_TYPE. Do not encrypt the hash segment.
if curr_phdr.p_type == LOAD_TYPE and \
MI_PBT_SEGMENT_TYPE_VALUE(curr_phdr.p_flags) != MI_PBT_HASH_SEGMENT:
# Read full segment into buffer
elf_in_fp.seek(curr_phdr.p_offset)
data_len = curr_phdr.p_filesz
file_buff = elf_in_fp.read(data_len)
# Call encryption routine on buffer
encrypted_buf = env.SSDEncryptSegment(encrypted_seg_counter, file_buff, data_len)
encrypted_seg_counter += 1
# Write encrypted segment into output file in same location
elf_out_fp.seek(curr_phdr.p_offset)
elf_out_fp.write(encrypted_buf)
# Close Files
elf_in_fp.close()
elf_out_fp.close()
# Clean up encryption files
env.SSDDeInit()
#----------------------------------------------------------------------------
# Converts integer to bytes. If length after conversion
# is smaller than given length of byte string, returned value is right-filled
# with 0x00 bytes. Use Little-endian byte order.
#----------------------------------------------------------------------------
def convert_int_to_byte_string(n, l):
return b''.join([chr((n >> ((l - i - 1) * 8)) % 256) for i in xrange(l)][::-1])
#----------------------------------------------------------------------------
# Create default elf header
#----------------------------------------------------------------------------
def create_elf_header( output_file_name,
image_dest,
image_size,
is_elf_64_bit = False):
if (output_file_name is None):
raise RuntimeError, "Requires a ELF header file"
# Create a elf header and program header
# Write the headers to the output file
elf_fp = file(output_file_name, "wb")
if (is_elf_64_bit is True):
# ELf header
elf_fp.write(ELFINFO_MAG0)
elf_fp.write(ELFINFO_MAG1)
elf_fp.write(ELFINFO_MAG2)
elf_fp.write(ELFINFO_MAG3)
elf_fp.write(ELFINFO_CLASS_64)
elf_fp.write(ELFINFO_DATA2LSB)
elf_fp.write(ELFINFO_VERSION_CURRENT)
elf_fp.write(''.rjust(9, chr(ELFINFO_RESERVED)))
elf_fp.write(ELFINFO_EXEC_ETYPE)
elf_fp.write(ELFINFO_ARM_MACHINETYPE)
elf_fp.write(ELFINFO_VERSION_EV_CURRENT)
elf_fp.write(convert_int_to_byte_string(image_dest, 8))
elf_fp.write(convert_int_to_byte_string(ELF64_HDR_SIZE, 8))
elf_fp.write(convert_int_to_byte_string(ELFINFO_SHOFF, 8))
elf_fp.write(''.rjust(4, chr(ELFINFO_RESERVED)))
elf_fp.write(convert_int_to_byte_string(ELF64_HDR_SIZE, 2))
elf_fp.write(convert_int_to_byte_string(ELF64_PHDR_SIZE, 2))
elf_fp.write(ELFINFO_PHNUM)
elf_fp.write(''.rjust(6, chr(ELFINFO_RESERVED)))
# Program Header
elf_fp.write(convert_int_to_byte_string(LOAD_TYPE, 4))
elf_fp.write(convert_int_to_byte_string(MI_PBT_RWE_SEGMENT, 4))
elf_fp.write(convert_int_to_byte_string(ELF64_HDR_SIZE+ELF64_PHDR_SIZE, 8))
elf_fp.write(convert_int_to_byte_string(image_dest, 8))
elf_fp.write(convert_int_to_byte_string(image_dest, 8))
elf_fp.write(convert_int_to_byte_string(image_size, 8))
elf_fp.write(convert_int_to_byte_string(image_size, 8))
elf_fp.write(convert_int_to_byte_string(ELF_BLOCK_ALIGN, 8))
else:
# ELf header
elf_fp.write(ELFINFO_MAG0)
elf_fp.write(ELFINFO_MAG1)
elf_fp.write(ELFINFO_MAG2)
elf_fp.write(ELFINFO_MAG3)
elf_fp.write(ELFINFO_CLASS_32)
elf_fp.write(ELFINFO_DATA2LSB)
elf_fp.write(ELFINFO_VERSION_CURRENT)
elf_fp.write(''.rjust(9, chr(ELFINFO_RESERVED)))
elf_fp.write(ELFINFO_EXEC_ETYPE)
elf_fp.write(ELFINFO_ARM_MACHINETYPE)
elf_fp.write(ELFINFO_VERSION_EV_CURRENT)
elf_fp.write(convert_int_to_byte_string(image_dest, 4))
elf_fp.write(convert_int_to_byte_string(ELF32_HDR_SIZE, 4))
elf_fp.write(convert_int_to_byte_string(ELFINFO_SHOFF, 4))
elf_fp.write(''.rjust(4, chr(ELFINFO_RESERVED)))
elf_fp.write(convert_int_to_byte_string(ELF32_HDR_SIZE, 2))
elf_fp.write(convert_int_to_byte_string(ELF32_PHDR_SIZE, 2))
elf_fp.write(ELFINFO_PHNUM)
elf_fp.write(''.rjust(6, chr(ELFINFO_RESERVED)))
# Program Header
elf_fp.write(convert_int_to_byte_string(LOAD_TYPE, 4))
elf_fp.write(convert_int_to_byte_string(ELF32_HDR_SIZE+ELF32_PHDR_SIZE, 4))
elf_fp.write(convert_int_to_byte_string(image_dest, 4))
elf_fp.write(convert_int_to_byte_string(image_dest, 4))
elf_fp.write(convert_int_to_byte_string(image_size, 4))
elf_fp.write(convert_int_to_byte_string(image_size, 4))
elf_fp.write(convert_int_to_byte_string(MI_PBT_RWE_SEGMENT, 4))
elf_fp.write(convert_int_to_byte_string(ELF_BLOCK_ALIGN, 4))
elf_fp.close()
return 0
#----------------------------------------------------------------------------
# image_header
#----------------------------------------------------------------------------
def image_header(env, gen_dict,
code_file_name,
output_file_name,
secure_type,
header_format = 'reg',
requires_preamble = False,
preamble_file_name = None,
elf_file_name = None,
write_full_hdr = False,
in_code_size = None,
cert_chain_size_in = CERT_CHAIN_ONEROOT_MAXSIZE,
num_of_pages = None):
# Preliminary checks
if (requires_preamble is True) and (preamble_file_name is None):
raise RuntimeError, "Image Header requires a preamble file"
if (gen_dict['IMAGE_KEY_MBN_TYPE'] == 'elf') and (elf_file_name is None):
raise RuntimeError, "ELF Image Headers require an elf file"
if (in_code_size is None) and (os.path.exists(code_file_name) is False):
raise RuntimeError, "Code size unavailable, and input file does not exist"
# Initialize
if in_code_size is not None:
code_size = in_code_size
else:
code_size = os.path.getsize(code_file_name)
image_dest = 0
image_source = 0
# If secure build, set signature and cert chain sizes
if secure_type == 'secure':
signature_size = SHA256_SIGNATURE_SIZE
