aboutsummaryrefslogtreecommitdiff
path: root/src/vendorcode/cavium/include/bdk/libbdk-arch/bdk-csrs-sli.h
blob: e2e780351fcc51151c3905f0e1d179cb31e5047c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
#ifndef __BDK_CSRS_SLI_H__
#define __BDK_CSRS_SLI_H__
/* This file is auto-generated. Do not edit */

/***********************license start***************
 * Copyright (c) 2003-2017  Cavium Inc. (support@cavium.com). All rights
 * reserved.
 *
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.

 *   * Neither the name of Cavium Inc. nor the names of
 *     its contributors may be used to endorse or promote products
 *     derived from this software without specific prior written
 *     permission.

 * This Software, including technical data, may be subject to U.S. export  control
 * laws, including the U.S. Export Administration Act and its  associated
 * regulations, and may be subject to export or import  regulations in other
 * countries.

 * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
 * AND WITH ALL FAULTS AND CAVIUM  NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR
 * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
 * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR
 * DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
 * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
 * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
 * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
 * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE  RISK ARISING OUT OF USE OR
 * PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
 ***********************license end**************************************/


/**
 * @file
 *
 * Configuration and status register (CSR) address and type definitions for
 * Cavium SLI.
 *
 * This file is auto generated. Do not edit.
 *
 */

/**
 * Enumeration sdp_in_rams_e
 *
 * SDP Input RAMs Field Enumeration
 * Enumerates the relative bit positions within SDP(0)_ECC(1)_CTL[CDIS].
 */
#define BDK_SDP_IN_RAMS_E_CNTS (3)
#define BDK_SDP_IN_RAMS_E_DB (4)
#define BDK_SDP_IN_RAMS_E_DBELL (0xd)
#define BDK_SDP_IN_RAMS_E_DIR (5)
#define BDK_SDP_IN_RAMS_E_DMARSP0 (0)
#define BDK_SDP_IN_RAMS_E_DMARSP1 (1)
#define BDK_SDP_IN_RAMS_E_GTHR0 (8)
#define BDK_SDP_IN_RAMS_E_GTHR1 (9)
#define BDK_SDP_IN_RAMS_E_IHFD0 (6)
#define BDK_SDP_IN_RAMS_E_IHFD1 (7)
#define BDK_SDP_IN_RAMS_E_IND (0xb)
#define BDK_SDP_IN_RAMS_E_INFO (0xa)
#define BDK_SDP_IN_RAMS_E_LEVELS (0xc)
#define BDK_SDP_IN_RAMS_E_MBOX (0x10)
#define BDK_SDP_IN_RAMS_E_PERF (2)
#define BDK_SDP_IN_RAMS_E_PKTRSP (0xf)
#define BDK_SDP_IN_RAMS_E_X2P (0xe)

/**
 * Enumeration sdp_out_rams_e
 *
 * SDP Output RAMs Field Enumeration
 * Enumerates the relative bit positions within SDP(0)_ECC(0)_CTL[CDIS].
 */
#define BDK_SDP_OUT_RAMS_E_BISIZE (0)
#define BDK_SDP_OUT_RAMS_E_BPF0 (0xd)
#define BDK_SDP_OUT_RAMS_E_BPF1 (0xe)
#define BDK_SDP_OUT_RAMS_E_CNTS (2)
#define BDK_SDP_OUT_RAMS_E_DB (4)
#define BDK_SDP_OUT_RAMS_E_DBELL (3)
#define BDK_SDP_OUT_RAMS_E_DPLF_DIR (6)
#define BDK_SDP_OUT_RAMS_E_DPLF_IND (9)
#define BDK_SDP_OUT_RAMS_E_IB (7)
#define BDK_SDP_OUT_RAMS_E_INFO (0xa)
#define BDK_SDP_OUT_RAMS_E_IPLF_DIR (5)
#define BDK_SDP_OUT_RAMS_E_IPLF_IND (8)
#define BDK_SDP_OUT_RAMS_E_LEVELS (0xb)
#define BDK_SDP_OUT_RAMS_E_MSIX_ADDR (0x11)
#define BDK_SDP_OUT_RAMS_E_MSIX_DATA (0x12)
#define BDK_SDP_OUT_RAMS_E_P2X (0xc)
#define BDK_SDP_OUT_RAMS_E_PERF (1)
#define BDK_SDP_OUT_RAMS_E_TRACK0 (0xf)
#define BDK_SDP_OUT_RAMS_E_TRACK1 (0x10)

/**
 * Enumeration sli_bar_e
 *
 * SLI Base Address Register Enumeration
 * Enumerates the base address registers.
 */
#define BDK_SLI_BAR_E_SLIX_PF_BAR0_CN81XX(a) (0x874000000000ll + 0x1000000000ll * (a))
#define BDK_SLI_BAR_E_SLIX_PF_BAR0_CN81XX_SIZE 0x2000000ull
#define BDK_SLI_BAR_E_SLIX_PF_BAR0_CN88XX(a) (0x874000000000ll + 0x1000000000ll * (a))
#define BDK_SLI_BAR_E_SLIX_PF_BAR0_CN88XX_SIZE 0x2000000ull
#define BDK_SLI_BAR_E_SLIX_PF_BAR0_CN83XX(a) (0x874000000000ll + 0x1000000000ll * (a))
#define BDK_SLI_BAR_E_SLIX_PF_BAR0_CN83XX_SIZE 0x800000000ull
#define BDK_SLI_BAR_E_SLIX_PF_BAR4_CN81XX(a) (0x874010000000ll + 0x1000000000ll * (a))
#define BDK_SLI_BAR_E_SLIX_PF_BAR4_CN81XX_SIZE 0x100000ull
#define BDK_SLI_BAR_E_SLIX_PF_BAR4_CN88XX(a) (0x874010000000ll + 0x1000000000ll * (a))
#define BDK_SLI_BAR_E_SLIX_PF_BAR4_CN88XX_SIZE 0x100000ull
#define BDK_SLI_BAR_E_SLIX_PF_BAR4_CN83XX(a) (0x874c00000000ll + 0x1000000000ll * (a))
#define BDK_SLI_BAR_E_SLIX_PF_BAR4_CN83XX_SIZE 0x100000ull

/**
 * Enumeration sli_endianswap_e
 *
 * SLI/SDP Endian Swap Mode Enumeration
 * Enumerates the endian swap modes that SLI and SDP support.
 */
#define BDK_SLI_ENDIANSWAP_E_BYTE_SWAP_32B (2)
#define BDK_SLI_ENDIANSWAP_E_BYTE_SWAP_64B (1)
#define BDK_SLI_ENDIANSWAP_E_LW_SWAP_64B (3)
#define BDK_SLI_ENDIANSWAP_E_PASS_THRU (0)

/**
 * Enumeration sli_int_vec_e
 *
 * SLI MSI-X Vector Enumeration
 * Enumerates the MSI-X interrupt vectors.
 */
#define BDK_SLI_INT_VEC_E_MACX(a) (1 + (a))
#define BDK_SLI_INT_VEC_E_MBE (0)
#define BDK_SLI_INT_VEC_E_SDP_ECCX_LINT(a) (0xe + (a))
#define BDK_SLI_INT_VEC_E_SDP_EPFX_FLR_VF_LINT(a) (0 + (a))
#define BDK_SLI_INT_VEC_E_SDP_EPFX_IRERR_LINT(a) (0xa + (a))
#define BDK_SLI_INT_VEC_E_SDP_EPFX_ORERR_LINT(a) (0xc + (a))
#define BDK_SLI_INT_VEC_E_SLI_EPFX_DMA_VF_LINT(a) (8 + (a))
#define BDK_SLI_INT_VEC_E_SLI_EPFX_MISC_LINT(a) (2 + (a))
#define BDK_SLI_INT_VEC_E_SLI_EPFX_PP_VF_LINT(a) (6 + (a))
#define BDK_SLI_INT_VEC_E_SLI_MBE (0x10)

/**
 * Enumeration sli_rams_e
 *
 * SLI RAM Field Enumeration
 * Enumerates the relative bit positions within SLI()_MEM_CTL[CDIS].
 */
#define BDK_SLI_RAMS_E_CPL0_FIF (3)
#define BDK_SLI_RAMS_E_CPL1_FIF (2)
#define BDK_SLI_RAMS_E_CPL2_FIF (1)
#define BDK_SLI_RAMS_E_CPL3_FIF (0)
#define BDK_SLI_RAMS_E_DSI_FIF (0x1e)
#define BDK_SLI_RAMS_E_NOD_FIF (0x1d)
#define BDK_SLI_RAMS_E_P2NP0C_FIF (0xf)
#define BDK_SLI_RAMS_E_P2NP0N_FIF (0xe)
#define BDK_SLI_RAMS_E_P2NP0P_FIF (0xd)
#define BDK_SLI_RAMS_E_P2NP1C_FIF (0xc)
#define BDK_SLI_RAMS_E_P2NP1N_FIF (0xb)
#define BDK_SLI_RAMS_E_P2NP1P_FIF (0xa)
#define BDK_SLI_RAMS_E_P2NP2C_FIF (9)
#define BDK_SLI_RAMS_E_P2NP2N_FIF (8)
#define BDK_SLI_RAMS_E_P2NP2P_FIF (7)
#define BDK_SLI_RAMS_E_P2NP3C_FIF (6)
#define BDK_SLI_RAMS_E_P2NP3N_FIF (5)
#define BDK_SLI_RAMS_E_P2NP3P_FIF (4)
#define BDK_SLI_RAMS_E_REG_FIF (0x1c)
#define BDK_SLI_RAMS_E_SNCF0_FIF (0x1b)
#define BDK_SLI_RAMS_E_SNCF1_FIF (0x18)
#define BDK_SLI_RAMS_E_SNCF2_FIF (0x15)
#define BDK_SLI_RAMS_E_SNCF3_FIF (0x12)
#define BDK_SLI_RAMS_E_SNDFH0_FIF (0x1a)
#define BDK_SLI_RAMS_E_SNDFH1_FIF (0x17)
#define BDK_SLI_RAMS_E_SNDFH2_FIF (0x14)
#define BDK_SLI_RAMS_E_SNDFH3_FIF (0x11)
#define BDK_SLI_RAMS_E_SNDFL0_FIF (0x19)
#define BDK_SLI_RAMS_E_SNDFL1_FIF (0x16)
#define BDK_SLI_RAMS_E_SNDFL2_FIF (0x13)
#define BDK_SLI_RAMS_E_SNDFL3_FIF (0x10)

/**
 * Structure sli_s2m_op_s
 *
 * SLI to MAC Operation Structure
 * Core initiated load and store operations that are initiating MAC transactions form an address
 * with this structure. 8-bit, 16-bit, 32-bit and 64-bit reads and writes, in addition to atomics
 * are supported to this region.
 */
union bdk_sli_s2m_op_s
{
    uint64_t u;
    struct bdk_sli_s2m_op_s_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_48_63        : 16;
        uint64_t io                    : 1;  /**< [ 47: 47] Indicates IO space. */
        uint64_t reserved_46           : 1;
        uint64_t node                  : 2;  /**< [ 45: 44] CCPI node number. */
        uint64_t did_hi                : 4;  /**< [ 43: 40] SLI device ID high bits.  Specifies which SLI:
                                                                   0x8 = SLI0.
                                                                   0x9 = SLI1.

                                                                   else = Reserved. */
        uint64_t region                : 8;  /**< [ 39: 32] SLI region.  Indexes into SLI()_S2M_REG()_ACC. */
        uint64_t addr                  : 32; /**< [ 31:  0] Register address within the device. */
#else /* Word 0 - Little Endian */
        uint64_t addr                  : 32; /**< [ 31:  0] Register address within the device. */
        uint64_t region                : 8;  /**< [ 39: 32] SLI region.  Indexes into SLI()_S2M_REG()_ACC. */
        uint64_t did_hi                : 4;  /**< [ 43: 40] SLI device ID high bits.  Specifies which SLI:
                                                                   0x8 = SLI0.
                                                                   0x9 = SLI1.

                                                                   else = Reserved. */
        uint64_t node                  : 2;  /**< [ 45: 44] CCPI node number. */
        uint64_t reserved_46           : 1;
        uint64_t io                    : 1;  /**< [ 47: 47] Indicates IO space. */
        uint64_t reserved_48_63        : 16;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sli_s2m_op_s_s cn81xx; */
    /* struct bdk_sli_s2m_op_s_s cn88xx; */
    struct bdk_sli_s2m_op_s_cn83xx
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_48_63        : 16;
        uint64_t io                    : 1;  /**< [ 47: 47] Indicates IO space. */
        uint64_t reserved_46           : 1;
        uint64_t node                  : 2;  /**< [ 45: 44] CCPI node number. Must be zero for CN83XX. */
        uint64_t did_hi                : 4;  /**< [ 43: 40] SLI device ID high bits.  Must be 0x8 for CN83XX. */
        uint64_t region                : 8;  /**< [ 39: 32] SLI region.  Indexes into SLI()_S2M_REG()_ACC. */
        uint64_t addr                  : 32; /**< [ 31:  0] Register address within the device. */
#else /* Word 0 - Little Endian */
        uint64_t addr                  : 32; /**< [ 31:  0] Register address within the device. */
        uint64_t region                : 8;  /**< [ 39: 32] SLI region.  Indexes into SLI()_S2M_REG()_ACC. */
        uint64_t did_hi                : 4;  /**< [ 43: 40] SLI device ID high bits.  Must be 0x8 for CN83XX. */
        uint64_t node                  : 2;  /**< [ 45: 44] CCPI node number. Must be zero for CN83XX. */
        uint64_t reserved_46           : 1;
        uint64_t io                    : 1;  /**< [ 47: 47] Indicates IO space. */
        uint64_t reserved_48_63        : 16;
#endif /* Word 0 - End */
    } cn83xx;
};

/**
 * Structure sli_sdp_addr_s
 *
 * INTERNAL: SLI/SDP Address Structure
 *
 * Address decoding for SLI/SDP CSR address space
 */
union bdk_sli_sdp_addr_s
{
    uint64_t u;
    struct bdk_sli_sdp_addr_s_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_48_63        : 16;
        uint64_t bit47_46              : 2;  /**< [ 47: 46] NA */
        uint64_t nn                    : 2;  /**< [ 45: 44] NA */
        uint64_t did                   : 8;  /**< [ 43: 36] SLI DID */
        uint64_t region                : 2;  /**< [ 35: 34] NA */
        uint64_t r33_32                : 2;  /**< [ 33: 32] NA */
        uint64_t ncbonly               : 1;  /**< [ 31: 31] Set to 1 for registers that can only be accessed by AP cores */
        uint64_t r30_26                : 5;  /**< [ 30: 26]  */
        uint64_t epf                   : 3;  /**< [ 25: 23] EPF targeted by AP cores */
        uint64_t ring                  : 6;  /**< [ 22: 17] SDP Packet Ring */
        uint64_t space                 : 2;  /**< [ 16: 15] SDP and SLI decode space:
                                                                   0x2 = SDP ring space.
                                                                   0x0 = SDP common space.
                                                                   0x1 = SLI common space. */
        uint64_t offset                : 11; /**< [ 14:  4] Register offset */
        uint64_t bit3_0                : 4;  /**< [  3:  0] NA */
#else /* Word 0 - Little Endian */
        uint64_t bit3_0                : 4;  /**< [  3:  0] NA */
        uint64_t offset                : 11; /**< [ 14:  4] Register offset */
        uint64_t space                 : 2;  /**< [ 16: 15] SDP and SLI decode space:
                                                                   0x2 = SDP ring space.
                                                                   0x0 = SDP common space.
                                                                   0x1 = SLI common space. */
        uint64_t ring                  : 6;  /**< [ 22: 17] SDP Packet Ring */
        uint64_t epf                   : 3;  /**< [ 25: 23] EPF targeted by AP cores */
        uint64_t r30_26                : 5;  /**< [ 30: 26]  */
        uint64_t ncbonly               : 1;  /**< [ 31: 31] Set to 1 for registers that can only be accessed by AP cores */
        uint64_t r33_32                : 2;  /**< [ 33: 32] NA */
        uint64_t region                : 2;  /**< [ 35: 34] NA */
        uint64_t did                   : 8;  /**< [ 43: 36] SLI DID */
        uint64_t nn                    : 2;  /**< [ 45: 44] NA */
        uint64_t bit47_46              : 2;  /**< [ 47: 46] NA */
        uint64_t reserved_48_63        : 16;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sli_sdp_addr_s_s cn; */
};

/**
 * Register (NCB) sdp#_bist#_status
 *
 * SDP BIST Status Register
 * This register contains results from BIST runs of MAC's memories: 0 = pass (or BIST in
 * progress/never run), 1 = fail.
 */
union bdk_sdpx_bistx_status
{
    uint64_t u;
    struct bdk_sdpx_bistx_status_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_32_63        : 32;
        uint64_t bstatus               : 32; /**< [ 31:  0](RO/H) BIST status. One bit per memory.
                                                                 SDP()_BIST(0)_STATUS enumerated by SDP_OUT_RAMS_E and SDP()_BIST(1)_STATUS
                                                                 enumerated by SDP_IN_RAMS_E. */
#else /* Word 0 - Little Endian */
        uint64_t bstatus               : 32; /**< [ 31:  0](RO/H) BIST status. One bit per memory.
                                                                 SDP()_BIST(0)_STATUS enumerated by SDP_OUT_RAMS_E and SDP()_BIST(1)_STATUS
                                                                 enumerated by SDP_IN_RAMS_E. */
        uint64_t reserved_32_63        : 32;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_bistx_status_s cn; */
};
typedef union bdk_sdpx_bistx_status bdk_sdpx_bistx_status_t;

static inline uint64_t BDK_SDPX_BISTX_STATUS(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_BISTX_STATUS(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1)))
        return 0x874000880120ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x1);
    __bdk_csr_fatal("SDPX_BISTX_STATUS", 2, a, b, 0, 0);
}

#define typedef_BDK_SDPX_BISTX_STATUS(a,b) bdk_sdpx_bistx_status_t
#define bustype_BDK_SDPX_BISTX_STATUS(a,b) BDK_CSR_TYPE_NCB
#define basename_BDK_SDPX_BISTX_STATUS(a,b) "SDPX_BISTX_STATUS"
#define device_bar_BDK_SDPX_BISTX_STATUS(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_BISTX_STATUS(a,b) (a)
#define arguments_BDK_SDPX_BISTX_STATUS(a,b) (a),(b),-1,-1

/**
 * Register (NCB) sdp#_ecc#_ctl
 *
 * SDP ECC Control Register
 * This register controls the ECC of the SDP memories.
 */
union bdk_sdpx_eccx_ctl
{
    uint64_t u;
    struct bdk_sdpx_eccx_ctl_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_32_63        : 32;
        uint64_t cdis                  : 32; /**< [ 31:  0](R/W) Disables ECC correction on each RAM.
                                                                 SDP()_ECC(0)_CTL enumerated by SDP_OUT_RAMS_E and SDP()_ECC(1)_CTL
                                                                 enumerated by SDP_IN_RAMS_E. */
#else /* Word 0 - Little Endian */
        uint64_t cdis                  : 32; /**< [ 31:  0](R/W) Disables ECC correction on each RAM.
                                                                 SDP()_ECC(0)_CTL enumerated by SDP_OUT_RAMS_E and SDP()_ECC(1)_CTL
                                                                 enumerated by SDP_IN_RAMS_E. */
        uint64_t reserved_32_63        : 32;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_eccx_ctl_s cn; */
};
typedef union bdk_sdpx_eccx_ctl bdk_sdpx_eccx_ctl_t;

static inline uint64_t BDK_SDPX_ECCX_CTL(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_ECCX_CTL(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1)))
        return 0x8740008800a0ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x1);
    __bdk_csr_fatal("SDPX_ECCX_CTL", 2, a, b, 0, 0);
}

#define typedef_BDK_SDPX_ECCX_CTL(a,b) bdk_sdpx_eccx_ctl_t
#define bustype_BDK_SDPX_ECCX_CTL(a,b) BDK_CSR_TYPE_NCB
#define basename_BDK_SDPX_ECCX_CTL(a,b) "SDPX_ECCX_CTL"
#define device_bar_BDK_SDPX_ECCX_CTL(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_ECCX_CTL(a,b) (a)
#define arguments_BDK_SDPX_ECCX_CTL(a,b) (a),(b),-1,-1

/**
 * Register (NCB) sdp#_ecc#_flip
 *
 * SDP ECC Control Register
 * This register controls the ECC of the SDP memories.
 */
union bdk_sdpx_eccx_flip
{
    uint64_t u;
    struct bdk_sdpx_eccx_flip_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t flip1                 : 32; /**< [ 63: 32](R/W) Flips syndrome bit 1 on writes.
                                                                 SDP()_ECC(0)_FLIP enumerated by SDP_OUT_RAMS_E and SDP()_ECC(1)_FLIP
                                                                 enumerated by SDP_IN_RAMS_E. */
        uint64_t flip0                 : 32; /**< [ 31:  0](R/W) Flips syndrome bit 0 on writes.
                                                                 SDP()_ECC(0)_FLIP enumerated by SDP_OUT_RAMS_E and SDP()_ECC(1)_FLIP
                                                                 enumerated by SDP_IN_RAMS_E. */
#else /* Word 0 - Little Endian */
        uint64_t flip0                 : 32; /**< [ 31:  0](R/W) Flips syndrome bit 0 on writes.
                                                                 SDP()_ECC(0)_FLIP enumerated by SDP_OUT_RAMS_E and SDP()_ECC(1)_FLIP
                                                                 enumerated by SDP_IN_RAMS_E. */
        uint64_t flip1                 : 32; /**< [ 63: 32](R/W) Flips syndrome bit 1 on writes.
                                                                 SDP()_ECC(0)_FLIP enumerated by SDP_OUT_RAMS_E and SDP()_ECC(1)_FLIP
                                                                 enumerated by SDP_IN_RAMS_E. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_eccx_flip_s cn; */
};
typedef union bdk_sdpx_eccx_flip bdk_sdpx_eccx_flip_t;

static inline uint64_t BDK_SDPX_ECCX_FLIP(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_ECCX_FLIP(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1)))
        return 0x874000880100ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x1);
    __bdk_csr_fatal("SDPX_ECCX_FLIP", 2, a, b, 0, 0);
}

#define typedef_BDK_SDPX_ECCX_FLIP(a,b) bdk_sdpx_eccx_flip_t
#define bustype_BDK_SDPX_ECCX_FLIP(a,b) BDK_CSR_TYPE_NCB
#define basename_BDK_SDPX_ECCX_FLIP(a,b) "SDPX_ECCX_FLIP"
#define device_bar_BDK_SDPX_ECCX_FLIP(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_ECCX_FLIP(a,b) (a)
#define arguments_BDK_SDPX_ECCX_FLIP(a,b) (a),(b),-1,-1

/**
 * Register (NCB) sdp#_ecc#_lint
 *
 * SDP ECC Interrupt Status Register
 * This register contains the ECC interrupt-summary bits of the SDP.
 */
union bdk_sdpx_eccx_lint
{
    uint64_t u;
    struct bdk_sdpx_eccx_lint_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t dbe                   : 32; /**< [ 63: 32](R/W1C/H) Double-bit error detected in internal RAM. One bit per memory.
                                                                 SDP()_ECC(0)_LINT enumerated by SDP_OUT_RAMS_E and SDP()_ECC(1)_LINT
                                                                 enumerated by SDP_IN_RAMS_E. */
        uint64_t sbe                   : 32; /**< [ 31:  0](R/W1C/H) Single-bit error detected in internal RAM. One bit per memory.
                                                                 SDP()_ECC(0)_LINT enumerated by SDP_OUT_RAMS_E and SDP()_ECC(1)_LINT
                                                                 enumerated by SDP_IN_RAMS_E. */
#else /* Word 0 - Little Endian */
        uint64_t sbe                   : 32; /**< [ 31:  0](R/W1C/H) Single-bit error detected in internal RAM. One bit per memory.
                                                                 SDP()_ECC(0)_LINT enumerated by SDP_OUT_RAMS_E and SDP()_ECC(1)_LINT
                                                                 enumerated by SDP_IN_RAMS_E. */
        uint64_t dbe                   : 32; /**< [ 63: 32](R/W1C/H) Double-bit error detected in internal RAM. One bit per memory.
                                                                 SDP()_ECC(0)_LINT enumerated by SDP_OUT_RAMS_E and SDP()_ECC(1)_LINT
                                                                 enumerated by SDP_IN_RAMS_E. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_eccx_lint_s cn; */
};
typedef union bdk_sdpx_eccx_lint bdk_sdpx_eccx_lint_t;

static inline uint64_t BDK_SDPX_ECCX_LINT(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_ECCX_LINT(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1)))
        return 0x874000880020ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x1);
    __bdk_csr_fatal("SDPX_ECCX_LINT", 2, a, b, 0, 0);
}

#define typedef_BDK_SDPX_ECCX_LINT(a,b) bdk_sdpx_eccx_lint_t
#define bustype_BDK_SDPX_ECCX_LINT(a,b) BDK_CSR_TYPE_NCB
#define basename_BDK_SDPX_ECCX_LINT(a,b) "SDPX_ECCX_LINT"
#define device_bar_BDK_SDPX_ECCX_LINT(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_ECCX_LINT(a,b) (a)
#define arguments_BDK_SDPX_ECCX_LINT(a,b) (a),(b),-1,-1

/**
 * Register (NCB) sdp#_ecc#_lint_ena_w1c
 *
 * SDP ECC Interrupt Enable Clear Register
 * This register clears interrupt enable bits.
 */
union bdk_sdpx_eccx_lint_ena_w1c
{
    uint64_t u;
    struct bdk_sdpx_eccx_lint_ena_w1c_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t dbe                   : 32; /**< [ 63: 32](R/W1C/H) Reads or clears enable for SDP(0)_ECC(0..1)_LINT[DBE]. */
        uint64_t sbe                   : 32; /**< [ 31:  0](R/W1C/H) Reads or clears enable for SDP(0)_ECC(0..1)_LINT[SBE]. */
#else /* Word 0 - Little Endian */
        uint64_t sbe                   : 32; /**< [ 31:  0](R/W1C/H) Reads or clears enable for SDP(0)_ECC(0..1)_LINT[SBE]. */
        uint64_t dbe                   : 32; /**< [ 63: 32](R/W1C/H) Reads or clears enable for SDP(0)_ECC(0..1)_LINT[DBE]. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_eccx_lint_ena_w1c_s cn; */
};
typedef union bdk_sdpx_eccx_lint_ena_w1c bdk_sdpx_eccx_lint_ena_w1c_t;

static inline uint64_t BDK_SDPX_ECCX_LINT_ENA_W1C(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_ECCX_LINT_ENA_W1C(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1)))
        return 0x874000880060ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x1);
    __bdk_csr_fatal("SDPX_ECCX_LINT_ENA_W1C", 2, a, b, 0, 0);
}

#define typedef_BDK_SDPX_ECCX_LINT_ENA_W1C(a,b) bdk_sdpx_eccx_lint_ena_w1c_t
#define bustype_BDK_SDPX_ECCX_LINT_ENA_W1C(a,b) BDK_CSR_TYPE_NCB
#define basename_BDK_SDPX_ECCX_LINT_ENA_W1C(a,b) "SDPX_ECCX_LINT_ENA_W1C"
#define device_bar_BDK_SDPX_ECCX_LINT_ENA_W1C(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_ECCX_LINT_ENA_W1C(a,b) (a)
#define arguments_BDK_SDPX_ECCX_LINT_ENA_W1C(a,b) (a),(b),-1,-1

/**
 * Register (NCB) sdp#_ecc#_lint_ena_w1s
 *
 * SDP ECC Interrupt Enable Set Register
 * This register sets interrupt enable bits.
 */
union bdk_sdpx_eccx_lint_ena_w1s
{
    uint64_t u;
    struct bdk_sdpx_eccx_lint_ena_w1s_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t dbe                   : 32; /**< [ 63: 32](R/W1S/H) Reads or sets enable for SDP(0)_ECC(0..1)_LINT[DBE]. */
        uint64_t sbe                   : 32; /**< [ 31:  0](R/W1S/H) Reads or sets enable for SDP(0)_ECC(0..1)_LINT[SBE]. */
#else /* Word 0 - Little Endian */
        uint64_t sbe                   : 32; /**< [ 31:  0](R/W1S/H) Reads or sets enable for SDP(0)_ECC(0..1)_LINT[SBE]. */
        uint64_t dbe                   : 32; /**< [ 63: 32](R/W1S/H) Reads or sets enable for SDP(0)_ECC(0..1)_LINT[DBE]. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_eccx_lint_ena_w1s_s cn; */
};
typedef union bdk_sdpx_eccx_lint_ena_w1s bdk_sdpx_eccx_lint_ena_w1s_t;

static inline uint64_t BDK_SDPX_ECCX_LINT_ENA_W1S(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_ECCX_LINT_ENA_W1S(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1)))
        return 0x874000880080ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x1);
    __bdk_csr_fatal("SDPX_ECCX_LINT_ENA_W1S", 2, a, b, 0, 0);
}

#define typedef_BDK_SDPX_ECCX_LINT_ENA_W1S(a,b) bdk_sdpx_eccx_lint_ena_w1s_t
#define bustype_BDK_SDPX_ECCX_LINT_ENA_W1S(a,b) BDK_CSR_TYPE_NCB
#define basename_BDK_SDPX_ECCX_LINT_ENA_W1S(a,b) "SDPX_ECCX_LINT_ENA_W1S"
#define device_bar_BDK_SDPX_ECCX_LINT_ENA_W1S(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_ECCX_LINT_ENA_W1S(a,b) (a)
#define arguments_BDK_SDPX_ECCX_LINT_ENA_W1S(a,b) (a),(b),-1,-1

/**
 * Register (NCB) sdp#_ecc#_lint_w1s
 *
 * SDP ECC Interrupt Set Register
 * This register sets interrupt bits.
 */
union bdk_sdpx_eccx_lint_w1s
{
    uint64_t u;
    struct bdk_sdpx_eccx_lint_w1s_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t dbe                   : 32; /**< [ 63: 32](R/W1S/H) Reads or sets SDP(0)_ECC(0..1)_LINT[DBE]. */
        uint64_t sbe                   : 32; /**< [ 31:  0](R/W1S/H) Reads or sets SDP(0)_ECC(0..1)_LINT[SBE]. */
#else /* Word 0 - Little Endian */
        uint64_t sbe                   : 32; /**< [ 31:  0](R/W1S/H) Reads or sets SDP(0)_ECC(0..1)_LINT[SBE]. */
        uint64_t dbe                   : 32; /**< [ 63: 32](R/W1S/H) Reads or sets SDP(0)_ECC(0..1)_LINT[DBE]. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_eccx_lint_w1s_s cn; */
};
typedef union bdk_sdpx_eccx_lint_w1s bdk_sdpx_eccx_lint_w1s_t;

static inline uint64_t BDK_SDPX_ECCX_LINT_W1S(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_ECCX_LINT_W1S(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1)))
        return 0x874000880040ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x1);
    __bdk_csr_fatal("SDPX_ECCX_LINT_W1S", 2, a, b, 0, 0);
}

#define typedef_BDK_SDPX_ECCX_LINT_W1S(a,b) bdk_sdpx_eccx_lint_w1s_t
#define bustype_BDK_SDPX_ECCX_LINT_W1S(a,b) BDK_CSR_TYPE_NCB
#define basename_BDK_SDPX_ECCX_LINT_W1S(a,b) "SDPX_ECCX_LINT_W1S"
#define device_bar_BDK_SDPX_ECCX_LINT_W1S(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_ECCX_LINT_W1S(a,b) (a)
#define arguments_BDK_SDPX_ECCX_LINT_W1S(a,b) (a),(b),-1,-1

/**
 * Register (NCB) sdp#_epf#_flr_vf_lint
 *
 * SDP Function Level Reset VF Bit Array Registers
 * These registers are only valid for PEM0 PF0 and PEM2 PF0.
 */
union bdk_sdpx_epfx_flr_vf_lint
{
    uint64_t u;
    struct bdk_sdpx_epfx_flr_vf_lint_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t vf_int                : 64; /**< [ 63:  0](R/W1C/H) When a VF causes an FLR the appropriate VF indexed bit is set. */
#else /* Word 0 - Little Endian */
        uint64_t vf_int                : 64; /**< [ 63:  0](R/W1C/H) When a VF causes an FLR the appropriate VF indexed bit is set. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_flr_vf_lint_s cn; */
};
typedef union bdk_sdpx_epfx_flr_vf_lint bdk_sdpx_epfx_flr_vf_lint_t;

static inline uint64_t BDK_SDPX_EPFX_FLR_VF_LINT(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_FLR_VF_LINT(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1)))
        return 0x874000880c00ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x1);
    __bdk_csr_fatal("SDPX_EPFX_FLR_VF_LINT", 2, a, b, 0, 0);
}

#define typedef_BDK_SDPX_EPFX_FLR_VF_LINT(a,b) bdk_sdpx_epfx_flr_vf_lint_t
#define bustype_BDK_SDPX_EPFX_FLR_VF_LINT(a,b) BDK_CSR_TYPE_NCB
#define basename_BDK_SDPX_EPFX_FLR_VF_LINT(a,b) "SDPX_EPFX_FLR_VF_LINT"
#define device_bar_BDK_SDPX_EPFX_FLR_VF_LINT(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_FLR_VF_LINT(a,b) (a)
#define arguments_BDK_SDPX_EPFX_FLR_VF_LINT(a,b) (a),(b),-1,-1

/**
 * Register (NCB) sdp#_epf#_flr_vf_lint_ena_w1c
 *
 * SDP Function Level Reset VF Bit Array Local Enable Clear Registers
 * This register clears interrupt enable bits.
 */
union bdk_sdpx_epfx_flr_vf_lint_ena_w1c
{
    uint64_t u;
    struct bdk_sdpx_epfx_flr_vf_lint_ena_w1c_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t vf_int                : 64; /**< [ 63:  0](R/W1C/H) Reads or clears enable for SDP(0)_EPF(0..1)_FLR_VF_LINT[VF_INT]. */
#else /* Word 0 - Little Endian */
        uint64_t vf_int                : 64; /**< [ 63:  0](R/W1C/H) Reads or clears enable for SDP(0)_EPF(0..1)_FLR_VF_LINT[VF_INT]. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_flr_vf_lint_ena_w1c_s cn; */
};
typedef union bdk_sdpx_epfx_flr_vf_lint_ena_w1c bdk_sdpx_epfx_flr_vf_lint_ena_w1c_t;

static inline uint64_t BDK_SDPX_EPFX_FLR_VF_LINT_ENA_W1C(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_FLR_VF_LINT_ENA_W1C(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1)))
        return 0x874000880e00ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x1);
    __bdk_csr_fatal("SDPX_EPFX_FLR_VF_LINT_ENA_W1C", 2, a, b, 0, 0);
}

#define typedef_BDK_SDPX_EPFX_FLR_VF_LINT_ENA_W1C(a,b) bdk_sdpx_epfx_flr_vf_lint_ena_w1c_t
#define bustype_BDK_SDPX_EPFX_FLR_VF_LINT_ENA_W1C(a,b) BDK_CSR_TYPE_NCB
#define basename_BDK_SDPX_EPFX_FLR_VF_LINT_ENA_W1C(a,b) "SDPX_EPFX_FLR_VF_LINT_ENA_W1C"
#define device_bar_BDK_SDPX_EPFX_FLR_VF_LINT_ENA_W1C(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_FLR_VF_LINT_ENA_W1C(a,b) (a)
#define arguments_BDK_SDPX_EPFX_FLR_VF_LINT_ENA_W1C(a,b) (a),(b),-1,-1

/**
 * Register (NCB) sdp#_epf#_flr_vf_lint_ena_w1s
 *
 * SDP Function Level Reset VF Bit Array Local Enable Set Registers
 * This register sets interrupt enable bits.
 */
union bdk_sdpx_epfx_flr_vf_lint_ena_w1s
{
    uint64_t u;
    struct bdk_sdpx_epfx_flr_vf_lint_ena_w1s_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t vf_int                : 64; /**< [ 63:  0](R/W1S/H) Reads or sets enable for SDP(0)_EPF(0..1)_FLR_VF_LINT[VF_INT]. */
#else /* Word 0 - Little Endian */
        uint64_t vf_int                : 64; /**< [ 63:  0](R/W1S/H) Reads or sets enable for SDP(0)_EPF(0..1)_FLR_VF_LINT[VF_INT]. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_flr_vf_lint_ena_w1s_s cn; */
};
typedef union bdk_sdpx_epfx_flr_vf_lint_ena_w1s bdk_sdpx_epfx_flr_vf_lint_ena_w1s_t;

static inline uint64_t BDK_SDPX_EPFX_FLR_VF_LINT_ENA_W1S(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_FLR_VF_LINT_ENA_W1S(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1)))
        return 0x874000880f00ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x1);
    __bdk_csr_fatal("SDPX_EPFX_FLR_VF_LINT_ENA_W1S", 2, a, b, 0, 0);
}

