summaryrefslogtreecommitdiff
path: root/util/cbfstool/cbfs_image.c
blob: 05fdc8aae6bd51c1efc413f3e37424d6f48df7f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
/* CBFS Image Manipulation */
/* SPDX-License-Identifier: GPL-2.0-only */

#include <inttypes.h>
#include <libgen.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <commonlib/endian.h>
#include <vb2_sha.h>

#include "common.h"
#include "cbfs_image.h"
#include "elfparsing.h"
#include "rmodule.h"

/* Even though the file-adding functions---cbfs_add_entry() and
 * cbfs_add_entry_at()---perform their sizing checks against the beginning of
 * the subsequent section rather than a stable recorded value such as an empty
 * file header's len field, it's possible to prove two interesting properties
 * about their behavior:
 *  - Placing a new file within an empty entry located below an existing file
 *    entry will never leave an aligned flash address containing neither the
 *    beginning of a file header nor part of a file.
 *  - Placing a new file in an empty entry at the very end of the image such
 *    that it fits, but leaves no room for a final header, is guaranteed not to
 *    change the total amount of space for entries, even if that new file is
 *    later removed from the CBFS.
 * These properties are somewhat nonobvious from the implementation, so the
 * reader is encouraged to blame this comment and examine the full proofs
 * in the commit message before making significant changes that would risk
 * removing said guarantees.
 */

/* The file name align is not defined in CBFS spec -- only a preference by
 * (old) cbfstool. */
#define CBFS_FILENAME_ALIGN	(16)

static const char *lookup_name_by_type(const struct typedesc_t *desc, uint32_t type,
				const char *default_value)
{
	int i;
	for (i = 0; desc[i].name; i++)
		if (desc[i].type == type)
			return desc[i].name;
	return default_value;
}

static int lookup_type_by_name(const struct typedesc_t *desc, const char *name)
{
	int i;
	for (i = 0; desc[i].name && strcasecmp(name, desc[i].name); ++i);
	return desc[i].name ? (int)desc[i].type : -1;
}

static const char *get_cbfs_entry_type_name(uint32_t type)
{
	return lookup_name_by_type(filetypes, type, "(unknown)");
}

int cbfs_parse_comp_algo(const char *name)
{
	return lookup_type_by_name(types_cbfs_compression, name);
}

/* CBFS image */

size_t cbfs_calculate_file_header_size(const char *name)
{
	return (sizeof(struct cbfs_file) +
		align_up(strlen(name) + 1, CBFS_FILENAME_ALIGN));
}

/* Only call on legacy CBFSes possessing a master header. */
static int cbfs_fix_legacy_size(struct cbfs_image *image, char *hdr_loc)
{
	assert(image);
	assert(cbfs_is_legacy_cbfs(image));
	// A bug in old cbfstool may produce extra few bytes (by alignment) and
	// cause cbfstool to overwrite things after free space -- which is
	// usually CBFS header on x86. We need to workaround that.
	// Except when we run across a file that contains the actual header,
	// in which case this image is a safe, new-style
	// `cbfstool add-master-header` based image.

	struct cbfs_file *entry, *first = NULL, *last = NULL;
	for (first = entry = cbfs_find_first_entry(image);
	     entry && cbfs_is_valid_entry(image, entry);
	     entry = cbfs_find_next_entry(image, entry)) {
		/* Is the header guarded by a CBFS file entry? Then exit */
		if (((char *)entry) + ntohl(entry->offset) == hdr_loc) {
			return 0;
		}
		last = entry;
	}
	if ((char *)first < (char *)hdr_loc &&
	    (char *)entry > (char *)hdr_loc) {
		WARN("CBFS image was created with old cbfstool with size bug. "
		     "Fixing size in last entry...\n");
		last->len = htonl(ntohl(last->len) - image->header.align);
		DEBUG("Last entry has been changed from 0x%x to 0x%x.\n",
		      cbfs_get_entry_addr(image, entry),
		      cbfs_get_entry_addr(image,
					  cbfs_find_next_entry(image, last)));
	}
	return 0;
}

void cbfs_put_header(void *dest, const struct cbfs_header *header)
{
	struct buffer outheader;

	outheader.data = dest;
	outheader.size = 0;

	xdr_be.put32(&outheader, header->magic);
	xdr_be.put32(&outheader, header->version);
	xdr_be.put32(&outheader, header->romsize);
	xdr_be.put32(&outheader, header->bootblocksize);
	xdr_be.put32(&outheader, header->align);
	xdr_be.put32(&outheader, header->offset);
	xdr_be.put32(&outheader, header->architecture);
}

static void cbfs_decode_payload_segment(struct cbfs_payload_segment *output,
					struct cbfs_payload_segment *input)
{
	struct buffer seg = {
		.data = (void *)input,
		.size = sizeof(*input),
	};
	output->type = xdr_be.get32(&seg);
	output->compression = xdr_be.get32(&seg);
	output->offset = xdr_be.get32(&seg);
	output->load_addr = xdr_be.get64(&seg);
	output->len = xdr_be.get32(&seg);
	output->mem_len = xdr_be.get32(&seg);
	assert(seg.size == 0);
}

static int cbfs_file_get_compression_info(struct cbfs_file *entry,
	uint32_t *decompressed_size)
{
	unsigned int compression = CBFS_COMPRESS_NONE;
	if (decompressed_size)
		*decompressed_size = ntohl(entry->len);
	for (struct cbfs_file_attribute *attr = cbfs_file_first_attr(entry);
	     attr != NULL;
	     attr = cbfs_file_next_attr(entry, attr)) {
		if (ntohl(attr->tag) == CBFS_FILE_ATTR_TAG_COMPRESSION) {
			struct cbfs_file_attr_compression *ac =
				(struct cbfs_file_attr_compression *)attr;
			compression = ntohl(ac->compression);
			if (decompressed_size)
				*decompressed_size =
					ntohl(ac->decompressed_size);
		}
	}
	return compression;
}

static struct cbfs_file_attr_hash *cbfs_file_get_next_hash(
	struct cbfs_file *entry, struct cbfs_file_attr_hash *cur)
{
	struct cbfs_file_attribute *attr = (struct cbfs_file_attribute *)cur;
	if (attr == NULL) {
		attr = cbfs_file_first_attr(entry);
		if (attr == NULL)
			return NULL;
		if (ntohl(attr->tag) == CBFS_FILE_ATTR_TAG_HASH)
			return (struct cbfs_file_attr_hash *)attr;
	}
	while ((attr = cbfs_file_next_attr(entry, attr)) != NULL) {
		if (ntohl(attr->tag) == CBFS_FILE_ATTR_TAG_HASH)
			return (struct cbfs_file_attr_hash *)attr;
	};
	return NULL;
}

void cbfs_get_header(struct cbfs_header *header, void *src)
{
	struct buffer outheader;

	outheader.data = src;	/* We're not modifying the data */
	outheader.size = 0;

	header->magic = xdr_be.get32(&outheader);
	header->version = xdr_be.get32(&outheader);
	header->romsize = xdr_be.get32(&outheader);
	header->bootblocksize = xdr_be.get32(&outheader);
	header->align = xdr_be.get32(&outheader);
	header->offset = xdr_be.get32(&outheader);
	header->architecture = xdr_be.get32(&outheader);
}

int cbfs_image_create(struct cbfs_image *image, size_t entries_size)
{
	assert(image);
	assert(image->buffer.data);

	size_t empty_header_len = cbfs_calculate_file_header_size("");
	uint32_t entries_offset = 0;
	uint32_t align = CBFS_ALIGNMENT;
	if (image->has_header) {
		entries_offset = image->header.offset;

		if (entries_offset > image->buffer.size) {
			ERROR("CBFS file entries are located outside CBFS itself\n");
			return -1;
		}

		align = image->header.align;
	}

	// This attribute must be given in order to prove that this module
	// correctly preserves certain CBFS properties. See the block comment
	// near the top of this file (and the associated commit message).
	if (align < empty_header_len) {
		ERROR("CBFS must be aligned to at least %zu bytes\n",
							empty_header_len);
		return -1;
	}

	if (entries_size > image->buffer.size - entries_offset) {
		ERROR("CBFS doesn't have enough space to fit its file entries\n");
		return -1;
	}

	if (empty_header_len > entries_size) {
		ERROR("CBFS is too small to fit any header\n");
		return -1;
	}
	struct cbfs_file *entry_header =
		(struct cbfs_file *)(image->buffer.data + entries_offset);
	// This alignment is necessary in order to prove that this module
	// correctly preserves certain CBFS properties. See the block comment
	// near the top of this file (and the associated commit message).
	entries_size -= entries_size % align;

	size_t capacity = entries_size - empty_header_len;
	LOG("Created CBFS (capacity = %zu bytes)\n", capacity);
	return cbfs_create_empty_entry(entry_header, CBFS_TYPE_NULL,
		capacity, "");
}

int cbfs_legacy_image_create(struct cbfs_image *image,
			     uint32_t architecture,
			     uint32_t align,
			     struct buffer *bootblock,
			     uint32_t bootblock_offset,
			     uint32_t header_offset,
			     uint32_t entries_offset)
{
	assert(image);
	assert(image->buffer.data);
	assert(bootblock);

	int32_t *rel_offset;
	uint32_t cbfs_len;
	void *header_loc;
	size_t size = image->buffer.size;

