1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
|
/*
* inteltool - dump all registers on an Intel CPU + chipset based system.
*
* Copyright (C) 2008-2010 by coresystems GmbH
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <stdio.h>
#include <stdlib.h>
#include <inttypes.h>
#include "inteltool.h"
volatile uint8_t *mchbar;
static void write_mchbar32 (uint32_t addr, uint32_t val)
{
* (volatile uint32_t *) (mchbar + addr) = val;
}
static uint32_t read_mchbar32 (uint32_t addr)
{
return * (volatile uint32_t *) (mchbar + addr);
}
static uint8_t read_mchbar8 (uint32_t addr)
{
return * (volatile uint8_t *) (mchbar + addr);
}
static u16 read_500 (int channel, u16 addr, int split)
{
uint32_t val;
write_mchbar32 (0x500 + (channel << 10), 0);
while (read_mchbar32 (0x500 + (channel << 10)) & 0x800000);
write_mchbar32 (0x500 + (channel << 10), 0x80000000 | (((read_mchbar8 (0x246 + (channel << 10)) >> 2) & 3) + 0xb88 - addr));
while (read_mchbar32 (0x500 + (channel << 10)) & 0x800000);
val = read_mchbar32 (0x508 + (channel << 10));
return val & ((1 << split) - 1);
}
static inline u16 get_lane_offset (int slot, int rank, int lane)
{
return 0x124 * lane + ((lane & 4) ? 0x23e : 0) + 11 * rank + 22 * slot - 0x452 * (lane == 8);
}
static inline u16 get_timing_register_addr (int lane, int tm, int slot, int rank)
{
const u16 offs[] = { 0x1d, 0xa8, 0xe6, 0x5c };
return get_lane_offset (slot, rank, lane) + offs[(tm + 3) % 4];
}
static void write_1d0 (u32 val, u16 addr, int bits, int flag)
{
write_mchbar32 (0x1d0, 0);
while (read_mchbar32 (0x1d0) & 0x800000);
write_mchbar32 (0x1d4, (val & ((1 << bits) - 1)) | (2 << bits) | (flag << bits));
write_mchbar32 (0x1d0, 0x40000000 | addr);
while (read_mchbar32 (0x1d0) & 0x800000);
}
static u16 read_1d0 (u16 addr, int split)
{
u32 val;
write_mchbar32 (0x1d0, 0);
while (read_mchbar32 (0x1d0) & 0x800000);
write_mchbar32 (0x1d0, 0x80000000 | (((read_mchbar8 (0x246) >> 2) & 3) + 0x361 - addr));
while (read_mchbar32 (0x1d0) & 0x800000);
val = read_mchbar32 (0x1d8);
write_1d0 (0, 0x33d, 0, 0);
write_1d0 (0, 0x33d, 0, 0);
return val & ((1 << split) - 1);
}
static void dump_timings (void)
{
int channel, slot, rank, lane, i;
printf ("Timings:\n");
for (channel = 0; channel < 2; channel++)
for (slot = 0; slot < 2; slot++)
for (rank = 0; rank < 2; rank++) {
printf ("channel %d, slot %d, rank %d\n", channel, slot, rank);
for (lane = 0; lane < 9; lane++) {
printf ("lane %d: ", lane);
for (i = 0; i < 4; i++) {
printf ("%x ", read_500 (channel,
get_timing_register_addr (lane, i, slot, rank), 9));
}
printf ("\n");
}
}
printf ("[178] = %x\n", read_1d0 (0x178, 7));
printf ("[10b] = %x\n", read_1d0 (0x10b, 6));
}
/*
* (G)MCH MMIO Config Space
*/
int print_mchbar(struct pci_dev *nb, struct pci_access *pacc)
{
int i, size = (16 * 1024);
uint64_t mchbar_phys;
struct pci_dev *nb_device6; /* "overflow device" on i865 */
uint16_t pcicmd6;
printf("\n============= MCHBAR ============\n\n");
switch (nb->device_id) {
case PCI_DEVICE_ID_INTEL_82865:
/*
* On i865, the memory access enable/disable bit (MCHBAREN on
* i945/i965) is not in the MCHBAR (i945/i965) register but in
* the PCICMD6 register. BAR6 and PCICMD6 reside on device 6.
*
* The actual base address is in BAR6 on i865 where on
* i945/i965 the base address is in MCHBAR.