cert_chain_size = cert_chain_size_in
image_size = code_size + cert_chain_size + signature_size
if (image_size % 4) != 0:
image_size += (4 - (image_size % 4))
else:
signature_size = 0
cert_chain_size = 0
image_size = code_size
# For ELF or hashed images, image destination will be determined from an ELF input file
if gen_dict['IMAGE_KEY_MBN_TYPE'] == 'elf':
image_dest = get_hash_address(elf_file_name) + MI_BOOT_IMG_HDR_SIZE
elif gen_dict['IMAGE_KEY_MBN_TYPE'] == 'bin':
image_dest = gen_dict['IMAGE_KEY_IMAGE_DEST']
image_source = gen_dict['IMAGE_KEY_IMAGE_SOURCE']
# Build the header based on format specified
if header_format == 'sbl':
boot_sbl_header = Sbl_Hdr(init_val = int('0xFFFFFFFF',16))
boot_sbl_header.codeword = FLASH_CODE_WORD
boot_sbl_header.magic = MAGIC_NUM
boot_sbl_header.image_id = gen_dict['IMAGE_KEY_IMAGE_ID']
boot_sbl_header.image_src = MI_BOOT_SBL_HDR_SIZE
boot_sbl_header.image_dest_ptr = image_dest
boot_sbl_header.image_size = image_size
boot_sbl_header.code_size = code_size
boot_sbl_header.sig_ptr = image_dest + code_size
boot_sbl_header.sig_size = signature_size
boot_sbl_header.cert_chain_ptr = image_dest + code_size + signature_size
boot_sbl_header.cert_chain_size = cert_chain_size
boot_sbl_header.oem_root_cert_sel = gen_dict['IMAGE_KEY_OEM_ROOT_CERT_SEL']
boot_sbl_header.oem_num_root_certs = gen_dict['IMAGE_KEY_OEM_NUM_ROOT_CERTS']
if 'USES_SBL_FOR_AARCH64' in env:
boot_sbl_header.booting_image_config = SBL_AARCH64
elif 'USES_SBL_FOR_AARCH632' in env:
boot_sbl_header.booting_image_config = SBL_AARCH32
# If preamble is required, output the preamble file and update the boot_sbl_header
if requires_preamble is True:
boot_sbl_header = image_preamble(gen_dict, preamble_file_name, boot_sbl_header, num_of_pages)
# Package up the header and write to output file
boot_sbl_header.writePackedData(target = output_file_name)
elif header_format == 'reg':
boot_header = Boot_Hdr(init_val = int('0x0',16))
boot_header.image_id = gen_dict['IMAGE_KEY_IMAGE_ID']
boot_header.image_src = image_source
boot_header.image_dest_ptr = image_dest
boot_header.image_size = image_size
boot_header.code_size = code_size
boot_header.sig_ptr = image_dest + code_size
boot_header.sig_size = signature_size
boot_header.cert_chain_ptr = image_dest + code_size + signature_size
boot_header.cert_chain_size = cert_chain_size
# If preamble is required, output the preamble file and update the boot_header
if requires_preamble is True:
boot_header = image_preamble(gen_dict, preamble_file_name, boot_header, num_of_pages)
# Package up the header and write to output file
boot_header.writePackedData(target = output_file_name, write_full_hdr = write_full_hdr)
else:
raise RuntimeError, "Header format not supported: " + str(header_format)
return 0
#----------------------------------------------------------------------------
# pboot_gen_elf
#----------------------------------------------------------------------------
def pboot_gen_elf(env, elf_in_file_name,
hash_out_file_name,
elf_out_file_name,
secure_type = 'non_secure',
hash_seg_max_size = None,
last_phys_addr = None,
append_xml_hdr = False,
is_sha256_algo = True,
cert_chain_size_in = CERT_CHAIN_ONEROOT_MAXSIZE):
global MI_PROG_BOOT_DIGEST_SIZE
if (is_sha256_algo is True):
MI_PROG_BOOT_DIGEST_SIZE = 32
else:
MI_PROG_BOOT_DIGEST_SIZE = 20
# Open Files
elf_in_fp = OPEN(elf_in_file_name, "rb")
hash_out_fp = OPEN(hash_out_file_name, "wb+")
if elf_out_file_name is not None:
elf_out_fp = OPEN(elf_out_file_name, "wb+")
# Initialize
[elf_header, phdr_table] = preprocess_elf_file(elf_in_file_name)
num_phdrs = elf_header.e_phnum
phdr_total_size = num_phdrs * elf_header.e_phentsize
phdr_size = elf_header.e_phentsize
hashtable_size = 0
hashtable_shift = 0
if elf_header.e_ident[ELFINFO_CLASS_INDEX] == ELFINFO_CLASS_64:
new_phdr = Elf64_Phdr('\0' * ELF64_PHDR_SIZE)
elf_header_size = ELF64_HDR_SIZE
is_elf64 = True
else:
new_phdr = Elf32_Phdr('\0' * ELF32_PHDR_SIZE)
elf_header_size = ELF32_HDR_SIZE
is_elf64 = False
hash = '\0' * MI_PROG_BOOT_DIGEST_SIZE
phdr_start = 0
bytes_to_pad = 0
hash_seg_end = 0
# Process program headers if an output elf is specified
if elf_out_file_name is not None:
# Assert limit on number of program headers in input ELF
if num_phdrs > MAX_PHDR_COUNT:
raise RuntimeError, "Input ELF has exceeded maximum number of program headers"
# Create new program header for the ELF Header + Program Headers
new_phdr.p_type = NULL_TYPE
new_phdr.p_flags = MI_PBT_ELF_PHDR_SEGMENT
# If hash table program header is not found, make sure to include it
elf_header.e_phnum += 2
# Create an empty hash entry for PHDR_TYPE
hash_out_fp.write('\0' * MI_PROG_BOOT_DIGEST_SIZE)
hashtable_size += MI_PROG_BOOT_DIGEST_SIZE
# Create an empty hash entry for the hash segment itself
hash_out_fp.write('\0' * MI_PROG_BOOT_DIGEST_SIZE)
hashtable_size += MI_PROG_BOOT_DIGEST_SIZE
# Begin hash table generation
for i in range(num_phdrs):
curr_phdr = phdr_table[i]
if (MI_PBT_PAGE_MODE_VALUE(curr_phdr.p_flags) == MI_PBT_PAGED_SEGMENT):
seg_offset = curr_phdr.p_offset
seg_size = curr_phdr.p_filesz
hash_size = 0
# Check if the vaddr is page aligned
off = curr_phdr.p_vaddr & (ELF_BLOCK_ALIGN - 1)
if int(off) is not 0:
seg_size -= (ELF_BLOCK_ALIGN - off)
seg_offset += (ELF_BLOCK_ALIGN - off)
# Seg_size should be page aligned
if (seg_size & (ELF_BLOCK_ALIGN - 1)) > 0:
raise RuntimeError, "seg_size: " + hex(seg_size) + " is not ELF page aligned!"