	DEBUG("cbfs_image_create: bootblock=0x%x+0x%zx, "
	      "header=0x%x+0x%zx, entries_offset=0x%x\n",
	      bootblock_offset, bootblock->size, header_offset,
	      sizeof(image->header), entries_offset);

	// Adjust legacy top-aligned address to ROM offset.
	if (IS_TOP_ALIGNED_ADDRESS(entries_offset))
		entries_offset = size + (int32_t)entries_offset;
	if (IS_TOP_ALIGNED_ADDRESS(bootblock_offset))
		bootblock_offset = size + (int32_t)bootblock_offset;
	if (IS_TOP_ALIGNED_ADDRESS(header_offset))
		header_offset = size + (int32_t)header_offset;

	DEBUG("cbfs_create_image: (real offset) bootblock=0x%x, "
	      "header=0x%x, entries_offset=0x%x\n",
	      bootblock_offset, header_offset, entries_offset);

	// Prepare bootblock
	if (bootblock_offset + bootblock->size > size) {
		ERROR("Bootblock (0x%x+0x%zx) exceed ROM size (0x%zx)\n",
		      bootblock_offset, bootblock->size, size);
		return -1;
	}
	if (entries_offset > bootblock_offset &&
	    entries_offset < bootblock->size) {
		ERROR("Bootblock (0x%x+0x%zx) overlap CBFS data (0x%x)\n",
		      bootblock_offset, bootblock->size, entries_offset);
		return -1;
	}
	memcpy(image->buffer.data + bootblock_offset, bootblock->data,
	       bootblock->size);

	// Prepare header
	if (header_offset + sizeof(image->header) > size - sizeof(int32_t)) {
		ERROR("Header (0x%x+0x%zx) exceed ROM size (0x%zx)\n",
		      header_offset, sizeof(image->header), size);
		return -1;
	}
	image->header.magic = CBFS_HEADER_MAGIC;
	image->header.version = CBFS_HEADER_VERSION;
	image->header.romsize = size;
	image->header.bootblocksize = bootblock->size;
	image->header.align = align;
	image->header.offset = entries_offset;
	image->header.architecture = architecture;

	header_loc = (image->buffer.data + header_offset);
	cbfs_put_header(header_loc, &image->header);
	image->has_header = true;

	// The last 4 byte of the image contain the relative offset from the end
	// of the image to the master header as a 32-bit signed integer. x86
	// relies on this also being its (memory-mapped, top-aligned) absolute
	// 32-bit address by virtue of how two's complement numbers work.
	assert(size % sizeof(int32_t) == 0);
	rel_offset = (int32_t *)(image->buffer.data + size - sizeof(int32_t));
	*rel_offset = header_offset - size;

	// Prepare entries
	if (align_up(entries_offset, align) != entries_offset) {
		ERROR("Offset (0x%x) must be aligned to 0x%x.\n",
		      entries_offset, align);
		return -1;
	}
	// To calculate available length, find
	//   e = min(bootblock, header, rel_offset) where e > entries_offset.
	cbfs_len = size - sizeof(int32_t);
	if (bootblock_offset > entries_offset && bootblock_offset < cbfs_len)
		cbfs_len = bootblock_offset;
	if (header_offset > entries_offset && header_offset < cbfs_len)
		cbfs_len = header_offset;

	if (cbfs_image_create(image, cbfs_len - entries_offset))
		return -1;
	return 0;
}

int cbfs_image_from_buffer(struct cbfs_image *out, struct buffer *in,
			   uint32_t offset)
{
	assert(out);
	assert(in);
	assert(in->data);

	buffer_clone(&out->buffer, in);
	out->has_header = false;

	if (cbfs_is_valid_cbfs(out)) {
		return 0;
	}

	void *header_loc = cbfs_find_header(in->data, in->size, offset);
	if (header_loc) {
		cbfs_get_header(&out->header, header_loc);
		out->has_header = true;
		cbfs_fix_legacy_size(out, header_loc);
		return 0;
	} else if (offset != ~0u) {
		ERROR("The -H switch is only valid on legacy images having CBFS master headers.\n");
		return 1;
	}
	ERROR("Selected image region is not a valid CBFS.\n");
	return 1;
}

int cbfs_copy_instance(struct cbfs_image *image, struct buffer *dst)
{
	assert(image);

	struct cbfs_file *src_entry, *dst_entry;
	size_t align;
	ssize_t last_entry_size;

	size_t copy_end = buffer_size(dst);

	align = CBFS_ALIGNMENT;

	dst_entry = (struct cbfs_file *)buffer_get(dst);

	/* Copy non-empty files */
	for (src_entry = cbfs_find_first_entry(image);
	     src_entry && cbfs_is_valid_entry(image, src_entry);
	     src_entry = cbfs_find_next_entry(image, src_entry)) {
		size_t entry_size;

		if ((src_entry->type == htonl(CBFS_TYPE_NULL)) ||
		    (src_entry->type == htonl(CBFS_TYPE_CBFSHEADER)) ||
		    (src_entry->type == htonl(CBFS_TYPE_DELETED)))
			continue;

		entry_size = htonl(src_entry->len) + htonl(src_entry->offset);
		memcpy(dst_entry, src_entry, entry_size);
		dst_entry = (struct cbfs_file *)(
			(uintptr_t)dst_entry + align_up(entry_size, align));

		if ((size_t)((uint8_t *)dst_entry - (uint8_t *)buffer_get(dst))
					>= copy_end) {
			ERROR("Ran out of room in copy region.\n");
			return 1;
		}
	}

	/* Last entry size is all the room above it, except for top 4 bytes
	 * which may be used by the master header pointer. This messes with
	 * the ability to stash something "top-aligned" into the region, but
	 * keeps things simpler. */
	last_entry_size = copy_end -
		((uint8_t *)dst_entry - (uint8_t *)buffer_get(dst)) -
		cbfs_calculate_file_header_size("") - sizeof(int32_t);

	if (last_entry_size < 0)
		WARN("No room to create the last entry!\n")
	else
		cbfs_create_empty_entry(dst_entry, CBFS_TYPE_NULL,
			last_entry_size, "");

	return 0;
}

int cbfs_expand_to_region(struct buffer *region)
{
	if (buffer_get(region) == NULL)
		return 1;

	struct cbfs_image image;
	memset(&image, 0, sizeof(image));
	if (cbfs_image_from_buffer(&image, region, 0)) {
		ERROR("reading CBFS failed!\n");
		return 1;
	}

	uint32_t region_sz = buffer_size(region);

	struct cbfs_file *entry;
	for (entry = buffer_get(region);
	     cbfs_is_valid_entry(&image, entry);
	     entry = cbfs_find_next_entry(&image, entry)) {
	     /* just iterate through */
	}

	/* entry now points to the first aligned address after the last valid
	 * file header. That's either outside the image or exactly the place
	 * where we need to create a new file.
	 */
	int last_entry_size = region_sz -
		((uint8_t *)entry - (uint8_t *)buffer_get(region)) -
		cbfs_calculate_file_header_size("") - sizeof(int32_t);

	if (last_entry_size > 0) {
		cbfs_create_empty_entry(entry, CBFS_TYPE_NULL,
			last_entry_size, "");
		/* If the last entry was an empty file, merge them. */
		cbfs_legacy_walk(&image, cbfs_merge_empty_entry, NULL);
	}

	return 0;
}

int cbfs_truncate_space(struct buffer *region, uint32_t *size)
{
	if (buffer_get(region) == NULL)
		return 1;

	struct cbfs_image image;
	memset(&image, 0, sizeof(image));
	if (cbfs_image_from_buffer(&image, region, 0)) {
		ERROR("reading CBFS failed!\n");
		return 1;
	}

	struct cbfs_file *entry, *trailer;
	for (trailer = entry = buffer_get(region);
	     cbfs_is_valid_entry(&image, entry);
	     trailer = entry,
	     entry = cbfs_find_next_entry(&image, entry)) {
	     /* just iterate through */
	}