#define typedef_BDK_SDPX_EPFX_FLR_VF_LINT_ENA_W1S(a,b) bdk_sdpx_epfx_flr_vf_lint_ena_w1s_t
#define bustype_BDK_SDPX_EPFX_FLR_VF_LINT_ENA_W1S(a,b) BDK_CSR_TYPE_NCB
#define basename_BDK_SDPX_EPFX_FLR_VF_LINT_ENA_W1S(a,b) "SDPX_EPFX_FLR_VF_LINT_ENA_W1S"
#define device_bar_BDK_SDPX_EPFX_FLR_VF_LINT_ENA_W1S(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_FLR_VF_LINT_ENA_W1S(a,b) (a)
#define arguments_BDK_SDPX_EPFX_FLR_VF_LINT_ENA_W1S(a,b) (a),(b),-1,-1

/**
 * Register (NCB) sdp#_epf#_flr_vf_lint_w1s
 *
 * SDP Function Level Reset VF Bit Array Set Registers
 * This register sets interrupt bits.
 */
union bdk_sdpx_epfx_flr_vf_lint_w1s
{
    uint64_t u;
    struct bdk_sdpx_epfx_flr_vf_lint_w1s_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t vf_int                : 64; /**< [ 63:  0](R/W1S/H) Reads or sets SDP(0)_EPF(0..1)_FLR_VF_LINT[VF_INT]. */
#else /* Word 0 - Little Endian */
        uint64_t vf_int                : 64; /**< [ 63:  0](R/W1S/H) Reads or sets SDP(0)_EPF(0..1)_FLR_VF_LINT[VF_INT]. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_flr_vf_lint_w1s_s cn; */
};
typedef union bdk_sdpx_epfx_flr_vf_lint_w1s bdk_sdpx_epfx_flr_vf_lint_w1s_t;

static inline uint64_t BDK_SDPX_EPFX_FLR_VF_LINT_W1S(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_FLR_VF_LINT_W1S(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1)))
        return 0x874000880d00ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x1);
    __bdk_csr_fatal("SDPX_EPFX_FLR_VF_LINT_W1S", 2, a, b, 0, 0);
}

#define typedef_BDK_SDPX_EPFX_FLR_VF_LINT_W1S(a,b) bdk_sdpx_epfx_flr_vf_lint_w1s_t
#define bustype_BDK_SDPX_EPFX_FLR_VF_LINT_W1S(a,b) BDK_CSR_TYPE_NCB
#define basename_BDK_SDPX_EPFX_FLR_VF_LINT_W1S(a,b) "SDPX_EPFX_FLR_VF_LINT_W1S"
#define device_bar_BDK_SDPX_EPFX_FLR_VF_LINT_W1S(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_FLR_VF_LINT_W1S(a,b) (a)
#define arguments_BDK_SDPX_EPFX_FLR_VF_LINT_W1S(a,b) (a),(b),-1,-1

/**
 * Register (NCB) sdp#_epf#_irerr_lint
 *
 * SDP Input Error Status Register
 * This register indicates if an error has been detected on an input ring.
 * The given register associated with an EPF will be reset due to a PF FLR or MAC Reset.
 * These registers are not affected by VF FLR.
 */
union bdk_sdpx_epfx_irerr_lint
{
    uint64_t u;
    struct bdk_sdpx_epfx_irerr_lint_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t ring_err              : 64; /**< [ 63:  0](R/W1C/H) Error has been detected on input ring i. */
#else /* Word 0 - Little Endian */
        uint64_t ring_err              : 64; /**< [ 63:  0](R/W1C/H) Error has been detected on input ring i. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_irerr_lint_s cn; */
};
typedef union bdk_sdpx_epfx_irerr_lint bdk_sdpx_epfx_irerr_lint_t;

static inline uint64_t BDK_SDPX_EPFX_IRERR_LINT(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_IRERR_LINT(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1)))
        return 0x874000880400ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x1);
    __bdk_csr_fatal("SDPX_EPFX_IRERR_LINT", 2, a, b, 0, 0);
}

#define typedef_BDK_SDPX_EPFX_IRERR_LINT(a,b) bdk_sdpx_epfx_irerr_lint_t
#define bustype_BDK_SDPX_EPFX_IRERR_LINT(a,b) BDK_CSR_TYPE_NCB
#define basename_BDK_SDPX_EPFX_IRERR_LINT(a,b) "SDPX_EPFX_IRERR_LINT"
#define device_bar_BDK_SDPX_EPFX_IRERR_LINT(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_IRERR_LINT(a,b) (a)
#define arguments_BDK_SDPX_EPFX_IRERR_LINT(a,b) (a),(b),-1,-1

/**
 * Register (NCB) sdp#_epf#_irerr_lint_ena_w1c
 *
 * SDP Input Error Enable Clear Register
 * This register clears interrupt enable bits.
 */
union bdk_sdpx_epfx_irerr_lint_ena_w1c
{
    uint64_t u;
    struct bdk_sdpx_epfx_irerr_lint_ena_w1c_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t ring_err              : 64; /**< [ 63:  0](R/W1C/H) Reads or clears enable for SDP(0)_EPF(0..1)_IRERR_LINT[RING_ERR]. */
#else /* Word 0 - Little Endian */
        uint64_t ring_err              : 64; /**< [ 63:  0](R/W1C/H) Reads or clears enable for SDP(0)_EPF(0..1)_IRERR_LINT[RING_ERR]. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_irerr_lint_ena_w1c_s cn; */
};
typedef union bdk_sdpx_epfx_irerr_lint_ena_w1c bdk_sdpx_epfx_irerr_lint_ena_w1c_t;

static inline uint64_t BDK_SDPX_EPFX_IRERR_LINT_ENA_W1C(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_IRERR_LINT_ENA_W1C(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1)))
        return 0x874000880600ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x1);
    __bdk_csr_fatal("SDPX_EPFX_IRERR_LINT_ENA_W1C", 2, a, b, 0, 0);
}

#define typedef_BDK_SDPX_EPFX_IRERR_LINT_ENA_W1C(a,b) bdk_sdpx_epfx_irerr_lint_ena_w1c_t
#define bustype_BDK_SDPX_EPFX_IRERR_LINT_ENA_W1C(a,b) BDK_CSR_TYPE_NCB
#define basename_BDK_SDPX_EPFX_IRERR_LINT_ENA_W1C(a,b) "SDPX_EPFX_IRERR_LINT_ENA_W1C"
#define device_bar_BDK_SDPX_EPFX_IRERR_LINT_ENA_W1C(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_IRERR_LINT_ENA_W1C(a,b) (a)
#define arguments_BDK_SDPX_EPFX_IRERR_LINT_ENA_W1C(a,b) (a),(b),-1,-1

/**
 * Register (NCB) sdp#_epf#_irerr_lint_ena_w1s
 *
 * SDP Input Error Enable Set Register
 * This register sets interrupt enable bits.
 */
union bdk_sdpx_epfx_irerr_lint_ena_w1s
{
    uint64_t u;
    struct bdk_sdpx_epfx_irerr_lint_ena_w1s_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t ring_err              : 64; /**< [ 63:  0](R/W1S/H) Reads or sets enable for SDP(0)_EPF(0..1)_IRERR_LINT[RING_ERR]. */
#else /* Word 0 - Little Endian */
        uint64_t ring_err              : 64; /**< [ 63:  0](R/W1S/H) Reads or sets enable for SDP(0)_EPF(0..1)_IRERR_LINT[RING_ERR]. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_irerr_lint_ena_w1s_s cn; */
};
typedef union bdk_sdpx_epfx_irerr_lint_ena_w1s bdk_sdpx_epfx_irerr_lint_ena_w1s_t;

static inline uint64_t BDK_SDPX_EPFX_IRERR_LINT_ENA_W1S(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_IRERR_LINT_ENA_W1S(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1)))
        return 0x874000880700ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x1);
    __bdk_csr_fatal("SDPX_EPFX_IRERR_LINT_ENA_W1S", 2, a, b, 0, 0);
}

#define typedef_BDK_SDPX_EPFX_IRERR_LINT_ENA_W1S(a,b) bdk_sdpx_epfx_irerr_lint_ena_w1s_t
#define bustype_BDK_SDPX_EPFX_IRERR_LINT_ENA_W1S(a,b) BDK_CSR_TYPE_NCB
#define basename_BDK_SDPX_EPFX_IRERR_LINT_ENA_W1S(a,b) "SDPX_EPFX_IRERR_LINT_ENA_W1S"
#define device_bar_BDK_SDPX_EPFX_IRERR_LINT_ENA_W1S(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_IRERR_LINT_ENA_W1S(a,b) (a)
#define arguments_BDK_SDPX_EPFX_IRERR_LINT_ENA_W1S(a,b) (a),(b),-1,-1

/**
 * Register (NCB) sdp#_epf#_irerr_lint_w1s
 *
 * SDP Input Error Status Set Register
 * This register sets interrupt bits.
 */
union bdk_sdpx_epfx_irerr_lint_w1s
{
    uint64_t u;
    struct bdk_sdpx_epfx_irerr_lint_w1s_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t ring_err              : 64; /**< [ 63:  0](R/W1S/H) Reads or sets SDP(0)_EPF(0..1)_IRERR_LINT[RING_ERR]. */
#else /* Word 0 - Little Endian */
        uint64_t ring_err              : 64; /**< [ 63:  0](R/W1S/H) Reads or sets SDP(0)_EPF(0..1)_IRERR_LINT[RING_ERR]. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_irerr_lint_w1s_s cn; */
};
typedef union bdk_sdpx_epfx_irerr_lint_w1s bdk_sdpx_epfx_irerr_lint_w1s_t;

static inline uint64_t BDK_SDPX_EPFX_IRERR_LINT_W1S(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_IRERR_LINT_W1S(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1)))
        return 0x874000880500ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x1);
    __bdk_csr_fatal("SDPX_EPFX_IRERR_LINT_W1S", 2, a, b, 0, 0);
}

#define typedef_BDK_SDPX_EPFX_IRERR_LINT_W1S(a,b) bdk_sdpx_epfx_irerr_lint_w1s_t
#define bustype_BDK_SDPX_EPFX_IRERR_LINT_W1S(a,b) BDK_CSR_TYPE_NCB
#define basename_BDK_SDPX_EPFX_IRERR_LINT_W1S(a,b) "SDPX_EPFX_IRERR_LINT_W1S"
#define device_bar_BDK_SDPX_EPFX_IRERR_LINT_W1S(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_IRERR_LINT_W1S(a,b) (a)
#define arguments_BDK_SDPX_EPFX_IRERR_LINT_W1S(a,b) (a),(b),-1,-1

/**
 * Register (PEXP_NCB) sdp#_epf#_irerr_rint
 *
 * SDP Input Error Status Register
 * This register indicates if an error has been detected on an input ring.
 * The given register associated with an EPF will be reset due to a PF FLR or MAC Reset.
 * These registers are not affected by VF FLR.
 */
union bdk_sdpx_epfx_irerr_rint
{
    uint64_t u;
    struct bdk_sdpx_epfx_irerr_rint_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t ring_err              : 64; /**< [ 63:  0](R/W1C/H) Error has been detected on input ring i. */
#else /* Word 0 - Little Endian */
        uint64_t ring_err              : 64; /**< [ 63:  0](R/W1C/H) Error has been detected on input ring i. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_irerr_rint_s cn; */
};
typedef union bdk_sdpx_epfx_irerr_rint bdk_sdpx_epfx_irerr_rint_t;

static inline uint64_t BDK_SDPX_EPFX_IRERR_RINT(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_IRERR_RINT(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1)))
        return 0x874080020080ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x1);
    __bdk_csr_fatal("SDPX_EPFX_IRERR_RINT", 2, a, b, 0, 0);
}

#define typedef_BDK_SDPX_EPFX_IRERR_RINT(a,b) bdk_sdpx_epfx_irerr_rint_t
#define bustype_BDK_SDPX_EPFX_IRERR_RINT(a,b) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SDPX_EPFX_IRERR_RINT(a,b) "SDPX_EPFX_IRERR_RINT"
#define device_bar_BDK_SDPX_EPFX_IRERR_RINT(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_IRERR_RINT(a,b) (a)
#define arguments_BDK_SDPX_EPFX_IRERR_RINT(a,b) (a),(b),-1,-1

/**
 * Register (PEXP_NCB) sdp#_epf#_irerr_rint_ena_w1c
 *
 * SDP Input Error Enable Clear Register
 * This register clears interrupt enable bits.
 */
union bdk_sdpx_epfx_irerr_rint_ena_w1c
{
    uint64_t u;
    struct bdk_sdpx_epfx_irerr_rint_ena_w1c_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t ring_err              : 64; /**< [ 63:  0](R/W1C/H) Reads or clears enable for SDP(0)_EPF(0..1)_IRERR_RINT[RING_ERR]. */
#else /* Word 0 - Little Endian */
        uint64_t ring_err              : 64; /**< [ 63:  0](R/W1C/H) Reads or clears enable for SDP(0)_EPF(0..1)_IRERR_RINT[RING_ERR]. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_irerr_rint_ena_w1c_s cn; */
};
typedef union bdk_sdpx_epfx_irerr_rint_ena_w1c bdk_sdpx_epfx_irerr_rint_ena_w1c_t;

static inline uint64_t BDK_SDPX_EPFX_IRERR_RINT_ENA_W1C(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_IRERR_RINT_ENA_W1C(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1)))
        return 0x8740800200a0ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x1);
    __bdk_csr_fatal("SDPX_EPFX_IRERR_RINT_ENA_W1C", 2, a, b, 0, 0);
}

#define typedef_BDK_SDPX_EPFX_IRERR_RINT_ENA_W1C(a,b) bdk_sdpx_epfx_irerr_rint_ena_w1c_t
#define bustype_BDK_SDPX_EPFX_IRERR_RINT_ENA_W1C(a,b) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SDPX_EPFX_IRERR_RINT_ENA_W1C(a,b) "SDPX_EPFX_IRERR_RINT_ENA_W1C"
#define device_bar_BDK_SDPX_EPFX_IRERR_RINT_ENA_W1C(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_IRERR_RINT_ENA_W1C(a,b) (a)
#define arguments_BDK_SDPX_EPFX_IRERR_RINT_ENA_W1C(a,b) (a),(b),-1,-1

/**
 * Register (PEXP_NCB) sdp#_epf#_irerr_rint_ena_w1s
 *
 * SDP Input Error Enable Set Register
 * This register sets interrupt enable bits.
 */
union bdk_sdpx_epfx_irerr_rint_ena_w1s
{
    uint64_t u;
    struct bdk_sdpx_epfx_irerr_rint_ena_w1s_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t ring_err              : 64; /**< [ 63:  0](R/W1S/H) Reads or sets enable for SDP(0)_EPF(0..1)_IRERR_RINT[RING_ERR]. */
#else /* Word 0 - Little Endian */
        uint64_t ring_err              : 64; /**< [ 63:  0](R/W1S/H) Reads or sets enable for SDP(0)_EPF(0..1)_IRERR_RINT[RING_ERR]. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_irerr_rint_ena_w1s_s cn; */
};
typedef union bdk_sdpx_epfx_irerr_rint_ena_w1s bdk_sdpx_epfx_irerr_rint_ena_w1s_t;

static inline uint64_t BDK_SDPX_EPFX_IRERR_RINT_ENA_W1S(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_IRERR_RINT_ENA_W1S(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1)))
        return 0x8740800200b0ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x1);
    __bdk_csr_fatal("SDPX_EPFX_IRERR_RINT_ENA_W1S", 2, a, b, 0, 0);
}

#define typedef_BDK_SDPX_EPFX_IRERR_RINT_ENA_W1S(a,b) bdk_sdpx_epfx_irerr_rint_ena_w1s_t
#define bustype_BDK_SDPX_EPFX_IRERR_RINT_ENA_W1S(a,b) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SDPX_EPFX_IRERR_RINT_ENA_W1S(a,b) "SDPX_EPFX_IRERR_RINT_ENA_W1S"
#define device_bar_BDK_SDPX_EPFX_IRERR_RINT_ENA_W1S(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_IRERR_RINT_ENA_W1S(a,b) (a)
#define arguments_BDK_SDPX_EPFX_IRERR_RINT_ENA_W1S(a,b) (a),(b),-1,-1

/**
 * Register (PEXP_NCB) sdp#_epf#_irerr_rint_w1s
 *
 * SDP Input Error Status Set Register
 * This register sets interrupt bits.
 */
union bdk_sdpx_epfx_irerr_rint_w1s
{
    uint64_t u;
    struct bdk_sdpx_epfx_irerr_rint_w1s_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t ring_err              : 64; /**< [ 63:  0](R/W1S/H) Reads or sets SDP(0)_EPF(0..1)_IRERR_RINT[RING_ERR]. */
#else /* Word 0 - Little Endian */
        uint64_t ring_err              : 64; /**< [ 63:  0](R/W1S/H) Reads or sets SDP(0)_EPF(0..1)_IRERR_RINT[RING_ERR]. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_irerr_rint_w1s_s cn; */
};
typedef union bdk_sdpx_epfx_irerr_rint_w1s bdk_sdpx_epfx_irerr_rint_w1s_t;

static inline uint64_t BDK_SDPX_EPFX_IRERR_RINT_W1S(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_IRERR_RINT_W1S(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1)))
        return 0x874080020090ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x1);
    __bdk_csr_fatal("SDPX_EPFX_IRERR_RINT_W1S", 2, a, b, 0, 0);
}

#define typedef_BDK_SDPX_EPFX_IRERR_RINT_W1S(a,b) bdk_sdpx_epfx_irerr_rint_w1s_t
#define bustype_BDK_SDPX_EPFX_IRERR_RINT_W1S(a,b) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SDPX_EPFX_IRERR_RINT_W1S(a,b) "SDPX_EPFX_IRERR_RINT_W1S"
#define device_bar_BDK_SDPX_EPFX_IRERR_RINT_W1S(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_IRERR_RINT_W1S(a,b) (a)
#define arguments_BDK_SDPX_EPFX_IRERR_RINT_W1S(a,b) (a),(b),-1,-1

/**
 * Register (PEXP_NCB) sdp#_epf#_mbox_rint
 *
 * SDP Mailbox Interrupt Status Register
 * This register indicates which VF/ring has signaled an interrupt.
 * The given register associated with an EPF will be reset due to a PF FLR or MAC Reset.
 * These registers are not affected by VF FLR.
 */
union bdk_sdpx_epfx_mbox_rint
{
    uint64_t u;
    struct bdk_sdpx_epfx_mbox_rint_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t ring_num              : 64; /**< [ 63:  0](R/W1C/H) Each bit indicates a ring from 0-63. */
#else /* Word 0 - Little Endian */
        uint64_t ring_num              : 64; /**< [ 63:  0](R/W1C/H) Each bit indicates a ring from 0-63. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_mbox_rint_s cn; */
};
typedef union bdk_sdpx_epfx_mbox_rint bdk_sdpx_epfx_mbox_rint_t;

static inline uint64_t BDK_SDPX_EPFX_MBOX_RINT(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_MBOX_RINT(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1)))
        return 0x874080020000ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x1);
    __bdk_csr_fatal("SDPX_EPFX_MBOX_RINT", 2, a, b, 0, 0);
}

#define typedef_BDK_SDPX_EPFX_MBOX_RINT(a,b) bdk_sdpx_epfx_mbox_rint_t
#define bustype_BDK_SDPX_EPFX_MBOX_RINT(a,b) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SDPX_EPFX_MBOX_RINT(a,b) "SDPX_EPFX_MBOX_RINT"
#define device_bar_BDK_SDPX_EPFX_MBOX_RINT(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_MBOX_RINT(a,b) (a)
#define arguments_BDK_SDPX_EPFX_MBOX_RINT(a,b) (a),(b),-1,-1

/**
 * Register (PEXP_NCB) sdp#_epf#_mbox_rint_ena_w1c
 *
 * SDP Mailbox Interrupt Enable Clear Register
 * This register clears interrupt enable bits.
 */
union bdk_sdpx_epfx_mbox_rint_ena_w1c
{
    uint64_t u;
    struct bdk_sdpx_epfx_mbox_rint_ena_w1c_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t ring_num              : 64; /**< [ 63:  0](R/W1C/H) Reads or clears enable for SDP(0)_EPF(0..1)_MBOX_RINT[RING_NUM]. */
#else /* Word 0 - Little Endian */
        uint64_t ring_num              : 64; /**< [ 63:  0](R/W1C/H) Reads or clears enable for SDP(0)_EPF(0..1)_MBOX_RINT[RING_NUM]. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_mbox_rint_ena_w1c_s cn; */
};
typedef union bdk_sdpx_epfx_mbox_rint_ena_w1c bdk_sdpx_epfx_mbox_rint_ena_w1c_t;

static inline uint64_t BDK_SDPX_EPFX_MBOX_RINT_ENA_W1C(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_MBOX_RINT_ENA_W1C(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1)))
        return 0x874080020020ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x1);
    __bdk_csr_fatal("SDPX_EPFX_MBOX_RINT_ENA_W1C", 2, a, b, 0, 0);
}

#define typedef_BDK_SDPX_EPFX_MBOX_RINT_ENA_W1C(a,b) bdk_sdpx_epfx_mbox_rint_ena_w1c_t
#define bustype_BDK_SDPX_EPFX_MBOX_RINT_ENA_W1C(a,b) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SDPX_EPFX_MBOX_RINT_ENA_W1C(a,b) "SDPX_EPFX_MBOX_RINT_ENA_W1C"
#define device_bar_BDK_SDPX_EPFX_MBOX_RINT_ENA_W1C(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_MBOX_RINT_ENA_W1C(a,b) (a)
#define arguments_BDK_SDPX_EPFX_MBOX_RINT_ENA_W1C(a,b) (a),(b),-1,-1

/**
 * Register (PEXP_NCB) sdp#_epf#_mbox_rint_ena_w1s
 *
 * SDP Mailbox Interrupt Enable Set Register
 * This register sets interrupt enable bits.
 */
union bdk_sdpx_epfx_mbox_rint_ena_w1s
{
    uint64_t u;
    struct bdk_sdpx_epfx_mbox_rint_ena_w1s_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t ring_num              : 64; /**< [ 63:  0](R/W1S/H) Reads or sets enable for SDP(0)_EPF(0..1)_MBOX_RINT[RING_NUM]. */
#else /* Word 0 - Little Endian */
        uint64_t ring_num              : 64; /**< [ 63:  0](R/W1S/H) Reads or sets enable for SDP(0)_EPF(0..1)_MBOX_RINT[RING_NUM]. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_mbox_rint_ena_w1s_s cn; */
};
typedef union bdk_sdpx_epfx_mbox_rint_ena_w1s bdk_sdpx_epfx_mbox_rint_ena_w1s_t;

static inline uint64_t BDK_SDPX_EPFX_MBOX_RINT_ENA_W1S(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_MBOX_RINT_ENA_W1S(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1)))
        return 0x874080020030ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x1);
    __bdk_csr_fatal("SDPX_EPFX_MBOX_RINT_ENA_W1S", 2, a, b, 0, 0);
}

#define typedef_BDK_SDPX_EPFX_MBOX_RINT_ENA_W1S(a,b) bdk_sdpx_epfx_mbox_rint_ena_w1s_t
#define bustype_BDK_SDPX_EPFX_MBOX_RINT_ENA_W1S(a,b) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SDPX_EPFX_MBOX_RINT_ENA_W1S(a,b) "SDPX_EPFX_MBOX_RINT_ENA_W1S"
#define device_bar_BDK_SDPX_EPFX_MBOX_RINT_ENA_W1S(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_MBOX_RINT_ENA_W1S(a,b) (a)
#define arguments_BDK_SDPX_EPFX_MBOX_RINT_ENA_W1S(a,b) (a),(b),-1,-1

/**
 * Register (PEXP_NCB) sdp#_epf#_mbox_rint_w1s
 *
 * SDP Mailbox Interrupt Set Register
 * This register sets interrupt bits.
 */
union bdk_sdpx_epfx_mbox_rint_w1s
{
    uint64_t u;
    struct bdk_sdpx_epfx_mbox_rint_w1s_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t ring_num              : 64; /**< [ 63:  0](R/W1S/H) Reads or sets SDP(0)_EPF(0..1)_MBOX_RINT[RING_NUM]. */
#else /* Word 0 - Little Endian */
        uint64_t ring_num              : 64; /**< [ 63:  0](R/W1S/H) Reads or sets SDP(0)_EPF(0..1)_MBOX_RINT[RING_NUM]. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_mbox_rint_w1s_s cn; */
};
typedef union bdk_sdpx_epfx_mbox_rint_w1s bdk_sdpx_epfx_mbox_rint_w1s_t;

static inline uint64_t BDK_SDPX_EPFX_MBOX_RINT_W1S(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_MBOX_RINT_W1S(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1)))
        return 0x874080020010ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x1);
    __bdk_csr_fatal("SDPX_EPFX_MBOX_RINT_W1S", 2, a, b, 0, 0);
}

#define typedef_BDK_SDPX_EPFX_MBOX_RINT_W1S(a,b) bdk_sdpx_epfx_mbox_rint_w1s_t
#define bustype_BDK_SDPX_EPFX_MBOX_RINT_W1S(a,b) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SDPX_EPFX_MBOX_RINT_W1S(a,b) "SDPX_EPFX_MBOX_RINT_W1S"
#define device_bar_BDK_SDPX_EPFX_MBOX_RINT_W1S(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_MBOX_RINT_W1S(a,b) (a)
#define arguments_BDK_SDPX_EPFX_MBOX_RINT_W1S(a,b) (a),(b),-1,-1

/**
 * Register (NCB) sdp#_epf#_orerr_lint
 *
 * SDP Output Error Status Register
 * This register indicates if an error has been detected on an output ring.
 * The given register associated with an EPF will be reset due to a PF FLR or MAC Reset.
 * These registers are not affected by VF FLR.
 */
union bdk_sdpx_epfx_orerr_lint
{
    uint64_t u;
    struct bdk_sdpx_epfx_orerr_lint_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t ring_err              : 64; /**< [ 63:  0](R/W1C/H) Error has been detected on output ring i. */
#else /* Word 0 - Little Endian */
        uint64_t ring_err              : 64; /**< [ 63:  0](R/W1C/H) Error has been detected on output ring i. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_orerr_lint_s cn; */
};
typedef union bdk_sdpx_epfx_orerr_lint bdk_sdpx_epfx_orerr_lint_t;

static inline uint64_t BDK_SDPX_EPFX_ORERR_LINT(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_ORERR_LINT(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1)))
        return 0x874000880800ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x1);
    __bdk_csr_fatal("SDPX_EPFX_ORERR_LINT", 2, a, b, 0, 0);
}

#define typedef_BDK_SDPX_EPFX_ORERR_LINT(a,b) bdk_sdpx_epfx_orerr_lint_t
#define bustype_BDK_SDPX_EPFX_ORERR_LINT(a,b) BDK_CSR_TYPE_NCB
#define basename_BDK_SDPX_EPFX_ORERR_LINT(a,b) "SDPX_EPFX_ORERR_LINT"
#define device_bar_BDK_SDPX_EPFX_ORERR_LINT(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_ORERR_LINT(a,b) (a)
#define arguments_BDK_SDPX_EPFX_ORERR_LINT(a,b) (a),(b),-1,-1

/**
 * Register (NCB) sdp#_epf#_orerr_lint_ena_w1c
 *
 * SDP Output Error Enable Clear Register
 * This register clears interrupt enable bits.
 */
union bdk_sdpx_epfx_orerr_lint_ena_w1c
{
    uint64_t u;
    struct bdk_sdpx_epfx_orerr_lint_ena_w1c_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t ring_err              : 64; /**< [ 63:  0](R/W1C/H) Reads or clears enable for SDP(0)_EPF(0..1)_ORERR_LINT[RING_ERR]. */
#else /* Word 0 - Little Endian */
        uint64_t ring_err              : 64; /**< [ 63:  0](R/W1C/H) Reads or clears enable for SDP(0)_EPF(0..1)_ORERR_LINT[RING_ERR]. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_orerr_lint_ena_w1c_s cn; */
};
typedef union bdk_sdpx_epfx_orerr_lint_ena_w1c bdk_sdpx_epfx_orerr_lint_ena_w1c_t;

static inline uint64_t BDK_SDPX_EPFX_ORERR_LINT_ENA_W1C(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_ORERR_LINT_ENA_W1C(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1)))
        return 0x874000880a00ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x1);
    __bdk_csr_fatal("SDPX_EPFX_ORERR_LINT_ENA_W1C", 2, a, b, 0, 0);
}

#define typedef_BDK_SDPX_EPFX_ORERR_LINT_ENA_W1C(a,b) bdk_sdpx_epfx_orerr_lint_ena_w1c_t
#define bustype_BDK_SDPX_EPFX_ORERR_LINT_ENA_W1C(a,b) BDK_CSR_TYPE_NCB
#define basename_BDK_SDPX_EPFX_ORERR_LINT_ENA_W1C(a,b) "SDPX_EPFX_ORERR_LINT_ENA_W1C"
#define device_bar_BDK_SDPX_EPFX_ORERR_LINT_ENA_W1C(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_ORERR_LINT_ENA_W1C(a,b) (a)
#define arguments_BDK_SDPX_EPFX_ORERR_LINT_ENA_W1C(a,b) (a),(b),-1,-1

/**
 * Register (NCB) sdp#_epf#_orerr_lint_ena_w1s
 *
 * SDP Output Error Enable Set Register
 * This register sets interrupt enable bits.
 */
union bdk_sdpx_epfx_orerr_lint_ena_w1s
{
    uint64_t u;
    struct bdk_sdpx_epfx_orerr_lint_ena_w1s_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t ring_err              : 64; /**< [ 63:  0](R/W1S/H) Reads or sets enable for SDP(0)_EPF(0..1)_ORERR_LINT[RING_ERR]. */
#else /* Word 0 - Little Endian */
        uint64_t ring_err              : 64; /**< [ 63:  0](R/W1S/H) Reads or sets enable for SDP(0)_EPF(0..1)_ORERR_LINT[RING_ERR]. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_orerr_lint_ena_w1s_s cn; */
};
typedef union bdk_sdpx_epfx_orerr_lint_ena_w1s bdk_sdpx_epfx_orerr_lint_ena_w1s_t;

static inline uint64_t BDK_SDPX_EPFX_ORERR_LINT_ENA_W1S(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_ORERR_LINT_ENA_W1S(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1)))
        return 0x874000880b00ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x1);
    __bdk_csr_fatal("SDPX_EPFX_ORERR_LINT_ENA_W1S", 2, a, b, 0, 0);
}

#define typedef_BDK_SDPX_EPFX_ORERR_LINT_ENA_W1S(a,b) bdk_sdpx_epfx_orerr_lint_ena_w1s_t
#define bustype_BDK_SDPX_EPFX_ORERR_LINT_ENA_W1S(a,b) BDK_CSR_TYPE_NCB
#define basename_BDK_SDPX_EPFX_ORERR_LINT_ENA_W1S(a,b) "SDPX_EPFX_ORERR_LINT_ENA_W1S"
#define device_bar_BDK_SDPX_EPFX_ORERR_LINT_ENA_W1S(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_ORERR_LINT_ENA_W1S(a,b) (a)
#define arguments_BDK_SDPX_EPFX_ORERR_LINT_ENA_W1S(a,b) (a),(b),-1,-1

/**
 * Register (NCB) sdp#_epf#_orerr_lint_w1s
 *
 * SDP Output Error Status Set Register
 * This register sets interrupt bits.
 */
union bdk_sdpx_epfx_orerr_lint_w1s
{
    uint64_t u;
    struct bdk_sdpx_epfx_orerr_lint_w1s_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t ring_err              : 64; /**< [ 63:  0](R/W1S/H) Reads or sets SDP(0)_EPF(0..1)_ORERR_LINT[RING_ERR]. */
#else /* Word 0 - Little Endian */
        uint64_t ring_err              : 64; /**< [ 63:  0](R/W1S/H) Reads or sets SDP(0)_EPF(0..1)_ORERR_LINT[RING_ERR]. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_orerr_lint_w1s_s cn; */
};
typedef union bdk_sdpx_epfx_orerr_lint_w1s bdk_sdpx_epfx_orerr_lint_w1s_t;

static inline uint64_t BDK_SDPX_EPFX_ORERR_LINT_W1S(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_ORERR_LINT_W1S(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1)))
        return 0x874000880900ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x1);
    __bdk_csr_fatal("SDPX_EPFX_ORERR_LINT_W1S", 2, a, b, 0, 0);
}

#define typedef_BDK_SDPX_EPFX_ORERR_LINT_W1S(a,b) bdk_sdpx_epfx_orerr_lint_w1s_t
#define bustype_BDK_SDPX_EPFX_ORERR_LINT_W1S(a,b) BDK_CSR_TYPE_NCB
#define basename_BDK_SDPX_EPFX_ORERR_LINT_W1S(a,b) "SDPX_EPFX_ORERR_LINT_W1S"
#define device_bar_BDK_SDPX_EPFX_ORERR_LINT_W1S(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_ORERR_LINT_W1S(a,b) (a)
#define arguments_BDK_SDPX_EPFX_ORERR_LINT_W1S(a,b) (a),(b),-1,-1

/**
 * Register (PEXP_NCB) sdp#_epf#_orerr_rint
 *
 * SDP Output Error Status Register
 * This register indicates if an error has been detected on an output ring.
 * The given register associated with an EPF will be reset due to a PF FLR or MAC Reset.
 * These registers are not affected by VF FLR.
 */
union bdk_sdpx_epfx_orerr_rint
{
    uint64_t u;
    struct bdk_sdpx_epfx_orerr_rint_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t ring_err              : 64; /**< [ 63:  0](R/W1C/H) Error has been detected on ring output ring i. */
#else /* Word 0 - Little Endian */
        uint64_t ring_err              : 64; /**< [ 63:  0](R/W1C/H) Error has been detected on ring output ring i. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_orerr_rint_s cn; */
};
typedef union bdk_sdpx_epfx_orerr_rint bdk_sdpx_epfx_orerr_rint_t;

static inline uint64_t BDK_SDPX_EPFX_ORERR_RINT(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_ORERR_RINT(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1)))
        return 0x874080020100ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x1);
    __bdk_csr_fatal("SDPX_EPFX_ORERR_RINT", 2, a, b, 0, 0);
}

#define typedef_BDK_SDPX_EPFX_ORERR_RINT(a,b) bdk_sdpx_epfx_orerr_rint_t
#define bustype_BDK_SDPX_EPFX_ORERR_RINT(a,b) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SDPX_EPFX_ORERR_RINT(a,b) "SDPX_EPFX_ORERR_RINT"
#define device_bar_BDK_SDPX_EPFX_ORERR_RINT(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_ORERR_RINT(a,b) (a)
#define arguments_BDK_SDPX_EPFX_ORERR_RINT(a,b) (a),(b),-1,-1

/**
 * Register (PEXP_NCB) sdp#_epf#_orerr_rint_ena_w1c
 *
 * SDP Output Error Enable Clear Register
 * This register clears interrupt enable bits.
 */
union bdk_sdpx_epfx_orerr_rint_ena_w1c
{
    uint64_t u;
    struct bdk_sdpx_epfx_orerr_rint_ena_w1c_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t ring_err              : 64; /**< [ 63:  0](R/W1C/H) Reads or clears enable for SDP(0)_EPF(0..1)_ORERR_RINT[RING_ERR]. */
#else /* Word 0 - Little Endian */
        uint64_t ring_err              : 64; /**< [ 63:  0](R/W1C/H) Reads or clears enable for SDP(0)_EPF(0..1)_ORERR_RINT[RING_ERR]. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_orerr_rint_ena_w1c_s cn; */
};
typedef union bdk_sdpx_epfx_orerr_rint_ena_w1c bdk_sdpx_epfx_orerr_rint_ena_w1c_t;

static inline uint64_t BDK_SDPX_EPFX_ORERR_RINT_ENA_W1C(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_ORERR_RINT_ENA_W1C(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1)))
        return 0x874080020120ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x1);
    __bdk_csr_fatal("SDPX_EPFX_ORERR_RINT_ENA_W1C", 2, a, b, 0, 0);
}

#define typedef_BDK_SDPX_EPFX_ORERR_RINT_ENA_W1C(a,b) bdk_sdpx_epfx_orerr_rint_ena_w1c_t
#define bustype_BDK_SDPX_EPFX_ORERR_RINT_ENA_W1C(a,b) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SDPX_EPFX_ORERR_RINT_ENA_W1C(a,b) "SDPX_EPFX_ORERR_RINT_ENA_W1C"
#define device_bar_BDK_SDPX_EPFX_ORERR_RINT_ENA_W1C(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_ORERR_RINT_ENA_W1C(a,b) (a)
#define arguments_BDK_SDPX_EPFX_ORERR_RINT_ENA_W1C(a,b) (a),(b),-1,-1

/**
 * Register (PEXP_NCB) sdp#_epf#_orerr_rint_ena_w1s
 *
 * SDP Output Error Enable Set Register
 * This register sets interrupt enable bits.
 */
union bdk_sdpx_epfx_orerr_rint_ena_w1s
{
    uint64_t u;
    struct bdk_sdpx_epfx_orerr_rint_ena_w1s_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t ring_err              : 64; /**< [ 63:  0](R/W1S/H) Reads or sets enable for SDP(0)_EPF(0..1)_ORERR_RINT[RING_ERR]. */
#else /* Word 0 - Little Endian */
        uint64_t ring_err              : 64; /**< [ 63:  0](R/W1S/H) Reads or sets enable for SDP(0)_EPF(0..1)_ORERR_RINT[RING_ERR]. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_orerr_rint_ena_w1s_s cn; */
};
typedef union bdk_sdpx_epfx_orerr_rint_ena_w1s bdk_sdpx_epfx_orerr_rint_ena_w1s_t;

static inline uint64_t BDK_SDPX_EPFX_ORERR_RINT_ENA_W1S(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_ORERR_RINT_ENA_W1S(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1)))
        return 0x874080020130ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x1);
    __bdk_csr_fatal("SDPX_EPFX_ORERR_RINT_ENA_W1S", 2, a, b, 0, 0);
}

#define typedef_BDK_SDPX_EPFX_ORERR_RINT_ENA_W1S(a,b) bdk_sdpx_epfx_orerr_rint_ena_w1s_t
#define bustype_BDK_SDPX_EPFX_ORERR_RINT_ENA_W1S(a,b) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SDPX_EPFX_ORERR_RINT_ENA_W1S(a,b) "SDPX_EPFX_ORERR_RINT_ENA_W1S"
#define device_bar_BDK_SDPX_EPFX_ORERR_RINT_ENA_W1S(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_ORERR_RINT_ENA_W1S(a,b) (a)
#define arguments_BDK_SDPX_EPFX_ORERR_RINT_ENA_W1S(a,b) (a),(b),-1,-1

/**
 * Register (PEXP_NCB) sdp#_epf#_orerr_rint_w1s
 *
 * SDP Output Error Status Set Register
 * This register sets interrupt bits.
 */
union bdk_sdpx_epfx_orerr_rint_w1s
{
    uint64_t u;
    struct bdk_sdpx_epfx_orerr_rint_w1s_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t ring_err              : 64; /**< [ 63:  0](R/W1S/H) Reads or sets SDP(0)_EPF(0..1)_ORERR_RINT[RING_ERR]. */
#else /* Word 0 - Little Endian */
        uint64_t ring_err              : 64; /**< [ 63:  0](R/W1S/H) Reads or sets SDP(0)_EPF(0..1)_ORERR_RINT[RING_ERR]. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_orerr_rint_w1s_s cn; */
};
typedef union bdk_sdpx_epfx_orerr_rint_w1s bdk_sdpx_epfx_orerr_rint_w1s_t;

static inline uint64_t BDK_SDPX_EPFX_ORERR_RINT_W1S(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_ORERR_RINT_W1S(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1)))
        return 0x874080020110ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x1);
    __bdk_csr_fatal("SDPX_EPFX_ORERR_RINT_W1S", 2, a, b, 0, 0);
}

#define typedef_BDK_SDPX_EPFX_ORERR_RINT_W1S(a,b) bdk_sdpx_epfx_orerr_rint_w1s_t
#define bustype_BDK_SDPX_EPFX_ORERR_RINT_W1S(a,b) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SDPX_EPFX_ORERR_RINT_W1S(a,b) "SDPX_EPFX_ORERR_RINT_W1S"
#define device_bar_BDK_SDPX_EPFX_ORERR_RINT_W1S(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_ORERR_RINT_W1S(a,b) (a)
#define arguments_BDK_SDPX_EPFX_ORERR_RINT_W1S(a,b) (a),(b),-1,-1

/**
 * Register (PEXP_NCB) sdp#_epf#_r#_all_int_status
 *
 * SDP Combined Interrupt Summary Status Register
 * This register contains interrupt status on a per-VF basis.  All rings for a given VF
 * are located in a single register. Note that access to any ring offset within a given
 * VF will return the same value.  When the PF reads any ring in this register it will
 * return the same value (64 bits each representing one ring.)
 *
 * Internal:
 * These interrupt bits may be set for some rings even after a PF/VF FLR.
 * They are not cleared becase the CNTS and LEVELS registers are not reset
 * and we wish to make the interrupt state consistent with CNTS/LEVELS even after FLR.
 * The CNTS register must be cleared by software as part of initialization after a reset
 * (including FLR) which will cause the interrupt state in this register to clear.
 */
union bdk_sdpx_epfx_rx_all_int_status
{
    uint64_t u;
    struct bdk_sdpx_epfx_rx_all_int_status_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t intr                  : 64; /**< [ 63:  0](RO) These bits are interpreted differently for PF access and VF access.