off = seg_offset + seg_size
while seg_offset < off:
if seg_offset < ELF_BLOCK_ALIGN:
hash_size = seg_offset
else:
hash_size = ELF_BLOCK_ALIGN
elf_in_fp.seek(seg_offset)
fbuf = elf_in_fp.read(hash_size)
if MI_PBT_CHECK_FLAG_TYPE(curr_phdr.p_flags) is True:
hash = generate_hash(fbuf, is_sha256_algo)
else:
hash = '\0' * MI_PROG_BOOT_DIGEST_SIZE
# Write hash to file
hash_out_fp.write(hash)
hashtable_size += MI_PROG_BOOT_DIGEST_SIZE
seg_offset += ELF_BLOCK_ALIGN
# Copy the hash entry for all that are PAGED segments and those that are not the PHDR type. This is for
# backward tool compatibility where some images are generated using older exe tools.
elif((MI_PBT_PAGE_MODE_VALUE(curr_phdr.p_flags) == MI_PBT_NON_PAGED_SEGMENT) and (curr_phdr.p_type is not PHDR_TYPE)):
# Read full hash entry into buffer
elf_in_fp.seek(curr_phdr.p_offset)
data_len = curr_phdr.p_filesz
file_buff = elf_in_fp.read(data_len)
if (MI_PBT_CHECK_FLAG_TYPE(curr_phdr.p_flags) is True) and (data_len > 0):
hash = generate_hash(file_buff, is_sha256_algo)
else:
hash = '\0' * MI_PROG_BOOT_DIGEST_SIZE
# Write hash to file
hash_out_fp.write(hash)
hashtable_size += MI_PROG_BOOT_DIGEST_SIZE
# End hash table generation
# Generate the rest of the ELF output file if specified
if elf_out_file_name is not None:
# Preempt hash table size if necessary
if secure_type == 'secure':
hashtable_size += (SHA256_SIGNATURE_SIZE + cert_chain_size_in)
if append_xml_hdr is True:
hashtable_size += XML_HEADER_MAXSIZE
# Initialize the hash table program header
[hash_Phdr, pad_hash_segment, hash_tbl_end_addr, hash_tbl_offset] = \
initialize_hash_phdr(elf_in_file_name, hashtable_size, MI_BOOT_IMG_HDR_SIZE, ELF_BLOCK_ALIGN, is_elf64)
# Check if hash segment max size parameter was passed
if (hash_seg_max_size is not None):
# Error checking for hash segment size validity
if hashtable_size > hash_seg_max_size:
raise RuntimeError, "Hash table exceeds maximum hash segment size: " + hex(hash_seg_max_size)
if (hash_seg_max_size & (ELF_BLOCK_ALIGN-1)) is not 0:
raise RuntimeError, "Hash segment size passed is not ELF Block Aligned: " + hex(hash_seg_max_size)
# Check if hash physical address parameter was passed
if last_phys_addr is not None:
hash_Phdr.p_vaddr = last_phys_addr
hash_Phdr.p_paddr = last_phys_addr
# Check if hash segment max size was passed
if hash_seg_max_size is not None:
hash_Phdr.p_memsz = hash_seg_max_size
# Determine the end of the hash segment, make sure it's block aligned
bytes_to_pad = ELF_BLOCK_ALIGN - pad_hash_segment
hash_seg_end = hash_tbl_end_addr + bytes_to_pad
# Check if a shifting is required to accommodate for the hash segment.
# Get the minimum offset by going through the program headers.
# Note that the program headers in the input file do not contain
# the dummy program header for ELF + Program header, and the
# program header for the hashtable.
min_offset = phdr_table[0].p_offset
for i in range(num_phdrs):
curr_phdr = phdr_table[i]
if curr_phdr.p_offset < min_offset:
min_offset = curr_phdr.p_offset
if min_offset < hash_seg_end:
hashtable_shift = hash_seg_end - min_offset
# Move program headers to after ELF header
phdr_start = elf_header_size
# We copy over no section headers so assign these values to 0 in ELF Header
elf_header.e_shnum = 0
elf_header.e_shstrndx = 0
elf_header.e_shoff = 0
# Output remaining ELF segments
for i in range(num_phdrs):
# Increment the file offset before writing to the destination file
curr_phdr = phdr_table[i]
# We do not copy over program headers of PHDR type, decrement the program
# header count and continue the loop
if curr_phdr.p_type is PHDR_TYPE:
elf_header.e_phnum -= 1
continue
src_offset = curr_phdr.p_offset
# Copy the ELF segment
file_copy_offset(elf_in_fp, src_offset, elf_out_fp, curr_phdr.p_offset + hashtable_shift, curr_phdr.p_filesz)
# Output remaining program headers and ELF segments
elf_header.e_phoff = phdr_start
# Output new program headers which we have generated
elf_out_fp.seek(phdr_start)
new_phdr.p_filesz = elf_header_size + (elf_header.e_phnum * phdr_size)
elf_out_fp.write(new_phdr.getPackedData())
elf_out_fp.write(hash_Phdr.getPackedData())
phdr_start += (2 * phdr_size)
# Increment the file offset before writing to the destination file
for i in range(num_phdrs):
curr_phdr = phdr_table[i]
if curr_phdr.p_type is PHDR_TYPE:
continue
curr_phdr.p_offset += hashtable_shift
# Copy the program header
elf_out_fp.seek(phdr_start)
elf_out_fp.write(curr_phdr.getPackedData())
# Update phdr_start
phdr_start += phdr_size
# Finally, copy the new ELF header to the destination file
elf_out_fp.seek(0)
elf_out_fp.write(elf_header.getPackedData())
# Recalculate hash of ELF + program headers and output to hash output file
elf_out_fp.seek(0)
# Read the elf header
elfhdr_buff = elf_out_fp.read(elf_header_size)
# Seek to the program header offset listed in elf header.
elf_out_fp.seek(elf_header.e_phoff)
# Read the program header and compute hash
proghdr_buff = elf_out_fp.read(elf_header.e_phnum * phdr_size)
hash = generate_hash(elfhdr_buff + proghdr_buff, is_sha256_algo)
# Write hash to file as first hash table entry
hash_out_fp.seek(0)
hash_out_fp.write(hash)
# Close files
elf_in_fp.close()
hash_out_fp.close()
if elf_out_file_name is not None:
elf_out_fp.close()
return 0
#----------------------------------------------------------------------------
# pboot_add_hash
#----------------------------------------------------------------------------
def pboot_add_hash(env, elf_in_file_name,
hash_tbl_file_name,
elf_out_file_name):
# Open files
elf_in_fp = OPEN(elf_in_file_name, "rb")
hash_tbl_fp = OPEN(hash_tbl_file_name, "rb")
elf_out_fp = OPEN(elf_out_file_name, "wb+")
# Initialize
[elf_header, phdr_table] = preprocess_elf_file(elf_in_file_name)
hash_size = os.path.getsize(hash_tbl_file_name)
hash_segment_found = False
# Attempt to find the location of the hash program header
for i in range(elf_header.e_phnum):
curr_phdr = phdr_table[i]
if curr_phdr.p_flags == MI_PBT_ELF_HASH_SEGMENT:
hash_segment_found = True
break
if hash_segment_found is True:
# Copy input file to output file
shutil.copyfileobj(elf_in_fp, elf_out_fp, os.path.getsize(elf_in_file_name))
# Update ELF to insert hash table at corresponding file offset
hash_hdr_offset = curr_phdr.p_offset