	/* trailer now points to the last valid CBFS entry's header.
	 * If that file is empty, remove it and report its header's offset as
	 * maximum size.
	 */
	if ((strlen(trailer->filename) != 0) &&
	    (trailer->type != htonl(CBFS_TYPE_NULL)) &&
	    (trailer->type != htonl(CBFS_TYPE_DELETED))) {
		/* nothing to truncate. Return de-facto CBFS size in case it
		 * was already truncated. */
		*size = (uint8_t *)entry - (uint8_t *)buffer_get(region);
		return 0;
	}
	*size = (uint8_t *)trailer - (uint8_t *)buffer_get(region);
	memset(trailer, 0xff, buffer_size(region) - *size);

	return 0;
}

static size_t cbfs_file_entry_metadata_size(const struct cbfs_file *f)
{
	return ntohl(f->offset);
}

static size_t cbfs_file_entry_data_size(const struct cbfs_file *f)
{
	return ntohl(f->len);
}

static size_t cbfs_file_entry_size(const struct cbfs_file *f)
{
	return cbfs_file_entry_metadata_size(f) + cbfs_file_entry_data_size(f);
}

int cbfs_compact_instance(struct cbfs_image *image)
{
	assert(image);

	struct cbfs_file *prev;
	struct cbfs_file *cur;

	/* The prev entry will always be an empty entry. */
	prev = NULL;

	/*
	 * Note: this function does not honor alignment or fixed location files.
	 * It's behavior is akin to cbfs_copy_instance() in that it expects
	 * the caller to understand the ramifications of compacting a
	 * fragmented CBFS image.
	 */

	for (cur = cbfs_find_first_entry(image);
	     cur && cbfs_is_valid_entry(image, cur);
	     cur = cbfs_find_next_entry(image, cur)) {
		size_t prev_size;
		size_t cur_size;
		size_t empty_metadata_size;
		size_t spill_size;
		uint32_t type = htonl(cur->type);

		/* Current entry is empty. Kepp track of it. */
		if ((type == htonl(CBFS_TYPE_NULL)) ||
		    (type == htonl(CBFS_TYPE_DELETED))) {
			prev = cur;
			continue;
		}

		/* Need to ensure the previous entry is an empty one. */
		if (prev == NULL)
			continue;

		/* At this point prev is an empty entry. Put the non-empty
		 * file in prev's location. Then add a new empty entry. This
		 * essentialy bubbles empty entries towards the end. */

		prev_size = cbfs_file_entry_size(prev);
		cur_size = cbfs_file_entry_size(cur);

		/*
		 * Adjust the empty file size by the actual space occupied
		 * bewtween the beginning of the empty file and the non-empty
		 * file.
		 */
		prev_size += (cbfs_get_entry_addr(image, cur) -
				cbfs_get_entry_addr(image, prev)) - prev_size;

		/* Move the non-empty file over the empty file. */
		memmove(prev, cur, cur_size);

		/*
		 * Get location of the empty file. Note that since prev was
		 * overwritten with the non-empty file the previously moved
		 * file needs to be used to calculate the empty file's location.
		 */
		cur = cbfs_find_next_entry(image, prev);

		/*
		 * The total space to work with for swapping the 2 entries
		 * consists of the 2 files' sizes combined. However, the
		 * cbfs_file entries start on CBFS_ALIGNMENT boundaries.
		 * Because of this the empty file size may end up smaller
		 * because of the non-empty file's metadata and data length.
		 *
		 * Calculate the spill size which is the amount of data lost
		 * due to the alignment constraints after moving the non-empty
		 * file.
		 */
		spill_size = (cbfs_get_entry_addr(image, cur) -
				cbfs_get_entry_addr(image, prev)) - cur_size;

		empty_metadata_size = cbfs_calculate_file_header_size("");

		/* Check if new empty size can contain the metadata. */
		if (empty_metadata_size + spill_size > prev_size) {
			ERROR("Unable to swap '%s' with prev empty entry.\n",
				prev->filename);
			return 1;
		}

		/* Update the empty file's size. */
		prev_size -= spill_size + empty_metadata_size;

		/* Create new empty file. */
		cbfs_create_empty_entry(cur, CBFS_TYPE_NULL,
					prev_size, "");

		/* Merge any potential empty entries together. */
		cbfs_legacy_walk(image, cbfs_merge_empty_entry, NULL);

		/*
		 * Since current switched to an empty file keep track of it.
		 * Even if any empty files were merged the empty entry still
		 * starts at previously calculated location.
		 */
		prev = cur;
	}

	return 0;
}

int cbfs_image_delete(struct cbfs_image *image)
{
	if (image == NULL)
		return 0;

	buffer_delete(&image->buffer);
	return 0;
}

/* Tries to add an entry with its data (CBFS_SUBHEADER) at given offset. */
static int cbfs_add_entry_at(struct cbfs_image *image,
			     struct cbfs_file *entry,
			     const void *data,
			     uint32_t content_offset,
			     const struct cbfs_file *header,
			     const size_t len_align)
{
	struct cbfs_file *next = cbfs_find_next_entry(image, entry);
	uint32_t addr = cbfs_get_entry_addr(image, entry),
		 addr_next = cbfs_get_entry_addr(image, next);
	uint32_t min_entry_size = cbfs_calculate_file_header_size("");
	uint32_t len, header_offset;
	uint32_t align = image->has_header ? image->header.align :
							CBFS_ALIGNMENT;
	uint32_t header_size = ntohl(header->offset);

	header_offset = content_offset - header_size;
	if (header_offset % align)
		header_offset -= header_offset % align;
	if (header_offset < addr) {
		ERROR("No space to hold cbfs_file header.");
		return -1;
	}

	// Process buffer BEFORE content_offset.
	if (header_offset - addr > min_entry_size) {
		DEBUG("|min|...|header|content|... <create new entry>\n");
		len = header_offset - addr - min_entry_size;
		cbfs_create_empty_entry(entry, CBFS_TYPE_NULL, len, "");
		if (verbose > 1) cbfs_print_entry_info(image, entry, stderr);
		entry = cbfs_find_next_entry(image, entry);
		addr = cbfs_get_entry_addr(image, entry);
	}

	len = content_offset - addr - header_size;
	memcpy(entry, header, header_size);
	if (len != 0) {
		/* the header moved backwards a bit to accommodate cbfs_file
		 * alignment requirements, so patch up ->offset to still point
		 * to file data.
		 */
		DEBUG("|..|header|content|... <use offset to create entry>\n");
		DEBUG("before: offset=0x%x\n", ntohl(entry->offset));
		// TODO reset expanded name buffer to 0xFF.
		entry->offset = htonl(ntohl(entry->offset) + len);
		DEBUG("after: offset=0x%x\n", ntohl(entry->len));
	}

	// Ready to fill data into entry.
	DEBUG("content_offset: 0x%x, entry location: %x\n",
	      content_offset, (int)((char*)CBFS_SUBHEADER(entry) -
				    image->buffer.data));
	assert((char*)CBFS_SUBHEADER(entry) - image->buffer.data ==
	       (ptrdiff_t)content_offset);
	memcpy(CBFS_SUBHEADER(entry), data, ntohl(entry->len));
	if (verbose > 1) cbfs_print_entry_info(image, entry, stderr);

	// Align the length to a multiple of len_align
	if (len_align &&
	    ((ntohl(entry->offset) + ntohl(entry->len)) % len_align)) {
		size_t off = (ntohl(entry->offset) + ntohl(entry->len)) % len_align;
		entry->len = htonl(ntohl(entry->len) + len_align - off);
	}

	// Process buffer AFTER entry.
	entry = cbfs_find_next_entry(image, entry);
	addr = cbfs_get_entry_addr(image, entry);
	if (addr == addr_next)
		return 0;

	assert(addr < addr_next);
	if (addr_next - addr < min_entry_size) {
		DEBUG("No need for new \"empty\" entry\n");
		/* No need to increase the size of the just
		 * stored file to extend to next file. Alignment
		 * of next file takes care of this.
		 */
		return 0;
	}

	len = addr_next - addr - min_entry_size;
	/* keep space for master header pointer */
	if ((uint8_t *)entry + min_entry_size + len >
			(uint8_t *)buffer_get(&image->buffer) +
			buffer_size(&image->buffer) - sizeof(int32_t)) {
		len -= sizeof(int32_t);
	}
	cbfs_create_empty_entry(entry, CBFS_TYPE_NULL, len, "");
	if (verbose > 1) cbfs_print_entry_info(image, entry, stderr);
	return 0;
}

int cbfs_add_entry(struct cbfs_image *image, struct buffer *buffer,
		   uint32_t content_offset,
		   struct cbfs_file *header,
		   const size_t len_align)
{
	assert(image);
	assert(buffer);
	assert(buffer->data);
	assert(!IS_TOP_ALIGNED_ADDRESS(content_offset));

	const char *name = header->filename;

	uint32_t entry_type;
	uint32_t addr, addr_next;
	struct cbfs_file *entry, *next;
	uint32_t need_size;
	uint32_t header_size = ntohl(header->offset);

	need_size = header_size + buffer->size;
	DEBUG("cbfs_add_entry('%s'@0x%x) => need_size = %u+%zu=%u\n",
	      name, content_offset, header_size, buffer->size, need_size);