                                                                 For a PF read:

                                                                 Each of the 64 bits corresponds to a ring number that is signalling an
                                                                 interrupt.  [INTR]\<ring\> reads as one whenever any of the following are true for
                                                                 the respective ring R(ring):

                                                                  * SDP()_EPF()_R()_OUT_CNTS[CNT]   \> SDP()_EPF()_R()_OUT_INT_LEVELS[CNT],
                                                                  * SDP()_EPF()_R()_OUT_CNTS[TIMER] \> SDP()_EPF()_R()_OUT_INT_LEVELS[TIMET],
                                                                  * SDP()_EPF()_R()_IN_CNTS[CNT] \> SDP()_EPF()_R()_IN_INT_LEVELS[CNT],
                                                                  * Or, SDP()_EPF()_R()_MBOX_RINT_STATUS[INTR] is set.

                                                                  Reading this register will isolate the ring(s) that is signalling the interrupt.
                                                                  To determine the specific interrupt, other registers must be read.

                                                                  For a VF read:

                                                                  In this mode, this register identifies the ring number "i" and specific
                                                                 interrupt being signaled.

                                                                  Bits \<7:0\> indicate an input interrupt being signaled, where bit i is set if
                                                                  for the respective ring R(i):
                                                                   * SDP()_EPF()_R()_IN_CNTS[CNT] \> SDP()_EPF()_R()_IN_INT_LEVELS[CNT].

                                                                  Bits \<15:8\> indicate an output interrupt being signaled, where bit i is set if
                                                                  for the respective ring R(i):
                                                                  * SDP()_EPF()_R()_OUT_CNTS[CNT]   \> SDP()_EPF()_R()_OUT_INT_LEVELS[CNT].
                                                                  * Or, SDP()_EPF()_R()_OUT_CNTS[TIMER] \> SDP()_EPF()_R()_OUT_INT_LEVELS[TIMET].

                                                                  Bits \<23:16\> indicate a mailbox interrupt being signaled, where bit i is set if
                                                                  for the respective ring R(i):
                                                                  * SDP()_EPF()_R()_MBOX_RINT_STATUS[INTR] is set.

                                                                  Bits \<63:24\> are reserved. */
#else /* Word 0 - Little Endian */
        uint64_t intr                  : 64; /**< [ 63:  0](RO) These bits are interpreted differently for PF access and VF access.

                                                                 For a PF read:

                                                                 Each of the 64 bits corresponds to a ring number that is signalling an
                                                                 interrupt.  [INTR]\<ring\> reads as one whenever any of the following are true for
                                                                 the respective ring R(ring):

                                                                  * SDP()_EPF()_R()_OUT_CNTS[CNT]   \> SDP()_EPF()_R()_OUT_INT_LEVELS[CNT],
                                                                  * SDP()_EPF()_R()_OUT_CNTS[TIMER] \> SDP()_EPF()_R()_OUT_INT_LEVELS[TIMET],
                                                                  * SDP()_EPF()_R()_IN_CNTS[CNT] \> SDP()_EPF()_R()_IN_INT_LEVELS[CNT],
                                                                  * Or, SDP()_EPF()_R()_MBOX_RINT_STATUS[INTR] is set.

                                                                  Reading this register will isolate the ring(s) that is signalling the interrupt.
                                                                  To determine the specific interrupt, other registers must be read.

                                                                  For a VF read:

                                                                  In this mode, this register identifies the ring number "i" and specific
                                                                 interrupt being signaled.

                                                                  Bits \<7:0\> indicate an input interrupt being signaled, where bit i is set if
                                                                  for the respective ring R(i):
                                                                   * SDP()_EPF()_R()_IN_CNTS[CNT] \> SDP()_EPF()_R()_IN_INT_LEVELS[CNT].

                                                                  Bits \<15:8\> indicate an output interrupt being signaled, where bit i is set if
                                                                  for the respective ring R(i):
                                                                  * SDP()_EPF()_R()_OUT_CNTS[CNT]   \> SDP()_EPF()_R()_OUT_INT_LEVELS[CNT].
                                                                  * Or, SDP()_EPF()_R()_OUT_CNTS[TIMER] \> SDP()_EPF()_R()_OUT_INT_LEVELS[TIMET].

                                                                  Bits \<23:16\> indicate a mailbox interrupt being signaled, where bit i is set if
                                                                  for the respective ring R(i):
                                                                  * SDP()_EPF()_R()_MBOX_RINT_STATUS[INTR] is set.

                                                                  Bits \<63:24\> are reserved. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_rx_all_int_status_s cn; */
};
typedef union bdk_sdpx_epfx_rx_all_int_status bdk_sdpx_epfx_rx_all_int_status_t;

static inline uint64_t BDK_SDPX_EPFX_RX_ALL_INT_STATUS(unsigned long a, unsigned long b, unsigned long c) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_RX_ALL_INT_STATUS(unsigned long a, unsigned long b, unsigned long c)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1) && (c<=63)))
        return 0x874080010300ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x1) + 0x20000ll * ((c) & 0x3f);
    __bdk_csr_fatal("SDPX_EPFX_RX_ALL_INT_STATUS", 3, a, b, c, 0);
}

#define typedef_BDK_SDPX_EPFX_RX_ALL_INT_STATUS(a,b,c) bdk_sdpx_epfx_rx_all_int_status_t
#define bustype_BDK_SDPX_EPFX_RX_ALL_INT_STATUS(a,b,c) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SDPX_EPFX_RX_ALL_INT_STATUS(a,b,c) "SDPX_EPFX_RX_ALL_INT_STATUS"
#define device_bar_BDK_SDPX_EPFX_RX_ALL_INT_STATUS(a,b,c) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_RX_ALL_INT_STATUS(a,b,c) (a)
#define arguments_BDK_SDPX_EPFX_RX_ALL_INT_STATUS(a,b,c) (a),(b),(c),-1

/**
 * Register (PEXP_NCB) sdp#_epf#_r#_err_type
 *
 * SDP Ring Error Type Register
 * These registers indicate which type of error(s) have been detected when
 * SDP()_EPF()_IRERR_LINT\<i\> / SDP()_EPF()_ORERR_RINT\<i\> / SDP()_EPF()_ORERR_LINT\<i\> /
 * SDP()_EPF()_ORERR_RINT\<i\> is set. Multiple bits can be set at the same time
 * if multiple errors have occurred for that ring.
 *
 * All 64 registers associated with an EPF will be reset due to a PF FLR or MAC Reset.
 * These registers are not affected by VF FLR.
 */
union bdk_sdpx_epfx_rx_err_type
{
    uint64_t u;
    struct bdk_sdpx_epfx_rx_err_type_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_35_63        : 29;
        uint64_t port_dis              : 1;  /**< [ 34: 34](R/W1C/H) Output packet arrives targeting a port which is not enabled. */
        uint64_t dbell_empty           : 1;  /**< [ 33: 33](R/W1C/H) The watermark value is set too small, allowing doorbell count to drop below 8. */
        uint64_t oring_dma_err         : 1;  /**< [ 32: 32](R/W1C/H) DMA read error response on output pointer pair fetch. */
        uint64_t reserved_8_31         : 24;
        uint64_t illegal_fsz           : 1;  /**< [  7:  7](R/W1C/H) Illegal FSZ specified in instruction.
                                                                 For direct gather, FSZ must be \<= 32 for 64B instructions and 0 for 32B instructions.
                                                                 For direct data/indirect gather, FSZ must be \<= 55 for 64B instructions and \<= 23 for 32B
                                                                 instructions. This check is done before any length checks. */
        uint64_t pkt_dma_err           : 1;  /**< [  6:  6](R/W1C/H) DMA read error response on packet fetch. */
        uint64_t inst_dma_err          : 1;  /**< [  5:  5](R/W1C/H) DMA read error response on instruction fetch. */
        uint64_t pkt_toosmall          : 1;  /**< [  4:  4](R/W1C/H) Attempted packet read with LEN=0 or LEN \< FSZ. */
        uint64_t dir_len_toosmall      : 1;  /**< [  3:  3](R/W1C/H) Direct gather combined LEN fields are less than the packet length specified. */
        uint64_t ind_dma_err           : 1;  /**< [  2:  2](R/W1C/H) DMA read error response on indirect gather list fetch.  This could also be caused by
                                                                 an unaligned gather list, in which case SDP()_DIAG[IN_IND_UNALIGNED] will also be set. */
        uint64_t ind_zero_det          : 1;  /**< [  1:  1](R/W1C/H) Indirect gather list contains length of 0. */
        uint64_t ind_toosmall          : 1;  /**< [  0:  0](R/W1C/H) Indirect gather list length specified less than (packet length - FSZ) in instruction. */
#else /* Word 0 - Little Endian */
        uint64_t ind_toosmall          : 1;  /**< [  0:  0](R/W1C/H) Indirect gather list length specified less than (packet length - FSZ) in instruction. */
        uint64_t ind_zero_det          : 1;  /**< [  1:  1](R/W1C/H) Indirect gather list contains length of 0. */
        uint64_t ind_dma_err           : 1;  /**< [  2:  2](R/W1C/H) DMA read error response on indirect gather list fetch.  This could also be caused by
                                                                 an unaligned gather list, in which case SDP()_DIAG[IN_IND_UNALIGNED] will also be set. */
        uint64_t dir_len_toosmall      : 1;  /**< [  3:  3](R/W1C/H) Direct gather combined LEN fields are less than the packet length specified. */
        uint64_t pkt_toosmall          : 1;  /**< [  4:  4](R/W1C/H) Attempted packet read with LEN=0 or LEN \< FSZ. */
        uint64_t inst_dma_err          : 1;  /**< [  5:  5](R/W1C/H) DMA read error response on instruction fetch. */
        uint64_t pkt_dma_err           : 1;  /**< [  6:  6](R/W1C/H) DMA read error response on packet fetch. */
        uint64_t illegal_fsz           : 1;  /**< [  7:  7](R/W1C/H) Illegal FSZ specified in instruction.
                                                                 For direct gather, FSZ must be \<= 32 for 64B instructions and 0 for 32B instructions.
                                                                 For direct data/indirect gather, FSZ must be \<= 55 for 64B instructions and \<= 23 for 32B
                                                                 instructions. This check is done before any length checks. */
        uint64_t reserved_8_31         : 24;
        uint64_t oring_dma_err         : 1;  /**< [ 32: 32](R/W1C/H) DMA read error response on output pointer pair fetch. */
        uint64_t dbell_empty           : 1;  /**< [ 33: 33](R/W1C/H) The watermark value is set too small, allowing doorbell count to drop below 8. */
        uint64_t port_dis              : 1;  /**< [ 34: 34](R/W1C/H) Output packet arrives targeting a port which is not enabled. */
        uint64_t reserved_35_63        : 29;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_rx_err_type_s cn; */
};
typedef union bdk_sdpx_epfx_rx_err_type bdk_sdpx_epfx_rx_err_type_t;

static inline uint64_t BDK_SDPX_EPFX_RX_ERR_TYPE(unsigned long a, unsigned long b, unsigned long c) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_RX_ERR_TYPE(unsigned long a, unsigned long b, unsigned long c)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1) && (c<=63)))
        return 0x874080010400ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x1) + 0x20000ll * ((c) & 0x3f);
    __bdk_csr_fatal("SDPX_EPFX_RX_ERR_TYPE", 3, a, b, c, 0);
}

#define typedef_BDK_SDPX_EPFX_RX_ERR_TYPE(a,b,c) bdk_sdpx_epfx_rx_err_type_t
#define bustype_BDK_SDPX_EPFX_RX_ERR_TYPE(a,b,c) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SDPX_EPFX_RX_ERR_TYPE(a,b,c) "SDPX_EPFX_RX_ERR_TYPE"
#define device_bar_BDK_SDPX_EPFX_RX_ERR_TYPE(a,b,c) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_RX_ERR_TYPE(a,b,c) (a)
#define arguments_BDK_SDPX_EPFX_RX_ERR_TYPE(a,b,c) (a),(b),(c),-1

/**
 * Register (PEXP_NCB) sdp#_epf#_r#_in_byte_cnt
 *
 * SDP Packet Input Byte Count Register
 * This register contains byte counts per ring that have been read into SDP.
 * The counter will wrap when it reaches its maximum value. It should be cleared
 * before the ring is enabled for an accurate count.
 */
union bdk_sdpx_epfx_rx_in_byte_cnt
{
    uint64_t u;
    struct bdk_sdpx_epfx_rx_in_byte_cnt_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_48_63        : 16;
        uint64_t cnt                   : 48; /**< [ 47:  0](R/W/H) Byte count, can be reset by software by writing SDP()_EPF()_R()_IN_PKT_CNT[CNT]
                                                                 with 0xFFFFFFFFF. */
#else /* Word 0 - Little Endian */
        uint64_t cnt                   : 48; /**< [ 47:  0](R/W/H) Byte count, can be reset by software by writing SDP()_EPF()_R()_IN_PKT_CNT[CNT]
                                                                 with 0xFFFFFFFFF. */
        uint64_t reserved_48_63        : 16;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_rx_in_byte_cnt_s cn; */
};
typedef union bdk_sdpx_epfx_rx_in_byte_cnt bdk_sdpx_epfx_rx_in_byte_cnt_t;

static inline uint64_t BDK_SDPX_EPFX_RX_IN_BYTE_CNT(unsigned long a, unsigned long b, unsigned long c) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_RX_IN_BYTE_CNT(unsigned long a, unsigned long b, unsigned long c)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1) && (c<=63)))
        return 0x874080010090ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x1) + 0x20000ll * ((c) & 0x3f);
    __bdk_csr_fatal("SDPX_EPFX_RX_IN_BYTE_CNT", 3, a, b, c, 0);
}

#define typedef_BDK_SDPX_EPFX_RX_IN_BYTE_CNT(a,b,c) bdk_sdpx_epfx_rx_in_byte_cnt_t
#define bustype_BDK_SDPX_EPFX_RX_IN_BYTE_CNT(a,b,c) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SDPX_EPFX_RX_IN_BYTE_CNT(a,b,c) "SDPX_EPFX_RX_IN_BYTE_CNT"
#define device_bar_BDK_SDPX_EPFX_RX_IN_BYTE_CNT(a,b,c) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_RX_IN_BYTE_CNT(a,b,c) (a)
#define arguments_BDK_SDPX_EPFX_RX_IN_BYTE_CNT(a,b,c) (a),(b),(c),-1

/**
 * Register (PEXP_NCB) sdp#_epf#_r#_in_cnts
 *
 * SDP Input Instruction Ring Counts Register
 * This register contains the counters for the input instruction rings.
 * This register is not affected by reset (including FLR) and must be initialized
 * by the VF prior to enabling the ring.
 */
union bdk_sdpx_epfx_rx_in_cnts
{
    uint64_t u;
    struct bdk_sdpx_epfx_rx_in_cnts_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_63           : 1;
        uint64_t out_int               : 1;  /**< [ 62: 62](RO/H) Returns a 1 when:
                                                                  * SDP()_R()_OUT_CNTS[CNT]   \> SDP()_EPF()_R()_OUT_INT_LEVELS[CNT].
                                                                  * Or, SDP()_R()_OUT_CNTS[TIMER] \> SDP()_EPF()_R()_OUT_INT_LEVELS[TIMET].

                                                                 To clear the bit, the CNTS register must be written to clear the underlying condition. */
        uint64_t in_int                : 1;  /**< [ 61: 61](RO/H) Returns a 1 when:
                                                                  * SDP()_EPF()_R()_IN_CNTS[CNT] \> SDP()_EPF()_R()_IN_INT_LEVELS[CNT]

                                                                 To clear the bit, the SDP()_EPF()_R()_IN_CNTS register must be written to clear the
                                                                 underlying condition. */
        uint64_t mbox_int              : 1;  /**< [ 60: 60](RO/H) Returns a 1 when:
                                                                  * SDP()_EPF()_R()_MBOX_RINT_STATUS[INTR] is set

                                                                 To clear the bit, write SDP()_EPF()_R()_MBOX_PF_VF_INT[INTR] with 1.
                                                                 This bit is also cleared due to an FLR. */
        uint64_t resend                : 1;  /**< [ 59: 59](WO/H) A write of 1 will resend an MSI-X interrupt message if any of the following
                                                                 conditions are true for the respective ring:
                                                                  * SDP()_EPF()_R()_OUT_CNTS[CNT]   \> SDP()_EPF()_R()_OUT_INT_LEVELS[CNT].
                                                                  * SDP()_EPF()_R()_OUT_CNTS[TIMER] \> SDP()_EPF()_R()_OUT_INT_LEVELS[TIMET].
                                                                  * SDP()_EPF()_R()_IN_CNTS[CNT] \> SDP()_EPF()_R()_IN_INT_LEVELS[CNT].
                                                                  * SDP()_EPF()_R()_MBOX_RINT_STATUS[INTR] is set. */
        uint64_t reserved_32_58        : 27;
        uint64_t cnt                   : 32; /**< [ 31:  0](R/W/H) Packet counter. Hardware adds to [CNT] as it reads packets. On a write
                                                                 to this CSR, hardware subtracts the amount written to the [CNT] field from
                                                                 [CNT], which will clear PKT_IN()_INT_STATUS[INTR] if [CNT] becomes \<=
                                                                 SDP()_EPF()_R()_IN_INT_LEVELS[CNT]. This register should be cleared before
                                                                 enabling a ring by reading the current value and writing it back. */
#else /* Word 0 - Little Endian */
        uint64_t cnt                   : 32; /**< [ 31:  0](R/W/H) Packet counter. Hardware adds to [CNT] as it reads packets. On a write
                                                                 to this CSR, hardware subtracts the amount written to the [CNT] field from
                                                                 [CNT], which will clear PKT_IN()_INT_STATUS[INTR] if [CNT] becomes \<=
                                                                 SDP()_EPF()_R()_IN_INT_LEVELS[CNT]. This register should be cleared before
                                                                 enabling a ring by reading the current value and writing it back. */
        uint64_t reserved_32_58        : 27;
        uint64_t resend                : 1;  /**< [ 59: 59](WO/H) A write of 1 will resend an MSI-X interrupt message if any of the following
                                                                 conditions are true for the respective ring:
                                                                  * SDP()_EPF()_R()_OUT_CNTS[CNT]   \> SDP()_EPF()_R()_OUT_INT_LEVELS[CNT].
                                                                  * SDP()_EPF()_R()_OUT_CNTS[TIMER] \> SDP()_EPF()_R()_OUT_INT_LEVELS[TIMET].
                                                                  * SDP()_EPF()_R()_IN_CNTS[CNT] \> SDP()_EPF()_R()_IN_INT_LEVELS[CNT].
                                                                  * SDP()_EPF()_R()_MBOX_RINT_STATUS[INTR] is set. */
        uint64_t mbox_int              : 1;  /**< [ 60: 60](RO/H) Returns a 1 when:
                                                                  * SDP()_EPF()_R()_MBOX_RINT_STATUS[INTR] is set

                                                                 To clear the bit, write SDP()_EPF()_R()_MBOX_PF_VF_INT[INTR] with 1.
                                                                 This bit is also cleared due to an FLR. */
        uint64_t in_int                : 1;  /**< [ 61: 61](RO/H) Returns a 1 when:
                                                                  * SDP()_EPF()_R()_IN_CNTS[CNT] \> SDP()_EPF()_R()_IN_INT_LEVELS[CNT]

                                                                 To clear the bit, the SDP()_EPF()_R()_IN_CNTS register must be written to clear the
                                                                 underlying condition. */
        uint64_t out_int               : 1;  /**< [ 62: 62](RO/H) Returns a 1 when:
                                                                  * SDP()_R()_OUT_CNTS[CNT]   \> SDP()_EPF()_R()_OUT_INT_LEVELS[CNT].
                                                                  * Or, SDP()_R()_OUT_CNTS[TIMER] \> SDP()_EPF()_R()_OUT_INT_LEVELS[TIMET].

                                                                 To clear the bit, the CNTS register must be written to clear the underlying condition. */
        uint64_t reserved_63           : 1;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_rx_in_cnts_s cn; */
};
typedef union bdk_sdpx_epfx_rx_in_cnts bdk_sdpx_epfx_rx_in_cnts_t;

static inline uint64_t BDK_SDPX_EPFX_RX_IN_CNTS(unsigned long a, unsigned long b, unsigned long c) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_RX_IN_CNTS(unsigned long a, unsigned long b, unsigned long c)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1) && (c<=63)))
        return 0x874080010050ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x1) + 0x20000ll * ((c) & 0x3f);
    __bdk_csr_fatal("SDPX_EPFX_RX_IN_CNTS", 3, a, b, c, 0);
}

#define typedef_BDK_SDPX_EPFX_RX_IN_CNTS(a,b,c) bdk_sdpx_epfx_rx_in_cnts_t
#define bustype_BDK_SDPX_EPFX_RX_IN_CNTS(a,b,c) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SDPX_EPFX_RX_IN_CNTS(a,b,c) "SDPX_EPFX_RX_IN_CNTS"
#define device_bar_BDK_SDPX_EPFX_RX_IN_CNTS(a,b,c) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_RX_IN_CNTS(a,b,c) (a)
#define arguments_BDK_SDPX_EPFX_RX_IN_CNTS(a,b,c) (a),(b),(c),-1

/**
 * Register (PEXP_NCB) sdp#_epf#_r#_in_control
 *
 * SDP Input Instruction Ring Control Register
 * This register is the control for read operations on the input instruction rings.
 * This register is not affected by reset (including FLR) and must be initialized
 * by the VF prior to enabling the ring.  Also, this register cannot be written
 * while either of the following conditions is true:
 *   * [IDLE] is clear.
 *   * Or, SDP()_EPF()_R()_IN_ENABLE[ENB] is set.
 */
union bdk_sdpx_epfx_rx_in_control
{
    uint64_t u;
    struct bdk_sdpx_epfx_rx_in_control_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_52_63        : 12;
        uint64_t rpvf                  : 4;  /**< [ 51: 48](RO/H) The number of rings assigned to this VF.
                                                                 Read only copy of SDP()_EPF()_RINFO[RPVF] */
        uint64_t reserved_29_47        : 19;
        uint64_t idle                  : 1;  /**< [ 28: 28](RO/H) Asserted when this ring has no packets in-flight. */
        uint64_t reserved_27           : 1;
        uint64_t rdsize                : 2;  /**< [ 26: 25](R/W) Number of instructions to be read in one read request. Two-bit values are:
                                                                 0x0 = 1 instruction.
                                                                 0x1 = 2 instructions.
                                                                 0x2 = 4 instructions.
                                                                 0x3 = 8 instructions. */
        uint64_t is64b                 : 1;  /**< [ 24: 24](R/W) If 1, the ring uses 64-byte instructions.
                                                                 If 0, the ring uses 32-byte instructions. */
        uint64_t reserved_9_23         : 15;
        uint64_t d_nsr                 : 1;  /**< [  8:  8](R/W/H) [D_NSR] is ADDRTYPE\<1\> for first direct and gather DPTR reads. ADDRTYPE\<1\> is the
                                                                 no-snoop attribute for PCIe. */
        uint64_t d_esr                 : 2;  /**< [  7:  6](R/W/H) [D_ESR] is ES\<1:0\> for first direct and gather DPTR reads.
                                                                 ES\<1:0\> is the endian-swap attribute for these MAC memory space reads.
                                                                 Enumerated by SLI_ENDIANSWAP_E. */
        uint64_t d_ror                 : 1;  /**< [  5:  5](R/W/H) [D_ROR] is ADDRTYPE\<0\> for first direct and gather DPTR reads. ADDRTYPE\<0\> is the
                                                                 relaxed-order attribute for PCIe. */
        uint64_t reserved_4            : 1;
        uint64_t nsr                   : 1;  /**< [  3:  3](R/W/H) [NSR] is ADDRTYPE\<1\> for input instruction reads (from
                                                                 SDP()_EPF()_R()_IN_INSTR_BADDR) and first indirect DPTR reads. ADDRTYPE\<1\>
                                                                 is the no-snoop attribute for PCIe. */
        uint64_t esr                   : 2;  /**< [  2:  1](R/W/H) [ESR] is ES\<1:0\> for input instruction reads (from
                                                                 SDP()_EPF()_R()_IN_INSTR_BADDR) and first indirect DPTR reads. ES\<1:0\> is
                                                                 the endian-swap attribute for these MAC memory space reads.
                                                                 Enumerated by SLI_ENDIANSWAP_E. */
        uint64_t ror                   : 1;  /**< [  0:  0](R/W/H) [ROR] is ADDRTYPE\<0\> for input instruction reads (from
                                                                 SDP()_EPF()_R()_IN_INSTR_BADDR) and first indirect DPTR reads.
                                                                 ADDRTYPE\<0\> is the relaxed-order attribute for PCIe. */
#else /* Word 0 - Little Endian */
        uint64_t ror                   : 1;  /**< [  0:  0](R/W/H) [ROR] is ADDRTYPE\<0\> for input instruction reads (from
                                                                 SDP()_EPF()_R()_IN_INSTR_BADDR) and first indirect DPTR reads.
                                                                 ADDRTYPE\<0\> is the relaxed-order attribute for PCIe. */
        uint64_t esr                   : 2;  /**< [  2:  1](R/W/H) [ESR] is ES\<1:0\> for input instruction reads (from
                                                                 SDP()_EPF()_R()_IN_INSTR_BADDR) and first indirect DPTR reads. ES\<1:0\> is
                                                                 the endian-swap attribute for these MAC memory space reads.
                                                                 Enumerated by SLI_ENDIANSWAP_E. */
        uint64_t nsr                   : 1;  /**< [  3:  3](R/W/H) [NSR] is ADDRTYPE\<1\> for input instruction reads (from
                                                                 SDP()_EPF()_R()_IN_INSTR_BADDR) and first indirect DPTR reads. ADDRTYPE\<1\>
                                                                 is the no-snoop attribute for PCIe. */
        uint64_t reserved_4            : 1;
        uint64_t d_ror                 : 1;  /**< [  5:  5](R/W/H) [D_ROR] is ADDRTYPE\<0\> for first direct and gather DPTR reads. ADDRTYPE\<0\> is the
                                                                 relaxed-order attribute for PCIe. */
        uint64_t d_esr                 : 2;  /**< [  7:  6](R/W/H) [D_ESR] is ES\<1:0\> for first direct and gather DPTR reads.
                                                                 ES\<1:0\> is the endian-swap attribute for these MAC memory space reads.
                                                                 Enumerated by SLI_ENDIANSWAP_E. */
        uint64_t d_nsr                 : 1;  /**< [  8:  8](R/W/H) [D_NSR] is ADDRTYPE\<1\> for first direct and gather DPTR reads. ADDRTYPE\<1\> is the
                                                                 no-snoop attribute for PCIe. */
        uint64_t reserved_9_23         : 15;
        uint64_t is64b                 : 1;  /**< [ 24: 24](R/W) If 1, the ring uses 64-byte instructions.
                                                                 If 0, the ring uses 32-byte instructions. */
        uint64_t rdsize                : 2;  /**< [ 26: 25](R/W) Number of instructions to be read in one read request. Two-bit values are:
                                                                 0x0 = 1 instruction.
                                                                 0x1 = 2 instructions.
                                                                 0x2 = 4 instructions.
                                                                 0x3 = 8 instructions. */
        uint64_t reserved_27           : 1;
        uint64_t idle                  : 1;  /**< [ 28: 28](RO/H) Asserted when this ring has no packets in-flight. */
        uint64_t reserved_29_47        : 19;
        uint64_t rpvf                  : 4;  /**< [ 51: 48](RO/H) The number of rings assigned to this VF.
                                                                 Read only copy of SDP()_EPF()_RINFO[RPVF] */
        uint64_t reserved_52_63        : 12;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_rx_in_control_s cn; */
};
typedef union bdk_sdpx_epfx_rx_in_control bdk_sdpx_epfx_rx_in_control_t;

static inline uint64_t BDK_SDPX_EPFX_RX_IN_CONTROL(unsigned long a, unsigned long b, unsigned long c) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_RX_IN_CONTROL(unsigned long a, unsigned long b, unsigned long c)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1) && (c<=63)))
        return 0x874080010000ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x1) + 0x20000ll * ((c) & 0x3f);
    __bdk_csr_fatal("SDPX_EPFX_RX_IN_CONTROL", 3, a, b, c, 0);
}

#define typedef_BDK_SDPX_EPFX_RX_IN_CONTROL(a,b,c) bdk_sdpx_epfx_rx_in_control_t
#define bustype_BDK_SDPX_EPFX_RX_IN_CONTROL(a,b,c) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SDPX_EPFX_RX_IN_CONTROL(a,b,c) "SDPX_EPFX_RX_IN_CONTROL"
#define device_bar_BDK_SDPX_EPFX_RX_IN_CONTROL(a,b,c) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_RX_IN_CONTROL(a,b,c) (a)
#define arguments_BDK_SDPX_EPFX_RX_IN_CONTROL(a,b,c) (a),(b),(c),-1

/**
 * Register (PEXP_NCB) sdp#_epf#_r#_in_enable
 *
 * SDP Input Instruction Ring Enable Register
 * This register is the enable for read operations on the input instruction rings.
 */
union bdk_sdpx_epfx_rx_in_enable
{
    uint64_t u;
    struct bdk_sdpx_epfx_rx_in_enable_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_1_63         : 63;
        uint64_t enb                   : 1;  /**< [  0:  0](R/W/H) Enable for the input ring.  Various errors and FLR events can clear this bit.
                                                                 Software can also clear this bit at anytime. The bit may not be set unless
                                                                 SDP()_EPF()_R()_IN_CONTROL[IDLE] == 0. */
#else /* Word 0 - Little Endian */
        uint64_t enb                   : 1;  /**< [  0:  0](R/W/H) Enable for the input ring.  Various errors and FLR events can clear this bit.
                                                                 Software can also clear this bit at anytime. The bit may not be set unless
                                                                 SDP()_EPF()_R()_IN_CONTROL[IDLE] == 0. */
        uint64_t reserved_1_63         : 63;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_rx_in_enable_s cn; */
};
typedef union bdk_sdpx_epfx_rx_in_enable bdk_sdpx_epfx_rx_in_enable_t;

static inline uint64_t BDK_SDPX_EPFX_RX_IN_ENABLE(unsigned long a, unsigned long b, unsigned long c) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_RX_IN_ENABLE(unsigned long a, unsigned long b, unsigned long c)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1) && (c<=63)))
        return 0x874080010010ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x1) + 0x20000ll * ((c) & 0x3f);
    __bdk_csr_fatal("SDPX_EPFX_RX_IN_ENABLE", 3, a, b, c, 0);
}

#define typedef_BDK_SDPX_EPFX_RX_IN_ENABLE(a,b,c) bdk_sdpx_epfx_rx_in_enable_t
#define bustype_BDK_SDPX_EPFX_RX_IN_ENABLE(a,b,c) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SDPX_EPFX_RX_IN_ENABLE(a,b,c) "SDPX_EPFX_RX_IN_ENABLE"
#define device_bar_BDK_SDPX_EPFX_RX_IN_ENABLE(a,b,c) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_RX_IN_ENABLE(a,b,c) (a)
#define arguments_BDK_SDPX_EPFX_RX_IN_ENABLE(a,b,c) (a),(b),(c),-1