file_copy_offset(hash_tbl_fp, 0, elf_out_fp, hash_hdr_offset, hash_size)
else:
raise RuntimeError, "Hash segment program header not found in file " + elf_in_file_name
# Close files
elf_in_fp.close()
hash_tbl_fp.close()
elf_out_fp.close()
return 0
#----------------------------------------------------------------------------
# image_auth
#----------------------------------------------------------------------------
def image_auth(env, *args):
if len(args) < 7 or len(args) > 8:
raise RuntimeError, "Usage Invalid"
# Initialize File Names
binary_in = args[0]
signature = args[1]
attestation_cert = args[2]
attestation_ca_cert = args[3]
root_cert = args[4]
cert_chain_out = args[5]
signed_image_out = args[6]
if len(args) == 8:
cert_size_max_in = args[7]
else:
cert_size_max_in = CERT_CHAIN_ONEROOT_MAXSIZE
# Creating list of certificates to support creation of certificate chains
# of lenth 1, 2, or 3 certificates
cert_list = []
num_certs = 0
if (os.path.exists(attestation_cert)):
cert_list.append(attestation_cert)
num_certs = num_certs + 1
if (os.path.exists(attestation_ca_cert)):
cert_list.append(attestation_ca_cert)
num_certs = num_certs + 1
if (os.path.exists(root_cert)):
cert_list.append(root_cert)
num_certs = num_certs + 1
if (num_certs == 0):
raise RuntimeError, "Missing file(s) required for signing.\n"
# Create the Certificate Chain
concat_files (cert_chain_out, cert_list)
# Pad to ensure Certificate Chain Size is CERT_CHAIN_MAX_SIZE
cert_size = os.path.getsize(cert_chain_out)
if cert_size <= cert_size_max_in:
bytes_to_pad = cert_size_max_in - cert_size
cert_fp = OPEN(cert_chain_out,'ab')
pad_file(cert_fp, bytes_to_pad, PAD_BYTE_1)
cert_fp.close()
else:
raise RuntimeError, "Certificate Size too large: " + str(cert_size)
# Create the Final Signed Image File
concat_files (signed_image_out, [binary_in, signature, cert_chain_out])
return 0
#----------------------------------------------------------------------------
# modify_relocatable_flags
#----------------------------------------------------------------------------
def modify_relocatable_flags(env, output_elf ):
# Offset into program header where the p_flags field is stored
phdr_align_flag_offset = 28
phdr_reloc_flag_offset = 24
# Initialize
[elf_header, phdr_table] = preprocess_elf_file(output_elf)
if elf_header.e_ident[ELFINFO_CLASS_INDEX] == ELFINFO_CLASS_64:
curr_phdr = Elf64_Phdr('\0' * ELF64_PHDR_SIZE)
elf_header_size = ELF64_HDR_SIZE
is_elf64 = True
else:
curr_phdr = Elf32_Phdr('\0' * ELF32_PHDR_SIZE)
elf_header_size = ELF32_HDR_SIZE
is_elf64 = False
# Open files
elf_in_fp = OPEN(output_elf, "r+")
# Go to the start of the p_flag entry in the first program header
file_offset_align_flag = elf_header.e_phoff + phdr_align_flag_offset
# Change the align field in the program header in the ELF file
elf_in_fp.seek(file_offset_align_flag)
curr_phdr = phdr_table[0]
#default alignment value is 1MB unless otherwise specified
if 'USES_RELOC_ALIGN_VALUE_4MB' in env:
alignment_value = ALIGNVALUE_4MB
else:
alignment_value = ALIGNVALUE_1MB
#create new alignment value
new_align = (curr_phdr.p_align & 0) | alignment_value
# Create structure to package new flag field
s = struct.Struct('I')
new_flag_bytes = s.pack(new_align)
# Write the new flag value and incr ement offset
elf_in_fp.write(new_flag_bytes)
# Go to the start of the p_flag entry in the first program header
file_offset_reloc_flag = elf_header.e_phoff + phdr_reloc_flag_offset
# Change each program header flag in the ELF file with relocatable flag
for i in range(elf_header.e_phnum):
# Seek to correct location and create new p_flag value
elf_in_fp.seek(file_offset_reloc_flag)
curr_phdr = phdr_table[i]
new_flag = (curr_phdr.p_flags & ~MI_PBT_FLAGS_MASK) | (MI_PBT_ELF_AMSS_RELOCATABLE_IMAGE)
# Create structure to package new flag field
s = struct.Struct('I')
new_flag_bytes = s.pack(new_flag)
# Write the new flag value and increment offset
elf_in_fp.write(new_flag_bytes)
file_offset_reloc_flag += elf_header.e_phentsize
# Close files
elf_in_fp.close()
return 0
#----------------------------------------------------------------------------
# modify_elf_flags
#----------------------------------------------------------------------------
def modify_elf_flags(env, elf_in_file_name,
scl_file_name):
# Initialize
[elf_header, phdr_table] = preprocess_elf_file(elf_in_file_name)
segment_list = readSCL(scl_file_name, env['GLOBAL_DICT'])
if elf_header.e_ident[ELFINFO_CLASS_INDEX] == ELFINFO_CLASS_64:
curr_phdr = Elf64_Phdr('\0' * ELF64_PHDR_SIZE)
# Offset into program header where the p_flags field is stored
phdr_flag_off = 4
else:
curr_phdr = Elf32_Phdr('\0' * ELF32_PHDR_SIZE)
# Offset into program header where the p_flags field is stored
phdr_flag_off = 24
# Open files
elf_in_fp = OPEN(elf_in_file_name, "r+")
# Check for corresponding number of segments
if len(segment_list) is not elf_header.e_phnum:
raise RuntimeError, 'SCL file and ELF file have different number of segments!'
# Go to the start of the p_flag entry in the first program header
file_offset = elf_header.e_phoff + phdr_flag_off
# Change each program header flag in the ELF file based off the SCL file
for i in range(elf_header.e_phnum):
# Seek to correct location and create new p_flag value
elf_in_fp.seek(file_offset)
curr_phdr = phdr_table[i]
new_flag = (curr_phdr.p_flags & ~MI_PBT_FLAGS_MASK) | (segment_list[i].flag)
# Create structure to package new flag field
s = struct.Struct('I')
new_flag_bytes = s.pack(new_flag)
# Write the new flag value and increment offset
elf_in_fp.write(new_flag_bytes)
file_offset += elf_header.e_phentsize
# Close files
elf_in_fp.close()
return 0
#----------------------------------------------------------------------------
# generate_code_hash
#----------------------------------------------------------------------------
def generate_code_hash(env, elf_in_file_name):
# Initialize
[elf_header, phdr_table] = preprocess_elf_file(elf_in_file_name)
if elf_header.e_ident[ELFINFO_CLASS_INDEX] == ELFINFO_CLASS_64:
curr_phdr = Elf64_Phdr('\0' * ELF64_PHDR_SIZE)
# Offset into program header where the p_flags field is stored
phdr_flag_off = 4
else:
curr_phdr = Elf32_Phdr('\0' * ELF32_PHDR_SIZE)
# Offset into program header where the p_flags field is stored
phdr_flag_off = 24
# Open files
elf_in_fp = OPEN(elf_in_file_name, "rb+")