	// Merge empty entries.
	DEBUG("(trying to merge empty entries...)\n");
	cbfs_legacy_walk(image, cbfs_merge_empty_entry, NULL);

	for (entry = cbfs_find_first_entry(image);
	     entry && cbfs_is_valid_entry(image, entry);
	     entry = cbfs_find_next_entry(image, entry)) {

		entry_type = ntohl(entry->type);
		if (entry_type != CBFS_TYPE_NULL)
			continue;

		addr = cbfs_get_entry_addr(image, entry);
		next = cbfs_find_next_entry(image, entry);
		addr_next = cbfs_get_entry_addr(image, next);

		DEBUG("cbfs_add_entry: space at 0x%x+0x%x(%d) bytes\n",
		      addr, addr_next - addr, addr_next - addr);

		/* Will the file fit? Don't yet worry if we have space for a new
		 * "empty" entry. We take care of that later.
		 */
		if (addr + need_size > addr_next)
			continue;

		// Test for complicated cases
		if (content_offset > 0) {
			if (addr_next < content_offset) {
				DEBUG("Not for specified offset yet");
				continue;
			} else if (addr > content_offset) {
				DEBUG("Exceed specified content_offset.");
				break;
			} else if (addr + header_size > content_offset) {
				ERROR("Not enough space for header.\n");
				break;
			} else if (content_offset + buffer->size > addr_next) {
				ERROR("Not enough space for content.\n");
				break;
			}
		}

		// TODO there are more few tricky cases that we may
		// want to fit by altering offset.

		if (content_offset == 0) {
			// we tested every condition earlier under which
			// placing the file there might fail
			content_offset = addr + header_size;
		}

		DEBUG("section 0x%x+0x%x for content_offset 0x%x.\n",
		      addr, addr_next - addr, content_offset);

		if (cbfs_add_entry_at(image, entry, buffer->data,
				      content_offset, header, len_align) == 0) {
			return 0;
		}
		break;
	}

	ERROR("Could not add [%s, %zd bytes (%zd KB)@0x%x]; too big?\n",
	      buffer->name, buffer->size, buffer->size / 1024, content_offset);
	return -1;
}

struct cbfs_file *cbfs_get_entry(struct cbfs_image *image, const char *name)
{
	struct cbfs_file *entry;
	for (entry = cbfs_find_first_entry(image);
	     entry && cbfs_is_valid_entry(image, entry);
	     entry = cbfs_find_next_entry(image, entry)) {
		if (strcasecmp(entry->filename, name) == 0) {
			DEBUG("cbfs_get_entry: found %s\n", name);
			return entry;
		}
	}
	return NULL;
}

static int cbfs_stage_decompress(struct cbfs_stage *stage, struct buffer *buff)
{
	struct buffer reader;
	char *orig_buffer;
	char *new_buffer;
	size_t new_buff_sz;
	decomp_func_ptr decompress;

	buffer_clone(&reader, buff);

	/* The stage metadata is in little endian. */
	stage->compression = xdr_le.get32(&reader);
	stage->entry = xdr_le.get64(&reader);
	stage->load = xdr_le.get64(&reader);
	stage->len = xdr_le.get32(&reader);
	stage->memlen = xdr_le.get32(&reader);

	/* Create a buffer just with the uncompressed program now that the
	 * struct cbfs_stage has been peeled off. */
	if (stage->compression == CBFS_COMPRESS_NONE) {
		new_buff_sz = buffer_size(buff) - sizeof(struct cbfs_stage);

		orig_buffer = buffer_get(buff);
		new_buffer = calloc(1, new_buff_sz);
		memcpy(new_buffer, orig_buffer + sizeof(struct cbfs_stage),
			new_buff_sz);
		buffer_init(buff, buff->name, new_buffer, new_buff_sz);
		free(orig_buffer);
		return 0;
	}

	decompress = decompression_function(stage->compression);
	if (decompress == NULL)
		return -1;

	orig_buffer = buffer_get(buff);

	/* This can be too big of a buffer needed, but there's no current
	 * field indicating decompressed size of data. */
	new_buff_sz = stage->memlen;
	new_buffer = calloc(1, new_buff_sz);

	if (decompress(orig_buffer + sizeof(struct cbfs_stage),
			(int)(buffer_size(buff) - sizeof(struct cbfs_stage)),
			new_buffer, (int)new_buff_sz, &new_buff_sz)) {
		ERROR("Couldn't decompress stage.\n");
		free(new_buffer);
		return -1;
	}

	/* Include correct size for full stage info. */
	buffer_init(buff, buff->name, new_buffer, new_buff_sz);

	/* True decompressed size is just the data size -- no metadata. */
	stage->len = new_buff_sz;
	/* Stage is not compressed. */
	stage->compression = CBFS_COMPRESS_NONE;

	free(orig_buffer);

	return 0;
}

static int cbfs_payload_decompress(struct cbfs_payload_segment *segments,
		struct buffer *buff, int num_seg)
{
	struct buffer new_buffer;
	struct buffer seg_buffer;
	size_t new_buff_sz;
	char *in_ptr;
	char *out_ptr;
	size_t new_offset;
	decomp_func_ptr decompress;

	new_offset = num_seg * sizeof(*segments);
	new_buff_sz = num_seg * sizeof(*segments);

	/* Find out and allocate the amount of memory occupied
	 * by the binary data */
	for (int i = 0; i < num_seg; i++)
		new_buff_sz += segments[i].mem_len;

	if (buffer_create(&new_buffer, new_buff_sz, "decompressed_buff"))
		return -1;

	in_ptr = buffer_get(buff) + new_offset;
	out_ptr = buffer_get(&new_buffer) + new_offset;

	for (int i = 0; i < num_seg; i++) {
		struct buffer tbuff;
		size_t decomp_size;

		/* Segments BSS and ENTRY do not have binary data. */
		if (segments[i].type == PAYLOAD_SEGMENT_BSS ||
				segments[i].type == PAYLOAD_SEGMENT_ENTRY) {
			continue;
		} else if (segments[i].type == PAYLOAD_SEGMENT_PARAMS) {
			memcpy(out_ptr, in_ptr, segments[i].len);
			segments[i].offset = new_offset;
			new_offset += segments[i].len;
			in_ptr += segments[i].len;
			out_ptr += segments[i].len;
			segments[i].compression = CBFS_COMPRESS_NONE;
			continue;
		}

		/* The payload uses an unknown compression algorithm. */
		decompress = decompression_function(segments[i].compression);
		if (decompress == NULL) {
			ERROR("Unknown decompression algorithm: %u\n",
					segments[i].compression);
			return -1;
		}

		if (buffer_create(&tbuff, segments[i].mem_len, "segment")) {
			buffer_delete(&new_buffer);
			return -1;
		}

		if (decompress(in_ptr, segments[i].len, buffer_get(&tbuff),
					(int) buffer_size(&tbuff),
					&decomp_size)) {
			ERROR("Couldn't decompress payload segment %u\n", i);
			buffer_delete(&new_buffer);
			buffer_delete(&tbuff);
			return -1;
		}

		memcpy(out_ptr, buffer_get(&tbuff), decomp_size);

		in_ptr += segments[i].len;

		/* Update the offset of the segment. */
		segments[i].offset = new_offset;
		/* True decompressed size is just the data size. No metadata */
		segments[i].len = decomp_size;
		/* Segment is not compressed. */
		segments[i].compression = CBFS_COMPRESS_NONE;

		/* Update the offset and output buffer pointer. */
		new_offset += decomp_size;
		out_ptr += decomp_size;

		buffer_delete(&tbuff);
	}

	buffer_splice(&seg_buffer, &new_buffer, 0, 0);
	xdr_segs(&seg_buffer, segments, num_seg);

	buffer_delete(buff);
	*buff = new_buffer;

	return 0;
}

static int init_elf_from_arch(Elf64_Ehdr *ehdr, uint32_t cbfs_arch)
{
	int endian;
	int nbits;
	int machine;

	switch (cbfs_arch) {
	case CBFS_ARCHITECTURE_X86:
		endian = ELFDATA2LSB;
		nbits = ELFCLASS32;
		machine = EM_386;
		break;
	case CBFS_ARCHITECTURE_ARM:
		endian = ELFDATA2LSB;
		nbits = ELFCLASS32;
		machine = EM_ARM;
		break;
	case CBFS_ARCHITECTURE_AARCH64:
		endian = ELFDATA2LSB;
		nbits = ELFCLASS64;
		machine = EM_AARCH64;
		break;
	case CBFS_ARCHITECTURE_MIPS:
		endian = ELFDATA2LSB;
		nbits = ELFCLASS32;
		machine = EM_MIPS;
		break;
	case CBFS_ARCHITECTURE_RISCV:
		endian = ELFDATA2LSB;
		nbits = ELFCLASS32;
		machine = EM_RISCV;
		break;
	default:
		ERROR("Unsupported arch: %x\n", cbfs_arch);
		return -1;
	}

	elf_init_eheader(ehdr, machine, nbits, endian);
	return 0;
}

static int cbfs_stage_make_elf(struct buffer *buff, uint32_t arch)
{
	Elf64_Ehdr ehdr;
	Elf64_Shdr shdr;
	struct cbfs_stage stage;
	struct elf_writer *ew;
	struct buffer elf_out;
	size_t empty_sz;
	int rmod_ret;

	if (arch == CBFS_ARCHITECTURE_UNKNOWN) {
		ERROR("You need to specify -m ARCH.\n");
		return -1;
	}

	if (cbfs_stage_decompress(&stage, buff)) {
		ERROR("Failed to decompress stage.\n");
		return -1;
	}

	if (init_elf_from_arch(&ehdr, arch))
		return -1;

	ehdr.e_entry = stage.entry;