/**
 * Register (PEXP_NCB) sdp#_epf#_r#_in_instr_baddr
 *
 * SDP Input Instruction Ring Base Address Register
 * This register contains the base address for the input instruction ring.
 * This register is not affected by reset (including FLR) and must be initialized
 * by the VF prior to enabling the ring.  Also, this register cannot be written
 * while either of the following conditions is true:
 *   * SDP()_EPF()_R()_IN_CONTROL[IDLE] is clear.
 *   * Or, SDP()_EPF()_R()_IN_ENABLE[ENB] is set.
 */
union bdk_sdpx_epfx_rx_in_instr_baddr
{
    uint64_t u;
    struct bdk_sdpx_epfx_rx_in_instr_baddr_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t addr                  : 60; /**< [ 63:  4](R/W) Base address for input instruction ring. Must be 16-byte aligned. */
        uint64_t reserved_0_3          : 4;
#else /* Word 0 - Little Endian */
        uint64_t reserved_0_3          : 4;
        uint64_t addr                  : 60; /**< [ 63:  4](R/W) Base address for input instruction ring. Must be 16-byte aligned. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_rx_in_instr_baddr_s cn; */
};
typedef union bdk_sdpx_epfx_rx_in_instr_baddr bdk_sdpx_epfx_rx_in_instr_baddr_t;

static inline uint64_t BDK_SDPX_EPFX_RX_IN_INSTR_BADDR(unsigned long a, unsigned long b, unsigned long c) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_RX_IN_INSTR_BADDR(unsigned long a, unsigned long b, unsigned long c)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1) && (c<=63)))
        return 0x874080010020ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x1) + 0x20000ll * ((c) & 0x3f);
    __bdk_csr_fatal("SDPX_EPFX_RX_IN_INSTR_BADDR", 3, a, b, c, 0);
}

#define typedef_BDK_SDPX_EPFX_RX_IN_INSTR_BADDR(a,b,c) bdk_sdpx_epfx_rx_in_instr_baddr_t
#define bustype_BDK_SDPX_EPFX_RX_IN_INSTR_BADDR(a,b,c) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SDPX_EPFX_RX_IN_INSTR_BADDR(a,b,c) "SDPX_EPFX_RX_IN_INSTR_BADDR"
#define device_bar_BDK_SDPX_EPFX_RX_IN_INSTR_BADDR(a,b,c) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_RX_IN_INSTR_BADDR(a,b,c) (a)
#define arguments_BDK_SDPX_EPFX_RX_IN_INSTR_BADDR(a,b,c) (a),(b),(c),-1

/**
 * Register (PEXP_NCB) sdp#_epf#_r#_in_instr_dbell
 *
 * SDP Input Instruction Ring Input Doorbell Registers
 * This register contains the doorbell and base-address offset for the next read operation.
 * This register is not affected by reset (including FLR) and must be initialized
 * by the VF prior to enabling the ring.
 */
union bdk_sdpx_epfx_rx_in_instr_dbell
{
    uint64_t u;
    struct bdk_sdpx_epfx_rx_in_instr_dbell_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t aoff                  : 32; /**< [ 63: 32](RO/H) Address offset. The offset from the SDP()_EPF()_R()_IN_INSTR_BADDR where the
                                                                 next pointer is read. A write of 0xFFFFFFFF to [DBELL] clears [DBELL] and [AOFF]. */
        uint64_t dbell                 : 32; /**< [ 31:  0](R/W/H) Pointer list doorbell count. Write operations to this field increments the present
                                                                 value here. Read operations return the present value. The value of this field is
                                                                 decremented as read operations are issued for instructions. A write of 0xFFFFFFFF
                                                                 to this field clears [DBELL] and [AOFF].  This register should be cleared before
                                                                 enabling a ring. */
#else /* Word 0 - Little Endian */
        uint64_t dbell                 : 32; /**< [ 31:  0](R/W/H) Pointer list doorbell count. Write operations to this field increments the present
                                                                 value here. Read operations return the present value. The value of this field is
                                                                 decremented as read operations are issued for instructions. A write of 0xFFFFFFFF
                                                                 to this field clears [DBELL] and [AOFF].  This register should be cleared before
                                                                 enabling a ring. */
        uint64_t aoff                  : 32; /**< [ 63: 32](RO/H) Address offset. The offset from the SDP()_EPF()_R()_IN_INSTR_BADDR where the
                                                                 next pointer is read. A write of 0xFFFFFFFF to [DBELL] clears [DBELL] and [AOFF]. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_rx_in_instr_dbell_s cn; */
};
typedef union bdk_sdpx_epfx_rx_in_instr_dbell bdk_sdpx_epfx_rx_in_instr_dbell_t;

static inline uint64_t BDK_SDPX_EPFX_RX_IN_INSTR_DBELL(unsigned long a, unsigned long b, unsigned long c) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_RX_IN_INSTR_DBELL(unsigned long a, unsigned long b, unsigned long c)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1) && (c<=63)))
        return 0x874080010040ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x1) + 0x20000ll * ((c) & 0x3f);
    __bdk_csr_fatal("SDPX_EPFX_RX_IN_INSTR_DBELL", 3, a, b, c, 0);
}

#define typedef_BDK_SDPX_EPFX_RX_IN_INSTR_DBELL(a,b,c) bdk_sdpx_epfx_rx_in_instr_dbell_t
#define bustype_BDK_SDPX_EPFX_RX_IN_INSTR_DBELL(a,b,c) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SDPX_EPFX_RX_IN_INSTR_DBELL(a,b,c) "SDPX_EPFX_RX_IN_INSTR_DBELL"
#define device_bar_BDK_SDPX_EPFX_RX_IN_INSTR_DBELL(a,b,c) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_RX_IN_INSTR_DBELL(a,b,c) (a)
#define arguments_BDK_SDPX_EPFX_RX_IN_INSTR_DBELL(a,b,c) (a),(b),(c),-1

/**
 * Register (PEXP_NCB) sdp#_epf#_r#_in_instr_rsize
 *
 * SDP Input Instruction Ring Size Register
 * This register contains the input instruction ring size.
 * This register is not affected by reset (including FLR) and must be initialized
 * by the VF prior to enabling the ring.  Also, this register cannot be written
 * while either of the following conditions is true:
 *   * SDP()_EPF()_R()_IN_CONTROL[IDLE] is clear.
 *   * or, SDP()_EPF()_R()_IN_ENABLE[ENB] is set.
 */
union bdk_sdpx_epfx_rx_in_instr_rsize
{
    uint64_t u;
    struct bdk_sdpx_epfx_rx_in_instr_rsize_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_32_63        : 32;
        uint64_t rsize                 : 32; /**< [ 31:  0](R/W) Ring size (number of instructions). */
#else /* Word 0 - Little Endian */
        uint64_t rsize                 : 32; /**< [ 31:  0](R/W) Ring size (number of instructions). */
        uint64_t reserved_32_63        : 32;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_rx_in_instr_rsize_s cn; */
};
typedef union bdk_sdpx_epfx_rx_in_instr_rsize bdk_sdpx_epfx_rx_in_instr_rsize_t;

static inline uint64_t BDK_SDPX_EPFX_RX_IN_INSTR_RSIZE(unsigned long a, unsigned long b, unsigned long c) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_RX_IN_INSTR_RSIZE(unsigned long a, unsigned long b, unsigned long c)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1) && (c<=63)))
        return 0x874080010030ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x1) + 0x20000ll * ((c) & 0x3f);
    __bdk_csr_fatal("SDPX_EPFX_RX_IN_INSTR_RSIZE", 3, a, b, c, 0);
}

#define typedef_BDK_SDPX_EPFX_RX_IN_INSTR_RSIZE(a,b,c) bdk_sdpx_epfx_rx_in_instr_rsize_t
#define bustype_BDK_SDPX_EPFX_RX_IN_INSTR_RSIZE(a,b,c) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SDPX_EPFX_RX_IN_INSTR_RSIZE(a,b,c) "SDPX_EPFX_RX_IN_INSTR_RSIZE"
#define device_bar_BDK_SDPX_EPFX_RX_IN_INSTR_RSIZE(a,b,c) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_RX_IN_INSTR_RSIZE(a,b,c) (a)
#define arguments_BDK_SDPX_EPFX_RX_IN_INSTR_RSIZE(a,b,c) (a),(b),(c),-1

/**
 * Register (PEXP_NCB) sdp#_epf#_r#_in_int_levels
 *
 * SDP Input Instruction Interrupt Levels Register
 * This register contains input instruction interrupt levels.
 * This register is not affected by reset (including FLR) and must be initialized
 * by the VF prior to enabling the ring.
 */
union bdk_sdpx_epfx_rx_in_int_levels
{
    uint64_t u;
    struct bdk_sdpx_epfx_rx_in_int_levels_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_32_63        : 32;
        uint64_t cnt                   : 32; /**< [ 31:  0](R/W) Input packet counter interrupt threshold. An MSI-X interrupt will be generated
                                                                 whenever SDP()_EPF()_R()_IN_CNTS[CNT] \> [CNT]. Whenever software changes the value of
                                                                 [CNT], it should also subsequently write the corresponding SDP()_R()_IN_CNTS[CNT] CSR
                                                                 (with a value of zero if desired) to ensure that the hardware correspondingly updates
                                                                 SDP()_EPF()_R()_IN_CNTS[IN_INT] */
#else /* Word 0 - Little Endian */
        uint64_t cnt                   : 32; /**< [ 31:  0](R/W) Input packet counter interrupt threshold. An MSI-X interrupt will be generated
                                                                 whenever SDP()_EPF()_R()_IN_CNTS[CNT] \> [CNT]. Whenever software changes the value of
                                                                 [CNT], it should also subsequently write the corresponding SDP()_R()_IN_CNTS[CNT] CSR
                                                                 (with a value of zero if desired) to ensure that the hardware correspondingly updates
                                                                 SDP()_EPF()_R()_IN_CNTS[IN_INT] */
        uint64_t reserved_32_63        : 32;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_rx_in_int_levels_s cn; */
};
typedef union bdk_sdpx_epfx_rx_in_int_levels bdk_sdpx_epfx_rx_in_int_levels_t;

static inline uint64_t BDK_SDPX_EPFX_RX_IN_INT_LEVELS(unsigned long a, unsigned long b, unsigned long c) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_RX_IN_INT_LEVELS(unsigned long a, unsigned long b, unsigned long c)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1) && (c<=63)))
        return 0x874080010060ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x1) + 0x20000ll * ((c) & 0x3f);
    __bdk_csr_fatal("SDPX_EPFX_RX_IN_INT_LEVELS", 3, a, b, c, 0);
}

#define typedef_BDK_SDPX_EPFX_RX_IN_INT_LEVELS(a,b,c) bdk_sdpx_epfx_rx_in_int_levels_t
#define bustype_BDK_SDPX_EPFX_RX_IN_INT_LEVELS(a,b,c) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SDPX_EPFX_RX_IN_INT_LEVELS(a,b,c) "SDPX_EPFX_RX_IN_INT_LEVELS"
#define device_bar_BDK_SDPX_EPFX_RX_IN_INT_LEVELS(a,b,c) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_RX_IN_INT_LEVELS(a,b,c) (a)
#define arguments_BDK_SDPX_EPFX_RX_IN_INT_LEVELS(a,b,c) (a),(b),(c),-1

/**
 * Register (PEXP_NCB) sdp#_epf#_r#_in_int_status
 *
 * SDP Ring Input Packet Interrupt Status Register
 * This register contains interrupt status on a per-VF basis.  All rings for a given VF
 * are located in a single register. Note that access to any ring offset within a given
 * VF will return the same value.  When the PF reads any ring in this register it will
 * return the same value (64 bits each representing one ring.)
 */
union bdk_sdpx_epfx_rx_in_int_status
{
    uint64_t u;
    struct bdk_sdpx_epfx_rx_in_int_status_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t intr                  : 64; /**< [ 63:  0](RO) Interrupt bits for VF rings (0..i). [INTR[i]] reads as one whenever:

                                                                  * SDP()_EPF()_R()_IN_CNTS[CNT] \> SDP()_EPF()_R()_IN_INT_LEVELS[CNT]

                                                                 [INTR] can cause an MSI-X interrupt.

                                                                 Note that "i" depends on the SDP()_EPF()_RINFO configuration.

                                                                 Internal:
                                                                 These interrupt bits are not cleared due to FLR becase the CNTS and
                                                                 LEVELS registers are not reset and we wish to make the interrupt state
                                                                 consistent with CNTS/LEVELS even after FLR. The CNTS register must be
                                                                 cleared by software as part of initialization after a reset (including FLR)
                                                                 which will cause the interrupt state to clear. */
#else /* Word 0 - Little Endian */
        uint64_t intr                  : 64; /**< [ 63:  0](RO) Interrupt bits for VF rings (0..i). [INTR[i]] reads as one whenever:

                                                                  * SDP()_EPF()_R()_IN_CNTS[CNT] \> SDP()_EPF()_R()_IN_INT_LEVELS[CNT]

                                                                 [INTR] can cause an MSI-X interrupt.

                                                                 Note that "i" depends on the SDP()_EPF()_RINFO configuration.

                                                                 Internal:
                                                                 These interrupt bits are not cleared due to FLR becase the CNTS and
                                                                 LEVELS registers are not reset and we wish to make the interrupt state
                                                                 consistent with CNTS/LEVELS even after FLR. The CNTS register must be
                                                                 cleared by software as part of initialization after a reset (including FLR)
                                                                 which will cause the interrupt state to clear. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_rx_in_int_status_s cn; */
};
typedef union bdk_sdpx_epfx_rx_in_int_status bdk_sdpx_epfx_rx_in_int_status_t;

static inline uint64_t BDK_SDPX_EPFX_RX_IN_INT_STATUS(unsigned long a, unsigned long b, unsigned long c) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_RX_IN_INT_STATUS(unsigned long a, unsigned long b, unsigned long c)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1) && (c<=63)))
        return 0x874080010070ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x1) + 0x20000ll * ((c) & 0x3f);
    __bdk_csr_fatal("SDPX_EPFX_RX_IN_INT_STATUS", 3, a, b, c, 0);
}

#define typedef_BDK_SDPX_EPFX_RX_IN_INT_STATUS(a,b,c) bdk_sdpx_epfx_rx_in_int_status_t
#define bustype_BDK_SDPX_EPFX_RX_IN_INT_STATUS(a,b,c) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SDPX_EPFX_RX_IN_INT_STATUS(a,b,c) "SDPX_EPFX_RX_IN_INT_STATUS"
#define device_bar_BDK_SDPX_EPFX_RX_IN_INT_STATUS(a,b,c) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_RX_IN_INT_STATUS(a,b,c) (a)
#define arguments_BDK_SDPX_EPFX_RX_IN_INT_STATUS(a,b,c) (a),(b),(c),-1

/**
 * Register (PEXP_NCB) sdp#_epf#_r#_in_pkt_cnt
 *
 * SDP Packet Input Packet Count Register
 * This register contains packet counts per ring that have been read into SDP.
 * The counter will wrap when it reaches its maximum value.  It should be cleared
 * before the ring is enabled for an accurate count.
 */
union bdk_sdpx_epfx_rx_in_pkt_cnt
{
    uint64_t u;
    struct bdk_sdpx_epfx_rx_in_pkt_cnt_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_36_63        : 28;
        uint64_t cnt                   : 36; /**< [ 35:  0](R/W/H) Packet count, can be written by software to any value.  If a value of 0xFFFFFFFFF is
                                                                 written to this field, it will cause this field as well as SDP()_EPF()_R()_IN_BYTE_CNT to
                                                                 clear. */
#else /* Word 0 - Little Endian */
        uint64_t cnt                   : 36; /**< [ 35:  0](R/W/H) Packet count, can be written by software to any value.  If a value of 0xFFFFFFFFF is
                                                                 written to this field, it will cause this field as well as SDP()_EPF()_R()_IN_BYTE_CNT to
                                                                 clear. */
        uint64_t reserved_36_63        : 28;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_rx_in_pkt_cnt_s cn; */
};
typedef union bdk_sdpx_epfx_rx_in_pkt_cnt bdk_sdpx_epfx_rx_in_pkt_cnt_t;

static inline uint64_t BDK_SDPX_EPFX_RX_IN_PKT_CNT(unsigned long a, unsigned long b, unsigned long c) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_RX_IN_PKT_CNT(unsigned long a, unsigned long b, unsigned long c)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1) && (c<=63)))
        return 0x874080010080ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x1) + 0x20000ll * ((c) & 0x3f);
    __bdk_csr_fatal("SDPX_EPFX_RX_IN_PKT_CNT", 3, a, b, c, 0);
}

#define typedef_BDK_SDPX_EPFX_RX_IN_PKT_CNT(a,b,c) bdk_sdpx_epfx_rx_in_pkt_cnt_t
#define bustype_BDK_SDPX_EPFX_RX_IN_PKT_CNT(a,b,c) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SDPX_EPFX_RX_IN_PKT_CNT(a,b,c) "SDPX_EPFX_RX_IN_PKT_CNT"
#define device_bar_BDK_SDPX_EPFX_RX_IN_PKT_CNT(a,b,c) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_RX_IN_PKT_CNT(a,b,c) (a)
#define arguments_BDK_SDPX_EPFX_RX_IN_PKT_CNT(a,b,c) (a),(b),(c),-1

/**
 * Register (PEXP_NCB) sdp#_epf#_r#_mbox_pf_vf_data
 *
 * SDP PF to VF Mailbox Data Registers
 * These registers are used for communication of data from the PF to VF.
 * A write to this register from the PF will cause the corresponding bit in
 * SDP()_EPF()_R()_MBOX_PF_VF_INT[INTR] to be set, along with other bits in
 * SDP()_EPF()_R()_MBOX_RINT_STATUS, SDP()_EPF()_R()_OUT_CNTS[MBOX_INT], and
 * SDP()_EPF()_R()_IN_CNTS[MBOX_INT].
 */
union bdk_sdpx_epfx_rx_mbox_pf_vf_data
{
    uint64_t u;
    struct bdk_sdpx_epfx_rx_mbox_pf_vf_data_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t data                  : 64; /**< [ 63:  0](R/W) Communication data from PF to VF. */
#else /* Word 0 - Little Endian */
        uint64_t data                  : 64; /**< [ 63:  0](R/W) Communication data from PF to VF. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_rx_mbox_pf_vf_data_s cn; */
};
typedef union bdk_sdpx_epfx_rx_mbox_pf_vf_data bdk_sdpx_epfx_rx_mbox_pf_vf_data_t;

static inline uint64_t BDK_SDPX_EPFX_RX_MBOX_PF_VF_DATA(unsigned long a, unsigned long b, unsigned long c) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_RX_MBOX_PF_VF_DATA(unsigned long a, unsigned long b, unsigned long c)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1) && (c<=63)))
        return 0x874080010210ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x1) + 0x20000ll * ((c) & 0x3f);
    __bdk_csr_fatal("SDPX_EPFX_RX_MBOX_PF_VF_DATA", 3, a, b, c, 0);
}

#define typedef_BDK_SDPX_EPFX_RX_MBOX_PF_VF_DATA(a,b,c) bdk_sdpx_epfx_rx_mbox_pf_vf_data_t
#define bustype_BDK_SDPX_EPFX_RX_MBOX_PF_VF_DATA(a,b,c) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SDPX_EPFX_RX_MBOX_PF_VF_DATA(a,b,c) "SDPX_EPFX_RX_MBOX_PF_VF_DATA"
#define device_bar_BDK_SDPX_EPFX_RX_MBOX_PF_VF_DATA(a,b,c) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_RX_MBOX_PF_VF_DATA(a,b,c) (a)
#define arguments_BDK_SDPX_EPFX_RX_MBOX_PF_VF_DATA(a,b,c) (a),(b),(c),-1

/**
 * Register (PEXP_NCB) sdp#_epf#_r#_mbox_pf_vf_int
 *
 * SDP Packet PF to VF Mailbox Interrupt Register
 * These registers contain interrupt status and enable for the PF to VF mailbox communication
 * registers. A write to SDP()_EPF()_R()_MBOX_VF_PF_DATA from the PF will cause the [INTR] bit
 * in this register to set, along with corresponding bits in SDP()_EPF()_R()_MBOX_RINT_STATUS,
 * SDP()_EPF()_R()_OUT_CNTS[MBOX_INT], and SDP()_EPF()_R()_IN_CNTS[MBOX_INT].
 * All of these bits are cleared by writing 1 to the [INTR] bit in this register.
 * If the [ENAB] bit is set, then an MSI-X interrupt will also be generated when the [INTR] bit
 * is set. This register is cleared also due to an FLR.
 */
union bdk_sdpx_epfx_rx_mbox_pf_vf_int
{
    uint64_t u;
    struct bdk_sdpx_epfx_rx_mbox_pf_vf_int_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_2_63         : 62;
        uint64_t enab                  : 1;  /**< [  1:  1](R/W) PF to VF mailbox interrupt enable. */
        uint64_t intr                  : 1;  /**< [  0:  0](R/W1C/H) PF to VF mailbox interrupt signal. */
#else /* Word 0 - Little Endian */
        uint64_t intr                  : 1;  /**< [  0:  0](R/W1C/H) PF to VF mailbox interrupt signal. */
        uint64_t enab                  : 1;  /**< [  1:  1](R/W) PF to VF mailbox interrupt enable. */
        uint64_t reserved_2_63         : 62;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_rx_mbox_pf_vf_int_s cn; */
};
typedef union bdk_sdpx_epfx_rx_mbox_pf_vf_int bdk_sdpx_epfx_rx_mbox_pf_vf_int_t;

static inline uint64_t BDK_SDPX_EPFX_RX_MBOX_PF_VF_INT(unsigned long a, unsigned long b, unsigned long c) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_RX_MBOX_PF_VF_INT(unsigned long a, unsigned long b, unsigned long c)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1) && (c<=63)))
        return 0x874080010220ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x1) + 0x20000ll * ((c) & 0x3f);
    __bdk_csr_fatal("SDPX_EPFX_RX_MBOX_PF_VF_INT", 3, a, b, c, 0);
}

#define typedef_BDK_SDPX_EPFX_RX_MBOX_PF_VF_INT(a,b,c) bdk_sdpx_epfx_rx_mbox_pf_vf_int_t
#define bustype_BDK_SDPX_EPFX_RX_MBOX_PF_VF_INT(a,b,c) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SDPX_EPFX_RX_MBOX_PF_VF_INT(a,b,c) "SDPX_EPFX_RX_MBOX_PF_VF_INT"
#define device_bar_BDK_SDPX_EPFX_RX_MBOX_PF_VF_INT(a,b,c) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_RX_MBOX_PF_VF_INT(a,b,c) (a)
#define arguments_BDK_SDPX_EPFX_RX_MBOX_PF_VF_INT(a,b,c) (a),(b),(c),-1

/**
 * Register (PEXP_NCB) sdp#_epf#_r#_mbox_rint_status
 *
 * SDP Mailbox Interrupt Status Register
 * This register contains PF-\>VF mailbox interrupt status on a per-VF basis.
 * All rings for a given VF are located in a single register. Note that access to any ring offset
 * within a given VF will return the same value.  When the PF reads any ring in this register it
 * will return the same value (64 bits each representing one ring.)
 */
union bdk_sdpx_epfx_rx_mbox_rint_status
{
    uint64_t u;
    struct bdk_sdpx_epfx_rx_mbox_rint_status_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t intr                  : 64; /**< [ 63:  0](RO) Interrupt bits for VF rings (0..i). [INTR[i]] reads as one whenever a mailbox
                                                                 interrupt has been signaled by the PF and not cleared by the VF.
                                                                 These bits are cleared by writing SDP()_EPF()_R()_MBOX_PF_VF_INT[INTR]
                                                                 them with a 1, or due to an FLR.

                                                                 [INTR] can cause an MSI-X interrupt.

                                                                 Note that "i" depends on the SDP()_EPF()_RINFO configuration. */
#else /* Word 0 - Little Endian */
        uint64_t intr                  : 64; /**< [ 63:  0](RO) Interrupt bits for VF rings (0..i). [INTR[i]] reads as one whenever a mailbox
                                                                 interrupt has been signaled by the PF and not cleared by the VF.
                                                                 These bits are cleared by writing SDP()_EPF()_R()_MBOX_PF_VF_INT[INTR]
                                                                 them with a 1, or due to an FLR.

                                                                 [INTR] can cause an MSI-X interrupt.

                                                                 Note that "i" depends on the SDP()_EPF()_RINFO configuration. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_rx_mbox_rint_status_s cn; */
};
typedef union bdk_sdpx_epfx_rx_mbox_rint_status bdk_sdpx_epfx_rx_mbox_rint_status_t;

static inline uint64_t BDK_SDPX_EPFX_RX_MBOX_RINT_STATUS(unsigned long a, unsigned long b, unsigned long c) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_RX_MBOX_RINT_STATUS(unsigned long a, unsigned long b, unsigned long c)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1) && (c<=63)))
        return 0x874080010200ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x1) + 0x20000ll * ((c) & 0x3f);
    __bdk_csr_fatal("SDPX_EPFX_RX_MBOX_RINT_STATUS", 3, a, b, c, 0);
}

#define typedef_BDK_SDPX_EPFX_RX_MBOX_RINT_STATUS(a,b,c) bdk_sdpx_epfx_rx_mbox_rint_status_t
#define bustype_BDK_SDPX_EPFX_RX_MBOX_RINT_STATUS(a,b,c) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SDPX_EPFX_RX_MBOX_RINT_STATUS(a,b,c) "SDPX_EPFX_RX_MBOX_RINT_STATUS"
#define device_bar_BDK_SDPX_EPFX_RX_MBOX_RINT_STATUS(a,b,c) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_RX_MBOX_RINT_STATUS(a,b,c) (a)
#define arguments_BDK_SDPX_EPFX_RX_MBOX_RINT_STATUS(a,b,c) (a),(b),(c),-1

/**
 * Register (PEXP_NCB) sdp#_epf#_r#_mbox_vf_pf_data
 *
 * SDP VF to PF Mailbox Data Registers
 * These registers are used for communication of data from the VF to PF.
 * A write by the VF to this register will cause the corresponding bit in
 * SDP()_MBOX_EPF()_INT to be set to be set, and an MSI-X message to be generated.
 * To clear the interrupt condition, the PF should write a 1 to SDP()_MBOX_EPF()_INT.
 */
union bdk_sdpx_epfx_rx_mbox_vf_pf_data
{
    uint64_t u;
    struct bdk_sdpx_epfx_rx_mbox_vf_pf_data_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t data                  : 64; /**< [ 63:  0](R/W) Communication data from VF to PF. */
#else /* Word 0 - Little Endian */
        uint64_t data                  : 64; /**< [ 63:  0](R/W) Communication data from VF to PF. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_rx_mbox_vf_pf_data_s cn; */
};
typedef union bdk_sdpx_epfx_rx_mbox_vf_pf_data bdk_sdpx_epfx_rx_mbox_vf_pf_data_t;

static inline uint64_t BDK_SDPX_EPFX_RX_MBOX_VF_PF_DATA(unsigned long a, unsigned long b, unsigned long c) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_RX_MBOX_VF_PF_DATA(unsigned long a, unsigned long b, unsigned long c)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1) && (c<=63)))
        return 0x874080010230ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x1) + 0x20000ll * ((c) & 0x3f);
    __bdk_csr_fatal("SDPX_EPFX_RX_MBOX_VF_PF_DATA", 3, a, b, c, 0);
}

#define typedef_BDK_SDPX_EPFX_RX_MBOX_VF_PF_DATA(a,b,c) bdk_sdpx_epfx_rx_mbox_vf_pf_data_t
#define bustype_BDK_SDPX_EPFX_RX_MBOX_VF_PF_DATA(a,b,c) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SDPX_EPFX_RX_MBOX_VF_PF_DATA(a,b,c) "SDPX_EPFX_RX_MBOX_VF_PF_DATA"
#define device_bar_BDK_SDPX_EPFX_RX_MBOX_VF_PF_DATA(a,b,c) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_RX_MBOX_VF_PF_DATA(a,b,c) (a)
#define arguments_BDK_SDPX_EPFX_RX_MBOX_VF_PF_DATA(a,b,c) (a),(b),(c),-1

/**
 * Register (PEXP_NCB) sdp#_epf#_r#_out_byte_cnt
 *
 * SDP Packet Output Byte Count Register
 * This register contains byte counts per ring that have been written to memory by SDP.
 * The counter will wrap when it reaches its maximum value.  It should be cleared
 * before the ring is enabled for an accurate count.
 */
union bdk_sdpx_epfx_rx_out_byte_cnt
{
    uint64_t u;
    struct bdk_sdpx_epfx_rx_out_byte_cnt_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_48_63        : 16;
        uint64_t cnt                   : 48; /**< [ 47:  0](R/W/H) Byte count, can be reset by software by writing SDP()_EPF()_R()_OUT_PKT_CNT[CNT]
                                                                 with 0xFFFFFFFFF. */
#else /* Word 0 - Little Endian */
        uint64_t cnt                   : 48; /**< [ 47:  0](R/W/H) Byte count, can be reset by software by writing SDP()_EPF()_R()_OUT_PKT_CNT[CNT]
                                                                 with 0xFFFFFFFFF. */
        uint64_t reserved_48_63        : 16;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_rx_out_byte_cnt_s cn; */
};
typedef union bdk_sdpx_epfx_rx_out_byte_cnt bdk_sdpx_epfx_rx_out_byte_cnt_t;

static inline uint64_t BDK_SDPX_EPFX_RX_OUT_BYTE_CNT(unsigned long a, unsigned long b, unsigned long c) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_RX_OUT_BYTE_CNT(unsigned long a, unsigned long b, unsigned long c)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1) && (c<=63)))
        return 0x874080010190ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x1) + 0x20000ll * ((c) & 0x3f);
    __bdk_csr_fatal("SDPX_EPFX_RX_OUT_BYTE_CNT", 3, a, b, c, 0);
}

#define typedef_BDK_SDPX_EPFX_RX_OUT_BYTE_CNT(a,b,c) bdk_sdpx_epfx_rx_out_byte_cnt_t
#define bustype_BDK_SDPX_EPFX_RX_OUT_BYTE_CNT(a,b,c) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SDPX_EPFX_RX_OUT_BYTE_CNT(a,b,c) "SDPX_EPFX_RX_OUT_BYTE_CNT"
#define device_bar_BDK_SDPX_EPFX_RX_OUT_BYTE_CNT(a,b,c) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_RX_OUT_BYTE_CNT(a,b,c) (a)
#define arguments_BDK_SDPX_EPFX_RX_OUT_BYTE_CNT(a,b,c) (a),(b),(c),-1

/**
 * Register (PEXP_NCB) sdp#_epf#_r#_out_cnts
 *
 * SDP Packet Output Counts Register
 * This register contains the counters for SDP output ports.
 * This register is not affected by reset (including FLR) and must be initialized
 * by the VF prior to enabling the ring.
 */
union bdk_sdpx_epfx_rx_out_cnts
{
    uint64_t u;
    struct bdk_sdpx_epfx_rx_out_cnts_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_63           : 1;
        uint64_t out_int               : 1;  /**< [ 62: 62](RO/H) Returns a 1 when:
                                                                  * SDP()_EPF()_R()_OUT_CNTS[CNT] \> SDP()_EPF()_R()_OUT_INT_LEVELS[CNT].
                                                                  * Or, SDP()_EPF()_R()_OUT_CNTS[TIMER] \> SDP()_EPF()_R()_OUT_INT_LEVELS[TIMET].

                                                                 To clear the bit, the CNTS register must be written to clear the underlying condition. */
        uint64_t in_int                : 1;  /**< [ 61: 61](RO/H) Returns a 1 when:
                                                                  * SDP()_EPF()_R()_IN_CNTS[CNT] \> SDP()_EPF()_R()_IN_INT_LEVELS[CNT].

                                                                 To clear the bit, the SDP()_EPF()_R()_IN_CNTS register must be written to clear the
                                                                 underlying condition. */
        uint64_t mbox_int              : 1;  /**< [ 60: 60](RO/H) Returns a 1 when:
                                                                  * SDP()_EPF()_R()_MBOX_RINT_STATUS[INTR] is set.

                                                                 To clear the bit, write SDP()_EPF()_R()_MBOX_PF_VF_INT[INTR] with 1.
                                                                 This bit is also cleared due to an FLR. */
        uint64_t resend                : 1;  /**< [ 59: 59](WO/H) A write of 1 will resend an MSI-X interrupt message if any of the following
                                                                 conditions are true for the respective ring R():
                                                                  * SDP()_EPF()_R()_OUT_CNTS[CNT]   \> SDP()_EPF()_R()_OUT_INT_LEVELS[CNT],
                                                                  * SDP()_EPF()_R()_OUT_CNTS[TIMER] \> SDP()_EPF()_R()_OUT_INT_LEVELS[TIMET],
                                                                  * SDP()_EPF()_R()_IN_CNTS[CNT] \> SDP()_EPF()_R()_IN_INT_LEVELS[CNT],
                                                                  * SDP()_EPF()_R()_MBOX_RINT_STATUS[INTR] is set. */
        uint64_t reserved_54_58        : 5;
        uint64_t timer                 : 22; /**< [ 53: 32](RO/H) Timer, incremented every 1024 coprocessor-clock cycles when [CNT] is
                                                                 not zero. The hardware clears [TIMER] when [CNT]
                                                                 goes to 0. The first increment of this count can occur between 0 to
                                                                 1023 coprocessor-clock cycles after [CNT] becomes nonzero. */
        uint64_t cnt                   : 32; /**< [ 31:  0](R/W/H) Packet counter. Hardware adds to [CNT] as it sends packets out. On a write
                                                                 to this CSR, hardware subtracts the amount written to the [CNT] field from
                                                                 [CNT], which will clear SDP()_EPF()_R()_OUT_INT_STATUS[INTR] if [CNT] becomes \<=
                                                                 SDP()_EPF()_R()_OUT_INT_LEVELS[CNT]. When SDP()_EPF()_R()_OUT_INT_LEVELS[BMODE] is clear,
                                                                 the hardware adds 1 to [CNT] per packet. When SDP()_EPF()_R()_OUT_INT_LEVELS[BMODE] is
                                                                 set,
                                                                 the hardware adds the packet length to [CNT] per packet. */
#else /* Word 0 - Little Endian */
        uint64_t cnt                   : 32; /**< [ 31:  0](R/W/H) Packet counter. Hardware adds to [CNT] as it sends packets out. On a write
                                                                 to this CSR, hardware subtracts the amount written to the [CNT] field from
                                                                 [CNT], which will clear SDP()_EPF()_R()_OUT_INT_STATUS[INTR] if [CNT] becomes \<=
                                                                 SDP()_EPF()_R()_OUT_INT_LEVELS[CNT]. When SDP()_EPF()_R()_OUT_INT_LEVELS[BMODE] is clear,
                                                                 the hardware adds 1 to [CNT] per packet. When SDP()_EPF()_R()_OUT_INT_LEVELS[BMODE] is
                                                                 set,
                                                                 the hardware adds the packet length to [CNT] per packet. */
        uint64_t timer                 : 22; /**< [ 53: 32](RO/H) Timer, incremented every 1024 coprocessor-clock cycles when [CNT] is
                                                                 not zero. The hardware clears [TIMER] when [CNT]
                                                                 goes to 0. The first increment of this count can occur between 0 to
                                                                 1023 coprocessor-clock cycles after [CNT] becomes nonzero. */
        uint64_t reserved_54_58        : 5;
        uint64_t resend                : 1;  /**< [ 59: 59](WO/H) A write of 1 will resend an MSI-X interrupt message if any of the following
                                                                 conditions are true for the respective ring R():
                                                                  * SDP()_EPF()_R()_OUT_CNTS[CNT]   \> SDP()_EPF()_R()_OUT_INT_LEVELS[CNT],
                                                                  * SDP()_EPF()_R()_OUT_CNTS[TIMER] \> SDP()_EPF()_R()_OUT_INT_LEVELS[TIMET],
                                                                  * SDP()_EPF()_R()_IN_CNTS[CNT] \> SDP()_EPF()_R()_IN_INT_LEVELS[CNT],
                                                                  * SDP()_EPF()_R()_MBOX_RINT_STATUS[INTR] is set. */
        uint64_t mbox_int              : 1;  /**< [ 60: 60](RO/H) Returns a 1 when:
                                                                  * SDP()_EPF()_R()_MBOX_RINT_STATUS[INTR] is set.