# Go to the start of the p_flag entry in the first program header
file_offset = elf_header.e_phoff + phdr_flag_off
# XXX Get these from env?
DP_CODE_ALIGN = 0x100
DP_PAGE_SIZE = 4096
DP_HASH_SIZE = 32 # SHA-256
DP_HASH_MAGIC = 0xC0DEDEC0
PH_PERM_RW = 0x06
PH_PERM_RX = 0x05
PH_PERM_RO = 0x04
PH_PERM_MASK = 0x07
page_size = DP_PAGE_SIZE
hash_size = DP_HASH_SIZE
# First identify the hash segment. It is the first RW section.
# Its Align should be 8, and its size a multiple of DP_HASH_SIZE;
hash_seg_idx = -1
for i in range(elf_header.e_phnum):
curr_phdr = phdr_table[i]
if (curr_phdr.p_align == 8 and
(curr_phdr.p_flags & PH_PERM_MASK) == PH_PERM_RW and
curr_phdr.p_filesz != 0 and (curr_phdr.p_filesz % DP_HASH_SIZE) == 0):
hash_seg_idx = i
# Validate the contents of the hash segment. It should be
# filled with DP_HASH_MAGIC
elf_in_fp.seek(curr_phdr.p_offset)
hash_data = "";
while (len(hash_data) < curr_phdr.p_filesz):
hash_data = hash_data + elf_in_fp.read(curr_phdr.p_filesz - len(hash_data))
hash_data = struct.unpack("I" * (curr_phdr.p_filesz / 4), hash_data)
for v in hash_data[:]:
if (v != DP_HASH_MAGIC):
hash_seg_idx = -1
break;
if (hash_seg_idx != -1):
break
if (hash_seg_idx == -1):
# return if there is no hash segment.
return 0
hash_phdr = phdr_table[hash_seg_idx]
# Now find the code segment for the hashes. Look for matching number of pages
code_seg_idx = -1
code_seg_pages = hash_phdr.p_filesz / DP_HASH_SIZE
for i in range(elf_header.e_phnum):
curr_phdr = phdr_table[i]
curr_pages = (curr_phdr.p_filesz + DP_PAGE_SIZE - 1) / DP_PAGE_SIZE
if (curr_phdr.p_align == DP_CODE_ALIGN and
(curr_phdr.p_flags & PH_PERM_MASK) == PH_PERM_RX and
curr_pages == code_seg_pages):
if (code_seg_idx != -1):
raise RuntimeError, 'Multiple code segments match for: ' + code_seg_pages + ' pages'
code_seg_idx = i
if (code_seg_idx == -1):
raise RuntimeError, 'No matching code segment found'
code_phdr = phdr_table[code_seg_idx]
# Now hash the pages in the code segment
hashes = []
elf_in_fp.seek(code_phdr.p_offset)
bytes_left = code_phdr.p_filesz;
while (bytes_left > 0):
bytes_in_page = min(bytes_left, DP_PAGE_SIZE)
page = "";
while (len(page) < bytes_in_page):
page = page + elf_in_fp.read(bytes_in_page - len(page))
if (len(page) < DP_PAGE_SIZE):
page = page + (struct.pack('b', 0) * (DP_PAGE_SIZE - len(page)))
hashes = hashes + [generate_hash(page, True)]
bytes_left -= bytes_in_page
# And write them to the hash segment
elf_in_fp.seek(hash_phdr.p_offset)
for h in hashes[:]:
elf_in_fp.write(h)
# Close files
elf_in_fp.close()
return 0
#----------------------------------------------------------------------------
# BOOT TOOLS END
#----------------------------------------------------------------------------
#----------------------------------------------------------------------------
# HELPER FUNCTIONS BEGIN
#----------------------------------------------------------------------------
#----------------------------------------------------------------------------
# Create a list to hold all segment information from an input SCL file
#----------------------------------------------------------------------------
def readSCL(filename, global_dict):
scl_fp = OPEN(filename,'r')
# Initialize
file_data = scl_fp.readlines()
num_lines = len(file_data)
current_line = ''
previous_line = ''
strip_chars = '(){}[]'
i = 0
bracket_counter = 0
seg_list = []
# Parse through all lines
while i < num_lines:
# Save the last line read
previous_line = current_line
current_line = file_data[i]
# Look for the symbol '{' for the line to read.
# Use bracket counter to skip nested '{ }'
if ('{' in current_line):
if bracket_counter is 0:
# Create a new SegmentInfo class and set up tokens
new_scl_entry = SegmentInfo()
previous_line = previous_line.strip()
tokens = previous_line.split(' ')
# Check that at least two tokens were parsed
# Token 1: Segment Name
# Token 2: Start Address -- not used in MBN tools
if len(tokens) < 2:
raise RuntimeError, 'SCL Segment Syntax malformed: ' + previous_line
# Get the segment flags corresponding to the segment name description
new_scl_entry.flag = getSegmentFlag(tokens[0].strip(strip_chars))
seg_list.append(new_scl_entry)
bracket_counter += 1
elif '}' in current_line:
bracket_counter -= 1
i+=1
scl_fp.close()
return seg_list
#----------------------------------------------------------------------------
# Given a string parsed from a SCL file, returns the ELF segment flags
#----------------------------------------------------------------------------
def getSegmentFlag(seg_info):
ret_val = None
# Define string values for various types of segments
RO = "RO"
RW = "RW"
ZI = "ZI"
PAGEABLE = "PAGED"
NOTPAGEABLE = "NOTPAGED"
SWAPABLE = "SWAPPED"
SWAP_POOL = "SWAP_POOL"
RESERVED = "RESERVED"
HASHTBL = "HASH"
SHARED = "SHARED"
NOTUSED = "NOTUSED"
BOOT_SEGMENT = "BOOT_SEGMENT"
CODE = "CODE"
L4BSP = "L4BSP"
POOL_INDEX_0 = "INDEX_0"
POOL_INDEX_1 = "INDEX_1"
# New definitions for EOS demand paging
NONPAGE = "NONPAGE"
PAGEUNLOCKED = "PAGEUNLOCKED"
PAGELOCKED = "PAGELOCKED"
UNSECURE = "UNSECURE"
if seg_info is None or len(seg_info) is 0:
raise RuntimeError, 'Invalid segment information passed: ' + seg_info
# Conditional checks and assignments of the corresponding segment flag values
if NOTPAGEABLE in seg_info:
if RO in seg_info:
ret_val = MI_PBT_ELF_AMSS_NON_PAGED_RO_SEGMENT
elif CODE in seg_info:
ret_val = MI_PBT_ELF_AMSS_NON_PAGED_RO_SEGMENT
elif ZI in seg_info:
if SWAP_POOL in seg_info:
if POOL_INDEX_0 in seg_info:
ret_val = MI_PBT_ELF_SWAP_POOL_NON_PAGED_ZI_SEGMENT_INDEX0
else:
ret_val = MI_PBT_ELF_SWAP_POOL_NON_PAGED_ZI_SEGMENT_INDEX1
else:
ret_val = MI_PBT_ELF_AMSS_NON_PAGED_ZI_SEGMENT
elif NOTUSED in seg_info:
ret_val = MI_PBT_ELF_AMSS_NON_PAGED_NOTUSED_SEGMENT
elif SHARED in seg_info:
ret_val = MI_PBT_ELF_AMSS_NON_PAGED_SHARED_SEGMENT
elif HASHTBL in seg_info:
ret_val = MI_PBT_ELF_HASH_SEGMENT
elif BOOT_SEGMENT in seg_info:
ret_val = MI_PBT_ELF_BOOT_SEGMENT
elif L4BSP in seg_info:
ret_val = MI_PBT_ELF_NON_PAGED_L4BSP_SEGMENT
else:
ret_val = MI_PBT_ELF_AMSS_NON_PAGED_RW_SEGMENT
elif PAGEABLE in seg_info:
if RO in seg_info or CODE in seg_info:
if SWAPABLE in seg_info:
if POOL_INDEX_0 in seg_info:
ret_val = MI_PBT_ELF_SWAPPED_PAGED_RO_SEGMENT_INDEX0
else:
ret_val = MI_PBT_ELF_SWAPPED_PAGED_RO_SEGMENT_INDEX1
else:
ret_val = MI_PBT_ELF_AMSS_PAGED_RO_SEGMENT
elif ZI in seg_info:
ret_val = MI_PBT_ELF_AMSS_PAGED_ZI_SEGMENT
elif NOTUSED in seg_info:
ret_val = MI_PBT_ELF_AMSS_PAGED_NOTUSED_SEGMENT
elif SHARED in seg_info:
ret_val = MI_PBT_ELF_AMSS_PAGED_SHARED_SEGMENT
elif L4BSP in seg_info:
ret_val = MI_PBT_ELF_PAGED_L4BSP_SEGMENT
else:
ret_val = MI_PBT_ELF_AMSS_PAGED_RW_SEGMENT
elif PAGELOCKED in seg_info:
ret_val = MI_PBT_ELF_PAGED_LOCKED_SEGMENT
elif PAGEUNLOCKED in seg_info:
ret_val = MI_PBT_ELF_PAGED_UNLOCKED_SEGMENT
elif NONPAGE in seg_info:
ret_val = MI_PBT_ELF_RESIDENT_SEGMENT
elif UNSECURE in seg_info:
ret_val = MI_PBT_ELF_UNSECURE_SEGMENT
else:
raise RuntimeError, 'The segment name is wrongly defined in the SCL file: ' + seg_info
return ret_val
#----------------------------------------------------------------------------
# Pad a file with specific number of bytes
# Note: Assumes the fp is seeked to the correct location of padding
#----------------------------------------------------------------------------