	/* Attempt rmodule translation first. */
	rmod_ret = rmodule_stage_to_elf(&ehdr, buff);

	if (rmod_ret < 0) {
		ERROR("rmodule parsing failed\n");
		return -1;
	} else if (rmod_ret == 0)
		return 0;

	/* Rmodule couldn't do anything with the data. Continue on with SELF. */

	ew = elf_writer_init(&ehdr);
	if (ew == NULL) {
		ERROR("Unable to init ELF writer.\n");
		return -1;
	}

	memset(&shdr, 0, sizeof(shdr));
	shdr.sh_type = SHT_PROGBITS;
	shdr.sh_flags = SHF_WRITE | SHF_ALLOC | SHF_EXECINSTR;
	shdr.sh_addr = stage.load;
	shdr.sh_size = stage.len;
	empty_sz = stage.memlen - stage.len;

	if (elf_writer_add_section(ew, &shdr, buff, ".program")) {
		ERROR("Unable to add ELF section: .program\n");
		elf_writer_destroy(ew);
		return -1;
	}

	if (empty_sz != 0) {
		struct buffer b;

		buffer_init(&b, NULL, NULL, 0);
		memset(&shdr, 0, sizeof(shdr));
		shdr.sh_type = SHT_NOBITS;
		shdr.sh_flags = SHF_WRITE | SHF_ALLOC;
		shdr.sh_addr = stage.load + stage.len;
		shdr.sh_size = empty_sz;
		if (elf_writer_add_section(ew, &shdr, &b, ".empty")) {
			ERROR("Unable to add ELF section: .empty\n");
			elf_writer_destroy(ew);
			return -1;
		}
	}

	if (elf_writer_serialize(ew, &elf_out)) {
		ERROR("Unable to create ELF file from stage.\n");
		elf_writer_destroy(ew);
		return -1;
	}

	/* Flip buffer with the created ELF one. */
	buffer_delete(buff);
	*buff = elf_out;

	elf_writer_destroy(ew);

	return 0;
}

static int cbfs_payload_make_elf(struct buffer *buff, uint32_t arch)
{
	Elf64_Ehdr ehdr;
	Elf64_Shdr shdr;
	struct cbfs_payload_segment *segs = NULL;
	struct elf_writer *ew = NULL;
	struct buffer elf_out;
	int segments = 0;
	int retval = -1;

	if (arch == CBFS_ARCHITECTURE_UNKNOWN) {
		ERROR("You need to specify -m ARCH.\n");
		goto out;
	}

	/* Count the number of segments inside buffer */
	while (true) {
		uint32_t payload_type = 0;

		struct cbfs_payload_segment *seg;

		seg = buffer_get(buff);
		payload_type = read_be32(&seg[segments].type);

		if (payload_type == PAYLOAD_SEGMENT_CODE) {
			segments++;
		} else if (payload_type == PAYLOAD_SEGMENT_DATA) {
			segments++;
		} else if (payload_type == PAYLOAD_SEGMENT_BSS) {
			segments++;
		} else if (payload_type == PAYLOAD_SEGMENT_PARAMS) {
			segments++;
		} else if (payload_type == PAYLOAD_SEGMENT_ENTRY) {
			/* The last segment in a payload is always ENTRY as
			 * specified by the  parse_elf_to_payload() function.
			 * Therefore there is no need to continue looking for
			 * segments.*/
			segments++;
			break;
		} else {
			ERROR("Unknown payload segment type: %x\n",
					payload_type);
			goto out;
		}
	}

	segs = malloc(segments * sizeof(*segs));

	/* Decode xdr segments */
	for (int i = 0; i < segments; i++) {
		struct cbfs_payload_segment *serialized_seg = buffer_get(buff);
		xdr_get_seg(&segs[i], &serialized_seg[i]);
	}

	if (cbfs_payload_decompress(segs, buff, segments)) {
		ERROR("Failed to decompress payload.\n");
		goto out;
	}

	if (init_elf_from_arch(&ehdr, arch))
		goto out;

	ehdr.e_entry = segs[segments-1].load_addr;

	ew = elf_writer_init(&ehdr);
	if (ew == NULL) {
		ERROR("Unable to init ELF writer.\n");
		goto out;
	}

	for (int i = 0; i < segments; i++) {
		struct buffer tbuff;
		size_t empty_sz = 0;

		memset(&shdr, 0, sizeof(shdr));
		char *name = NULL;

		if (segs[i].type == PAYLOAD_SEGMENT_CODE) {
			shdr.sh_type = SHT_PROGBITS;
			shdr.sh_flags = SHF_WRITE | SHF_ALLOC | SHF_EXECINSTR;
			shdr.sh_addr = segs[i].load_addr;
			shdr.sh_size = segs[i].len;
			empty_sz = segs[i].mem_len - segs[i].len;
			name = strdup(".text");
			buffer_splice(&tbuff, buff, segs[i].offset,
				       segs[i].len);
		} else if (segs[i].type == PAYLOAD_SEGMENT_DATA) {
			shdr.sh_type = SHT_PROGBITS;
			shdr.sh_flags = SHF_ALLOC | SHF_WRITE;
			shdr.sh_addr = segs[i].load_addr;
			shdr.sh_size = segs[i].len;
			empty_sz = segs[i].mem_len - segs[i].len;
			name = strdup(".data");
			buffer_splice(&tbuff, buff, segs[i].offset,
				       segs[i].len);
		} else if (segs[i].type == PAYLOAD_SEGMENT_BSS) {
			shdr.sh_type = SHT_NOBITS;
			shdr.sh_flags = SHF_ALLOC | SHF_WRITE;
			shdr.sh_addr = segs[i].load_addr;
			shdr.sh_size = segs[i].len;
			name = strdup(".bss");
			buffer_splice(&tbuff, buff, 0, 0);
		} else if (segs[i].type == PAYLOAD_SEGMENT_PARAMS) {
			shdr.sh_type = SHT_NOTE;
			shdr.sh_flags = 0;
			shdr.sh_size = segs[i].len;
			name = strdup(".note.pinfo");
			buffer_splice(&tbuff, buff, segs[i].offset,
				       segs[i].len);
		} else if (segs[i].type == PAYLOAD_SEGMENT_ENTRY) {
			break;
		} else {
			ERROR("unknown ELF segment type\n");
			goto out;
		}

		if (!name) {
			ERROR("out of memory\n");
			goto out;
		}

		if (elf_writer_add_section(ew, &shdr, &tbuff, name)) {
			ERROR("Unable to add ELF section: %s\n", name);
			free(name);
			goto out;
		}
		free(name);

		if (empty_sz != 0) {
			struct buffer b;

			buffer_init(&b, NULL, NULL, 0);
			memset(&shdr, 0, sizeof(shdr));
			shdr.sh_type = SHT_NOBITS;
			shdr.sh_flags = SHF_WRITE | SHF_ALLOC;
			shdr.sh_addr = segs[i].load_addr + segs[i].len;
			shdr.sh_size = empty_sz;
			name = strdup(".empty");
			if (!name) {
				ERROR("out of memory\n");
				goto out;
			}
			if (elf_writer_add_section(ew, &shdr, &b, name)) {
				ERROR("Unable to add ELF section: %s\n", name);
				free(name);
				goto out;
			}
			free(name);
		}
	}

	if (elf_writer_serialize(ew, &elf_out)) {
		ERROR("Unable to create ELF file from stage.\n");
		goto out;
	}

	/* Flip buffer with the created ELF one. */
	buffer_delete(buff);
	*buff = elf_out;
	retval = 0;

out:
	free(segs);
	elf_writer_destroy(ew);
	return retval;
}

int cbfs_export_entry(struct cbfs_image *image, const char *entry_name,
		      const char *filename, uint32_t arch, bool do_processing)
{
	struct cbfs_file *entry = cbfs_get_entry(image, entry_name);
	struct buffer buffer;
	if (!entry) {
		ERROR("File not found: %s\n", entry_name);
		return -1;
	}

	unsigned int compressed_size = ntohl(entry->len);
	unsigned int decompressed_size = 0;
	unsigned int compression = cbfs_file_get_compression_info(entry,
		&decompressed_size);
	unsigned int buffer_len;
	decomp_func_ptr decompress;

	if (do_processing) {
		decompress = decompression_function(compression);
		if (!decompress) {
			ERROR("looking up decompression routine failed\n");
			return -1;
		}
		buffer_len = decompressed_size;
	} else {
		/* Force nop decompression */
		decompress = decompression_function(CBFS_COMPRESS_NONE);
		buffer_len = compressed_size;
	}