                                                                 To clear the bit, write SDP()_EPF()_R()_MBOX_PF_VF_INT[INTR] with 1.
                                                                 This bit is also cleared due to an FLR. */
        uint64_t in_int                : 1;  /**< [ 61: 61](RO/H) Returns a 1 when:
                                                                  * SDP()_EPF()_R()_IN_CNTS[CNT] \> SDP()_EPF()_R()_IN_INT_LEVELS[CNT].

                                                                 To clear the bit, the SDP()_EPF()_R()_IN_CNTS register must be written to clear the
                                                                 underlying condition. */
        uint64_t out_int               : 1;  /**< [ 62: 62](RO/H) Returns a 1 when:
                                                                  * SDP()_EPF()_R()_OUT_CNTS[CNT] \> SDP()_EPF()_R()_OUT_INT_LEVELS[CNT].
                                                                  * Or, SDP()_EPF()_R()_OUT_CNTS[TIMER] \> SDP()_EPF()_R()_OUT_INT_LEVELS[TIMET].

                                                                 To clear the bit, the CNTS register must be written to clear the underlying condition. */
        uint64_t reserved_63           : 1;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_rx_out_cnts_s cn; */
};
typedef union bdk_sdpx_epfx_rx_out_cnts bdk_sdpx_epfx_rx_out_cnts_t;

static inline uint64_t BDK_SDPX_EPFX_RX_OUT_CNTS(unsigned long a, unsigned long b, unsigned long c) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_RX_OUT_CNTS(unsigned long a, unsigned long b, unsigned long c)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1) && (c<=63)))
        return 0x874080010100ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x1) + 0x20000ll * ((c) & 0x3f);
    __bdk_csr_fatal("SDPX_EPFX_RX_OUT_CNTS", 3, a, b, c, 0);
}

#define typedef_BDK_SDPX_EPFX_RX_OUT_CNTS(a,b,c) bdk_sdpx_epfx_rx_out_cnts_t
#define bustype_BDK_SDPX_EPFX_RX_OUT_CNTS(a,b,c) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SDPX_EPFX_RX_OUT_CNTS(a,b,c) "SDPX_EPFX_RX_OUT_CNTS"
#define device_bar_BDK_SDPX_EPFX_RX_OUT_CNTS(a,b,c) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_RX_OUT_CNTS(a,b,c) (a)
#define arguments_BDK_SDPX_EPFX_RX_OUT_CNTS(a,b,c) (a),(b),(c),-1

/**
 * Register (PEXP_NCB) sdp#_epf#_r#_out_control
 *
 * SDP Packet Output Control Register
 * This register contains control bits for output packet rings.
 * This register is not affected by reset (including FLR) and must be initialized
 * by the VF prior to enabling the ring.  Also, this register cannot be written
 * while either of the following conditions is true:
 *   * SDP()_EPF()_R()_OUT_CONTROL[IDLE] is clear.
 *   * Or, SDP()_EPF()_R()_OUT_ENABLE[ENB] is set.
 */
union bdk_sdpx_epfx_rx_out_control
{
    uint64_t u;
    struct bdk_sdpx_epfx_rx_out_control_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_37_63        : 27;
        uint64_t idle                  : 1;  /**< [ 36: 36](RO/H) Asserted when this ring has no packets in-flight. */
        uint64_t es_i                  : 2;  /**< [ 35: 34](R/W) [ES_I] is ES\<1:0\> for info buffer write operations to buffer/info
                                                                 pair MAC memory space addresses fetched from packet output ring. ES\<1:0\> is the
                                                                 endian-swap attribute for these MAC memory space writes. */
        uint64_t nsr_i                 : 1;  /**< [ 33: 33](R/W) [NSR] is ADDRTYPE\<1\> for info buffer write operations to buffer/info
                                                                 pair MAC memory space addresses fetched from packet output ring. ADDRTYPE\<1\> is
                                                                 the no-snoop attribute for PCIe. */
        uint64_t ror_i                 : 1;  /**< [ 32: 32](R/W) [ROR] is ADDRTYPE\<0\> for info buffer write operations to buffer/info
                                                                 pair MAC memory space addresses fetched from packet output ring. ADDRTYPE\<0\> is
                                                                 the relaxed-order attribute for PCIe. */
        uint64_t es_d                  : 2;  /**< [ 31: 30](R/W) [ES] is ES\<1:0\> for data buffer write operations to buffer/info
                                                                 pair MAC memory space addresses fetched from packet output ring. ES\<1:0\> is the
                                                                 endian-swap attribute for these MAC memory space writes. */
        uint64_t nsr_d                 : 1;  /**< [ 29: 29](R/W) [NSR] is ADDRTYPE\<1\> for data buffer write operations to buffer/info
                                                                 pair MAC memory space addresses fetched from packet output ring. ADDRTYPE\<1\> is
                                                                 the no-snoop attribute for PCIe. */
        uint64_t ror_d                 : 1;  /**< [ 28: 28](R/W) [ROR] is ADDRTYPE\<0\> for data buffer write operations to buffer/info
                                                                 pair MAC memory space addresses fetched from packet output ring. ADDRTYPE\<0\> is
                                                                 the relaxed-order attribute for PCIe. */
        uint64_t es_p                  : 2;  /**< [ 27: 26](R/W) [ES_P] is ES\<1:0\> for the packet output ring reads that fetch buffer/info pointer pairs
                                                                 (from SLI_PKT()_SLIST_BADDR[ADDR]+). ES\<1:0\> is the endian-swap attribute for these
                                                                 MAC memory space reads. */
        uint64_t nsr_p                 : 1;  /**< [ 25: 25](R/W) [NSR_P] is ADDRTYPE\<1\> for the packet output ring reads that fetch buffer/info pointer
                                                                 pairs (from SLI_PKT()_SLIST_BADDR[ADDR]+). ADDRTYPE\<1\> is the no-snoop attribute for PCIe. */
        uint64_t ror_p                 : 1;  /**< [ 24: 24](R/W) [ROR_P] is ADDRTYPE\<0\> for the packet output ring reads that fetch buffer/info pointer
                                                                 pairs (from SLI_PKT()_SLIST_BADDR[ADDR]+). ADDRTYPE\<0\> is the relaxed-order attribute
                                                                 for PCIe. */
        uint64_t imode                 : 1;  /**< [ 23: 23](R/W) When IMODE=1, packet output ring is in info-pointer mode; otherwise the packet output ring
                                                                 is in buffer-pointer-only mode. */
        uint64_t isize                 : 7;  /**< [ 22: 16](R/W/H) Info bytes size (bytes) for the output port. Legal sizes are 0 to 120. Not used
                                                                 in buffer-pointer-only mode.  If a value is written that is between 120-127 then
                                                                 a value of 120 will be forced by hardware. */
        uint64_t bsize                 : 16; /**< [ 15:  0](R/W/H) Buffer size (bytes) for the output ring.  The minimum size is 128 bytes; if a value
                                                                 smaller than 128 is written, hardware will force a value of 128. */
#else /* Word 0 - Little Endian */
        uint64_t bsize                 : 16; /**< [ 15:  0](R/W/H) Buffer size (bytes) for the output ring.  The minimum size is 128 bytes; if a value
                                                                 smaller than 128 is written, hardware will force a value of 128. */
        uint64_t isize                 : 7;  /**< [ 22: 16](R/W/H) Info bytes size (bytes) for the output port. Legal sizes are 0 to 120. Not used
                                                                 in buffer-pointer-only mode.  If a value is written that is between 120-127 then
                                                                 a value of 120 will be forced by hardware. */
        uint64_t imode                 : 1;  /**< [ 23: 23](R/W) When IMODE=1, packet output ring is in info-pointer mode; otherwise the packet output ring
                                                                 is in buffer-pointer-only mode. */
        uint64_t ror_p                 : 1;  /**< [ 24: 24](R/W) [ROR_P] is ADDRTYPE\<0\> for the packet output ring reads that fetch buffer/info pointer
                                                                 pairs (from SLI_PKT()_SLIST_BADDR[ADDR]+). ADDRTYPE\<0\> is the relaxed-order attribute
                                                                 for PCIe. */
        uint64_t nsr_p                 : 1;  /**< [ 25: 25](R/W) [NSR_P] is ADDRTYPE\<1\> for the packet output ring reads that fetch buffer/info pointer
                                                                 pairs (from SLI_PKT()_SLIST_BADDR[ADDR]+). ADDRTYPE\<1\> is the no-snoop attribute for PCIe. */
        uint64_t es_p                  : 2;  /**< [ 27: 26](R/W) [ES_P] is ES\<1:0\> for the packet output ring reads that fetch buffer/info pointer pairs
                                                                 (from SLI_PKT()_SLIST_BADDR[ADDR]+). ES\<1:0\> is the endian-swap attribute for these
                                                                 MAC memory space reads. */
        uint64_t ror_d                 : 1;  /**< [ 28: 28](R/W) [ROR] is ADDRTYPE\<0\> for data buffer write operations to buffer/info
                                                                 pair MAC memory space addresses fetched from packet output ring. ADDRTYPE\<0\> is
                                                                 the relaxed-order attribute for PCIe. */
        uint64_t nsr_d                 : 1;  /**< [ 29: 29](R/W) [NSR] is ADDRTYPE\<1\> for data buffer write operations to buffer/info
                                                                 pair MAC memory space addresses fetched from packet output ring. ADDRTYPE\<1\> is
                                                                 the no-snoop attribute for PCIe. */
        uint64_t es_d                  : 2;  /**< [ 31: 30](R/W) [ES] is ES\<1:0\> for data buffer write operations to buffer/info
                                                                 pair MAC memory space addresses fetched from packet output ring. ES\<1:0\> is the
                                                                 endian-swap attribute for these MAC memory space writes. */
        uint64_t ror_i                 : 1;  /**< [ 32: 32](R/W) [ROR] is ADDRTYPE\<0\> for info buffer write operations to buffer/info
                                                                 pair MAC memory space addresses fetched from packet output ring. ADDRTYPE\<0\> is
                                                                 the relaxed-order attribute for PCIe. */
        uint64_t nsr_i                 : 1;  /**< [ 33: 33](R/W) [NSR] is ADDRTYPE\<1\> for info buffer write operations to buffer/info
                                                                 pair MAC memory space addresses fetched from packet output ring. ADDRTYPE\<1\> is
                                                                 the no-snoop attribute for PCIe. */
        uint64_t es_i                  : 2;  /**< [ 35: 34](R/W) [ES_I] is ES\<1:0\> for info buffer write operations to buffer/info
                                                                 pair MAC memory space addresses fetched from packet output ring. ES\<1:0\> is the
                                                                 endian-swap attribute for these MAC memory space writes. */
        uint64_t idle                  : 1;  /**< [ 36: 36](RO/H) Asserted when this ring has no packets in-flight. */
        uint64_t reserved_37_63        : 27;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_rx_out_control_s cn; */
};
typedef union bdk_sdpx_epfx_rx_out_control bdk_sdpx_epfx_rx_out_control_t;

static inline uint64_t BDK_SDPX_EPFX_RX_OUT_CONTROL(unsigned long a, unsigned long b, unsigned long c) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_RX_OUT_CONTROL(unsigned long a, unsigned long b, unsigned long c)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1) && (c<=63)))
        return 0x874080010150ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x1) + 0x20000ll * ((c) & 0x3f);
    __bdk_csr_fatal("SDPX_EPFX_RX_OUT_CONTROL", 3, a, b, c, 0);
}

#define typedef_BDK_SDPX_EPFX_RX_OUT_CONTROL(a,b,c) bdk_sdpx_epfx_rx_out_control_t
#define bustype_BDK_SDPX_EPFX_RX_OUT_CONTROL(a,b,c) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SDPX_EPFX_RX_OUT_CONTROL(a,b,c) "SDPX_EPFX_RX_OUT_CONTROL"
#define device_bar_BDK_SDPX_EPFX_RX_OUT_CONTROL(a,b,c) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_RX_OUT_CONTROL(a,b,c) (a)
#define arguments_BDK_SDPX_EPFX_RX_OUT_CONTROL(a,b,c) (a),(b),(c),-1

/**
 * Register (PEXP_NCB) sdp#_epf#_r#_out_enable
 *
 * SDP Packet Output Enable Register
 * This register is the enable for the output pointer rings.
 */
union bdk_sdpx_epfx_rx_out_enable
{
    uint64_t u;
    struct bdk_sdpx_epfx_rx_out_enable_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_1_63         : 63;
        uint64_t enb                   : 1;  /**< [  0:  0](R/W/H) Enable for the output ring i. This bit can be cleared by hardware if certain
                                                                 errors occur or an FLR is indicated by the remote host. It can be cleared by
                                                                 software at any time. It cannot be set unless SDP()_EPF()_R()_OUT_CONTROL[IDLE] == 0. */
#else /* Word 0 - Little Endian */
        uint64_t enb                   : 1;  /**< [  0:  0](R/W/H) Enable for the output ring i. This bit can be cleared by hardware if certain
                                                                 errors occur or an FLR is indicated by the remote host. It can be cleared by
                                                                 software at any time. It cannot be set unless SDP()_EPF()_R()_OUT_CONTROL[IDLE] == 0. */
        uint64_t reserved_1_63         : 63;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_rx_out_enable_s cn; */
};
typedef union bdk_sdpx_epfx_rx_out_enable bdk_sdpx_epfx_rx_out_enable_t;

static inline uint64_t BDK_SDPX_EPFX_RX_OUT_ENABLE(unsigned long a, unsigned long b, unsigned long c) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_RX_OUT_ENABLE(unsigned long a, unsigned long b, unsigned long c)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1) && (c<=63)))
        return 0x874080010160ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x1) + 0x20000ll * ((c) & 0x3f);
    __bdk_csr_fatal("SDPX_EPFX_RX_OUT_ENABLE", 3, a, b, c, 0);
}

#define typedef_BDK_SDPX_EPFX_RX_OUT_ENABLE(a,b,c) bdk_sdpx_epfx_rx_out_enable_t
#define bustype_BDK_SDPX_EPFX_RX_OUT_ENABLE(a,b,c) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SDPX_EPFX_RX_OUT_ENABLE(a,b,c) "SDPX_EPFX_RX_OUT_ENABLE"
#define device_bar_BDK_SDPX_EPFX_RX_OUT_ENABLE(a,b,c) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_RX_OUT_ENABLE(a,b,c) (a)
#define arguments_BDK_SDPX_EPFX_RX_OUT_ENABLE(a,b,c) (a),(b),(c),-1

/**
 * Register (PEXP_NCB) sdp#_epf#_r#_out_int_levels
 *
 * SDP Packet Output Interrupt Levels Register
 * This register contains SDP output packet interrupt levels.
 * This register is not affected by reset (including FLR) and must be initialized
 * by the VF prior to enabling the ring.
 */
union bdk_sdpx_epfx_rx_out_int_levels
{
    uint64_t u;
    struct bdk_sdpx_epfx_rx_out_int_levels_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t bmode                 : 1;  /**< [ 63: 63](R/W) Determines whether SDP()_EPF()_R()_OUT_CNTS[CNT] is a byte or packet counter. When
                                                                 [BMODE]=1,
                                                                 SDP()_EPF()_R()_OUT_CNTS[CNT] is a byte counter, else SDP()_EPF()_R()_OUT_CNTS[CNT] is a
                                                                 packet
                                                                 counter. */
        uint64_t reserved_54_62        : 9;
        uint64_t timet                 : 22; /**< [ 53: 32](R/W) Output port counter time interrupt threshold. An MSI-X interrupt will be generated
                                                                 whenever SDP()_EPF()_R()_OUT_CNTS[TIMER] \> [TIMET]. Whenever software changes the value of
                                                                 [TIMET], it should also subsequently write the corresponding SDP()_EPF()_R()_OUT_CNTS CSR
                                                                 (with
                                                                 a value of zero if desired) to ensure that the hardware correspondingly updates
                                                                 SDP()_EPF()_R()_OUT_CNTS[OUT_INT]. */
        uint64_t cnt                   : 32; /**< [ 31:  0](R/W) Output port counter interrupt threshold. An MSI-X interrupt will be generated
                                                                 whenever SDP()_EPF()_R()_OUT_CNTS[CNT] \> [CNT]. Whenever software changes the value of
                                                                 [CNT], it should also subsequently write the corresponding SDP()_EPF()_R()_OUT_CNTS CSR
                                                                 (with a
                                                                 value of zero if desired) to ensure that the hardware correspondingly updates
                                                                 SDP()_EPF()_R()_OUT_CNTS[OUT_INT]. */
#else /* Word 0 - Little Endian */
        uint64_t cnt                   : 32; /**< [ 31:  0](R/W) Output port counter interrupt threshold. An MSI-X interrupt will be generated
                                                                 whenever SDP()_EPF()_R()_OUT_CNTS[CNT] \> [CNT]. Whenever software changes the value of
                                                                 [CNT], it should also subsequently write the corresponding SDP()_EPF()_R()_OUT_CNTS CSR
                                                                 (with a
                                                                 value of zero if desired) to ensure that the hardware correspondingly updates
                                                                 SDP()_EPF()_R()_OUT_CNTS[OUT_INT]. */
        uint64_t timet                 : 22; /**< [ 53: 32](R/W) Output port counter time interrupt threshold. An MSI-X interrupt will be generated
                                                                 whenever SDP()_EPF()_R()_OUT_CNTS[TIMER] \> [TIMET]. Whenever software changes the value of
                                                                 [TIMET], it should also subsequently write the corresponding SDP()_EPF()_R()_OUT_CNTS CSR
                                                                 (with
                                                                 a value of zero if desired) to ensure that the hardware correspondingly updates
                                                                 SDP()_EPF()_R()_OUT_CNTS[OUT_INT]. */
        uint64_t reserved_54_62        : 9;
        uint64_t bmode                 : 1;  /**< [ 63: 63](R/W) Determines whether SDP()_EPF()_R()_OUT_CNTS[CNT] is a byte or packet counter. When
                                                                 [BMODE]=1,
                                                                 SDP()_EPF()_R()_OUT_CNTS[CNT] is a byte counter, else SDP()_EPF()_R()_OUT_CNTS[CNT] is a
                                                                 packet
                                                                 counter. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_rx_out_int_levels_s cn; */
};
typedef union bdk_sdpx_epfx_rx_out_int_levels bdk_sdpx_epfx_rx_out_int_levels_t;

static inline uint64_t BDK_SDPX_EPFX_RX_OUT_INT_LEVELS(unsigned long a, unsigned long b, unsigned long c) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_RX_OUT_INT_LEVELS(unsigned long a, unsigned long b, unsigned long c)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1) && (c<=63)))
        return 0x874080010110ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x1) + 0x20000ll * ((c) & 0x3f);
    __bdk_csr_fatal("SDPX_EPFX_RX_OUT_INT_LEVELS", 3, a, b, c, 0);
}

#define typedef_BDK_SDPX_EPFX_RX_OUT_INT_LEVELS(a,b,c) bdk_sdpx_epfx_rx_out_int_levels_t
#define bustype_BDK_SDPX_EPFX_RX_OUT_INT_LEVELS(a,b,c) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SDPX_EPFX_RX_OUT_INT_LEVELS(a,b,c) "SDPX_EPFX_RX_OUT_INT_LEVELS"
#define device_bar_BDK_SDPX_EPFX_RX_OUT_INT_LEVELS(a,b,c) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_RX_OUT_INT_LEVELS(a,b,c) (a)
#define arguments_BDK_SDPX_EPFX_RX_OUT_INT_LEVELS(a,b,c) (a),(b),(c),-1

/**
 * Register (PEXP_NCB) sdp#_epf#_r#_out_int_status
 *
 * SDP Output Packet Interrupt Status Register
 * This register contains interrupt status on a per-VF basis.  All rings for a given VF
 * are located in a single register. Note that access to any ring offset within a given
 * VF will return the same value.  When the PF reads any ring in this register it will
 * return the same value (64 bits each representing one ring.)
 */
union bdk_sdpx_epfx_rx_out_int_status
{
    uint64_t u;
    struct bdk_sdpx_epfx_rx_out_int_status_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t intr                  : 64; /**< [ 63:  0](RO) Packet output interrupt bit for a given VFR's ports (0..i). [INTR]\<ring\> reads
                                                                 as one whenever for the respective ring R(ring):

                                                                  * SDP()_EPF()_R()_OUT_CNTS[CNT]   \> SDP()_EPF()_R()_OUT_INT_LEVELS[CNT].

                                                                  * Or, SDP()_EPF()_R()_OUT_CNTS[TIMER] \> SDP()_EPF()_R()_OUT_INT_LEVELS[TIMET].

                                                                 [INTR] can cause an MSI-X interrupt.

                                                                 Internal:
                                                                 These interrupt bits are not cleared due to FLR becase the CNTS and
                                                                 LEVELS registers are not reset and we wish to make the interrupt state
                                                                 consistent with CNTS/LEVELS even after FLR. The CNTS register must be
                                                                 cleared by software as part of initialization after a reset (including FLR)
                                                                 which will cause the interrupt state to clear. */
#else /* Word 0 - Little Endian */
        uint64_t intr                  : 64; /**< [ 63:  0](RO) Packet output interrupt bit for a given VFR's ports (0..i). [INTR]\<ring\> reads
                                                                 as one whenever for the respective ring R(ring):

                                                                  * SDP()_EPF()_R()_OUT_CNTS[CNT]   \> SDP()_EPF()_R()_OUT_INT_LEVELS[CNT].

                                                                  * Or, SDP()_EPF()_R()_OUT_CNTS[TIMER] \> SDP()_EPF()_R()_OUT_INT_LEVELS[TIMET].

                                                                 [INTR] can cause an MSI-X interrupt.

                                                                 Internal:
                                                                 These interrupt bits are not cleared due to FLR becase the CNTS and
                                                                 LEVELS registers are not reset and we wish to make the interrupt state
                                                                 consistent with CNTS/LEVELS even after FLR. The CNTS register must be
                                                                 cleared by software as part of initialization after a reset (including FLR)
                                                                 which will cause the interrupt state to clear. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_rx_out_int_status_s cn; */
};
typedef union bdk_sdpx_epfx_rx_out_int_status bdk_sdpx_epfx_rx_out_int_status_t;

static inline uint64_t BDK_SDPX_EPFX_RX_OUT_INT_STATUS(unsigned long a, unsigned long b, unsigned long c) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_RX_OUT_INT_STATUS(unsigned long a, unsigned long b, unsigned long c)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1) && (c<=63)))
        return 0x874080010170ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x1) + 0x20000ll * ((c) & 0x3f);
    __bdk_csr_fatal("SDPX_EPFX_RX_OUT_INT_STATUS", 3, a, b, c, 0);
}

#define typedef_BDK_SDPX_EPFX_RX_OUT_INT_STATUS(a,b,c) bdk_sdpx_epfx_rx_out_int_status_t
#define bustype_BDK_SDPX_EPFX_RX_OUT_INT_STATUS(a,b,c) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SDPX_EPFX_RX_OUT_INT_STATUS(a,b,c) "SDPX_EPFX_RX_OUT_INT_STATUS"
#define device_bar_BDK_SDPX_EPFX_RX_OUT_INT_STATUS(a,b,c) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_RX_OUT_INT_STATUS(a,b,c) (a)
#define arguments_BDK_SDPX_EPFX_RX_OUT_INT_STATUS(a,b,c) (a),(b),(c),-1

/**
 * Register (PEXP_NCB) sdp#_epf#_r#_out_pkt_cnt
 *
 * SDP Packet Output Packet Count Register
 * This register contains packet counts per ring that have been written to memory by SDP.
 * The counter will wrap when it reaches its maximum value.  It should be cleared
 * before the ring is enabled for an accurate count.
 */
union bdk_sdpx_epfx_rx_out_pkt_cnt
{
    uint64_t u;
    struct bdk_sdpx_epfx_rx_out_pkt_cnt_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_36_63        : 28;
        uint64_t cnt                   : 36; /**< [ 35:  0](R/W/H) Packet count, can be written by software to any value.  If a value of 0xFFFFFFFFF is
                                                                 written to this field, it will cause this field as well as SDP()_EPF()_R()_OUT_BYTE_CNT to
                                                                 clear. */
#else /* Word 0 - Little Endian */
        uint64_t cnt                   : 36; /**< [ 35:  0](R/W/H) Packet count, can be written by software to any value.  If a value of 0xFFFFFFFFF is
                                                                 written to this field, it will cause this field as well as SDP()_EPF()_R()_OUT_BYTE_CNT to
                                                                 clear. */
        uint64_t reserved_36_63        : 28;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_rx_out_pkt_cnt_s cn; */
};
typedef union bdk_sdpx_epfx_rx_out_pkt_cnt bdk_sdpx_epfx_rx_out_pkt_cnt_t;

static inline uint64_t BDK_SDPX_EPFX_RX_OUT_PKT_CNT(unsigned long a, unsigned long b, unsigned long c) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_RX_OUT_PKT_CNT(unsigned long a, unsigned long b, unsigned long c)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1) && (c<=63)))
        return 0x874080010180ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x1) + 0x20000ll * ((c) & 0x3f);
    __bdk_csr_fatal("SDPX_EPFX_RX_OUT_PKT_CNT", 3, a, b, c, 0);
}

#define typedef_BDK_SDPX_EPFX_RX_OUT_PKT_CNT(a,b,c) bdk_sdpx_epfx_rx_out_pkt_cnt_t
#define bustype_BDK_SDPX_EPFX_RX_OUT_PKT_CNT(a,b,c) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SDPX_EPFX_RX_OUT_PKT_CNT(a,b,c) "SDPX_EPFX_RX_OUT_PKT_CNT"
#define device_bar_BDK_SDPX_EPFX_RX_OUT_PKT_CNT(a,b,c) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_RX_OUT_PKT_CNT(a,b,c) (a)
#define arguments_BDK_SDPX_EPFX_RX_OUT_PKT_CNT(a,b,c) (a),(b),(c),-1

/**
 * Register (PEXP_NCB) sdp#_epf#_r#_out_slist_baddr
 *
 * SDP Packet Ring Base Address Register
 * This register contains the base address for the output ring.
 * This register is not affected by reset (including FLR) and must be initialized
 * by the VF prior to enabling the ring.  Also, this register cannot be written
 * while either of the following conditions is true:
 *   * SDP()_EPF()_R()_OUT_CONTROL[IDLE] is clear.
 *   * Or, SDP()_EPF()_R()_OUT_ENABLE[ENB] is set.
 */
union bdk_sdpx_epfx_rx_out_slist_baddr
{
    uint64_t u;
    struct bdk_sdpx_epfx_rx_out_slist_baddr_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t addr                  : 60; /**< [ 63:  4](R/W) Base address for the output ring, which is an array with
                                                                 SDP()_EPF()_R()_OUT_SLIST_FIFO_RSIZE[RSIZE] entries, each entry being a
                                                                 SDP_BUF_INFO_PAIR_S.

                                                                 SDP()_EPF()_R()_OUT_SLIST_BADDR contains a byte address that must be 16-byte
                                                                 aligned, so SDP()_EPF()_R()_OUT_SLIST_BADDR\<3:0\> must be zero. */
        uint64_t reserved_0_3          : 4;
#else /* Word 0 - Little Endian */
        uint64_t reserved_0_3          : 4;
        uint64_t addr                  : 60; /**< [ 63:  4](R/W) Base address for the output ring, which is an array with
                                                                 SDP()_EPF()_R()_OUT_SLIST_FIFO_RSIZE[RSIZE] entries, each entry being a
                                                                 SDP_BUF_INFO_PAIR_S.

                                                                 SDP()_EPF()_R()_OUT_SLIST_BADDR contains a byte address that must be 16-byte
                                                                 aligned, so SDP()_EPF()_R()_OUT_SLIST_BADDR\<3:0\> must be zero. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_rx_out_slist_baddr_s cn; */
};
typedef union bdk_sdpx_epfx_rx_out_slist_baddr bdk_sdpx_epfx_rx_out_slist_baddr_t;

static inline uint64_t BDK_SDPX_EPFX_RX_OUT_SLIST_BADDR(unsigned long a, unsigned long b, unsigned long c) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_RX_OUT_SLIST_BADDR(unsigned long a, unsigned long b, unsigned long c)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1) && (c<=63)))
        return 0x874080010120ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x1) + 0x20000ll * ((c) & 0x3f);
    __bdk_csr_fatal("SDPX_EPFX_RX_OUT_SLIST_BADDR", 3, a, b, c, 0);
}

#define typedef_BDK_SDPX_EPFX_RX_OUT_SLIST_BADDR(a,b,c) bdk_sdpx_epfx_rx_out_slist_baddr_t
#define bustype_BDK_SDPX_EPFX_RX_OUT_SLIST_BADDR(a,b,c) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SDPX_EPFX_RX_OUT_SLIST_BADDR(a,b,c) "SDPX_EPFX_RX_OUT_SLIST_BADDR"
#define device_bar_BDK_SDPX_EPFX_RX_OUT_SLIST_BADDR(a,b,c) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_RX_OUT_SLIST_BADDR(a,b,c) (a)
#define arguments_BDK_SDPX_EPFX_RX_OUT_SLIST_BADDR(a,b,c) (a),(b),(c),-1

/**
 * Register (PEXP_NCB) sdp#_epf#_r#_out_slist_dbell
 *
 * SDP Packet Base-Address Offset and Doorbell Registers
 * This register contains the doorbell and base-address offset for the next read operation.
 * This register is not affected by reset (including FLR) and must be initialized
 * by the VF prior to enabling the ring.
 */
union bdk_sdpx_epfx_rx_out_slist_dbell
{
    uint64_t u;
    struct bdk_sdpx_epfx_rx_out_slist_dbell_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t aoff                  : 32; /**< [ 63: 32](RO/H) Address offset. The offset from the SDP()_EPF()_R()_OUT_SLIST_BADDR where the next pointer
                                                                 is read.
                                                                 A write of 0xFFFFFFFF to [DBELL] clears [DBELL] and [AOFF]. */
        uint64_t dbell                 : 32; /**< [ 31:  0](R/W/H) Pointer pair list doorbell count. Write operations to this field increments the present
                                                                 value here. Read operations return the present value. The value of this field is
                                                                 decremented as read operations are issued for scatter pointers. A write of 0xFFFFFFFF
                                                                 to this field clears [DBELL] and [AOFF]. The value of this field is in number of
                                                                 SDP_BUF_INFO_PAIR_S's.  This register should be cleared before enabling a ring. */
#else /* Word 0 - Little Endian */
        uint64_t dbell                 : 32; /**< [ 31:  0](R/W/H) Pointer pair list doorbell count. Write operations to this field increments the present
                                                                 value here. Read operations return the present value. The value of this field is
                                                                 decremented as read operations are issued for scatter pointers. A write of 0xFFFFFFFF
                                                                 to this field clears [DBELL] and [AOFF]. The value of this field is in number of
                                                                 SDP_BUF_INFO_PAIR_S's.  This register should be cleared before enabling a ring. */
        uint64_t aoff                  : 32; /**< [ 63: 32](RO/H) Address offset. The offset from the SDP()_EPF()_R()_OUT_SLIST_BADDR where the next pointer
                                                                 is read.
                                                                 A write of 0xFFFFFFFF to [DBELL] clears [DBELL] and [AOFF]. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_rx_out_slist_dbell_s cn; */
};
typedef union bdk_sdpx_epfx_rx_out_slist_dbell bdk_sdpx_epfx_rx_out_slist_dbell_t;

static inline uint64_t BDK_SDPX_EPFX_RX_OUT_SLIST_DBELL(unsigned long a, unsigned long b, unsigned long c) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_RX_OUT_SLIST_DBELL(unsigned long a, unsigned long b, unsigned long c)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1) && (c<=63)))
        return 0x874080010140ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x1) + 0x20000ll * ((c) & 0x3f);
    __bdk_csr_fatal("SDPX_EPFX_RX_OUT_SLIST_DBELL", 3, a, b, c, 0);
}

#define typedef_BDK_SDPX_EPFX_RX_OUT_SLIST_DBELL(a,b,c) bdk_sdpx_epfx_rx_out_slist_dbell_t
#define bustype_BDK_SDPX_EPFX_RX_OUT_SLIST_DBELL(a,b,c) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SDPX_EPFX_RX_OUT_SLIST_DBELL(a,b,c) "SDPX_EPFX_RX_OUT_SLIST_DBELL"
#define device_bar_BDK_SDPX_EPFX_RX_OUT_SLIST_DBELL(a,b,c) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_RX_OUT_SLIST_DBELL(a,b,c) (a)
#define arguments_BDK_SDPX_EPFX_RX_OUT_SLIST_DBELL(a,b,c) (a),(b),(c),-1

/**
 * Register (PEXP_NCB) sdp#_epf#_r#_out_slist_rsize
 *
 * SDP Packet Ring Size Register
 * This register contains the output packet ring size.
 * This register is not affected by reset (including FLR) and must be initialized
 * by the VF prior to enabling the ring.  Also, this register cannot be written
 * while either of the following conditions is true:
 *   * SDP()_EPF()_R()_OUT_CONTROL[IDLE] is clear.
 *   * Or, SDP()_EPF()_R()_OUT_ENABLE[ENB] is set.
 */
union bdk_sdpx_epfx_rx_out_slist_rsize
{
    uint64_t u;
    struct bdk_sdpx_epfx_rx_out_slist_rsize_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_32_63        : 32;
        uint64_t rsize                 : 32; /**< [ 31:  0](R/W/H) Ring size (number of SDP_BUF_INFO_PAIR_S's). This value must be 16 or
                                                                 greater. If a value is written that is less than 16, then hardware
                                                                 will force a value of 16 to be written. */
#else /* Word 0 - Little Endian */
        uint64_t rsize                 : 32; /**< [ 31:  0](R/W/H) Ring size (number of SDP_BUF_INFO_PAIR_S's). This value must be 16 or
                                                                 greater. If a value is written that is less than 16, then hardware
                                                                 will force a value of 16 to be written. */
        uint64_t reserved_32_63        : 32;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_rx_out_slist_rsize_s cn; */
};
typedef union bdk_sdpx_epfx_rx_out_slist_rsize bdk_sdpx_epfx_rx_out_slist_rsize_t;

static inline uint64_t BDK_SDPX_EPFX_RX_OUT_SLIST_RSIZE(unsigned long a, unsigned long b, unsigned long c) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_RX_OUT_SLIST_RSIZE(unsigned long a, unsigned long b, unsigned long c)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1) && (c<=63)))
        return 0x874080010130ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x1) + 0x20000ll * ((c) & 0x3f);
    __bdk_csr_fatal("SDPX_EPFX_RX_OUT_SLIST_RSIZE", 3, a, b, c, 0);
}

#define typedef_BDK_SDPX_EPFX_RX_OUT_SLIST_RSIZE(a,b,c) bdk_sdpx_epfx_rx_out_slist_rsize_t
#define bustype_BDK_SDPX_EPFX_RX_OUT_SLIST_RSIZE(a,b,c) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SDPX_EPFX_RX_OUT_SLIST_RSIZE(a,b,c) "SDPX_EPFX_RX_OUT_SLIST_RSIZE"
#define device_bar_BDK_SDPX_EPFX_RX_OUT_SLIST_RSIZE(a,b,c) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_RX_OUT_SLIST_RSIZE(a,b,c) (a)
#define arguments_BDK_SDPX_EPFX_RX_OUT_SLIST_RSIZE(a,b,c) (a),(b),(c),-1

/**
 * Register (PEXP_NCB) sdp#_epf#_r#_vf_num
 *
 * SDP Ring Error Type Register
 * These registers provide the virtual function number for each ring (both input and
 * output). They must be programmed by the PF along with SDP()_EPF()_RINFO before
 * the given ring is enabled. They are not accessible by the VF.
 *
 * All 64 registers associated with an EPF will be reset due to a PF FLR or MAC Reset.
 * These registers are not affected by VF FLR.
 */
union bdk_sdpx_epfx_rx_vf_num
{
    uint64_t u;
    struct bdk_sdpx_epfx_rx_vf_num_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_7_63         : 57;
        uint64_t vf_num                : 7;  /**< [  6:  0](R/W) The function that the ring belongs to. If equal to 0, the ring belongs
                                                                 to the physical function.  If nonzero, this field is the virtual function
                                                                 that the ring belongs to.

                                                                 [VF_NUM] configuration must match SDP()_EPF()_RINFO configuration.

                                                                 [VF_NUM] applies to the ring pair, which includes both this input
                                                                 ring and to the output ring of the same index. */
#else /* Word 0 - Little Endian */
        uint64_t vf_num                : 7;  /**< [  6:  0](R/W) The function that the ring belongs to. If equal to 0, the ring belongs
                                                                 to the physical function.  If nonzero, this field is the virtual function
                                                                 that the ring belongs to.

                                                                 [VF_NUM] configuration must match SDP()_EPF()_RINFO configuration.