def pad_file(fp, num_bytes, value):
if num_bytes < 0:
raise RuntimeError, "Number of bytes to pad must be greater than zero"
while num_bytes > 0:
fp.write('%c' % value)
num_bytes -= 1
return
#----------------------------------------------------------------------------
# Concatenates the files listed in 'sources' in order and writes to 'target'
#----------------------------------------------------------------------------
def concat_files (target, sources):
if type(sources) is not list:
sources = [sources]
target_file = OPEN(target,'wb')
for fname in sources:
file = OPEN(fname,'rb')
while True:
bin_data = file.read(65536)
if not bin_data:
break
target_file.write(bin_data)
file.close()
target_file.close()
#----------------------------------------------------------------------------
# Parse build configurable values and assign to global variables for tools
#----------------------------------------------------------------------------
def init_build_vars(env):
# Maximum size of Certificate Chain used in Secure Boot
global CERT_CHAIN_ONEROOT_MAXSIZE
CERT_CHAIN_ONEROOT_MAXSIZE = get_dict_value(env['GLOBAL_DICT'], 'CERT_CHAIN_MAXSIZE', (6*1024))
# Maximum size of the XML Header used in encrypted ELF images
global XML_HEADER_MAXSIZE
XML_HEADER_MAXSIZE = get_dict_value(env['GLOBAL_DICT'], 'XML_HEADER_MAXSIZE', (2*1024))
#----------------------------------------------------------------------------
# Generates the global dictionary and add to the environment
#----------------------------------------------------------------------------
def generate_global_dict(env):
# Get file names for 'cust' and 'targ' auto-generated files inside 'build/ms'
cust_h = env.subst('CUST${BUILD_ID}.H').lower()
targ_h = env.subst('TARG${BUILD_ID}.H').lower()
cust_file_name = str(env.FindFile(cust_h, "${INC_ROOT}/build/ms"))
targ_file_name = str(env.FindFile(targ_h, "${INC_ROOT}/build/ms"))
# Check that files are present
if (os.path.exists(cust_file_name) is True) and \
(os.path.exists(targ_file_name) is True):
# Populate the dictionary from the auto-generated files
global_dict = populate_dictionary(targ_file_name, cust_file_name)
else:
global_dict = {}
# Add the dictionary to the environment
env.Replace(GLOBAL_DICT = global_dict)
#----------------------------------------------------------------------------
# Populate the dictionary from a list of input files
#----------------------------------------------------------------------------
def populate_dictionary(*args):
if len(args) < 1:
raise RuntimeError, "At least 1 file must be specified as an input"
global_dict = {}
Fields = ["Define", "Key", "Value"]
# For each input file
for i in range(len(args)):
template_file_path = args[i]
instream = OPEN(template_file_path, 'r')
# Tokenize each line with a white space
values = csv.DictReader(instream, Fields, delimiter=" ")
for values in itertools.izip(values):
new_entry = values[0]
# Verify the parsed tokens
if (new_entry['Define'] == '#define') and \
(new_entry['Key'] != None) and \
(new_entry['Value'] != None):
new_key = new_entry['Key'].strip()
new_value = new_entry['Value'].strip()
# If value pair is empty string, assume feature definition is true
if new_value == '':
new_value = 'yes'
# Check for and handle text replacements as we parse
if global_dict is not None and len(global_dict.keys()) > 0:
for key in global_dict:
new_value = new_value.replace(key, str(global_dict.get(key)))
# Attempt to evaluate value
try:
new_value = eval(new_value)
# Catch exceptions and do not evaluate
except:
pass
# Add to global dictionary
global_dict[new_key] = new_value
instream.close()
return global_dict
#----------------------------------------------------------------------------
# Filter out a generic dictionary from the global dictionary
#----------------------------------------------------------------------------
def filter_dictionary(env, global_dict, **kwargs):
# Check for Image Type
# If IMAGE_TYPE parameter is not provided, raise error
if not kwargs.has_key('IMAGE_TYPE'):
raise RuntimeError, "IMAGE_TYPE must be defined to use FilterDictionary."
else:
image_type = kwargs.get('IMAGE_TYPE')
if type(image_type) is not str:
raise RuntimeError, "IMAGE_TYPE must be of string type."
# Check for Flash Type
# If FLASH_TYPE parameter is not provided, default to 'nand'
if not kwargs.has_key('FLASH_TYPE'):
flash_type = 'nand'
else:
flash_type = kwargs.get('FLASH_TYPE')
if type(flash_type) is not str:
raise RuntimeError, "FLASH_TYPE must be of string type. "
# Check for MBN Type
# If MBN_TYPE parameter is not provided, default to 'elf'
if not kwargs.has_key('MBN_TYPE'):
mbn_type = 'elf'
else:
mbn_type = kwargs.get('MBN_TYPE')
if mbn_type != 'elf' and mbn_type != 'bin':
raise RuntimeError, "MBN_TYPE currently not supported: " + mbn_type
# Check for Image ID
# If IMAGE_ID parameter is not provided, default to ID 0
if not kwargs.has_key('IMAGE_ID'):
image_id = ImageType.NONE_IMG
else:
image_id = kwargs.get('IMAGE_ID')
if type(image_id) is not int:
raise RuntimeError, "IMAGE_ID must be of integer type."
# Initialize
gen_dict = {}
image_dest = 0
image_source = 0
# Check for image_type
if image_type not in image_id_table:
id = image_id
id_match_str = image_type.upper() + "_IMG"
id_mbn_type = mbn_type
else:
id = image_id_table[image_type][0]
id_match_str = image_id_table[image_type][1]
id_mbn_type = image_id_table[image_type][2]
# Handle MBN Type and assign image destination address
if id_mbn_type is 'elf':
pass
elif id_mbn_type is 'bin':
template_key_match = 'IMAGE_KEY_' + id_match_str + "_DEST_ADDR"
if template_key_match in global_dict:
image_dest = global_dict[template_key_match]
else:
raise RuntimeError, "Builds file does not have IMAGE_KEY pair for: " + image_type
else:
raise RuntimeError, "MBN_TYPE currently not supported: " + mbn_type
# Assign generic dictionary key/value pairs
gen_dict['IMAGE_KEY_IMAGE_ID'] = id
gen_dict['IMAGE_KEY_IMAGE_DEST'] = image_dest
gen_dict['IMAGE_KEY_IMAGE_SOURCE'] = image_source
gen_dict['IMAGE_KEY_FLASH_TYPE'] = flash_type
gen_dict['IMAGE_KEY_MBN_TYPE'] = id_mbn_type
gen_dict['IMAGE_KEY_ID_MATCH_STR'] = id_match_str
gen_dict['IMAGE_KEY_FLASH_AUTO_DETECT_MAX_PAGE'] = \
get_dict_value(global_dict,'FLASH_AUTO_DETECT_MAX_PAGE', 8192)
gen_dict['IMAGE_KEY_FLASH_AUTO_DETECT_MIN_PAGE'] = \
get_dict_value(global_dict,'FLASH_AUTO_DETECT_MIN_PAGE', 2048)
gen_dict['IMAGE_KEY_MAX_SIZE_OF_VERIFY_BUFFER'] = \
get_dict_value(global_dict,'MAX_SIZE_OF_VERIFY_BUFFER', 8192)
gen_dict['IMAGE_KEY_BOOT_SMALL_PREAMBLE'] = \
get_dict_value(global_dict,'BOOT_SMALL_PREAMBLE', 1)
# Get OEM root certificate select and number
oem_root_cert_sel = get_dict_value(global_dict,'OEM_ROOT_CERT_SEL', 1)
oem_num_root_certs = get_dict_value(global_dict,'OEM_NUM_ROOT_CERTS', 1)
# Error checking for OEM configurable values
if oem_root_cert_sel in range(1, MAX_NUM_ROOT_CERTS + 1) and \
oem_num_root_certs in range(1, MAX_NUM_ROOT_CERTS + 1) and \
oem_root_cert_sel <= oem_num_root_certs:
gen_dict['IMAGE_KEY_OEM_ROOT_CERT_SEL'] = oem_root_cert_sel
gen_dict['IMAGE_KEY_OEM_NUM_ROOT_CERTS'] = oem_num_root_certs
else:
raise RuntimeError, "Invalid OEM root certificate configuration values"