*/
nb_device6 = pci_get_dev(pacc, 0, 0, 0x06, 0); /* Device 6 */
mchbar_phys = pci_read_long(nb_device6, 0x10); /* BAR6 */
pcicmd6 = pci_read_long(nb_device6, 0x04); /* PCICMD6 */
/* Try to enable Memory Access Enable (MAE). */
if (!(pcicmd6 & (1 << 1))) {
printf("Access to BAR6 is currently disabled, "
"attempting to enable.\n");
pci_write_long(nb_device6, 0x04, pcicmd6 | (1 << 1));
if (pci_read_long(nb_device6, 0x04) & (1 << 1))
printf("Enabled successfully.\n");
else
printf("Enable FAILED!\n");
}
mchbar_phys &= 0xfffff000; /* Bits 31:12 from BAR6 */
break;
case PCI_DEVICE_ID_INTEL_82915:
case PCI_DEVICE_ID_INTEL_82945GM:
case PCI_DEVICE_ID_INTEL_82945GSE:
case PCI_DEVICE_ID_INTEL_82945P:
case PCI_DEVICE_ID_INTEL_82975X:
mchbar_phys = pci_read_long(nb, 0x44) & 0xfffffffe;
break;
case PCI_DEVICE_ID_INTEL_82965PM:
case PCI_DEVICE_ID_INTEL_82Q35:
case PCI_DEVICE_ID_INTEL_82G33:
case PCI_DEVICE_ID_INTEL_82Q33:
mchbar_phys = pci_read_long(nb, 0x48) & 0xfffffffe;
mchbar_phys |= ((uint64_t)pci_read_long(nb, 0x4c)) << 32;
break;
case PCI_DEVICE_ID_INTEL_82946:
case PCI_DEVICE_ID_INTEL_82Q965:
case PCI_DEVICE_ID_INTEL_ATOM_DXXX:
case PCI_DEVICE_ID_INTEL_ATOM_NXXX:
mchbar_phys = pci_read_long(nb, 0x48);
/* Test if bit 0 of the MCHBAR reg is 1 to enable memory reads.
* If it isn't, try to set it. This may fail, because there is
* some bit that locks that bit, and isn't in the public
* datasheets.
*/
if(!(mchbar_phys & 1))
{
printf("Access to the MCHBAR is currently disabled, "
"attempting to enable.\n");
mchbar_phys |= 0x1;
pci_write_long(nb, 0x48, mchbar_phys);
if(pci_read_long(nb, 0x48) & 1)
printf("Enabled successfully.\n");
else
printf("Enable FAILED!\n");
}
mchbar_phys &= 0xfffffffe;
mchbar_phys |= ((uint64_t)pci_read_long(nb, 0x4c)) << 32;
break;
case PCI_DEVICE_ID_INTEL_82443LX:
case PCI_DEVICE_ID_INTEL_82443BX:
case PCI_DEVICE_ID_INTEL_82810:
case PCI_DEVICE_ID_INTEL_82810E_DC:
case PCI_DEVICE_ID_INTEL_82810_DC:
case PCI_DEVICE_ID_INTEL_82830M:
printf("This northbridge does not have MCHBAR.\n");
return 1;
case PCI_DEVICE_ID_INTEL_82X4X:
case PCI_DEVICE_ID_INTEL_82X38:
case PCI_DEVICE_ID_INTEL_32X0:
mchbar_phys = pci_read_long(nb, 0x48) & 0xfffffffe;
mchbar_phys |= ((uint64_t)pci_read_long(nb, 0x4c)) << 32;
break;
case PCI_DEVICE_ID_INTEL_CORE_1ST_GEN:
mchbar_phys = pci_read_long(nb, 0x48);
mchbar_phys |= ((uint64_t)pci_read_long(nb, 0x4c)) << 32;
mchbar_phys &= 0x0000000fffffc000UL; /* 35:14 */
break;
case PCI_DEVICE_ID_INTEL_CORE_2ND_GEN:
case PCI_DEVICE_ID_INTEL_CORE_3RD_GEN_A: /* pretty printing not implemented yet */
case PCI_DEVICE_ID_INTEL_CORE_3RD_GEN_B:
case PCI_DEVICE_ID_INTEL_CORE_3RD_GEN_C:
case PCI_DEVICE_ID_INTEL_CORE_3RD_GEN_D:
case PCI_DEVICE_ID_INTEL_CORE_4TH_GEN_U:
mchbar_phys = pci_read_long(nb, 0x48);
mchbar_phys |= ((uint64_t)pci_read_long(nb, 0x4c)) << 32;
mchbar_phys &= 0x0000007fffff8000UL; /* 38:15 */
break;
default:
printf("Error: Dumping MCHBAR on this northbridge is not (yet) supported.\n");
return 1;
}
mchbar = map_physical(mchbar_phys, size);
if (mchbar == NULL) {
if (nb->device_id == PCI_DEVICE_ID_INTEL_82865)
perror("Error mapping BAR6");
else
perror("Error mapping MCHBAR");
exit(1);
}
if (nb->device_id == PCI_DEVICE_ID_INTEL_82865)
printf("BAR6 = 0x%08" PRIx64 " (MEM)\n\n", mchbar_phys);
else
printf("MCHBAR = 0x%08" PRIx64 " (MEM)\n\n", mchbar_phys);
for (i = 0; i < size; i += 4) {
if (*(uint32_t *)(mchbar + i))
printf("0x%04x: 0x%08"PRIx32"\n", i, *(uint32_t *)(mchbar+i));
}
if (nb->device_id == PCI_DEVICE_ID_INTEL_CORE_1ST_GEN) {
printf ("clock_speed_index = %x\n", read_500 (0,0x609, 6) >> 1);
dump_timings ();
}
unmap_physical((void *)mchbar, size);
return 0;
}
|