                                                                 [VF_NUM] applies to the ring pair, which includes both this input
                                                                 ring and to the output ring of the same index. */
        uint64_t reserved_7_63         : 57;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_epfx_rx_vf_num_s cn; */
};
typedef union bdk_sdpx_epfx_rx_vf_num bdk_sdpx_epfx_rx_vf_num_t;

static inline uint64_t BDK_SDPX_EPFX_RX_VF_NUM(unsigned long a, unsigned long b, unsigned long c) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_EPFX_RX_VF_NUM(unsigned long a, unsigned long b, unsigned long c)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1) && (c<=63)))
        return 0x874080010500ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x1) + 0x20000ll * ((c) & 0x3f);
    __bdk_csr_fatal("SDPX_EPFX_RX_VF_NUM", 3, a, b, c, 0);
}

#define typedef_BDK_SDPX_EPFX_RX_VF_NUM(a,b,c) bdk_sdpx_epfx_rx_vf_num_t
#define bustype_BDK_SDPX_EPFX_RX_VF_NUM(a,b,c) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SDPX_EPFX_RX_VF_NUM(a,b,c) "SDPX_EPFX_RX_VF_NUM"
#define device_bar_BDK_SDPX_EPFX_RX_VF_NUM(a,b,c) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_EPFX_RX_VF_NUM(a,b,c) (a)
#define arguments_BDK_SDPX_EPFX_RX_VF_NUM(a,b,c) (a),(b),(c),-1

/**
 * Register (PEXP_NCB) sdp#_scratch#
 *
 * SDP Scratch Register
 * These registers are general purpose 64-bit scratch registers for software use.
 */
union bdk_sdpx_scratchx
{
    uint64_t u;
    struct bdk_sdpx_scratchx_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t data                  : 64; /**< [ 63:  0](R/W) The value in this register is totally software defined. */
#else /* Word 0 - Little Endian */
        uint64_t data                  : 64; /**< [ 63:  0](R/W) The value in this register is totally software defined. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_sdpx_scratchx_s cn; */
};
typedef union bdk_sdpx_scratchx bdk_sdpx_scratchx_t;

static inline uint64_t BDK_SDPX_SCRATCHX(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SDPX_SCRATCHX(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=3)))
        return 0x874080020180ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x3);
    __bdk_csr_fatal("SDPX_SCRATCHX", 2, a, b, 0, 0);
}

#define typedef_BDK_SDPX_SCRATCHX(a,b) bdk_sdpx_scratchx_t
#define bustype_BDK_SDPX_SCRATCHX(a,b) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SDPX_SCRATCHX(a,b) "SDPX_SCRATCHX"
#define device_bar_BDK_SDPX_SCRATCHX(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SDPX_SCRATCHX(a,b) (a)
#define arguments_BDK_SDPX_SCRATCHX(a,b) (a),(b),-1,-1

/**
 * Register (NCB) sli#_bar3_addr
 *
 * SLI BAR3 Address Register
 * This register configures PEM BAR3 accesses.
 */
union bdk_slix_bar3_addr
{
    uint64_t u;
    struct bdk_slix_bar3_addr_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t wvirt                 : 1;  /**< [ 63: 63](R/W) Virtual:
                                                                   0 = [RD_ADDR] is a physical addresses.
                                                                   1 = [RD_ADDR] is a virtual address. */
        uint64_t reserved_49_62        : 14;
        uint64_t rd_addr               : 30; /**< [ 48: 19](R/W) Base address for PEM BAR3 transactions that is appended to the 512KB offset.
                                                                 The reset value is the PEM base address of the EPROM,
                                                                 PEM()_EROM(). */
        uint64_t reserved_0_18         : 19;
#else /* Word 0 - Little Endian */
        uint64_t reserved_0_18         : 19;
        uint64_t rd_addr               : 30; /**< [ 48: 19](R/W) Base address for PEM BAR3 transactions that is appended to the 512KB offset.
                                                                 The reset value is the PEM base address of the EPROM,
                                                                 PEM()_EROM(). */
        uint64_t reserved_49_62        : 14;
        uint64_t wvirt                 : 1;  /**< [ 63: 63](R/W) Virtual:
                                                                   0 = [RD_ADDR] is a physical addresses.
                                                                   1 = [RD_ADDR] is a virtual address. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_bar3_addr_s cn; */
};
typedef union bdk_slix_bar3_addr bdk_slix_bar3_addr_t;

static inline uint64_t BDK_SLIX_BAR3_ADDR(unsigned long a) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_BAR3_ADDR(unsigned long a)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && (a==0))
        return 0x874001002400ll + 0x1000000000ll * ((a) & 0x0);
    __bdk_csr_fatal("SLIX_BAR3_ADDR", 1, a, 0, 0, 0);
}

#define typedef_BDK_SLIX_BAR3_ADDR(a) bdk_slix_bar3_addr_t
#define bustype_BDK_SLIX_BAR3_ADDR(a) BDK_CSR_TYPE_NCB
#define basename_BDK_SLIX_BAR3_ADDR(a) "SLIX_BAR3_ADDR"
#define device_bar_BDK_SLIX_BAR3_ADDR(a) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_BAR3_ADDR(a) (a)
#define arguments_BDK_SLIX_BAR3_ADDR(a) (a),-1,-1,-1

/**
 * Register (NCB) sli#_bist_status
 *
 * SLI BIST Status Register
 * This register contains results from BIST runs of MAC's memories: 0 = pass (or BIST in
 * progress/never run), 1 = fail.
 */
union bdk_slix_bist_status
{
    uint64_t u;
    struct bdk_slix_bist_status_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_31_63        : 33;
        uint64_t status                : 31; /**< [ 30:  0](RO) BIST status.
                                                                 Internal:
                                                                 22 = sli_nod_nfif_bstatus.
                                                                 21 = csr_region_mem_bstatus.
                                                                 20 = sncf0_ffifo_bstatus.
                                                                 19 = sndfh0_ffifo_bstatus.
                                                                 18 = sndfl0_ffifo_bstatus.
                                                                 17 = sncf1_ffifo_bstatus.
                                                                 16 = sndfh1_ffifo_bstatus.
                                                                 15 = sndfl1_ffifo_bstatus.
                                                                 14 = sncf2_ffifo_bstatus.
                                                                 13 = sndfh2_ffifo_bstatus.
                                                                 12 = sndfl2_ffifo_bstatus.
                                                                 11 = p2n_port0_tlp_cpl_fifo_bstatus.
                                                                 10 = p2n_port0_tlp_n_fifo_bstatus.
                                                                 9 = p2n_port0_tlp_p_fifo_bstatus.
                                                                 8 = p2n_port1_tlp_cpl_fifo_bstatus.
                                                                 7 = p2n_port1_tlp_n_fifo_bstatus.
                                                                 6 = p2n_port1_tlp_p_fifo_bstatus.
                                                                 5 = p2n_port2_tlp_cpl_fifo_bstatus.
                                                                 4 = p2n_port2_tlp_n_fifo_bstatus.
                                                                 3 = p2n_port2_tlp_p_fifo_bstatus.
                                                                 2 = cpl0_fifo_bstatus.
                                                                 1 = cpl1_fifo_bstatus.
                                                                 0 = cpl2_fifo_bstatus. */
#else /* Word 0 - Little Endian */
        uint64_t status                : 31; /**< [ 30:  0](RO) BIST status.
                                                                 Internal:
                                                                 22 = sli_nod_nfif_bstatus.
                                                                 21 = csr_region_mem_bstatus.
                                                                 20 = sncf0_ffifo_bstatus.
                                                                 19 = sndfh0_ffifo_bstatus.
                                                                 18 = sndfl0_ffifo_bstatus.
                                                                 17 = sncf1_ffifo_bstatus.
                                                                 16 = sndfh1_ffifo_bstatus.
                                                                 15 = sndfl1_ffifo_bstatus.
                                                                 14 = sncf2_ffifo_bstatus.
                                                                 13 = sndfh2_ffifo_bstatus.
                                                                 12 = sndfl2_ffifo_bstatus.
                                                                 11 = p2n_port0_tlp_cpl_fifo_bstatus.
                                                                 10 = p2n_port0_tlp_n_fifo_bstatus.
                                                                 9 = p2n_port0_tlp_p_fifo_bstatus.
                                                                 8 = p2n_port1_tlp_cpl_fifo_bstatus.
                                                                 7 = p2n_port1_tlp_n_fifo_bstatus.
                                                                 6 = p2n_port1_tlp_p_fifo_bstatus.
                                                                 5 = p2n_port2_tlp_cpl_fifo_bstatus.
                                                                 4 = p2n_port2_tlp_n_fifo_bstatus.
                                                                 3 = p2n_port2_tlp_p_fifo_bstatus.
                                                                 2 = cpl0_fifo_bstatus.
                                                                 1 = cpl1_fifo_bstatus.
                                                                 0 = cpl2_fifo_bstatus. */
        uint64_t reserved_31_63        : 33;
#endif /* Word 0 - End */
    } s;
    struct bdk_slix_bist_status_cn81xx
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_23_63        : 41;
        uint64_t status                : 23; /**< [ 22:  0](RO) BIST status.
                                                                 Internal:
                                                                 22 = sli_nod_nfif_bstatus.
                                                                 21 = csr_region_mem_bstatus.
                                                                 20 = sncf0_ffifo_bstatus.
                                                                 19 = sndfh0_ffifo_bstatus.
                                                                 18 = sndfl0_ffifo_bstatus.
                                                                 17 = sncf1_ffifo_bstatus.
                                                                 16 = sndfh1_ffifo_bstatus.
                                                                 15 = sndfl1_ffifo_bstatus.
                                                                 14 = sncf2_ffifo_bstatus.
                                                                 13 = sndfh2_ffifo_bstatus.
                                                                 12 = sndfl2_ffifo_bstatus.
                                                                 11 = p2n_port0_tlp_cpl_fifo_bstatus.
                                                                 10 = p2n_port0_tlp_n_fifo_bstatus.
                                                                 9 = p2n_port0_tlp_p_fifo_bstatus.
                                                                 8 = p2n_port1_tlp_cpl_fifo_bstatus.
                                                                 7 = p2n_port1_tlp_n_fifo_bstatus.
                                                                 6 = p2n_port1_tlp_p_fifo_bstatus.
                                                                 5 = p2n_port2_tlp_cpl_fifo_bstatus.
                                                                 4 = p2n_port2_tlp_n_fifo_bstatus.
                                                                 3 = p2n_port2_tlp_p_fifo_bstatus.
                                                                 2 = cpl0_fifo_bstatus.
                                                                 1 = cpl1_fifo_bstatus.
                                                                 0 = cpl2_fifo_bstatus. */
#else /* Word 0 - Little Endian */
        uint64_t status                : 23; /**< [ 22:  0](RO) BIST status.
                                                                 Internal:
                                                                 22 = sli_nod_nfif_bstatus.
                                                                 21 = csr_region_mem_bstatus.
                                                                 20 = sncf0_ffifo_bstatus.
                                                                 19 = sndfh0_ffifo_bstatus.
                                                                 18 = sndfl0_ffifo_bstatus.
                                                                 17 = sncf1_ffifo_bstatus.
                                                                 16 = sndfh1_ffifo_bstatus.
                                                                 15 = sndfl1_ffifo_bstatus.
                                                                 14 = sncf2_ffifo_bstatus.
                                                                 13 = sndfh2_ffifo_bstatus.
                                                                 12 = sndfl2_ffifo_bstatus.
                                                                 11 = p2n_port0_tlp_cpl_fifo_bstatus.
                                                                 10 = p2n_port0_tlp_n_fifo_bstatus.
                                                                 9 = p2n_port0_tlp_p_fifo_bstatus.
                                                                 8 = p2n_port1_tlp_cpl_fifo_bstatus.
                                                                 7 = p2n_port1_tlp_n_fifo_bstatus.
                                                                 6 = p2n_port1_tlp_p_fifo_bstatus.
                                                                 5 = p2n_port2_tlp_cpl_fifo_bstatus.
                                                                 4 = p2n_port2_tlp_n_fifo_bstatus.
                                                                 3 = p2n_port2_tlp_p_fifo_bstatus.
                                                                 2 = cpl0_fifo_bstatus.
                                                                 1 = cpl1_fifo_bstatus.
                                                                 0 = cpl2_fifo_bstatus. */
        uint64_t reserved_23_63        : 41;
#endif /* Word 0 - End */
    } cn81xx;
    /* struct bdk_slix_bist_status_cn81xx cn88xx; */
    struct bdk_slix_bist_status_cn83xx
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_31_63        : 33;
        uint64_t status                : 31; /**< [ 30:  0](RO/H) BIST status. One bit per memory, enumerated by SLI_RAMS_E. */
#else /* Word 0 - Little Endian */
        uint64_t status                : 31; /**< [ 30:  0](RO/H) BIST status. One bit per memory, enumerated by SLI_RAMS_E. */
        uint64_t reserved_31_63        : 33;
#endif /* Word 0 - End */
    } cn83xx;
};
typedef union bdk_slix_bist_status bdk_slix_bist_status_t;

static inline uint64_t BDK_SLIX_BIST_STATUS(unsigned long a) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_BIST_STATUS(unsigned long a)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN81XX) && (a==0))
        return 0x874001002180ll + 0x1000000000ll * ((a) & 0x0);
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && (a==0))
        return 0x874001002180ll + 0x1000000000ll * ((a) & 0x0);
    if (CAVIUM_IS_MODEL(CAVIUM_CN88XX) && (a<=1))
        return 0x874001002180ll + 0x1000000000ll * ((a) & 0x1);
    __bdk_csr_fatal("SLIX_BIST_STATUS", 1, a, 0, 0, 0);
}

#define typedef_BDK_SLIX_BIST_STATUS(a) bdk_slix_bist_status_t
#define bustype_BDK_SLIX_BIST_STATUS(a) BDK_CSR_TYPE_NCB
#define basename_BDK_SLIX_BIST_STATUS(a) "SLIX_BIST_STATUS"
#define device_bar_BDK_SLIX_BIST_STATUS(a) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_BIST_STATUS(a) (a)
#define arguments_BDK_SLIX_BIST_STATUS(a) (a),-1,-1,-1

/**
 * Register (NCB) sli#_const
 *
 * SLI Constants Register
 * This register contains constants for software discovery.
 */
union bdk_slix_const
{
    uint64_t u;
    struct bdk_slix_const_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_32_63        : 32;
        uint64_t pems                  : 32; /**< [ 31:  0](RO) Bit mask of which PEMs are connected to this SLI.
                                                                 If PEMs are fuse disabled they will still appear in this register.

                                                                 E.g. for a single SLI connected to PEM0, PEM1 and PEM2 is 0x7. If PEM1 is fuse
                                                                 disabled, still is 0x7, because software needs to continue to know that PEM2
                                                                 remains MAC number 2 as far as the SLI registers, e.g. SLI()_S2M_MAC()_CTL, are
                                                                 concerned. */
#else /* Word 0 - Little Endian */
        uint64_t pems                  : 32; /**< [ 31:  0](RO) Bit mask of which PEMs are connected to this SLI.
                                                                 If PEMs are fuse disabled they will still appear in this register.

                                                                 E.g. for a single SLI connected to PEM0, PEM1 and PEM2 is 0x7. If PEM1 is fuse
                                                                 disabled, still is 0x7, because software needs to continue to know that PEM2
                                                                 remains MAC number 2 as far as the SLI registers, e.g. SLI()_S2M_MAC()_CTL, are
                                                                 concerned. */
        uint64_t reserved_32_63        : 32;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_const_s cn; */
};
typedef union bdk_slix_const bdk_slix_const_t;

static inline uint64_t BDK_SLIX_CONST(unsigned long a) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_CONST(unsigned long a)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN81XX) && (a==0))
        return 0x874001002020ll + 0x1000000000ll * ((a) & 0x0);
    __bdk_csr_fatal("SLIX_CONST", 1, a, 0, 0, 0);
}

#define typedef_BDK_SLIX_CONST(a) bdk_slix_const_t
#define bustype_BDK_SLIX_CONST(a) BDK_CSR_TYPE_NCB
#define basename_BDK_SLIX_CONST(a) "SLIX_CONST"
#define device_bar_BDK_SLIX_CONST(a) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_CONST(a) (a)
#define arguments_BDK_SLIX_CONST(a) (a),-1,-1,-1

/**
 * Register (NCB) sli#_const1
 *
 * SLI Constants Register 1
 * This register contains constants for software discovery.
 */
union bdk_slix_const1
{
    uint64_t u;
    struct bdk_slix_const1_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_0_63         : 64;
#else /* Word 0 - Little Endian */
        uint64_t reserved_0_63         : 64;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_const1_s cn; */
};
typedef union bdk_slix_const1 bdk_slix_const1_t;

static inline uint64_t BDK_SLIX_CONST1(unsigned long a) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_CONST1(unsigned long a)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN81XX) && (a==0))
        return 0x874001002030ll + 0x1000000000ll * ((a) & 0x0);
    __bdk_csr_fatal("SLIX_CONST1", 1, a, 0, 0, 0);
}

#define typedef_BDK_SLIX_CONST1(a) bdk_slix_const1_t
#define bustype_BDK_SLIX_CONST1(a) BDK_CSR_TYPE_NCB
#define basename_BDK_SLIX_CONST1(a) "SLIX_CONST1"
#define device_bar_BDK_SLIX_CONST1(a) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_CONST1(a) (a)
#define arguments_BDK_SLIX_CONST1(a) (a),-1,-1,-1

/**
 * Register (PEXP_NCB) sli#_data_out_cnt#
 *
 * SLI Data Out Count Register
 * This register contains the EXEC data out FIFO count and the data unload counter.
 */
union bdk_slix_data_out_cntx
{
    uint64_t u;
    struct bdk_slix_data_out_cntx_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_24_63        : 40;
        uint64_t ucnt                  : 16; /**< [ 23:  8](RO/H) FIFO unload count. This counter is incremented by 1 every time a word is removed from
                                                                 data out FIFO, whose count is shown in [FCNT]. */
        uint64_t reserved_6_7          : 2;
        uint64_t fcnt                  : 6;  /**< [  5:  0](RO/H) FIFO data out count. Number of address data words presently buffered in the FIFO. */
#else /* Word 0 - Little Endian */
        uint64_t fcnt                  : 6;  /**< [  5:  0](RO/H) FIFO data out count. Number of address data words presently buffered in the FIFO. */
        uint64_t reserved_6_7          : 2;
        uint64_t ucnt                  : 16; /**< [ 23:  8](RO/H) FIFO unload count. This counter is incremented by 1 every time a word is removed from
                                                                 data out FIFO, whose count is shown in [FCNT]. */
        uint64_t reserved_24_63        : 40;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_data_out_cntx_s cn; */
};
typedef union bdk_slix_data_out_cntx bdk_slix_data_out_cntx_t;

static inline uint64_t BDK_SLIX_DATA_OUT_CNTX(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_DATA_OUT_CNTX(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN81XX) && ((a==0) && (b<=2)))
        return 0x874000001080ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x3);
    if (CAVIUM_IS_MODEL(CAVIUM_CN88XX) && ((a<=1) && (b<=2)))
        return 0x874000001080ll + 0x1000000000ll * ((a) & 0x1) + 0x10ll * ((b) & 0x3);
    __bdk_csr_fatal("SLIX_DATA_OUT_CNTX", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_DATA_OUT_CNTX(a,b) bdk_slix_data_out_cntx_t
#define bustype_BDK_SLIX_DATA_OUT_CNTX(a,b) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SLIX_DATA_OUT_CNTX(a,b) "SLIX_DATA_OUT_CNTX"
#define device_bar_BDK_SLIX_DATA_OUT_CNTX(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_DATA_OUT_CNTX(a,b) (a)
#define arguments_BDK_SLIX_DATA_OUT_CNTX(a,b) (a),(b),-1,-1

/**
 * Register (NCB) sli#_eco
 *
 * INTERNAL: SLI ECO Register
 */
union bdk_slix_eco
{
    uint64_t u;
    struct bdk_slix_eco_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_32_63        : 32;
        uint64_t eco_rw                : 32; /**< [ 31:  0](R/W) Internal:
                                                                 Reserved for ECO usage. */
#else /* Word 0 - Little Endian */
        uint64_t eco_rw                : 32; /**< [ 31:  0](R/W) Internal:
                                                                 Reserved for ECO usage. */
        uint64_t reserved_32_63        : 32;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_eco_s cn; */
};
typedef union bdk_slix_eco bdk_slix_eco_t;

static inline uint64_t BDK_SLIX_ECO(unsigned long a) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_ECO(unsigned long a)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && (a==0))
        return 0x874001002800ll + 0x1000000000ll * ((a) & 0x0);
    __bdk_csr_fatal("SLIX_ECO", 1, a, 0, 0, 0);
}

#define typedef_BDK_SLIX_ECO(a) bdk_slix_eco_t
#define bustype_BDK_SLIX_ECO(a) BDK_CSR_TYPE_NCB
#define basename_BDK_SLIX_ECO(a) "SLIX_ECO"
#define device_bar_BDK_SLIX_ECO(a) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_ECO(a) (a)
#define arguments_BDK_SLIX_ECO(a) (a),-1,-1,-1

/**
 * Register (NCB) sli#_end_merge
 *
 * SLI End Merge Register
 * Writing this register will cause a merge to end.
 */
union bdk_slix_end_merge
{
    uint64_t u;
    struct bdk_slix_end_merge_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_0_63         : 64;
#else /* Word 0 - Little Endian */
        uint64_t reserved_0_63         : 64;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_end_merge_s cn; */
};
typedef union bdk_slix_end_merge bdk_slix_end_merge_t;

static inline uint64_t BDK_SLIX_END_MERGE(unsigned long a) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_END_MERGE(unsigned long a)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN81XX) && (a==0))
        return 0x874001002300ll + 0x1000000000ll * ((a) & 0x0);
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && (a==0))
        return 0x874001002300ll + 0x1000000000ll * ((a) & 0x0);
    if (CAVIUM_IS_MODEL(CAVIUM_CN88XX) && (a<=1))
        return 0x874001002300ll + 0x1000000000ll * ((a) & 0x1);
    __bdk_csr_fatal("SLIX_END_MERGE", 1, a, 0, 0, 0);
}

#define typedef_BDK_SLIX_END_MERGE(a) bdk_slix_end_merge_t
#define bustype_BDK_SLIX_END_MERGE(a) BDK_CSR_TYPE_NCB
#define basename_BDK_SLIX_END_MERGE(a) "SLIX_END_MERGE"
#define device_bar_BDK_SLIX_END_MERGE(a) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_END_MERGE(a) (a)
#define arguments_BDK_SLIX_END_MERGE(a) (a),-1,-1,-1

/**
 * Register (PEXP_NCB) sli#_epf#_data_out_cnt
 *
 * SLI Data Out Count Register
 * This register contains the EXEC data out FIFO count and the data unload counter.
 */
union bdk_slix_epfx_data_out_cnt
{
    uint64_t u;
    struct bdk_slix_epfx_data_out_cnt_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_24_63        : 40;
        uint64_t ucnt                  : 16; /**< [ 23:  8](RO/H) FIFO unload count. This counter is incremented by 1 every time a word is removed from
                                                                 data out FIFO, whose count is shown in [FCNT]. */
        uint64_t reserved_6_7          : 2;
        uint64_t fcnt                  : 6;  /**< [  5:  0](RO/H) FIFO data out count. Number of address data words presently buffered in the FIFO. */
#else /* Word 0 - Little Endian */
        uint64_t fcnt                  : 6;  /**< [  5:  0](RO/H) FIFO data out count. Number of address data words presently buffered in the FIFO. */
        uint64_t reserved_6_7          : 2;
        uint64_t ucnt                  : 16; /**< [ 23:  8](RO/H) FIFO unload count. This counter is incremented by 1 every time a word is removed from
                                                                 data out FIFO, whose count is shown in [FCNT]. */
        uint64_t reserved_24_63        : 40;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_epfx_data_out_cnt_s cn; */
};
typedef union bdk_slix_epfx_data_out_cnt bdk_slix_epfx_data_out_cnt_t;

static inline uint64_t BDK_SLIX_EPFX_DATA_OUT_CNT(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_EPFX_DATA_OUT_CNT(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=3)))
        return 0x874080028120ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x3);
    __bdk_csr_fatal("SLIX_EPFX_DATA_OUT_CNT", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_EPFX_DATA_OUT_CNT(a,b) bdk_slix_epfx_data_out_cnt_t
#define bustype_BDK_SLIX_EPFX_DATA_OUT_CNT(a,b) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SLIX_EPFX_DATA_OUT_CNT(a,b) "SLIX_EPFX_DATA_OUT_CNT"
#define device_bar_BDK_SLIX_EPFX_DATA_OUT_CNT(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_EPFX_DATA_OUT_CNT(a,b) (a)
#define arguments_BDK_SLIX_EPFX_DATA_OUT_CNT(a,b) (a),(b),-1,-1

/**
 * Register (PEXP_NCB) sli#_epf#_dma_cnt#
 *
 * SLI DMA Count Registers
 * These registers contain the DMA count values.
 */
union bdk_slix_epfx_dma_cntx
{
    uint64_t u;
    struct bdk_slix_epfx_dma_cntx_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_32_63        : 32;
        uint64_t cnt                   : 32; /**< [ 31:  0](R/W/H) The DMA counter. SLI/DPI hardware subtracts the written value from
                                                                 the counter whenever software writes this CSR. SLI/DPI hardware increments this
                                                                 counter after completing an OUTBOUND or EXTERNAL-ONLY DMA instruction
                                                                 with DPI_DMA_INSTR_HDR_S[CA] set DPI_DMA_INSTR_HDR_S[CSEL] equal to this
                                                                 CSR index. These increments may cause interrupts.
                                                                 See SLI_EPF()_DMA_INT_LEVEL() and SLI_EPF()_DMA_RINT[DCNT,DTIME]. */
#else /* Word 0 - Little Endian */
        uint64_t cnt                   : 32; /**< [ 31:  0](R/W/H) The DMA counter. SLI/DPI hardware subtracts the written value from
                                                                 the counter whenever software writes this CSR. SLI/DPI hardware increments this
                                                                 counter after completing an OUTBOUND or EXTERNAL-ONLY DMA instruction
                                                                 with DPI_DMA_INSTR_HDR_S[CA] set DPI_DMA_INSTR_HDR_S[CSEL] equal to this
                                                                 CSR index. These increments may cause interrupts.
                                                                 See SLI_EPF()_DMA_INT_LEVEL() and SLI_EPF()_DMA_RINT[DCNT,DTIME]. */
        uint64_t reserved_32_63        : 32;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_epfx_dma_cntx_s cn; */
};
typedef union bdk_slix_epfx_dma_cntx bdk_slix_epfx_dma_cntx_t;

static inline uint64_t BDK_SLIX_EPFX_DMA_CNTX(unsigned long a, unsigned long b, unsigned long c) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_EPFX_DMA_CNTX(unsigned long a, unsigned long b, unsigned long c)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=3) && (c<=1)))
        return 0x874080028680ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x3) + 0x10ll * ((c) & 0x1);
    __bdk_csr_fatal("SLIX_EPFX_DMA_CNTX", 3, a, b, c, 0);
}

#define typedef_BDK_SLIX_EPFX_DMA_CNTX(a,b,c) bdk_slix_epfx_dma_cntx_t
#define bustype_BDK_SLIX_EPFX_DMA_CNTX(a,b,c) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SLIX_EPFX_DMA_CNTX(a,b,c) "SLIX_EPFX_DMA_CNTX"
#define device_bar_BDK_SLIX_EPFX_DMA_CNTX(a,b,c) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_EPFX_DMA_CNTX(a,b,c) (a)
#define arguments_BDK_SLIX_EPFX_DMA_CNTX(a,b,c) (a),(b),(c),-1

/**
 * Register (PEXP_NCB) sli#_epf#_dma_int_level#
 *
 * SLI DMA Interrupt Level Registers
 * These registers contain the thresholds for DMA count and timer interrupts.
 */
union bdk_slix_epfx_dma_int_levelx
{
    uint64_t u;
    struct bdk_slix_epfx_dma_int_levelx_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t tim                   : 32; /**< [ 63: 32](R/W) Whenever the SLI_EPF()_DMA_TIM()[TIM] timer exceeds this value,
                                                                 SLI_EPF()_DMA_RINT[DTIME\<x\>] is set. The SLI_EPF()_DMA_TIM()[TIM] timer
                                                                 increments every SLI clock whenever SLI_EPF()_DMA_CNT()[CNT] != 0, and is cleared
                                                                 when SLI_EPF()_DMA_CNT()[CNT] is written to a non zero value. */
        uint64_t cnt                   : 32; /**< [ 31:  0](R/W) Whenever SLI_EPF()_DMA_CNT()[CNT] exceeds this value, SLI_EPF()_DMA_RINT[DCNT\<x\>]
                                                                 is set. */
#else /* Word 0 - Little Endian */
        uint64_t cnt                   : 32; /**< [ 31:  0](R/W) Whenever SLI_EPF()_DMA_CNT()[CNT] exceeds this value, SLI_EPF()_DMA_RINT[DCNT\<x\>]
                                                                 is set. */
        uint64_t tim                   : 32; /**< [ 63: 32](R/W) Whenever the SLI_EPF()_DMA_TIM()[TIM] timer exceeds this value,
                                                                 SLI_EPF()_DMA_RINT[DTIME\<x\>] is set. The SLI_EPF()_DMA_TIM()[TIM] timer
                                                                 increments every SLI clock whenever SLI_EPF()_DMA_CNT()[CNT] != 0, and is cleared
                                                                 when SLI_EPF()_DMA_CNT()[CNT] is written to a non zero value. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_epfx_dma_int_levelx_s cn; */
};
typedef union bdk_slix_epfx_dma_int_levelx bdk_slix_epfx_dma_int_levelx_t;

static inline uint64_t BDK_SLIX_EPFX_DMA_INT_LEVELX(unsigned long a, unsigned long b, unsigned long c) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_EPFX_DMA_INT_LEVELX(unsigned long a, unsigned long b, unsigned long c)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=3) && (c<=1)))
        return 0x874080028600ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x3) + 0x10ll * ((c) & 0x1);
    __bdk_csr_fatal("SLIX_EPFX_DMA_INT_LEVELX", 3, a, b, c, 0);
}

#define typedef_BDK_SLIX_EPFX_DMA_INT_LEVELX(a,b,c) bdk_slix_epfx_dma_int_levelx_t
#define bustype_BDK_SLIX_EPFX_DMA_INT_LEVELX(a,b,c) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SLIX_EPFX_DMA_INT_LEVELX(a,b,c) "SLIX_EPFX_DMA_INT_LEVELX"
#define device_bar_BDK_SLIX_EPFX_DMA_INT_LEVELX(a,b,c) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_EPFX_DMA_INT_LEVELX(a,b,c) (a)
#define arguments_BDK_SLIX_EPFX_DMA_INT_LEVELX(a,b,c) (a),(b),(c),-1

/**
 * Register (PEXP_NCB) sli#_epf#_dma_rint
 *
 * SLI/DPI DTIME/DCNT/DMAFI Interrupt Registers
 * These registers contain interrupts related to the DPI DMA engines.
 * The given register associated with an EPF will be reset due to a PF FLR or MAC reset.
 * These registers are not affected by VF FLR.
 */
union bdk_slix_epfx_dma_rint
{
    uint64_t u;
    struct bdk_slix_epfx_dma_rint_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_6_63         : 58;
        uint64_t dtime                 : 2;  /**< [  5:  4](R/W1C/H) Whenever SLI_EPF()_DMA_CNT()[CNT] is not 0, the SLI_EPF()_DMA_TIM()[TIM]
                                                                 timer increments every SLI clock. [DTIME]\<x\> is set whenever
                                                                 SLI_EPF()_DMA_TIM()[TIM] \> SLI_EPF()_DMA_INT_LEVEL()[TIM].
                                                                 [DTIME]\<x\> is cleared when writing a non zero value to SLI_EPF()_DMA_CNT()[CNT]
                                                                 causing SLI_EPF()_DMA_TIM()[TIM] to clear to 0 and
                                                                 SLI_EPF()_DMA_TIM()[TIM] to fall below SLI_EPF()_DMA_INT_LEVEL()[TIM]. */
        uint64_t dcnt                  : 2;  /**< [  3:  2](R/W1C/H) [DCNT]\<x\> is set whenever SLI_EPF()_DMA_CNT()[CNT] \> SLI_EPF()_DMA_INT_LEVEL()[CNT].
                                                                 [DCNT]\<x\> is normally cleared by decreasing SLI_EPF()_DMA_CNT()[CNT]. */
        uint64_t dmafi                 : 2;  /**< [  1:  0](R/W1C/H) DMA set forced interrupts. Set by SLI/DPI after completing a DPI DMA
                                                                 Instruction with DPI_DMA_INSTR_HDR_S[FI] set. */
#else /* Word 0 - Little Endian */
        uint64_t dmafi                 : 2;  /**< [  1:  0](R/W1C/H) DMA set forced interrupts. Set by SLI/DPI after completing a DPI DMA
                                                                 Instruction with DPI_DMA_INSTR_HDR_S[FI] set. */
        uint64_t dcnt                  : 2;  /**< [  3:  2](R/W1C/H) [DCNT]\<x\> is set whenever SLI_EPF()_DMA_CNT()[CNT] \> SLI_EPF()_DMA_INT_LEVEL()[CNT].
                                                                 [DCNT]\<x\> is normally cleared by decreasing SLI_EPF()_DMA_CNT()[CNT]. */
        uint64_t dtime                 : 2;  /**< [  5:  4](R/W1C/H) Whenever SLI_EPF()_DMA_CNT()[CNT] is not 0, the SLI_EPF()_DMA_TIM()[TIM]
                                                                 timer increments every SLI clock. [DTIME]\<x\> is set whenever
                                                                 SLI_EPF()_DMA_TIM()[TIM] \> SLI_EPF()_DMA_INT_LEVEL()[TIM].
                                                                 [DTIME]\<x\> is cleared when writing a non zero value to SLI_EPF()_DMA_CNT()[CNT]
                                                                 causing SLI_EPF()_DMA_TIM()[TIM] to clear to 0 and
                                                                 SLI_EPF()_DMA_TIM()[TIM] to fall below SLI_EPF()_DMA_INT_LEVEL()[TIM]. */
        uint64_t reserved_6_63         : 58;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_epfx_dma_rint_s cn; */
};
typedef union bdk_slix_epfx_dma_rint bdk_slix_epfx_dma_rint_t;

static inline uint64_t BDK_SLIX_EPFX_DMA_RINT(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_EPFX_DMA_RINT(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=3)))
        return 0x874080028500ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x3);
    __bdk_csr_fatal("SLIX_EPFX_DMA_RINT", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_EPFX_DMA_RINT(a,b) bdk_slix_epfx_dma_rint_t
#define bustype_BDK_SLIX_EPFX_DMA_RINT(a,b) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SLIX_EPFX_DMA_RINT(a,b) "SLIX_EPFX_DMA_RINT"
#define device_bar_BDK_SLIX_EPFX_DMA_RINT(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_EPFX_DMA_RINT(a,b) (a)
#define arguments_BDK_SLIX_EPFX_DMA_RINT(a,b) (a),(b),-1,-1