# Assign additional dictionary key/values pair as needed by tools.
return gen_dict
#----------------------------------------------------------------------------
# Get index value from dictionary if exists, otherwise return default
#----------------------------------------------------------------------------
def get_dict_value(dict, key_string, default):
key = 'IMAGE_KEY_' + key_string
if key in dict:
return dict[key]
else:
return default
#----------------------------------------------------------------------------
# Preprocess an ELF file and return the ELF Header Object and an
# array of ELF Program Header Objects
#----------------------------------------------------------------------------
def preprocess_elf_file(elf_file_name):
# Initialize
elf_fp = OPEN(elf_file_name, 'rb')
elf_header = Elf_Ehdr_common(elf_fp.read(ELF_HDR_COMMON_SIZE))
if verify_elf_header(elf_header) is False:
raise RuntimeError, "ELF file failed verification: " + elf_file_name
elf_fp.seek(0)
if elf_header.e_ident[ELFINFO_CLASS_INDEX] == ELFINFO_CLASS_64:
elf_header = Elf64_Ehdr(elf_fp.read(ELF64_HDR_SIZE))
else:
elf_header = Elf32_Ehdr(elf_fp.read(ELF32_HDR_SIZE))
phdr_table = []
# Verify ELF header information
if verify_elf_header(elf_header) is False:
raise RuntimeError, "ELF file failed verification: " + elf_file_name
# Get program header size
phdr_size = elf_header.e_phentsize
# Find the program header offset
file_offset = elf_header.e_phoff
elf_fp.seek(file_offset)
# Read in the program headers
for i in range(elf_header.e_phnum):
if elf_header.e_ident[ELFINFO_CLASS_INDEX] == ELFINFO_CLASS_64:
phdr_table.append(Elf64_Phdr(elf_fp.read(phdr_size)))
else:
phdr_table.append(Elf32_Phdr(elf_fp.read(phdr_size)))
elf_fp.close()
return [elf_header, phdr_table]
#----------------------------------------------------------------------------
# Get the hash table address from an input ELF file
#----------------------------------------------------------------------------
def get_hash_address(elf_file_name):
[elf_header, phdr_table] = preprocess_elf_file(elf_file_name)
last_paddr = 0
last_paddr_segment = 0
# Find the segment with the largest physical address.
# Hash segment's physical address will be immediately after this segment.
for i in range(elf_header.e_phnum):
curr_phdr = phdr_table[i]
if curr_phdr.p_paddr > last_paddr:
# Skip the demand paging segment as it would be outside the physical RAM location
if MI_PBT_SEGMENT_TYPE_VALUE(curr_phdr.p_flags) != MI_PBT_SWAPPED_SEGMENT:
last_paddr = curr_phdr.p_paddr;
last_paddr_segment = i;
max_phdr = phdr_table[last_paddr_segment]
ret_val = (((max_phdr.p_paddr + max_phdr.p_memsz - 1) & \
~(ELF_BLOCK_ALIGN-1)) + ELF_BLOCK_ALIGN)
return ret_val
#----------------------------------------------------------------------------
# Verify ELF header contents from an input ELF file
#----------------------------------------------------------------------------
def verify_elf_header(elf_header):
if (elf_header.e_ident[ELFINFO_MAG0_INDEX] != ELFINFO_MAG0) or \
(elf_header.e_ident[ELFINFO_MAG1_INDEX] != ELFINFO_MAG1) or \
(elf_header.e_ident[ELFINFO_MAG2_INDEX] != ELFINFO_MAG2) or \
(elf_header.e_ident[ELFINFO_MAG3_INDEX] != ELFINFO_MAG3) or \
((elf_header.e_ident[ELFINFO_CLASS_INDEX] != ELFINFO_CLASS_64) and \
(elf_header.e_ident[ELFINFO_CLASS_INDEX] != ELFINFO_CLASS_32)) or \
(elf_header.e_ident[ELFINFO_VERSION_INDEX] != ELFINFO_VERSION_CURRENT):
return False
else:
return True
#----------------------------------------------------------------------------
# Perform file copy given offsets and the number of bytes to copy
#----------------------------------------------------------------------------
def file_copy_offset(in_fp, in_off, out_fp, out_off, num_bytes):
in_fp.seek(in_off)
read_in = in_fp.read(num_bytes)
out_fp.seek(out_off)
out_fp.write(read_in)
return num_bytes
#----------------------------------------------------------------------------
# sha1/sha256 hash routine wrapper
#----------------------------------------------------------------------------
def generate_hash(in_buf, is_sha256_algo):
# Initialize a SHA1 object from the Python hash library
if (is_sha256_algo is True):
m = hashlib.sha256()
else:
m = hashlib.sha1()
# Set the input buffer and return the output digest
m.update(in_buf)
return m.digest()
#----------------------------------------------------------------------------
# Initialize the hash program header.
#----------------------------------------------------------------------------
def initialize_hash_phdr(elf_in_file_name, hash_tbl_size, hdr_size, hdr_offset, is_elf64):