	LOG("Found file %.30s at 0x%x, type %.12s, compressed %d, size %d\n",
	    entry_name, cbfs_get_entry_addr(image, entry),
	    get_cbfs_entry_type_name(ntohl(entry->type)), compressed_size,
	    decompressed_size);

	buffer_init(&buffer, strdup("(cbfs_export_entry)"), NULL, 0);
	buffer.data = malloc(buffer_len);
	buffer.size = buffer_len;

	if (decompress(CBFS_SUBHEADER(entry), compressed_size,
		       buffer.data, buffer.size, NULL)) {
		ERROR("decompression failed for %s\n", entry_name);
		buffer_delete(&buffer);
		return -1;
	}

	/*
	 * The stage metadata is never compressed proper for cbfs_stage
	 * files. The contents of the stage data can be though. Therefore
	 * one has to do a second pass for stages to potentially decompress
	 * the stage data to make it more meaningful.
	 */
	if (do_processing) {
		int (*make_elf)(struct buffer *, uint32_t) = NULL;
		switch (ntohl(entry->type)) {
		case CBFS_TYPE_STAGE:
			make_elf = cbfs_stage_make_elf;
			break;
		case CBFS_TYPE_SELF:
			make_elf = cbfs_payload_make_elf;
			break;
		}
		if (make_elf && make_elf(&buffer, arch)) {
			ERROR("Failed to write %s into %s.\n",
			      entry_name, filename);
			buffer_delete(&buffer);
			return -1;
		}
	}

	if (buffer_write_file(&buffer, filename) != 0) {
		ERROR("Failed to write %s into %s.\n",
		      entry_name, filename);
		buffer_delete(&buffer);
		return -1;
	}

	buffer_delete(&buffer);
	INFO("Successfully dumped the file to: %s\n", filename);
	return 0;
}

int cbfs_remove_entry(struct cbfs_image *image, const char *name)
{
	struct cbfs_file *entry;
	entry = cbfs_get_entry(image, name);
	if (!entry) {
		ERROR("CBFS file %s not found.\n", name);
		return -1;
	}
	DEBUG("cbfs_remove_entry: Removed %s @ 0x%x\n",
	      entry->filename, cbfs_get_entry_addr(image, entry));
	entry->type = htonl(CBFS_TYPE_DELETED);
	cbfs_legacy_walk(image, cbfs_merge_empty_entry, NULL);
	return 0;
}

int cbfs_print_header_info(struct cbfs_image *image)
{
	char *name = strdup(image->buffer.name);
	assert(image);
	printf("%s: %zd kB, bootblocksize %d, romsize %d, offset 0x%x\n"
	       "alignment: %d bytes, architecture: %s\n\n",
	       basename(name),
	       image->buffer.size / 1024,
	       image->header.bootblocksize,
	       image->header.romsize,
	       image->header.offset,
	       image->header.align,
	       arch_to_string(image->header.architecture));
	free(name);
	return 0;
}

static int cbfs_print_stage_info(struct cbfs_stage *stage, FILE* fp)
{
	fprintf(fp,
		"    %s compression, entry: 0x%" PRIx64 ", load: 0x%" PRIx64 ", "
		"length: %d/%d\n",
		lookup_name_by_type(types_cbfs_compression,
				    stage->compression, "(unknown)"),
		stage->entry,
		stage->load,
		stage->len,
		stage->memlen);
	return 0;
}

static int cbfs_print_decoded_payload_segment_info(
		struct cbfs_payload_segment *seg, FILE *fp)
{
	/* The input (seg) must be already decoded by
	 * cbfs_decode_payload_segment.
	 */
	switch (seg->type) {
		case PAYLOAD_SEGMENT_CODE:
		case PAYLOAD_SEGMENT_DATA:
			fprintf(fp, "    %s (%s compression, offset: 0x%x, "
				"load: 0x%" PRIx64 ", length: %d/%d)\n",
				(seg->type == PAYLOAD_SEGMENT_CODE ?
				 "code " : "data"),
				lookup_name_by_type(types_cbfs_compression,
						    seg->compression,
						    "(unknown)"),
				seg->offset, seg->load_addr, seg->len,
				seg->mem_len);
			break;

		case PAYLOAD_SEGMENT_ENTRY:
			fprintf(fp, "    entry (0x%" PRIx64 ")\n",
				seg->load_addr);
			break;

		case PAYLOAD_SEGMENT_BSS:
			fprintf(fp, "    BSS (address 0x%016" PRIx64 ", "
				"length 0x%x)\n",
				seg->load_addr, seg->len);
			break;

		case PAYLOAD_SEGMENT_PARAMS:
			fprintf(fp, "    parameters\n");
			break;

		default:
			fprintf(fp, "   0x%x (%s compression, offset: 0x%x, "
				"load: 0x%" PRIx64 ", length: %d/%d\n",
				seg->type,
				lookup_name_by_type(types_cbfs_compression,
						    seg->compression,
						    "(unknown)"),
				seg->offset, seg->load_addr, seg->len,
				seg->mem_len);
			break;
	}
	return 0;
}

int cbfs_print_entry_info(struct cbfs_image *image, struct cbfs_file *entry,
			  void *arg)
{
	const char *name = entry->filename;
	struct cbfs_payload_segment *payload;
	FILE *fp = (FILE *)arg;

	if (!cbfs_is_valid_entry(image, entry)) {
		ERROR("cbfs_print_entry_info: Invalid entry at 0x%x\n",
		      cbfs_get_entry_addr(image, entry));
		return -1;
	}
	if (!fp)
		fp = stdout;

	unsigned int decompressed_size = 0;
	unsigned int compression = cbfs_file_get_compression_info(entry,
		&decompressed_size);
	const char *compression_name = lookup_name_by_type(
			types_cbfs_compression, compression, "????");

	if (compression == CBFS_COMPRESS_NONE)
		fprintf(fp, "%-30s 0x%-8x %-12s %8d %-4s\n",
			*name ? name : "(empty)",
			cbfs_get_entry_addr(image, entry),
			get_cbfs_entry_type_name(ntohl(entry->type)),
			ntohl(entry->len),
			compression_name
			);
	else
		fprintf(fp, "%-30s 0x%-8x %-12s %8d %-4s (%d decompressed)\n",
			*name ? name : "(empty)",
			cbfs_get_entry_addr(image, entry),
			get_cbfs_entry_type_name(ntohl(entry->type)),
			ntohl(entry->len),
			compression_name,
			decompressed_size
			);

	if (!verbose)
		return 0;

	struct cbfs_file_attr_hash *attr = NULL;
	while ((attr = cbfs_file_get_next_hash(entry, attr)) != NULL) {
		size_t hash_len = vb2_digest_size(attr->hash.algo);
		if (!hash_len) {
			fprintf(fp, "invalid/unsupported hash algorithm: %d\n",
				attr->hash.algo);
			break;
		}
		char *hash_str = bintohex(attr->hash.raw, hash_len);
		int valid = vb2_hash_verify(CBFS_SUBHEADER(entry),
			ntohl(entry->len), &attr->hash) == VB2_SUCCESS;
		const char *valid_str = valid ? "valid" : "invalid";

		fprintf(fp, "    hash %s:%s %s\n",
			vb2_get_hash_algorithm_name(attr->hash.algo),
			hash_str, valid_str);
		free(hash_str);
	}

	DEBUG(" cbfs_file=0x%x, offset=0x%x, content_address=0x%x+0x%x\n",
	      cbfs_get_entry_addr(image, entry), ntohl(entry->offset),
	      cbfs_get_entry_addr(image, entry) + ntohl(entry->offset),
	      ntohl(entry->len));