/**
 * Register (PEXP_NCB) sli#_epf#_dma_rint_ena_w1c
 *
 * SLI/DPI DTIME/DCNT/DMAFI Interrupt Remote Enable Clear Registers
 * This register clears interrupt enable bits.
 */
union bdk_slix_epfx_dma_rint_ena_w1c
{
    uint64_t u;
    struct bdk_slix_epfx_dma_rint_ena_w1c_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_6_63         : 58;
        uint64_t dtime                 : 2;  /**< [  5:  4](R/W1C/H) Reads or clears enable for SLI(0)_EPF(0..3)_DMA_RINT[DTIME]. */
        uint64_t dcnt                  : 2;  /**< [  3:  2](R/W1C/H) Reads or clears enable for SLI(0)_EPF(0..3)_DMA_RINT[DCNT]. */
        uint64_t dmafi                 : 2;  /**< [  1:  0](R/W1C/H) Reads or clears enable for SLI(0)_EPF(0..3)_DMA_RINT[DMAFI]. */
#else /* Word 0 - Little Endian */
        uint64_t dmafi                 : 2;  /**< [  1:  0](R/W1C/H) Reads or clears enable for SLI(0)_EPF(0..3)_DMA_RINT[DMAFI]. */
        uint64_t dcnt                  : 2;  /**< [  3:  2](R/W1C/H) Reads or clears enable for SLI(0)_EPF(0..3)_DMA_RINT[DCNT]. */
        uint64_t dtime                 : 2;  /**< [  5:  4](R/W1C/H) Reads or clears enable for SLI(0)_EPF(0..3)_DMA_RINT[DTIME]. */
        uint64_t reserved_6_63         : 58;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_epfx_dma_rint_ena_w1c_s cn; */
};
typedef union bdk_slix_epfx_dma_rint_ena_w1c bdk_slix_epfx_dma_rint_ena_w1c_t;

static inline uint64_t BDK_SLIX_EPFX_DMA_RINT_ENA_W1C(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_EPFX_DMA_RINT_ENA_W1C(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=3)))
        return 0x874080028540ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x3);
    __bdk_csr_fatal("SLIX_EPFX_DMA_RINT_ENA_W1C", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_EPFX_DMA_RINT_ENA_W1C(a,b) bdk_slix_epfx_dma_rint_ena_w1c_t
#define bustype_BDK_SLIX_EPFX_DMA_RINT_ENA_W1C(a,b) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SLIX_EPFX_DMA_RINT_ENA_W1C(a,b) "SLIX_EPFX_DMA_RINT_ENA_W1C"
#define device_bar_BDK_SLIX_EPFX_DMA_RINT_ENA_W1C(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_EPFX_DMA_RINT_ENA_W1C(a,b) (a)
#define arguments_BDK_SLIX_EPFX_DMA_RINT_ENA_W1C(a,b) (a),(b),-1,-1

/**
 * Register (PEXP_NCB) sli#_epf#_dma_rint_ena_w1s
 *
 * SLI/DPI DTIME/DCNT/DMAFI Interrupt Remote Enable Set Registers
 * This register sets interrupt enable bits.
 */
union bdk_slix_epfx_dma_rint_ena_w1s
{
    uint64_t u;
    struct bdk_slix_epfx_dma_rint_ena_w1s_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_6_63         : 58;
        uint64_t dtime                 : 2;  /**< [  5:  4](R/W1S/H) Reads or sets enable for SLI(0)_EPF(0..3)_DMA_RINT[DTIME]. */
        uint64_t dcnt                  : 2;  /**< [  3:  2](R/W1S/H) Reads or sets enable for SLI(0)_EPF(0..3)_DMA_RINT[DCNT]. */
        uint64_t dmafi                 : 2;  /**< [  1:  0](R/W1S/H) Reads or sets enable for SLI(0)_EPF(0..3)_DMA_RINT[DMAFI]. */
#else /* Word 0 - Little Endian */
        uint64_t dmafi                 : 2;  /**< [  1:  0](R/W1S/H) Reads or sets enable for SLI(0)_EPF(0..3)_DMA_RINT[DMAFI]. */
        uint64_t dcnt                  : 2;  /**< [  3:  2](R/W1S/H) Reads or sets enable for SLI(0)_EPF(0..3)_DMA_RINT[DCNT]. */
        uint64_t dtime                 : 2;  /**< [  5:  4](R/W1S/H) Reads or sets enable for SLI(0)_EPF(0..3)_DMA_RINT[DTIME]. */
        uint64_t reserved_6_63         : 58;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_epfx_dma_rint_ena_w1s_s cn; */
};
typedef union bdk_slix_epfx_dma_rint_ena_w1s bdk_slix_epfx_dma_rint_ena_w1s_t;

static inline uint64_t BDK_SLIX_EPFX_DMA_RINT_ENA_W1S(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_EPFX_DMA_RINT_ENA_W1S(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=3)))
        return 0x874080028550ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x3);
    __bdk_csr_fatal("SLIX_EPFX_DMA_RINT_ENA_W1S", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_EPFX_DMA_RINT_ENA_W1S(a,b) bdk_slix_epfx_dma_rint_ena_w1s_t
#define bustype_BDK_SLIX_EPFX_DMA_RINT_ENA_W1S(a,b) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SLIX_EPFX_DMA_RINT_ENA_W1S(a,b) "SLIX_EPFX_DMA_RINT_ENA_W1S"
#define device_bar_BDK_SLIX_EPFX_DMA_RINT_ENA_W1S(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_EPFX_DMA_RINT_ENA_W1S(a,b) (a)
#define arguments_BDK_SLIX_EPFX_DMA_RINT_ENA_W1S(a,b) (a),(b),-1,-1

/**
 * Register (PEXP_NCB) sli#_epf#_dma_rint_w1s
 *
 * SLI/DPI DTIME/DCNT/DMAFI Interrupt Set Registers
 * This register sets interrupt bits.
 */
union bdk_slix_epfx_dma_rint_w1s
{
    uint64_t u;
    struct bdk_slix_epfx_dma_rint_w1s_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_6_63         : 58;
        uint64_t dtime                 : 2;  /**< [  5:  4](R/W1S/H) Reads or sets SLI(0)_EPF(0..3)_DMA_RINT[DTIME]. */
        uint64_t dcnt                  : 2;  /**< [  3:  2](R/W1S/H) Reads or sets SLI(0)_EPF(0..3)_DMA_RINT[DCNT]. */
        uint64_t dmafi                 : 2;  /**< [  1:  0](R/W1S/H) Reads or sets SLI(0)_EPF(0..3)_DMA_RINT[DMAFI]. */
#else /* Word 0 - Little Endian */
        uint64_t dmafi                 : 2;  /**< [  1:  0](R/W1S/H) Reads or sets SLI(0)_EPF(0..3)_DMA_RINT[DMAFI]. */
        uint64_t dcnt                  : 2;  /**< [  3:  2](R/W1S/H) Reads or sets SLI(0)_EPF(0..3)_DMA_RINT[DCNT]. */
        uint64_t dtime                 : 2;  /**< [  5:  4](R/W1S/H) Reads or sets SLI(0)_EPF(0..3)_DMA_RINT[DTIME]. */
        uint64_t reserved_6_63         : 58;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_epfx_dma_rint_w1s_s cn; */
};
typedef union bdk_slix_epfx_dma_rint_w1s bdk_slix_epfx_dma_rint_w1s_t;

static inline uint64_t BDK_SLIX_EPFX_DMA_RINT_W1S(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_EPFX_DMA_RINT_W1S(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=3)))
        return 0x874080028510ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x3);
    __bdk_csr_fatal("SLIX_EPFX_DMA_RINT_W1S", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_EPFX_DMA_RINT_W1S(a,b) bdk_slix_epfx_dma_rint_w1s_t
#define bustype_BDK_SLIX_EPFX_DMA_RINT_W1S(a,b) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SLIX_EPFX_DMA_RINT_W1S(a,b) "SLIX_EPFX_DMA_RINT_W1S"
#define device_bar_BDK_SLIX_EPFX_DMA_RINT_W1S(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_EPFX_DMA_RINT_W1S(a,b) (a)
#define arguments_BDK_SLIX_EPFX_DMA_RINT_W1S(a,b) (a),(b),-1,-1

/**
 * Register (PEXP_NCB) sli#_epf#_dma_tim#
 *
 * SLI DMA Timer Registers
 * These registers contain the DMA timer values.
 */
union bdk_slix_epfx_dma_timx
{
    uint64_t u;
    struct bdk_slix_epfx_dma_timx_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_32_63        : 32;
        uint64_t tim                   : 32; /**< [ 31:  0](RO/H) The DMA timer value. The timer increments when
                                                                 SLI_EPF()_DMA_CNT()[CNT]!=0 and clears when SLI_EPF()_DMA_RINT[DTIME\<x\>] is written with
                                                                 one. */
#else /* Word 0 - Little Endian */
        uint64_t tim                   : 32; /**< [ 31:  0](RO/H) The DMA timer value. The timer increments when
                                                                 SLI_EPF()_DMA_CNT()[CNT]!=0 and clears when SLI_EPF()_DMA_RINT[DTIME\<x\>] is written with
                                                                 one. */
        uint64_t reserved_32_63        : 32;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_epfx_dma_timx_s cn; */
};
typedef union bdk_slix_epfx_dma_timx bdk_slix_epfx_dma_timx_t;

static inline uint64_t BDK_SLIX_EPFX_DMA_TIMX(unsigned long a, unsigned long b, unsigned long c) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_EPFX_DMA_TIMX(unsigned long a, unsigned long b, unsigned long c)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=3) && (c<=1)))
        return 0x874080028700ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x3) + 0x10ll * ((c) & 0x1);
    __bdk_csr_fatal("SLIX_EPFX_DMA_TIMX", 3, a, b, c, 0);
}

#define typedef_BDK_SLIX_EPFX_DMA_TIMX(a,b,c) bdk_slix_epfx_dma_timx_t
#define bustype_BDK_SLIX_EPFX_DMA_TIMX(a,b,c) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SLIX_EPFX_DMA_TIMX(a,b,c) "SLIX_EPFX_DMA_TIMX"
#define device_bar_BDK_SLIX_EPFX_DMA_TIMX(a,b,c) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_EPFX_DMA_TIMX(a,b,c) (a)
#define arguments_BDK_SLIX_EPFX_DMA_TIMX(a,b,c) (a),(b),(c),-1

/**
 * Register (NCB) sli#_epf#_dma_vf_lint
 *
 * SLI DMA Error Response VF Bit Array Registers
 * When an error response is received for a VF PP transaction read, the appropriate VF indexed
 * bit is set.  The appropriate PF should read the appropriate register.
 * These registers are only valid for PEM0 PF0 and PEM2 PF0.
 */
union bdk_slix_epfx_dma_vf_lint
{
    uint64_t u;
    struct bdk_slix_epfx_dma_vf_lint_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t vf_int                : 64; /**< [ 63:  0](R/W1C/H) When an error response is received for a VF DMA transaction read, the appropriate VF
                                                                 indexed bit is set. */
#else /* Word 0 - Little Endian */
        uint64_t vf_int                : 64; /**< [ 63:  0](R/W1C/H) When an error response is received for a VF DMA transaction read, the appropriate VF
                                                                 indexed bit is set. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_epfx_dma_vf_lint_s cn; */
};
typedef union bdk_slix_epfx_dma_vf_lint bdk_slix_epfx_dma_vf_lint_t;

static inline uint64_t BDK_SLIX_EPFX_DMA_VF_LINT(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_EPFX_DMA_VF_LINT(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1)))
        return 0x874000002000ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x1);
    __bdk_csr_fatal("SLIX_EPFX_DMA_VF_LINT", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_EPFX_DMA_VF_LINT(a,b) bdk_slix_epfx_dma_vf_lint_t
#define bustype_BDK_SLIX_EPFX_DMA_VF_LINT(a,b) BDK_CSR_TYPE_NCB
#define basename_BDK_SLIX_EPFX_DMA_VF_LINT(a,b) "SLIX_EPFX_DMA_VF_LINT"
#define device_bar_BDK_SLIX_EPFX_DMA_VF_LINT(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_EPFX_DMA_VF_LINT(a,b) (a)
#define arguments_BDK_SLIX_EPFX_DMA_VF_LINT(a,b) (a),(b),-1,-1

/**
 * Register (NCB) sli#_epf#_dma_vf_lint_ena_w1c
 *
 * SLI DMA Error Response VF Bit Array Local Enable Clear Registers
 * This register clears interrupt enable bits.
 */
union bdk_slix_epfx_dma_vf_lint_ena_w1c
{
    uint64_t u;
    struct bdk_slix_epfx_dma_vf_lint_ena_w1c_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t vf_int                : 64; /**< [ 63:  0](R/W1C/H) Reads or clears enable for SLI(0)_EPF(0..1)_DMA_VF_LINT[VF_INT]. */
#else /* Word 0 - Little Endian */
        uint64_t vf_int                : 64; /**< [ 63:  0](R/W1C/H) Reads or clears enable for SLI(0)_EPF(0..1)_DMA_VF_LINT[VF_INT]. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_epfx_dma_vf_lint_ena_w1c_s cn; */
};
typedef union bdk_slix_epfx_dma_vf_lint_ena_w1c bdk_slix_epfx_dma_vf_lint_ena_w1c_t;

static inline uint64_t BDK_SLIX_EPFX_DMA_VF_LINT_ENA_W1C(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_EPFX_DMA_VF_LINT_ENA_W1C(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1)))
        return 0x874000002200ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x1);
    __bdk_csr_fatal("SLIX_EPFX_DMA_VF_LINT_ENA_W1C", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_EPFX_DMA_VF_LINT_ENA_W1C(a,b) bdk_slix_epfx_dma_vf_lint_ena_w1c_t
#define bustype_BDK_SLIX_EPFX_DMA_VF_LINT_ENA_W1C(a,b) BDK_CSR_TYPE_NCB
#define basename_BDK_SLIX_EPFX_DMA_VF_LINT_ENA_W1C(a,b) "SLIX_EPFX_DMA_VF_LINT_ENA_W1C"
#define device_bar_BDK_SLIX_EPFX_DMA_VF_LINT_ENA_W1C(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_EPFX_DMA_VF_LINT_ENA_W1C(a,b) (a)
#define arguments_BDK_SLIX_EPFX_DMA_VF_LINT_ENA_W1C(a,b) (a),(b),-1,-1

/**
 * Register (NCB) sli#_epf#_dma_vf_lint_ena_w1s
 *
 * SLI DMA Error Response VF Bit Array Local Enable Set Registers
 * This register sets interrupt enable bits.
 */
union bdk_slix_epfx_dma_vf_lint_ena_w1s
{
    uint64_t u;
    struct bdk_slix_epfx_dma_vf_lint_ena_w1s_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t vf_int                : 64; /**< [ 63:  0](R/W1S/H) Reads or sets enable for SLI(0)_EPF(0..1)_DMA_VF_LINT[VF_INT]. */
#else /* Word 0 - Little Endian */
        uint64_t vf_int                : 64; /**< [ 63:  0](R/W1S/H) Reads or sets enable for SLI(0)_EPF(0..1)_DMA_VF_LINT[VF_INT]. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_epfx_dma_vf_lint_ena_w1s_s cn; */
};
typedef union bdk_slix_epfx_dma_vf_lint_ena_w1s bdk_slix_epfx_dma_vf_lint_ena_w1s_t;

static inline uint64_t BDK_SLIX_EPFX_DMA_VF_LINT_ENA_W1S(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_EPFX_DMA_VF_LINT_ENA_W1S(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1)))
        return 0x874000002300ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x1);
    __bdk_csr_fatal("SLIX_EPFX_DMA_VF_LINT_ENA_W1S", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_EPFX_DMA_VF_LINT_ENA_W1S(a,b) bdk_slix_epfx_dma_vf_lint_ena_w1s_t
#define bustype_BDK_SLIX_EPFX_DMA_VF_LINT_ENA_W1S(a,b) BDK_CSR_TYPE_NCB
#define basename_BDK_SLIX_EPFX_DMA_VF_LINT_ENA_W1S(a,b) "SLIX_EPFX_DMA_VF_LINT_ENA_W1S"
#define device_bar_BDK_SLIX_EPFX_DMA_VF_LINT_ENA_W1S(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_EPFX_DMA_VF_LINT_ENA_W1S(a,b) (a)
#define arguments_BDK_SLIX_EPFX_DMA_VF_LINT_ENA_W1S(a,b) (a),(b),-1,-1

/**
 * Register (NCB) sli#_epf#_dma_vf_lint_w1s
 *
 * SLI DMA Error Response VF Bit Array Set Registers
 * This register sets interrupt bits.
 */
union bdk_slix_epfx_dma_vf_lint_w1s
{
    uint64_t u;
    struct bdk_slix_epfx_dma_vf_lint_w1s_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t vf_int                : 64; /**< [ 63:  0](R/W1S/H) Reads or sets SLI(0)_EPF(0..1)_DMA_VF_LINT[VF_INT]. */
#else /* Word 0 - Little Endian */
        uint64_t vf_int                : 64; /**< [ 63:  0](R/W1S/H) Reads or sets SLI(0)_EPF(0..1)_DMA_VF_LINT[VF_INT]. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_epfx_dma_vf_lint_w1s_s cn; */
};
typedef union bdk_slix_epfx_dma_vf_lint_w1s bdk_slix_epfx_dma_vf_lint_w1s_t;

static inline uint64_t BDK_SLIX_EPFX_DMA_VF_LINT_W1S(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_EPFX_DMA_VF_LINT_W1S(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1)))
        return 0x874000002100ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x1);
    __bdk_csr_fatal("SLIX_EPFX_DMA_VF_LINT_W1S", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_EPFX_DMA_VF_LINT_W1S(a,b) bdk_slix_epfx_dma_vf_lint_w1s_t
#define bustype_BDK_SLIX_EPFX_DMA_VF_LINT_W1S(a,b) BDK_CSR_TYPE_NCB
#define basename_BDK_SLIX_EPFX_DMA_VF_LINT_W1S(a,b) "SLIX_EPFX_DMA_VF_LINT_W1S"
#define device_bar_BDK_SLIX_EPFX_DMA_VF_LINT_W1S(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_EPFX_DMA_VF_LINT_W1S(a,b) (a)
#define arguments_BDK_SLIX_EPFX_DMA_VF_LINT_W1S(a,b) (a),(b),-1,-1

/**
 * Register (PEXP_NCB) sli#_epf#_dma_vf_rint
 *
 * SLI DMA Error Response VF Bit Array Registers
 * When an error response is received for a VF PP transaction read, the appropriate VF indexed
 * bit is set.  The appropriate PF should read the appropriate register.
 * The given register associated with an EPF will be reset due to a PF FLR or MAC reset.
 * These registers are not affected by VF FLR.
 * These registers are only valid for PEM0 PF0 and PEM2 PF0.
 */
union bdk_slix_epfx_dma_vf_rint
{
    uint64_t u;
    struct bdk_slix_epfx_dma_vf_rint_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t vf_int                : 64; /**< [ 63:  0](R/W1C/H) When an error response is received for a VF DMA transaction read, the appropriate VF
                                                                 indexed bit is set. */
#else /* Word 0 - Little Endian */
        uint64_t vf_int                : 64; /**< [ 63:  0](R/W1C/H) When an error response is received for a VF DMA transaction read, the appropriate VF
                                                                 indexed bit is set. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_epfx_dma_vf_rint_s cn; */
};
typedef union bdk_slix_epfx_dma_vf_rint bdk_slix_epfx_dma_vf_rint_t;

static inline uint64_t BDK_SLIX_EPFX_DMA_VF_RINT(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_EPFX_DMA_VF_RINT(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1)))
        return 0x874080028400ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x1);
    __bdk_csr_fatal("SLIX_EPFX_DMA_VF_RINT", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_EPFX_DMA_VF_RINT(a,b) bdk_slix_epfx_dma_vf_rint_t
#define bustype_BDK_SLIX_EPFX_DMA_VF_RINT(a,b) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SLIX_EPFX_DMA_VF_RINT(a,b) "SLIX_EPFX_DMA_VF_RINT"
#define device_bar_BDK_SLIX_EPFX_DMA_VF_RINT(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_EPFX_DMA_VF_RINT(a,b) (a)
#define arguments_BDK_SLIX_EPFX_DMA_VF_RINT(a,b) (a),(b),-1,-1

/**
 * Register (PEXP_NCB) sli#_epf#_dma_vf_rint_ena_w1c
 *
 * SLI DMA Error Response VF Bit Array Local Enable Clear Registers
 * This register clears interrupt enable bits.
 */
union bdk_slix_epfx_dma_vf_rint_ena_w1c
{
    uint64_t u;
    struct bdk_slix_epfx_dma_vf_rint_ena_w1c_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t vf_int                : 64; /**< [ 63:  0](R/W1C/H) Reads or clears enable for SLI(0)_EPF(0..1)_DMA_VF_RINT[VF_INT]. */
#else /* Word 0 - Little Endian */
        uint64_t vf_int                : 64; /**< [ 63:  0](R/W1C/H) Reads or clears enable for SLI(0)_EPF(0..1)_DMA_VF_RINT[VF_INT]. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_epfx_dma_vf_rint_ena_w1c_s cn; */
};
typedef union bdk_slix_epfx_dma_vf_rint_ena_w1c bdk_slix_epfx_dma_vf_rint_ena_w1c_t;

static inline uint64_t BDK_SLIX_EPFX_DMA_VF_RINT_ENA_W1C(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_EPFX_DMA_VF_RINT_ENA_W1C(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1)))
        return 0x874080028420ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x1);
    __bdk_csr_fatal("SLIX_EPFX_DMA_VF_RINT_ENA_W1C", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_EPFX_DMA_VF_RINT_ENA_W1C(a,b) bdk_slix_epfx_dma_vf_rint_ena_w1c_t
#define bustype_BDK_SLIX_EPFX_DMA_VF_RINT_ENA_W1C(a,b) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SLIX_EPFX_DMA_VF_RINT_ENA_W1C(a,b) "SLIX_EPFX_DMA_VF_RINT_ENA_W1C"
#define device_bar_BDK_SLIX_EPFX_DMA_VF_RINT_ENA_W1C(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_EPFX_DMA_VF_RINT_ENA_W1C(a,b) (a)
#define arguments_BDK_SLIX_EPFX_DMA_VF_RINT_ENA_W1C(a,b) (a),(b),-1,-1

/**
 * Register (PEXP_NCB) sli#_epf#_dma_vf_rint_ena_w1s
 *
 * SLI DMA Error Response VF Bit Array Local Enable Set Registers
 * This register sets interrupt enable bits.
 */
union bdk_slix_epfx_dma_vf_rint_ena_w1s
{
    uint64_t u;
    struct bdk_slix_epfx_dma_vf_rint_ena_w1s_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t vf_int                : 64; /**< [ 63:  0](R/W1S/H) Reads or sets enable for SLI(0)_EPF(0..1)_DMA_VF_RINT[VF_INT]. */
#else /* Word 0 - Little Endian */
        uint64_t vf_int                : 64; /**< [ 63:  0](R/W1S/H) Reads or sets enable for SLI(0)_EPF(0..1)_DMA_VF_RINT[VF_INT]. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_epfx_dma_vf_rint_ena_w1s_s cn; */
};
typedef union bdk_slix_epfx_dma_vf_rint_ena_w1s bdk_slix_epfx_dma_vf_rint_ena_w1s_t;

static inline uint64_t BDK_SLIX_EPFX_DMA_VF_RINT_ENA_W1S(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_EPFX_DMA_VF_RINT_ENA_W1S(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1)))
        return 0x874080028430ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x1);
    __bdk_csr_fatal("SLIX_EPFX_DMA_VF_RINT_ENA_W1S", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_EPFX_DMA_VF_RINT_ENA_W1S(a,b) bdk_slix_epfx_dma_vf_rint_ena_w1s_t
#define bustype_BDK_SLIX_EPFX_DMA_VF_RINT_ENA_W1S(a,b) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SLIX_EPFX_DMA_VF_RINT_ENA_W1S(a,b) "SLIX_EPFX_DMA_VF_RINT_ENA_W1S"
#define device_bar_BDK_SLIX_EPFX_DMA_VF_RINT_ENA_W1S(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_EPFX_DMA_VF_RINT_ENA_W1S(a,b) (a)
#define arguments_BDK_SLIX_EPFX_DMA_VF_RINT_ENA_W1S(a,b) (a),(b),-1,-1

/**
 * Register (PEXP_NCB) sli#_epf#_dma_vf_rint_w1s
 *
 * SLI DMA Error Response VF Bit Array Set Registers
 * This register sets interrupt bits.
 */
union bdk_slix_epfx_dma_vf_rint_w1s
{
    uint64_t u;
    struct bdk_slix_epfx_dma_vf_rint_w1s_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t vf_int                : 64; /**< [ 63:  0](R/W1S/H) Reads or sets SLI(0)_EPF(0..1)_DMA_VF_RINT[VF_INT]. */
#else /* Word 0 - Little Endian */
        uint64_t vf_int                : 64; /**< [ 63:  0](R/W1S/H) Reads or sets SLI(0)_EPF(0..1)_DMA_VF_RINT[VF_INT]. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_epfx_dma_vf_rint_w1s_s cn; */
};
typedef union bdk_slix_epfx_dma_vf_rint_w1s bdk_slix_epfx_dma_vf_rint_w1s_t;

static inline uint64_t BDK_SLIX_EPFX_DMA_VF_RINT_W1S(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_EPFX_DMA_VF_RINT_W1S(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1)))
        return 0x874080028410ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x1);
    __bdk_csr_fatal("SLIX_EPFX_DMA_VF_RINT_W1S", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_EPFX_DMA_VF_RINT_W1S(a,b) bdk_slix_epfx_dma_vf_rint_w1s_t
#define bustype_BDK_SLIX_EPFX_DMA_VF_RINT_W1S(a,b) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SLIX_EPFX_DMA_VF_RINT_W1S(a,b) "SLIX_EPFX_DMA_VF_RINT_W1S"
#define device_bar_BDK_SLIX_EPFX_DMA_VF_RINT_W1S(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_EPFX_DMA_VF_RINT_W1S(a,b) (a)
#define arguments_BDK_SLIX_EPFX_DMA_VF_RINT_W1S(a,b) (a),(b),-1,-1

/**
 * Register (NCB) sli#_epf#_misc_lint
 *
 * SLI MAC Interrupt Summary Register
 * This register contains the different interrupt-summary bits for one MAC in the SLI.
 * This set of interrupt registers are aliased to SLI(0)_MAC(0..3)_INT_SUM.
 * SLI(0)_EPF(0..3)_MISC_LINT_W1S     aliases to SLI(0)_MAC(0..3)_INT_SUM_W1S.
 * SLI(0)_EPF(0..3)_MISC_LINT_ENA_W1C aliases to SLI(0)_MAC(0..3)_INT_ENA_W1C.
 * SLI(0)_EPF(0..3)_MISC_LINT_ENA_W1S aliases to SLI(0)_MAC(0..3)_INT_ENA_W1S.
 */
union bdk_slix_epfx_misc_lint
{
    uint64_t u;
    struct bdk_slix_epfx_misc_lint_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_7_63         : 57;
        uint64_t flr                   : 1;  /**< [  6:  6](R/W1C/H) A FLR occurred for the PF on the corresponding MAC. */
        uint64_t dmapf_err             : 1;  /**< [  5:  5](R/W1C/H) An error response was received for a PF DMA transaction read. */
        uint64_t pppf_err              : 1;  /**< [  4:  4](R/W1C/H) Set when an error response is received for a PF PP transaction read. */
        uint64_t un_wi                 : 1;  /**< [  3:  3](R/W1C/H) Received unsupported N-TLP for window register from the corresponding MAC. This
                                                                 occurs when the window registers are disabled and a window register access occurs. */
        uint64_t un_b0                 : 1;  /**< [  2:  2](R/W1C/H) Received unsupported N-TLP for Bar 0 from the corresponding MAC. This occurs
                                                                 when the BAR 0 address space is disabled. */
        uint64_t up_wi                 : 1;  /**< [  1:  1](R/W1C/H) Received unsupported P-TLP for window register from the corresponding MAC. This
                                                                 occurs when the window registers are disabled and a window register access
                                                                 occurs. */
        uint64_t up_b0                 : 1;  /**< [  0:  0](R/W1C/H) Received unsupported P-TLP for Bar 0 from the corresponding MAC. This occurs
                                                                 when the BAR 0 address space is disabled. */
#else /* Word 0 - Little Endian */
        uint64_t up_b0                 : 1;  /**< [  0:  0](R/W1C/H) Received unsupported P-TLP for Bar 0 from the corresponding MAC. This occurs
                                                                 when the BAR 0 address space is disabled. */
        uint64_t up_wi                 : 1;  /**< [  1:  1](R/W1C/H) Received unsupported P-TLP for window register from the corresponding MAC. This
                                                                 occurs when the window registers are disabled and a window register access
                                                                 occurs. */
        uint64_t un_b0                 : 1;  /**< [  2:  2](R/W1C/H) Received unsupported N-TLP for Bar 0 from the corresponding MAC. This occurs
                                                                 when the BAR 0 address space is disabled. */
        uint64_t un_wi                 : 1;  /**< [  3:  3](R/W1C/H) Received unsupported N-TLP for window register from the corresponding MAC. This
                                                                 occurs when the window registers are disabled and a window register access occurs. */
        uint64_t pppf_err              : 1;  /**< [  4:  4](R/W1C/H) Set when an error response is received for a PF PP transaction read. */
        uint64_t dmapf_err             : 1;  /**< [  5:  5](R/W1C/H) An error response was received for a PF DMA transaction read. */
        uint64_t flr                   : 1;  /**< [  6:  6](R/W1C/H) A FLR occurred for the PF on the corresponding MAC. */
        uint64_t reserved_7_63         : 57;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_epfx_misc_lint_s cn; */
};
typedef union bdk_slix_epfx_misc_lint bdk_slix_epfx_misc_lint_t;

static inline uint64_t BDK_SLIX_EPFX_MISC_LINT(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_EPFX_MISC_LINT(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=3)))
        return 0x874000002400ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x3);
    __bdk_csr_fatal("SLIX_EPFX_MISC_LINT", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_EPFX_MISC_LINT(a,b) bdk_slix_epfx_misc_lint_t
#define bustype_BDK_SLIX_EPFX_MISC_LINT(a,b) BDK_CSR_TYPE_NCB
#define basename_BDK_SLIX_EPFX_MISC_LINT(a,b) "SLIX_EPFX_MISC_LINT"
#define device_bar_BDK_SLIX_EPFX_MISC_LINT(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_EPFX_MISC_LINT(a,b) (a)
#define arguments_BDK_SLIX_EPFX_MISC_LINT(a,b) (a),(b),-1,-1

/**
 * Register (NCB) sli#_epf#_misc_lint_ena_w1c
 *
 * SLI MAC Interrupt Enable Clear Register
 * This register clears interrupt enable bits.
 */
union bdk_slix_epfx_misc_lint_ena_w1c
{
    uint64_t u;
    struct bdk_slix_epfx_misc_lint_ena_w1c_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_7_63         : 57;
        uint64_t flr                   : 1;  /**< [  6:  6](R/W1C/H) Reads or clears enable for SLI(0)_EPF(0..3)_MISC_LINT[FLR]. */
        uint64_t dmapf_err             : 1;  /**< [  5:  5](R/W1C/H) Reads or clears enable for SLI(0)_EPF(0..3)_MISC_LINT[DMAPF_ERR]. */
        uint64_t pppf_err              : 1;  /**< [  4:  4](R/W1C/H) Reads or clears enable for SLI(0)_EPF(0..3)_MISC_LINT[PPPF_ERR]. */
        uint64_t un_wi                 : 1;  /**< [  3:  3](R/W1C/H) Reads or clears enable for SLI(0)_EPF(0..3)_MISC_LINT[UN_WI]. */
        uint64_t un_b0                 : 1;  /**< [  2:  2](R/W1C/H) Reads or clears enable for SLI(0)_EPF(0..3)_MISC_LINT[UN_B0]. */
        uint64_t up_wi                 : 1;  /**< [  1:  1](R/W1C/H) Reads or clears enable for SLI(0)_EPF(0..3)_MISC_LINT[UP_WI]. */
        uint64_t up_b0                 : 1;  /**< [  0:  0](R/W1C/H) Reads or clears enable for SLI(0)_EPF(0..3)_MISC_LINT[UP_B0]. */
#else /* Word 0 - Little Endian */
        uint64_t up_b0                 : 1;  /**< [  0:  0](R/W1C/H) Reads or clears enable for SLI(0)_EPF(0..3)_MISC_LINT[UP_B0]. */
        uint64_t up_wi                 : 1;  /**< [  1:  1](R/W1C/H) Reads or clears enable for SLI(0)_EPF(0..3)_MISC_LINT[UP_WI]. */
        uint64_t un_b0                 : 1;  /**< [  2:  2](R/W1C/H) Reads or clears enable for SLI(0)_EPF(0..3)_MISC_LINT[UN_B0]. */
        uint64_t un_wi                 : 1;  /**< [  3:  3](R/W1C/H) Reads or clears enable for SLI(0)_EPF(0..3)_MISC_LINT[UN_WI]. */
        uint64_t pppf_err              : 1;  /**< [  4:  4](R/W1C/H) Reads or clears enable for SLI(0)_EPF(0..3)_MISC_LINT[PPPF_ERR]. */
        uint64_t dmapf_err             : 1;  /**< [  5:  5](R/W1C/H) Reads or clears enable for SLI(0)_EPF(0..3)_MISC_LINT[DMAPF_ERR]. */
        uint64_t flr                   : 1;  /**< [  6:  6](R/W1C/H) Reads or clears enable for SLI(0)_EPF(0..3)_MISC_LINT[FLR]. */
        uint64_t reserved_7_63         : 57;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_epfx_misc_lint_ena_w1c_s cn; */
};
typedef union bdk_slix_epfx_misc_lint_ena_w1c bdk_slix_epfx_misc_lint_ena_w1c_t;

static inline uint64_t BDK_SLIX_EPFX_MISC_LINT_ENA_W1C(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_EPFX_MISC_LINT_ENA_W1C(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=3)))
        return 0x874000002600ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x3);
    __bdk_csr_fatal("SLIX_EPFX_MISC_LINT_ENA_W1C", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_EPFX_MISC_LINT_ENA_W1C(a,b) bdk_slix_epfx_misc_lint_ena_w1c_t
#define bustype_BDK_SLIX_EPFX_MISC_LINT_ENA_W1C(a,b) BDK_CSR_TYPE_NCB
#define basename_BDK_SLIX_EPFX_MISC_LINT_ENA_W1C(a,b) "SLIX_EPFX_MISC_LINT_ENA_W1C"
#define device_bar_BDK_SLIX_EPFX_MISC_LINT_ENA_W1C(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_EPFX_MISC_LINT_ENA_W1C(a,b) (a)
#define arguments_BDK_SLIX_EPFX_MISC_LINT_ENA_W1C(a,b) (a),(b),-1,-1

/**
 * Register (NCB) sli#_epf#_misc_lint_ena_w1s
 *
 * SLI MAC Interrupt Enable Set Register
 * This register sets interrupt enable bits.
 */
union bdk_slix_epfx_misc_lint_ena_w1s
{
    uint64_t u;
    struct bdk_slix_epfx_misc_lint_ena_w1s_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_7_63         : 57;
        uint64_t flr                   : 1;  /**< [  6:  6](R/W1S/H) Reads or sets enable for SLI(0)_EPF(0..3)_MISC_LINT[FLR]. */
        uint64_t dmapf_err             : 1;  /**< [  5:  5](R/W1S/H) Reads or sets enable for SLI(0)_EPF(0..3)_MISC_LINT[DMAPF_ERR]. */
        uint64_t pppf_err              : 1;  /**< [  4:  4](R/W1S/H) Reads or sets enable for SLI(0)_EPF(0..3)_MISC_LINT[PPPF_ERR]. */
        uint64_t un_wi                 : 1;  /**< [  3:  3](R/W1S/H) Reads or sets enable for SLI(0)_EPF(0..3)_MISC_LINT[UN_WI]. */
        uint64_t un_b0                 : 1;  /**< [  2:  2](R/W1S/H) Reads or sets enable for SLI(0)_EPF(0..3)_MISC_LINT[UN_B0]. */
        uint64_t up_wi                 : 1;  /**< [  1:  1](R/W1S/H) Reads or sets enable for SLI(0)_EPF(0..3)_MISC_LINT[UP_WI]. */
        uint64_t up_b0                 : 1;  /**< [  0:  0](R/W1S/H) Reads or sets enable for SLI(0)_EPF(0..3)_MISC_LINT[UP_B0]. */
#else /* Word 0 - Little Endian */
        uint64_t up_b0                 : 1;  /**< [  0:  0](R/W1S/H) Reads or sets enable for SLI(0)_EPF(0..3)_MISC_LINT[UP_B0]. */
        uint64_t up_wi                 : 1;  /**< [  1:  1](R/W1S/H) Reads or sets enable for SLI(0)_EPF(0..3)_MISC_LINT[UP_WI]. */
        uint64_t un_b0                 : 1;  /**< [  2:  2](R/W1S/H) Reads or sets enable for SLI(0)_EPF(0..3)_MISC_LINT[UN_B0]. */
        uint64_t un_wi                 : 1;  /**< [  3:  3](R/W1S/H) Reads or sets enable for SLI(0)_EPF(0..3)_MISC_LINT[UN_WI]. */
        uint64_t pppf_err              : 1;  /**< [  4:  4](R/W1S/H) Reads or sets enable for SLI(0)_EPF(0..3)_MISC_LINT[PPPF_ERR]. */
        uint64_t dmapf_err             : 1;  /**< [  5:  5](R/W1S/H) Reads or sets enable for SLI(0)_EPF(0..3)_MISC_LINT[DMAPF_ERR]. */
        uint64_t flr                   : 1;  /**< [  6:  6](R/W1S/H) Reads or sets enable for SLI(0)_EPF(0..3)_MISC_LINT[FLR]. */
        uint64_t reserved_7_63         : 57;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_epfx_misc_lint_ena_w1s_s cn; */
};
typedef union bdk_slix_epfx_misc_lint_ena_w1s bdk_slix_epfx_misc_lint_ena_w1s_t;

static inline uint64_t BDK_SLIX_EPFX_MISC_LINT_ENA_W1S(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_EPFX_MISC_LINT_ENA_W1S(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=3)))
        return 0x874000002700ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x3);
    __bdk_csr_fatal("SLIX_EPFX_MISC_LINT_ENA_W1S", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_EPFX_MISC_LINT_ENA_W1S(a,b) bdk_slix_epfx_misc_lint_ena_w1s_t
#define bustype_BDK_SLIX_EPFX_MISC_LINT_ENA_W1S(a,b) BDK_CSR_TYPE_NCB
#define basename_BDK_SLIX_EPFX_MISC_LINT_ENA_W1S(a,b) "SLIX_EPFX_MISC_LINT_ENA_W1S"
#define device_bar_BDK_SLIX_EPFX_MISC_LINT_ENA_W1S(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_EPFX_MISC_LINT_ENA_W1S(a,b) (a)
#define arguments_BDK_SLIX_EPFX_MISC_LINT_ENA_W1S(a,b) (a),(b),-1,-1