# Set hash header offset to page size boundary. Hash table will be
# located at first segment of elf image.
hash_hdr_size = hdr_size
hash_hdr_offset = hdr_offset
hash_tbl_offset = hash_hdr_offset + hash_hdr_size
hash_tbl_end_addr = hash_tbl_offset + hash_tbl_size;
pad_hash_segment = (hash_tbl_end_addr) & (ELF_BLOCK_ALIGN-1)
# Update the hash table program header
if is_elf64 is True:
hash_Phdr = Elf64_Phdr('\0'*ELF64_PHDR_SIZE)
else:
hash_Phdr = Elf32_Phdr('\0'*ELF32_PHDR_SIZE)
hash_Phdr.p_flags = MI_PBT_ELF_HASH_SEGMENT
hash_Phdr.p_align = ELF_BLOCK_ALIGN
hash_Phdr.p_offset = hash_hdr_offset
hash_Phdr.p_memsz = hash_hdr_size + hash_tbl_size + (ELF_BLOCK_ALIGN - pad_hash_segment)
hash_Phdr.p_filesz = hash_hdr_size + hash_tbl_size
hash_Phdr.p_type = NULL_TYPE
hash_Phdr.p_vaddr = get_hash_address(elf_in_file_name)
hash_Phdr.p_paddr = hash_Phdr.p_vaddr
return [hash_Phdr, pad_hash_segment, hash_tbl_end_addr, hash_tbl_offset]
#----------------------------------------------------------------------------
# image_preamble
#----------------------------------------------------------------------------
def image_preamble(gen_dict, preamble_file_name, boot_sbl_header, num_of_pages=None):
# Generate the preamble file
preamble_fp = OPEN(preamble_file_name, 'wb')
# Initialize
max_size_verify = gen_dict['IMAGE_KEY_MAX_SIZE_OF_VERIFY_BUFFER']
flash_max_page = gen_dict['IMAGE_KEY_FLASH_AUTO_DETECT_MAX_PAGE']
flash_min_page = gen_dict['IMAGE_KEY_FLASH_AUTO_DETECT_MIN_PAGE']
autodetectpage = [int('0xFFFFFFFF',16)] * max_size_verify
# The first three entries in the preamble must include the following values
autodetectpage[0] = FLASH_CODE_WORD
autodetectpage[1] = MAGIC_NUM
if (num_of_pages == 64):
autodetectpage[2] = AUTODETECT_PAGE_SIZE_MAGIC_NUM64
elif (num_of_pages == 128):
autodetectpage[2] = AUTODETECT_PAGE_SIZE_MAGIC_NUM128
else:
autodetectpage[2] = AUTODETECT_PAGE_SIZE_MAGIC_NUM
# Package the list into binary data to be written to the preamble
s = struct.Struct('I' * max_size_verify)
packed_data = s.pack(*autodetectpage)
# Output preamble pages based on maximum/minimum page size support
for i in range(flash_max_page/flash_min_page):
preamble_fp.write(packed_data[:flash_min_page])
# Determine appropriate amount of padding for the preamble and
# update the boot_sbl_header accordingly
if gen_dict['IMAGE_KEY_BOOT_SMALL_PREAMBLE'] == 1:
boot_sbl_header.image_src += (flash_max_page + flash_min_page)
amount_to_write = flash_min_page
else:
boot_sbl_header.image_src += flash_max_page * 2
amount_to_write = flash_max_page
pad_file(preamble_fp, amount_to_write, PAD_BYTE_1)
preamble_fp.close()
return boot_sbl_header
#----------------------------------------------------------------------------
# Helper functions to parse ELF program headers
#----------------------------------------------------------------------------
def MI_PBT_SEGMENT_TYPE_VALUE(x):
return ( ((x) & MI_PBT_FLAG_SEGMENT_TYPE_MASK) >> MI_PBT_FLAG_SEGMENT_TYPE_SHIFT )
def MI_PBT_PAGE_MODE_VALUE(x):
return ( ((x) & MI_PBT_FLAG_PAGE_MODE_MASK) >> MI_PBT_FLAG_PAGE_MODE_SHIFT )
def MI_PBT_ACCESS_TYPE_VALUE(x):
return ( ((x) & MI_PBT_FLAG_ACCESS_TYPE_MASK) >> MI_PBT_FLAG_ACCESS_TYPE_SHIFT )
def MI_PBT_CHECK_FLAG_TYPE(x):
return (MI_PBT_SEGMENT_TYPE_VALUE(x) != MI_PBT_HASH_SEGMENT) and \
(MI_PBT_ACCESS_TYPE_VALUE(x) != MI_PBT_NOTUSED_SEGMENT) and \
(MI_PBT_ACCESS_TYPE_VALUE(x) != MI_PBT_SHARED_SEGMENT)
#----------------------------------------------------------------------------
# Helper functions to open a file and return a valid file object
#----------------------------------------------------------------------------
def OPEN(file_name, mode):
try:
fp = open(file_name, mode)
except IOError:
raise RuntimeError, "The file could not be opened: " + file_name
# File open has succeeded with the given mode, return the file object
return fp
#----------------------------------------------------------------------------
# Helper functions to insert MCs in SBL1(Badger) if ENABLE_VIRTUAL_BLK is ON
#----------------------------------------------------------------------------
def insert_SBL1_magicCookie (env, target):
file = open(target, "rb")
#read the file contents
filedata = file.read()
length = len(filedata)
file.close()
if (length <= VIRTUAL_BLOCK_SIZE):
return None
else:
#remove the previous file
os.remove(target)
#generate new file for appending target data + required MCs
file = open(target, "ab")
while length > VIRTUAL_BLOCK_SIZE:
filedata_till_128kb = filedata[0:VIRTUAL_BLOCK_SIZE]
filedata_after_128kb = filedata[VIRTUAL_BLOCK_SIZE:length]
a = str(hex(FLASH_CODE_WORD))
mc1 = chr(int(a[8:10],16)) + chr(int(a[6:8],16)) + chr(int(a[4:6],16)) + chr(int(a[2:4],16))
b = str(hex(MAGIC_NUM))
mc2 = chr(int(b[8:10],16)) + chr(int(b[6:8],16)) + chr(int(b[4:6],16)) + chr(int(b[2:4],16))
c = str(hex(SBL_VIRTUAL_BLOCK_MAGIC_NUM))
mc3 = chr(int(c[8:10],16)) + chr(int(c[6:8],16)) + chr(int(c[4:6],16)) + chr(int(c[2:4],16))
MC_inserted_data = filedata_till_128kb + mc1 + mc2 + mc3
file.write(MC_inserted_data)
filedata = filedata_after_128kb
length = len(filedata)
#copy the leftover data (<128KB) in output file
if length > 0:
file.write(filedata)
#close the final output file
file.close()
# MC_insertion code end
#----------------------------------------------------------------------------
# Helper functions to remove MCs in SBL1(Badger)
#----------------------------------------------------------------------------
def remove_SBL1_magicCookie (env, target, dest):
file = open(target, "rb")
#read the file contents
filedata = file.read()
length = len(filedata)
file.close()
#generate new file for appending target data + required MCs
file = open(dest, "ab")
while length > VIRTUAL_BLOCK_SIZE:
filedata_till_128kb = filedata[0:VIRTUAL_BLOCK_SIZE]
# skipped 12 byte of Virtual Block Magic Cookie Header
filedata_after_128kb = filedata[VIRTUAL_BLOCK_SIZE+MAGIC_COOKIE_LENGTH:length]
file.write(filedata_till_128kb)
filedata = filedata_after_128kb
length = len(filedata)
#copy the leftover data (<128KB) in output file
if length > 0:
file.write(filedata)
#close the final output file
file.close()
# MC_removal code end
#----------------------------------------------------------------------------
# Helper functions to pad SBL1 image
# min_size defaults to 256k
# If page_size or num_of_pages is set to 0, the variable is unset
#----------------------------------------------------------------------------
def pad_SBL1_image (env, target, min_size_with_pad=MIN_IMAGE_SIZE_WITH_PAD, page_size=0, num_of_pages=0):
file = open(target, "rb")
#read the file contents
filedata = file.read()
length = len(filedata)
file.close()
multiple = 1
alignment = page_size * num_of_pages
if (length > alignment and alignment > 0):
import math
multiple = math.ceil(length/float(alignment))
final_image_size = max(min_size_with_pad, multiple * alignment)
if length < final_image_size:
sbl1_fp = open(target, 'ab')
pad_file (sbl1_fp, (final_image_size-length), PAD_BYTE_0)
sbl1_fp.close()
# SBL1 pad code end
#----------------------------------------------------------------------------
# HELPER FUNCTIONS END
#----------------------------------------------------------------------------
|