	/* note the components of the subheader may be in host order ... */
	switch (ntohl(entry->type)) {
		case CBFS_TYPE_STAGE:
			cbfs_print_stage_info((struct cbfs_stage *)
					      CBFS_SUBHEADER(entry), fp);
			break;

		case CBFS_TYPE_SELF:
			payload = (struct cbfs_payload_segment *)
					CBFS_SUBHEADER(entry);
			while (payload) {
				struct cbfs_payload_segment seg;
				cbfs_decode_payload_segment(&seg, payload);
				cbfs_print_decoded_payload_segment_info(
						&seg, fp);
				if (seg.type == PAYLOAD_SEGMENT_ENTRY)
					break;
				else
				payload ++;
			}
			break;
		default:
			break;
	}
	return 0;
}

static int cbfs_print_parseable_entry_info(struct cbfs_image *image,
					struct cbfs_file *entry, void *arg)
{
	FILE *fp = (FILE *)arg;
	const char *name;
	const char *type;
	size_t offset;
	size_t metadata_size;
	size_t data_size;
	const char *sep = "\t";

	if (!cbfs_is_valid_entry(image, entry)) {
		ERROR("cbfs_print_entry_info: Invalid entry at 0x%x\n",
		      cbfs_get_entry_addr(image, entry));
		return -1;
	}

	name = entry->filename;
	if (*name == '\0')
		name = "(empty)";
	type = get_cbfs_entry_type_name(ntohl(entry->type)),
	metadata_size = ntohl(entry->offset);
	data_size = ntohl(entry->len);
	offset = cbfs_get_entry_addr(image, entry);

	fprintf(fp, "%s%s", name, sep);
	fprintf(fp, "0x%zx%s", offset, sep);
	fprintf(fp, "%s%s", type, sep);
	fprintf(fp, "0x%zx%s", metadata_size, sep);
	fprintf(fp, "0x%zx%s", data_size, sep);
	fprintf(fp, "0x%zx", metadata_size + data_size);

	if (verbose) {
		unsigned int decompressed_size = 0;
		unsigned int compression = cbfs_file_get_compression_info(entry,
			&decompressed_size);
		if (compression != CBFS_COMPRESS_NONE)
			fprintf(fp, "%scomp:%s:0x%x", sep, lookup_name_by_type(
				types_cbfs_compression, compression, "????"),
				decompressed_size);

		struct cbfs_file_attr_hash *attr = NULL;
		while ((attr = cbfs_file_get_next_hash(entry, attr)) != NULL) {
			size_t hash_len = vb2_digest_size(attr->hash.algo);
			if (!hash_len)
				continue;
			char *hash_str = bintohex(attr->hash.raw, hash_len);
			int valid = vb2_hash_verify(CBFS_SUBHEADER(entry),
				ntohl(entry->len), &attr->hash) == VB2_SUCCESS;
			fprintf(fp, "%shash:%s:%s:%s", sep,
				vb2_get_hash_algorithm_name(attr->hash.algo),
				hash_str, valid ? "valid" : "invalid");
			free(hash_str);
		}
	}
	fprintf(fp, "\n");

	return 0;
}

void cbfs_print_directory(struct cbfs_image *image)
{
	if (cbfs_is_legacy_cbfs(image))
		cbfs_print_header_info(image);
	printf("%-30s %-10s %-12s   Size   Comp\n", "Name", "Offset", "Type");
	cbfs_legacy_walk(image, cbfs_print_entry_info, NULL);
}

void cbfs_print_parseable_directory(struct cbfs_image *image)
{
	size_t i;
	const char *header[] = {
		"Name",
		"Offset",
		"Type",
		"Metadata Size",
		"Data Size",
		"Total Size",
	};
	const char *sep = "\t";

	for (i = 0; i < ARRAY_SIZE(header) - 1; i++)
		fprintf(stdout, "%s%s", header[i], sep);
	fprintf(stdout, "%s\n", header[i]);
	cbfs_legacy_walk(image, cbfs_print_parseable_entry_info, stdout);
}

int cbfs_merge_empty_entry(struct cbfs_image *image, struct cbfs_file *entry,
			   unused void *arg)
{
	struct cbfs_file *next;
	uint32_t next_addr = 0;

	/* We don't return here even if this entry is already empty because we
	   want to merge the empty entries following after it. */

	/* Loop until non-empty entry is found, starting from the current entry.
	   After the loop, next_addr points to the next non-empty entry. */
	next = entry;
	while (ntohl(next->type) == CBFS_TYPE_DELETED ||
			ntohl(next->type) == CBFS_TYPE_NULL) {
		next = cbfs_find_next_entry(image, next);
		if (!next)
			break;
		next_addr = cbfs_get_entry_addr(image, next);
		if (!cbfs_is_valid_entry(image, next))
			/* 'next' could be the end of cbfs */
			break;
	}

	if (!next_addr)
		/* Nothing to empty */
		return 0;

	/* We can return here if we find only a single empty entry.
	   For simplicity, we just proceed (and make it empty again). */

	/* We're creating one empty entry for combined empty spaces */
	uint32_t addr = cbfs_get_entry_addr(image, entry);
	size_t len = next_addr - addr - cbfs_calculate_file_header_size("");
	DEBUG("join_empty_entry: [0x%x, 0x%x) len=%zu\n", addr, next_addr, len);
	cbfs_create_empty_entry(entry, CBFS_TYPE_NULL, len, "");

	return 0;
}

int cbfs_legacy_walk(struct cbfs_image *image, cbfs_entry_callback callback,
	      void *arg)
{
	int count = 0;
	struct cbfs_file *entry;
	for (entry = cbfs_find_first_entry(image);
	     entry && cbfs_is_valid_entry(image, entry);
	     entry = cbfs_find_next_entry(image, entry)) {
		count ++;
		if (callback(image, entry, arg) != 0)
			break;
	}
	return count;
}

static int cbfs_header_valid(struct cbfs_header *header)
{
	if ((ntohl(header->magic) == CBFS_HEADER_MAGIC) &&
	    ((ntohl(header->version) == CBFS_HEADER_VERSION1) ||
	     (ntohl(header->version) == CBFS_HEADER_VERSION2)) &&
	    (ntohl(header->offset) < ntohl(header->romsize)))
		return 1;
	return 0;
}

struct cbfs_header *cbfs_find_header(char *data, size_t size,
				     uint32_t forced_offset)
{
	size_t offset;
	int found = 0;
	int32_t rel_offset;
	struct cbfs_header *header, *result = NULL;

	if (forced_offset < (size - sizeof(struct cbfs_header))) {
		/* Check if the forced header is valid. */
		header = (struct cbfs_header *)(data + forced_offset);
		if (cbfs_header_valid(header))
			return header;
		return NULL;
	}

	// Try finding relative offset of master header at end of file first.
	rel_offset = *(int32_t *)(data + size - sizeof(int32_t));
	offset = size + rel_offset;
	DEBUG("relative offset: %#zx(-%#zx), offset: %#zx\n",
	      (size_t)rel_offset, (size_t)-rel_offset, offset);

	if (offset >= size - sizeof(*header) ||
	    !cbfs_header_valid((struct cbfs_header *)(data + offset))) {
		// Some use cases append non-CBFS data to the end of the ROM.
		DEBUG("relative offset seems wrong, scanning whole image...\n");
		offset = 0;
	}

	for (; offset + sizeof(*header) < size; offset++) {
		header = (struct cbfs_header *)(data + offset);
		if (!cbfs_header_valid(header))
			continue;
		if (!found++)
			result = header;
	}
	if (found > 1)
		// Top-aligned images usually have a working relative offset
		// field, so this is more likely to happen on bottom-aligned
		// ones (where the first header is the "outermost" one)
		WARN("Multiple (%d) CBFS headers found, using the first one.\n",
		       found);
	return result;
}


struct cbfs_file *cbfs_find_first_entry(struct cbfs_image *image)
{
	assert(image);
	if (image->has_header)
		/* header.offset is relative to start of flash, not
		 * start of region, so use it with the full image.
		 */
		return (struct cbfs_file *)
			(buffer_get_original_backing(&image->buffer) +
			image->header.offset);
	else
		return (struct cbfs_file *)buffer_get(&image->buffer);
}

struct cbfs_file *cbfs_find_next_entry(struct cbfs_image *image,
				       struct cbfs_file *entry)
{
	uint32_t addr = cbfs_get_entry_addr(image, entry);
	int align = image->has_header ? image->header.align : CBFS_ALIGNMENT;
	assert(entry && cbfs_is_valid_entry(image, entry));
	addr += ntohl(entry->offset) + ntohl(entry->len);
	addr = align_up(addr, align);
	return (struct cbfs_file *)(image->buffer.data + addr);
}

uint32_t cbfs_get_entry_addr(struct cbfs_image *image, struct cbfs_file *entry)
{
	assert(image && image->buffer.data && entry);
	return (int32_t)((char *)entry - image->buffer.data);
}

int cbfs_is_valid_cbfs(struct cbfs_image *image)
{
	return buffer_check_magic(&image->buffer, CBFS_FILE_MAGIC,
						strlen(CBFS_FILE_MAGIC));
}

int cbfs_is_legacy_cbfs(struct cbfs_image *image)
{
	return image->has_header;
}

int cbfs_is_valid_entry(struct cbfs_image *image, struct cbfs_file *entry)
{
	uint32_t offset = cbfs_get_entry_addr(image, entry);

	if (offset >= image->buffer.size)
		return 0;

	struct buffer entry_data;
	buffer_clone(&entry_data, &image->buffer);
	buffer_seek(&entry_data, offset);
	return buffer_check_magic(&entry_data, CBFS_FILE_MAGIC,
						strlen(CBFS_FILE_MAGIC));
}

struct cbfs_file *cbfs_create_file_header(int type,
			    size_t len, const char *name)
{
	struct cbfs_file *entry = malloc(CBFS_METADATA_MAX_SIZE);
	memset(entry, CBFS_CONTENT_DEFAULT_VALUE, CBFS_METADATA_MAX_SIZE);
	memcpy(entry->magic, CBFS_FILE_MAGIC, sizeof(entry->magic));
	entry->type = htonl(type);
	entry->len = htonl(len);
	entry->attributes_offset = 0;
	entry->offset = htonl(cbfs_calculate_file_header_size(name));
	memset(entry->filename, 0, ntohl(entry->offset) - sizeof(*entry));
	strcpy(entry->filename, name);
	return entry;
}

int cbfs_create_empty_entry(struct cbfs_file *entry, int type,
			    size_t len, const char *name)
{
	struct cbfs_file *tmp = cbfs_create_file_header(type, len, name);
	memcpy(entry, tmp, ntohl(tmp->offset));
	free(tmp);
	memset(CBFS_SUBHEADER(entry), CBFS_CONTENT_DEFAULT_VALUE, len);
	return 0;
}

struct cbfs_file_attribute *cbfs_file_first_attr(struct cbfs_file *file)
{
	/* attributes_offset should be 0 when there is no attribute, but all
	 * values that point into the cbfs_file header are invalid, too. */
	if (ntohl(file->attributes_offset) <= sizeof(*file))
		return NULL;

	/* There needs to be enough space for the file header and one
	 * attribute header for this to make sense. */
	if (ntohl(file->offset) <=
		sizeof(*file) + sizeof(struct cbfs_file_attribute))
		return NULL;

	return (struct cbfs_file_attribute *)
		(((uint8_t *)file) + ntohl(file->attributes_offset));
}

struct cbfs_file_attribute *cbfs_file_next_attr(struct cbfs_file *file,
	struct cbfs_file_attribute *attr)
{
	/* ex falso sequitur quodlibet */
	if (attr == NULL)
		return NULL;

	/* Is there enough space for another attribute? */
	if ((uint8_t *)attr + ntohl(attr->len) +
		sizeof(struct cbfs_file_attribute) >
		(uint8_t *)file + ntohl(file->offset))
		return NULL;

	struct cbfs_file_attribute *next = (struct cbfs_file_attribute *)
		(((uint8_t *)attr) + ntohl(attr->len));
	/* If any, "unused" attributes must come last. */
	if (ntohl(next->tag) == CBFS_FILE_ATTR_TAG_UNUSED)
		return NULL;
	if (ntohl(next->tag) == CBFS_FILE_ATTR_TAG_UNUSED2)
		return NULL;

	return next;
}

struct cbfs_file_attribute *cbfs_add_file_attr(struct cbfs_file *header,
					       uint32_t tag,
					       uint32_t size)
{
	struct cbfs_file_attribute *attr, *next;
	next = cbfs_file_first_attr(header);
	do {
		attr = next;
		next = cbfs_file_next_attr(header, attr);
	} while (next != NULL);
	uint32_t header_size = ntohl(header->offset) + size;
	if (header_size > CBFS_METADATA_MAX_SIZE) {
		DEBUG("exceeding allocated space for cbfs_file headers");
		return NULL;
	}
	/* attr points to the last valid attribute now.
	 * If NULL, we have to create the first one. */
	if (attr == NULL) {
		/* New attributes start where the header ends.
		 * header->offset is later set to accommodate the
		 * additional structure.
		 * No endianness translation necessary here, because both
		 * fields are encoded the same way. */
		header->attributes_offset = header->offset;
		attr = (struct cbfs_file_attribute *)
			(((uint8_t *)header) +
			ntohl(header->attributes_offset));
	} else {
		attr = (struct cbfs_file_attribute *)
			(((uint8_t *)attr) +
			ntohl(attr->len));
	}
	header->offset = htonl(header_size);
	/* Attributes are expected to be small (much smaller than a flash page)
	   and not really meant to be overwritten in-place. To avoid surprising
	   values in reserved fields of attribute structures, initialize them to
	   0, not 0xff. */
	memset(attr, 0, size);
	attr->tag = htonl(tag);
	attr->len = htonl(size);
	return attr;
}

int cbfs_add_file_hash(struct cbfs_file *header, struct buffer *buffer,
	enum vb2_hash_algorithm alg)
{
	if (!vb2_digest_size(alg))
		return -1;

	struct cbfs_file_attr_hash *attr =
		(struct cbfs_file_attr_hash *)cbfs_add_file_attr(header,
			CBFS_FILE_ATTR_TAG_HASH, cbfs_file_attr_hash_size(alg));

	if (attr == NULL)
		return -1;

	if (vb2_hash_calculate(buffer_get(buffer), buffer_size(buffer),
			       alg, &attr->hash) != VB2_SUCCESS)
		return -1;

	return 0;
}

/* Finds a place to hold whole data in same memory page. */
static int is_in_same_page(uint32_t start, uint32_t size, uint32_t page)
{
	if (!page)
		return 1;
	return (start / page) == (start + size - 1) / page;
}

/* Tests if data can fit in a range by given offset:
 *  start ->| metadata_size | offset (+ size) |<- end
 */
static int is_in_range(size_t start, size_t end, size_t metadata_size,
		       size_t offset, size_t size)
{
	return (offset >= start + metadata_size && offset + size <= end);
}

static size_t absolute_align(const struct cbfs_image *image, size_t val,
				size_t align)
{
	const size_t region_offset = buffer_offset(&image->buffer);
	/* To perform alignment on absolute address, take the region offset */
	/* of the image into account.					    */
	return align_up(val + region_offset, align) - region_offset;

}

int32_t cbfs_locate_entry(struct cbfs_image *image, size_t size,
			  size_t page_size, size_t align, size_t metadata_size)
{
	struct cbfs_file *entry;
	size_t need_len;
	size_t addr, addr_next, addr2, addr3, offset;

	/* Default values: allow fitting anywhere in ROM. */
	if (!page_size)
		page_size = image->has_header ? image->header.romsize :
							image->buffer.size;
	if (!align)
		align = 1;

	if (size > page_size)
		ERROR("Input file size (%zd) greater than page size (%zd).\n",
		      size, page_size);

	size_t image_align = image->has_header ? image->header.align :
							CBFS_ALIGNMENT;
	if (page_size % image_align)
		WARN("%s: Page size (%#zx) not aligned with CBFS image (%#zx).\n",
		     __func__, page_size, image_align);

	need_len = metadata_size + size;

	// Merge empty entries to build get max available space.
	cbfs_legacy_walk(image, cbfs_merge_empty_entry, NULL);

	/* Three cases of content location on memory page:
	 * case 1.
	 *          |  PAGE 1  |   PAGE 2  |
	 *          |     <header><content>| Fit. Return start of content.
	 *
	 * case 2.
	 *          |  PAGE 1  |   PAGE 2  |
	 *          | <header><content>    | Fits when we shift content to align
	 *  shift-> |  <header>|<content>  | at starting of PAGE 2.
	 *
	 * case 3. (large content filling whole page)
	 *  | PAGE 1 |  PAGE 2  | PAGE 3 |
	 *  |  <header>< content >       | Can't fit. If we shift content to
	 *  |trial-> <header>< content > | PAGE 2, header can't fit in free
	 *  |  shift->  <header><content> space, so we must use PAGE 3.
	 *
	 * The returned address can be then used as "base-address" (-b) in add-*
	 * commands (will be re-calculated and positioned by cbfs_add_entry_at).
	 * For stage targets, the address is also used to re-link stage before
	 * being added into CBFS.
	 */
	for (entry = cbfs_find_first_entry(image);
	     entry && cbfs_is_valid_entry(image, entry);
	     entry = cbfs_find_next_entry(image, entry)) {

		uint32_t type = ntohl(entry->type);
		if (type != CBFS_TYPE_NULL)
			continue;

		addr = cbfs_get_entry_addr(image, entry);
		addr_next = cbfs_get_entry_addr(image, cbfs_find_next_entry(
				image, entry));
		if (addr_next - addr < need_len)
			continue;

		offset = absolute_align(image, addr + metadata_size, align);
		if (is_in_same_page(offset, size, page_size) &&
		    is_in_range(addr, addr_next, metadata_size, offset, size)) {
			DEBUG("cbfs_locate_entry: FIT (PAGE1).");
			return offset;
		}

		addr2 = align_up(addr, page_size);
		offset = absolute_align(image, addr2, align);
		if (is_in_range(addr, addr_next, metadata_size, offset, size)) {
			DEBUG("cbfs_locate_entry: OVERLAP (PAGE2).");
			return offset;
		}

		/* Assume page_size >= metadata_size so adding one page will
		 * definitely provide the space for header. */
		assert(page_size >= metadata_size);
		addr3 = addr2 + page_size;
		offset = absolute_align(image, addr3, align);
		if (is_in_range(addr, addr_next, metadata_size, offset, size)) {
			DEBUG("cbfs_locate_entry: OVERLAP+ (PAGE3).");
			return offset;
		}
	}
	return -1;
}