/**
 * Register (NCB) sli#_epf#_misc_lint_w1s
 *
 * SLI MAC Interrupt Set Register
 * This register sets interrupt bits.
 */
union bdk_slix_epfx_misc_lint_w1s
{
    uint64_t u;
    struct bdk_slix_epfx_misc_lint_w1s_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_7_63         : 57;
        uint64_t flr                   : 1;  /**< [  6:  6](R/W1S/H) Reads or sets SLI(0)_EPF(0..3)_MISC_LINT[FLR]. */
        uint64_t dmapf_err             : 1;  /**< [  5:  5](R/W1S/H) Reads or sets SLI(0)_EPF(0..3)_MISC_LINT[DMAPF_ERR]. */
        uint64_t pppf_err              : 1;  /**< [  4:  4](R/W1S/H) Reads or sets SLI(0)_EPF(0..3)_MISC_LINT[PPPF_ERR]. */
        uint64_t un_wi                 : 1;  /**< [  3:  3](R/W1S/H) Reads or sets SLI(0)_EPF(0..3)_MISC_LINT[UN_WI]. */
        uint64_t un_b0                 : 1;  /**< [  2:  2](R/W1S/H) Reads or sets SLI(0)_EPF(0..3)_MISC_LINT[UN_B0]. */
        uint64_t up_wi                 : 1;  /**< [  1:  1](R/W1S/H) Reads or sets SLI(0)_EPF(0..3)_MISC_LINT[UP_WI]. */
        uint64_t up_b0                 : 1;  /**< [  0:  0](R/W1S/H) Reads or sets SLI(0)_EPF(0..3)_MISC_LINT[UP_B0]. */
#else /* Word 0 - Little Endian */
        uint64_t up_b0                 : 1;  /**< [  0:  0](R/W1S/H) Reads or sets SLI(0)_EPF(0..3)_MISC_LINT[UP_B0]. */
        uint64_t up_wi                 : 1;  /**< [  1:  1](R/W1S/H) Reads or sets SLI(0)_EPF(0..3)_MISC_LINT[UP_WI]. */
        uint64_t un_b0                 : 1;  /**< [  2:  2](R/W1S/H) Reads or sets SLI(0)_EPF(0..3)_MISC_LINT[UN_B0]. */
        uint64_t un_wi                 : 1;  /**< [  3:  3](R/W1S/H) Reads or sets SLI(0)_EPF(0..3)_MISC_LINT[UN_WI]. */
        uint64_t pppf_err              : 1;  /**< [  4:  4](R/W1S/H) Reads or sets SLI(0)_EPF(0..3)_MISC_LINT[PPPF_ERR]. */
        uint64_t dmapf_err             : 1;  /**< [  5:  5](R/W1S/H) Reads or sets SLI(0)_EPF(0..3)_MISC_LINT[DMAPF_ERR]. */
        uint64_t flr                   : 1;  /**< [  6:  6](R/W1S/H) Reads or sets SLI(0)_EPF(0..3)_MISC_LINT[FLR]. */
        uint64_t reserved_7_63         : 57;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_epfx_misc_lint_w1s_s cn; */
};
typedef union bdk_slix_epfx_misc_lint_w1s bdk_slix_epfx_misc_lint_w1s_t;

static inline uint64_t BDK_SLIX_EPFX_MISC_LINT_W1S(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_EPFX_MISC_LINT_W1S(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=3)))
        return 0x874000002500ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x3);
    __bdk_csr_fatal("SLIX_EPFX_MISC_LINT_W1S", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_EPFX_MISC_LINT_W1S(a,b) bdk_slix_epfx_misc_lint_w1s_t
#define bustype_BDK_SLIX_EPFX_MISC_LINT_W1S(a,b) BDK_CSR_TYPE_NCB
#define basename_BDK_SLIX_EPFX_MISC_LINT_W1S(a,b) "SLIX_EPFX_MISC_LINT_W1S"
#define device_bar_BDK_SLIX_EPFX_MISC_LINT_W1S(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_EPFX_MISC_LINT_W1S(a,b) (a)
#define arguments_BDK_SLIX_EPFX_MISC_LINT_W1S(a,b) (a),(b),-1,-1

/**
 * Register (PEXP_NCB) sli#_epf#_misc_rint
 *
 * SLI MAC Interrupt Summary Register
 * This register contains the different interrupt-summary bits for one MAC in the SLI.
 * The given register associated with an EPF will be reset due to a PF FLR or MAC reset.
 * These registers are not affected by VF FLR.
 */
union bdk_slix_epfx_misc_rint
{
    uint64_t u;
    struct bdk_slix_epfx_misc_rint_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_6_63         : 58;
        uint64_t dmapf_err             : 1;  /**< [  5:  5](R/W1C/H) Set when an error response is received for a PF DMA transaction read. */
        uint64_t pppf_err              : 1;  /**< [  4:  4](R/W1C/H) Set when an error response is received for a PF PP transaction read. */
        uint64_t un_wi                 : 1;  /**< [  3:  3](R/W1C/H) Received unsupported N-TLP for window register from the corresponding MAC. This
                                                                 occurs when the window registers are disabled and a window register access
                                                                 occurs. */
        uint64_t un_b0                 : 1;  /**< [  2:  2](R/W1C/H) Received unsupported N-TLP for Bar 0 from the corresponding MAC. This occurs
                                                                 when the BAR 0 address space is disabled. */
        uint64_t up_wi                 : 1;  /**< [  1:  1](R/W1C/H) Received unsupported P-TLP for window register from the corresponding MAC. This
                                                                 occurs when the window registers are disabled and a window register access
                                                                 occurs. */
        uint64_t up_b0                 : 1;  /**< [  0:  0](R/W1C/H) Received unsupported P-TLP for Bar 0 from the corresponding MAC. This occurs
                                                                 when the BAR 0 address space is disabled. */
#else /* Word 0 - Little Endian */
        uint64_t up_b0                 : 1;  /**< [  0:  0](R/W1C/H) Received unsupported P-TLP for Bar 0 from the corresponding MAC. This occurs
                                                                 when the BAR 0 address space is disabled. */
        uint64_t up_wi                 : 1;  /**< [  1:  1](R/W1C/H) Received unsupported P-TLP for window register from the corresponding MAC. This
                                                                 occurs when the window registers are disabled and a window register access
                                                                 occurs. */
        uint64_t un_b0                 : 1;  /**< [  2:  2](R/W1C/H) Received unsupported N-TLP for Bar 0 from the corresponding MAC. This occurs
                                                                 when the BAR 0 address space is disabled. */
        uint64_t un_wi                 : 1;  /**< [  3:  3](R/W1C/H) Received unsupported N-TLP for window register from the corresponding MAC. This
                                                                 occurs when the window registers are disabled and a window register access
                                                                 occurs. */
        uint64_t pppf_err              : 1;  /**< [  4:  4](R/W1C/H) Set when an error response is received for a PF PP transaction read. */
        uint64_t dmapf_err             : 1;  /**< [  5:  5](R/W1C/H) Set when an error response is received for a PF DMA transaction read. */
        uint64_t reserved_6_63         : 58;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_epfx_misc_rint_s cn; */
};
typedef union bdk_slix_epfx_misc_rint bdk_slix_epfx_misc_rint_t;

static inline uint64_t BDK_SLIX_EPFX_MISC_RINT(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_EPFX_MISC_RINT(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=3)))
        return 0x874080028240ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x3);
    __bdk_csr_fatal("SLIX_EPFX_MISC_RINT", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_EPFX_MISC_RINT(a,b) bdk_slix_epfx_misc_rint_t
#define bustype_BDK_SLIX_EPFX_MISC_RINT(a,b) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SLIX_EPFX_MISC_RINT(a,b) "SLIX_EPFX_MISC_RINT"
#define device_bar_BDK_SLIX_EPFX_MISC_RINT(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_EPFX_MISC_RINT(a,b) (a)
#define arguments_BDK_SLIX_EPFX_MISC_RINT(a,b) (a),(b),-1,-1

/**
 * Register (PEXP_NCB) sli#_epf#_misc_rint_ena_w1c
 *
 * SLI MAC Interrupt Enable Clear Register
 * This register clears interrupt enable bits.
 */
union bdk_slix_epfx_misc_rint_ena_w1c
{
    uint64_t u;
    struct bdk_slix_epfx_misc_rint_ena_w1c_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_6_63         : 58;
        uint64_t dmapf_err             : 1;  /**< [  5:  5](R/W1C/H) Reads or clears enable for SLI(0)_EPF(0..3)_MISC_RINT[DMAPF_ERR]. */
        uint64_t pppf_err              : 1;  /**< [  4:  4](R/W1C/H) Reads or clears enable for SLI(0)_EPF(0..3)_MISC_RINT[PPPF_ERR]. */
        uint64_t un_wi                 : 1;  /**< [  3:  3](R/W1C/H) Reads or clears enable for SLI(0)_EPF(0..3)_MISC_RINT[UN_WI]. */
        uint64_t un_b0                 : 1;  /**< [  2:  2](R/W1C/H) Reads or clears enable for SLI(0)_EPF(0..3)_MISC_RINT[UN_B0]. */
        uint64_t up_wi                 : 1;  /**< [  1:  1](R/W1C/H) Reads or clears enable for SLI(0)_EPF(0..3)_MISC_RINT[UP_WI]. */
        uint64_t up_b0                 : 1;  /**< [  0:  0](R/W1C/H) Reads or clears enable for SLI(0)_EPF(0..3)_MISC_RINT[UP_B0]. */
#else /* Word 0 - Little Endian */
        uint64_t up_b0                 : 1;  /**< [  0:  0](R/W1C/H) Reads or clears enable for SLI(0)_EPF(0..3)_MISC_RINT[UP_B0]. */
        uint64_t up_wi                 : 1;  /**< [  1:  1](R/W1C/H) Reads or clears enable for SLI(0)_EPF(0..3)_MISC_RINT[UP_WI]. */
        uint64_t un_b0                 : 1;  /**< [  2:  2](R/W1C/H) Reads or clears enable for SLI(0)_EPF(0..3)_MISC_RINT[UN_B0]. */
        uint64_t un_wi                 : 1;  /**< [  3:  3](R/W1C/H) Reads or clears enable for SLI(0)_EPF(0..3)_MISC_RINT[UN_WI]. */
        uint64_t pppf_err              : 1;  /**< [  4:  4](R/W1C/H) Reads or clears enable for SLI(0)_EPF(0..3)_MISC_RINT[PPPF_ERR]. */
        uint64_t dmapf_err             : 1;  /**< [  5:  5](R/W1C/H) Reads or clears enable for SLI(0)_EPF(0..3)_MISC_RINT[DMAPF_ERR]. */
        uint64_t reserved_6_63         : 58;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_epfx_misc_rint_ena_w1c_s cn; */
};
typedef union bdk_slix_epfx_misc_rint_ena_w1c bdk_slix_epfx_misc_rint_ena_w1c_t;

static inline uint64_t BDK_SLIX_EPFX_MISC_RINT_ENA_W1C(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_EPFX_MISC_RINT_ENA_W1C(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=3)))
        return 0x874080028260ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x3);
    __bdk_csr_fatal("SLIX_EPFX_MISC_RINT_ENA_W1C", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_EPFX_MISC_RINT_ENA_W1C(a,b) bdk_slix_epfx_misc_rint_ena_w1c_t
#define bustype_BDK_SLIX_EPFX_MISC_RINT_ENA_W1C(a,b) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SLIX_EPFX_MISC_RINT_ENA_W1C(a,b) "SLIX_EPFX_MISC_RINT_ENA_W1C"
#define device_bar_BDK_SLIX_EPFX_MISC_RINT_ENA_W1C(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_EPFX_MISC_RINT_ENA_W1C(a,b) (a)
#define arguments_BDK_SLIX_EPFX_MISC_RINT_ENA_W1C(a,b) (a),(b),-1,-1

/**
 * Register (PEXP_NCB) sli#_epf#_misc_rint_ena_w1s
 *
 * SLI MAC Interrupt Enable Set Register
 * This register sets interrupt enable bits.
 */
union bdk_slix_epfx_misc_rint_ena_w1s
{
    uint64_t u;
    struct bdk_slix_epfx_misc_rint_ena_w1s_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_6_63         : 58;
        uint64_t dmapf_err             : 1;  /**< [  5:  5](R/W1S/H) Reads or sets enable for SLI(0)_EPF(0..3)_MISC_RINT[DMAPF_ERR]. */
        uint64_t pppf_err              : 1;  /**< [  4:  4](R/W1S/H) Reads or sets enable for SLI(0)_EPF(0..3)_MISC_RINT[PPPF_ERR]. */
        uint64_t un_wi                 : 1;  /**< [  3:  3](R/W1S/H) Reads or sets enable for SLI(0)_EPF(0..3)_MISC_RINT[UN_WI]. */
        uint64_t un_b0                 : 1;  /**< [  2:  2](R/W1S/H) Reads or sets enable for SLI(0)_EPF(0..3)_MISC_RINT[UN_B0]. */
        uint64_t up_wi                 : 1;  /**< [  1:  1](R/W1S/H) Reads or sets enable for SLI(0)_EPF(0..3)_MISC_RINT[UP_WI]. */
        uint64_t up_b0                 : 1;  /**< [  0:  0](R/W1S/H) Reads or sets enable for SLI(0)_EPF(0..3)_MISC_RINT[UP_B0]. */
#else /* Word 0 - Little Endian */
        uint64_t up_b0                 : 1;  /**< [  0:  0](R/W1S/H) Reads or sets enable for SLI(0)_EPF(0..3)_MISC_RINT[UP_B0]. */
        uint64_t up_wi                 : 1;  /**< [  1:  1](R/W1S/H) Reads or sets enable for SLI(0)_EPF(0..3)_MISC_RINT[UP_WI]. */
        uint64_t un_b0                 : 1;  /**< [  2:  2](R/W1S/H) Reads or sets enable for SLI(0)_EPF(0..3)_MISC_RINT[UN_B0]. */
        uint64_t un_wi                 : 1;  /**< [  3:  3](R/W1S/H) Reads or sets enable for SLI(0)_EPF(0..3)_MISC_RINT[UN_WI]. */
        uint64_t pppf_err              : 1;  /**< [  4:  4](R/W1S/H) Reads or sets enable for SLI(0)_EPF(0..3)_MISC_RINT[PPPF_ERR]. */
        uint64_t dmapf_err             : 1;  /**< [  5:  5](R/W1S/H) Reads or sets enable for SLI(0)_EPF(0..3)_MISC_RINT[DMAPF_ERR]. */
        uint64_t reserved_6_63         : 58;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_epfx_misc_rint_ena_w1s_s cn; */
};
typedef union bdk_slix_epfx_misc_rint_ena_w1s bdk_slix_epfx_misc_rint_ena_w1s_t;

static inline uint64_t BDK_SLIX_EPFX_MISC_RINT_ENA_W1S(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_EPFX_MISC_RINT_ENA_W1S(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=3)))
        return 0x874080028270ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x3);
    __bdk_csr_fatal("SLIX_EPFX_MISC_RINT_ENA_W1S", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_EPFX_MISC_RINT_ENA_W1S(a,b) bdk_slix_epfx_misc_rint_ena_w1s_t
#define bustype_BDK_SLIX_EPFX_MISC_RINT_ENA_W1S(a,b) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SLIX_EPFX_MISC_RINT_ENA_W1S(a,b) "SLIX_EPFX_MISC_RINT_ENA_W1S"
#define device_bar_BDK_SLIX_EPFX_MISC_RINT_ENA_W1S(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_EPFX_MISC_RINT_ENA_W1S(a,b) (a)
#define arguments_BDK_SLIX_EPFX_MISC_RINT_ENA_W1S(a,b) (a),(b),-1,-1

/**
 * Register (PEXP_NCB) sli#_epf#_misc_rint_w1s
 *
 * SLI MAC Interrupt Set Register
 * This register sets interrupt bits.
 */
union bdk_slix_epfx_misc_rint_w1s
{
    uint64_t u;
    struct bdk_slix_epfx_misc_rint_w1s_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_6_63         : 58;
        uint64_t dmapf_err             : 1;  /**< [  5:  5](R/W1S/H) Reads or sets SLI(0)_EPF(0..3)_MISC_RINT[DMAPF_ERR]. */
        uint64_t pppf_err              : 1;  /**< [  4:  4](R/W1S/H) Reads or sets SLI(0)_EPF(0..3)_MISC_RINT[PPPF_ERR]. */
        uint64_t un_wi                 : 1;  /**< [  3:  3](R/W1S/H) Reads or sets SLI(0)_EPF(0..3)_MISC_RINT[UN_WI]. */
        uint64_t un_b0                 : 1;  /**< [  2:  2](R/W1S/H) Reads or sets SLI(0)_EPF(0..3)_MISC_RINT[UN_B0]. */
        uint64_t up_wi                 : 1;  /**< [  1:  1](R/W1S/H) Reads or sets SLI(0)_EPF(0..3)_MISC_RINT[UP_WI]. */
        uint64_t up_b0                 : 1;  /**< [  0:  0](R/W1S/H) Reads or sets SLI(0)_EPF(0..3)_MISC_RINT[UP_B0]. */
#else /* Word 0 - Little Endian */
        uint64_t up_b0                 : 1;  /**< [  0:  0](R/W1S/H) Reads or sets SLI(0)_EPF(0..3)_MISC_RINT[UP_B0]. */
        uint64_t up_wi                 : 1;  /**< [  1:  1](R/W1S/H) Reads or sets SLI(0)_EPF(0..3)_MISC_RINT[UP_WI]. */
        uint64_t un_b0                 : 1;  /**< [  2:  2](R/W1S/H) Reads or sets SLI(0)_EPF(0..3)_MISC_RINT[UN_B0]. */
        uint64_t un_wi                 : 1;  /**< [  3:  3](R/W1S/H) Reads or sets SLI(0)_EPF(0..3)_MISC_RINT[UN_WI]. */
        uint64_t pppf_err              : 1;  /**< [  4:  4](R/W1S/H) Reads or sets SLI(0)_EPF(0..3)_MISC_RINT[PPPF_ERR]. */
        uint64_t dmapf_err             : 1;  /**< [  5:  5](R/W1S/H) Reads or sets SLI(0)_EPF(0..3)_MISC_RINT[DMAPF_ERR]. */
        uint64_t reserved_6_63         : 58;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_epfx_misc_rint_w1s_s cn; */
};
typedef union bdk_slix_epfx_misc_rint_w1s bdk_slix_epfx_misc_rint_w1s_t;

static inline uint64_t BDK_SLIX_EPFX_MISC_RINT_W1S(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_EPFX_MISC_RINT_W1S(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=3)))
        return 0x874080028250ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x3);
    __bdk_csr_fatal("SLIX_EPFX_MISC_RINT_W1S", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_EPFX_MISC_RINT_W1S(a,b) bdk_slix_epfx_misc_rint_w1s_t
#define bustype_BDK_SLIX_EPFX_MISC_RINT_W1S(a,b) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SLIX_EPFX_MISC_RINT_W1S(a,b) "SLIX_EPFX_MISC_RINT_W1S"
#define device_bar_BDK_SLIX_EPFX_MISC_RINT_W1S(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_EPFX_MISC_RINT_W1S(a,b) (a)
#define arguments_BDK_SLIX_EPFX_MISC_RINT_W1S(a,b) (a),(b),-1,-1

/**
 * Register (NCB) sli#_epf#_pp_vf_lint
 *
 * SLI PP Error Response VF Bit Array Registers
 * When an error response is received for a VF PP transaction read, the appropriate VF indexed
 * bit is set.  The appropriate PF should read the appropriate register.
 * These registers are only valid for PEM0 PF0 and PEM2 PF0.
 */
union bdk_slix_epfx_pp_vf_lint
{
    uint64_t u;
    struct bdk_slix_epfx_pp_vf_lint_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t vf_int                : 64; /**< [ 63:  0](R/W1C/H) When an error response is received for a VF PP transaction read, the appropriate VF
                                                                 indexed bit is set. */
#else /* Word 0 - Little Endian */
        uint64_t vf_int                : 64; /**< [ 63:  0](R/W1C/H) When an error response is received for a VF PP transaction read, the appropriate VF
                                                                 indexed bit is set. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_epfx_pp_vf_lint_s cn; */
};
typedef union bdk_slix_epfx_pp_vf_lint bdk_slix_epfx_pp_vf_lint_t;

static inline uint64_t BDK_SLIX_EPFX_PP_VF_LINT(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_EPFX_PP_VF_LINT(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1)))
        return 0x874000002800ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x1);
    __bdk_csr_fatal("SLIX_EPFX_PP_VF_LINT", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_EPFX_PP_VF_LINT(a,b) bdk_slix_epfx_pp_vf_lint_t
#define bustype_BDK_SLIX_EPFX_PP_VF_LINT(a,b) BDK_CSR_TYPE_NCB
#define basename_BDK_SLIX_EPFX_PP_VF_LINT(a,b) "SLIX_EPFX_PP_VF_LINT"
#define device_bar_BDK_SLIX_EPFX_PP_VF_LINT(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_EPFX_PP_VF_LINT(a,b) (a)
#define arguments_BDK_SLIX_EPFX_PP_VF_LINT(a,b) (a),(b),-1,-1

/**
 * Register (NCB) sli#_epf#_pp_vf_lint_ena_w1c
 *
 * SLI PP Error Response VF Bit Array Local Enable Clear Registers
 * This register clears interrupt enable bits.
 */
union bdk_slix_epfx_pp_vf_lint_ena_w1c
{
    uint64_t u;
    struct bdk_slix_epfx_pp_vf_lint_ena_w1c_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t vf_int                : 64; /**< [ 63:  0](R/W1C/H) Reads or clears enable for SLI(0)_EPF(0..1)_PP_VF_LINT[VF_INT]. */
#else /* Word 0 - Little Endian */
        uint64_t vf_int                : 64; /**< [ 63:  0](R/W1C/H) Reads or clears enable for SLI(0)_EPF(0..1)_PP_VF_LINT[VF_INT]. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_epfx_pp_vf_lint_ena_w1c_s cn; */
};
typedef union bdk_slix_epfx_pp_vf_lint_ena_w1c bdk_slix_epfx_pp_vf_lint_ena_w1c_t;

static inline uint64_t BDK_SLIX_EPFX_PP_VF_LINT_ENA_W1C(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_EPFX_PP_VF_LINT_ENA_W1C(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1)))
        return 0x874000002a00ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x1);
    __bdk_csr_fatal("SLIX_EPFX_PP_VF_LINT_ENA_W1C", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_EPFX_PP_VF_LINT_ENA_W1C(a,b) bdk_slix_epfx_pp_vf_lint_ena_w1c_t
#define bustype_BDK_SLIX_EPFX_PP_VF_LINT_ENA_W1C(a,b) BDK_CSR_TYPE_NCB
#define basename_BDK_SLIX_EPFX_PP_VF_LINT_ENA_W1C(a,b) "SLIX_EPFX_PP_VF_LINT_ENA_W1C"
#define device_bar_BDK_SLIX_EPFX_PP_VF_LINT_ENA_W1C(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_EPFX_PP_VF_LINT_ENA_W1C(a,b) (a)
#define arguments_BDK_SLIX_EPFX_PP_VF_LINT_ENA_W1C(a,b) (a),(b),-1,-1

/**
 * Register (NCB) sli#_epf#_pp_vf_lint_ena_w1s
 *
 * SLI PP Error Response VF Bit Array Local Enable Set Registers
 * This register sets interrupt enable bits.
 */
union bdk_slix_epfx_pp_vf_lint_ena_w1s
{
    uint64_t u;
    struct bdk_slix_epfx_pp_vf_lint_ena_w1s_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t vf_int                : 64; /**< [ 63:  0](R/W1S/H) Reads or sets enable for SLI(0)_EPF(0..1)_PP_VF_LINT[VF_INT]. */
#else /* Word 0 - Little Endian */
        uint64_t vf_int                : 64; /**< [ 63:  0](R/W1S/H) Reads or sets enable for SLI(0)_EPF(0..1)_PP_VF_LINT[VF_INT]. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_epfx_pp_vf_lint_ena_w1s_s cn; */
};
typedef union bdk_slix_epfx_pp_vf_lint_ena_w1s bdk_slix_epfx_pp_vf_lint_ena_w1s_t;

static inline uint64_t BDK_SLIX_EPFX_PP_VF_LINT_ENA_W1S(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_EPFX_PP_VF_LINT_ENA_W1S(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1)))
        return 0x874000002b00ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x1);
    __bdk_csr_fatal("SLIX_EPFX_PP_VF_LINT_ENA_W1S", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_EPFX_PP_VF_LINT_ENA_W1S(a,b) bdk_slix_epfx_pp_vf_lint_ena_w1s_t
#define bustype_BDK_SLIX_EPFX_PP_VF_LINT_ENA_W1S(a,b) BDK_CSR_TYPE_NCB
#define basename_BDK_SLIX_EPFX_PP_VF_LINT_ENA_W1S(a,b) "SLIX_EPFX_PP_VF_LINT_ENA_W1S"
#define device_bar_BDK_SLIX_EPFX_PP_VF_LINT_ENA_W1S(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_EPFX_PP_VF_LINT_ENA_W1S(a,b) (a)
#define arguments_BDK_SLIX_EPFX_PP_VF_LINT_ENA_W1S(a,b) (a),(b),-1,-1

/**
 * Register (NCB) sli#_epf#_pp_vf_lint_w1s
 *
 * SLI PP Error Response VF Bit Array Set Registers
 * This register sets interrupt bits.
 */
union bdk_slix_epfx_pp_vf_lint_w1s
{
    uint64_t u;
    struct bdk_slix_epfx_pp_vf_lint_w1s_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t vf_int                : 64; /**< [ 63:  0](R/W1S/H) Reads or sets SLI(0)_EPF(0..1)_PP_VF_LINT[VF_INT]. */
#else /* Word 0 - Little Endian */
        uint64_t vf_int                : 64; /**< [ 63:  0](R/W1S/H) Reads or sets SLI(0)_EPF(0..1)_PP_VF_LINT[VF_INT]. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_epfx_pp_vf_lint_w1s_s cn; */
};
typedef union bdk_slix_epfx_pp_vf_lint_w1s bdk_slix_epfx_pp_vf_lint_w1s_t;

static inline uint64_t BDK_SLIX_EPFX_PP_VF_LINT_W1S(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_EPFX_PP_VF_LINT_W1S(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1)))
        return 0x874000002900ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x1);
    __bdk_csr_fatal("SLIX_EPFX_PP_VF_LINT_W1S", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_EPFX_PP_VF_LINT_W1S(a,b) bdk_slix_epfx_pp_vf_lint_w1s_t
#define bustype_BDK_SLIX_EPFX_PP_VF_LINT_W1S(a,b) BDK_CSR_TYPE_NCB
#define basename_BDK_SLIX_EPFX_PP_VF_LINT_W1S(a,b) "SLIX_EPFX_PP_VF_LINT_W1S"
#define device_bar_BDK_SLIX_EPFX_PP_VF_LINT_W1S(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_EPFX_PP_VF_LINT_W1S(a,b) (a)
#define arguments_BDK_SLIX_EPFX_PP_VF_LINT_W1S(a,b) (a),(b),-1,-1

/**
 * Register (PEXP_NCB) sli#_epf#_pp_vf_rint
 *
 * SLI PP Error Response VF Bit Array Registers
 * When an error response is received for a VF PP transaction read, the appropriate VF indexed
 * bit is set.  The appropriate PF should read the appropriate register.
 * The given register associated with an EPF will be reset due to a PF FLR or MAC reset.
 * These registers are not affected by VF FLR.
 * These registers are only valid for PEM0 PF0 and PEM2 PF0.
 */
union bdk_slix_epfx_pp_vf_rint
{
    uint64_t u;
    struct bdk_slix_epfx_pp_vf_rint_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t vf_int                : 64; /**< [ 63:  0](R/W1C/H) When an error response is received for a VF PP transaction read, the appropriate VF
                                                                 indexed bit is set. */
#else /* Word 0 - Little Endian */
        uint64_t vf_int                : 64; /**< [ 63:  0](R/W1C/H) When an error response is received for a VF PP transaction read, the appropriate VF
                                                                 indexed bit is set. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_epfx_pp_vf_rint_s cn; */
};
typedef union bdk_slix_epfx_pp_vf_rint bdk_slix_epfx_pp_vf_rint_t;

static inline uint64_t BDK_SLIX_EPFX_PP_VF_RINT(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_EPFX_PP_VF_RINT(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1)))
        return 0x8740800282c0ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x1);
    __bdk_csr_fatal("SLIX_EPFX_PP_VF_RINT", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_EPFX_PP_VF_RINT(a,b) bdk_slix_epfx_pp_vf_rint_t
#define bustype_BDK_SLIX_EPFX_PP_VF_RINT(a,b) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SLIX_EPFX_PP_VF_RINT(a,b) "SLIX_EPFX_PP_VF_RINT"
#define device_bar_BDK_SLIX_EPFX_PP_VF_RINT(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_EPFX_PP_VF_RINT(a,b) (a)
#define arguments_BDK_SLIX_EPFX_PP_VF_RINT(a,b) (a),(b),-1,-1

/**
 * Register (PEXP_NCB) sli#_epf#_pp_vf_rint_ena_w1c
 *
 * SLI PP Error Response VF Bit Array Remote Enable Clear Registers
 * This register clears interrupt enable bits.
 */
union bdk_slix_epfx_pp_vf_rint_ena_w1c
{
    uint64_t u;
    struct bdk_slix_epfx_pp_vf_rint_ena_w1c_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t vf_int                : 64; /**< [ 63:  0](R/W1C/H) Reads or clears enable for SLI(0)_EPF(0..1)_PP_VF_RINT[VF_INT]. */
#else /* Word 0 - Little Endian */
        uint64_t vf_int                : 64; /**< [ 63:  0](R/W1C/H) Reads or clears enable for SLI(0)_EPF(0..1)_PP_VF_RINT[VF_INT]. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_epfx_pp_vf_rint_ena_w1c_s cn; */
};
typedef union bdk_slix_epfx_pp_vf_rint_ena_w1c bdk_slix_epfx_pp_vf_rint_ena_w1c_t;

static inline uint64_t BDK_SLIX_EPFX_PP_VF_RINT_ENA_W1C(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_EPFX_PP_VF_RINT_ENA_W1C(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1)))
        return 0x8740800282e0ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x1);
    __bdk_csr_fatal("SLIX_EPFX_PP_VF_RINT_ENA_W1C", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_EPFX_PP_VF_RINT_ENA_W1C(a,b) bdk_slix_epfx_pp_vf_rint_ena_w1c_t
#define bustype_BDK_SLIX_EPFX_PP_VF_RINT_ENA_W1C(a,b) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SLIX_EPFX_PP_VF_RINT_ENA_W1C(a,b) "SLIX_EPFX_PP_VF_RINT_ENA_W1C"
#define device_bar_BDK_SLIX_EPFX_PP_VF_RINT_ENA_W1C(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_EPFX_PP_VF_RINT_ENA_W1C(a,b) (a)
#define arguments_BDK_SLIX_EPFX_PP_VF_RINT_ENA_W1C(a,b) (a),(b),-1,-1

/**
 * Register (PEXP_NCB) sli#_epf#_pp_vf_rint_ena_w1s
 *
 * SLI PP Error Response VF Bit Array Remote Enable Set Registers
 * This register sets interrupt enable bits.
 */
union bdk_slix_epfx_pp_vf_rint_ena_w1s
{
    uint64_t u;
    struct bdk_slix_epfx_pp_vf_rint_ena_w1s_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t vf_int                : 64; /**< [ 63:  0](R/W1S/H) Reads or sets enable for SLI(0)_EPF(0..1)_PP_VF_RINT[VF_INT]. */
#else /* Word 0 - Little Endian */
        uint64_t vf_int                : 64; /**< [ 63:  0](R/W1S/H) Reads or sets enable for SLI(0)_EPF(0..1)_PP_VF_RINT[VF_INT]. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_epfx_pp_vf_rint_ena_w1s_s cn; */
};
typedef union bdk_slix_epfx_pp_vf_rint_ena_w1s bdk_slix_epfx_pp_vf_rint_ena_w1s_t;

static inline uint64_t BDK_SLIX_EPFX_PP_VF_RINT_ENA_W1S(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_EPFX_PP_VF_RINT_ENA_W1S(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1)))
        return 0x8740800282f0ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x1);
    __bdk_csr_fatal("SLIX_EPFX_PP_VF_RINT_ENA_W1S", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_EPFX_PP_VF_RINT_ENA_W1S(a,b) bdk_slix_epfx_pp_vf_rint_ena_w1s_t
#define bustype_BDK_SLIX_EPFX_PP_VF_RINT_ENA_W1S(a,b) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SLIX_EPFX_PP_VF_RINT_ENA_W1S(a,b) "SLIX_EPFX_PP_VF_RINT_ENA_W1S"
#define device_bar_BDK_SLIX_EPFX_PP_VF_RINT_ENA_W1S(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_EPFX_PP_VF_RINT_ENA_W1S(a,b) (a)
#define arguments_BDK_SLIX_EPFX_PP_VF_RINT_ENA_W1S(a,b) (a),(b),-1,-1

/**
 * Register (PEXP_NCB) sli#_epf#_pp_vf_rint_w1s
 *
 * SLI PP Error Response VF Bit Array Set Registers
 * This register sets interrupt bits.
 */
union bdk_slix_epfx_pp_vf_rint_w1s
{
    uint64_t u;
    struct bdk_slix_epfx_pp_vf_rint_w1s_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t vf_int                : 64; /**< [ 63:  0](R/W1S/H) Reads or sets SLI(0)_EPF(0..1)_PP_VF_RINT[VF_INT]. */
#else /* Word 0 - Little Endian */
        uint64_t vf_int                : 64; /**< [ 63:  0](R/W1S/H) Reads or sets SLI(0)_EPF(0..1)_PP_VF_RINT[VF_INT]. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_epfx_pp_vf_rint_w1s_s cn; */
};
typedef union bdk_slix_epfx_pp_vf_rint_w1s bdk_slix_epfx_pp_vf_rint_w1s_t;

static inline uint64_t BDK_SLIX_EPFX_PP_VF_RINT_W1S(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_EPFX_PP_VF_RINT_W1S(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=1)))
        return 0x8740800282d0ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x1);
    __bdk_csr_fatal("SLIX_EPFX_PP_VF_RINT_W1S", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_EPFX_PP_VF_RINT_W1S(a,b) bdk_slix_epfx_pp_vf_rint_w1s_t
#define bustype_BDK_SLIX_EPFX_PP_VF_RINT_W1S(a,b) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SLIX_EPFX_PP_VF_RINT_W1S(a,b) "SLIX_EPFX_PP_VF_RINT_W1S"
#define device_bar_BDK_SLIX_EPFX_PP_VF_RINT_W1S(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_EPFX_PP_VF_RINT_W1S(a,b) (a)
#define arguments_BDK_SLIX_EPFX_PP_VF_RINT_W1S(a,b) (a),(b),-1,-1

/**
 * Register (PEXP_NCB) sli#_epf#_scratch
 *
 * SLI Scratch Register
 * These registers are general purpose 64-bit scratch registers for software use.
 */
union bdk_slix_epfx_scratch
{
    uint64_t u;
    struct bdk_slix_epfx_scratch_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t data                  : 64; /**< [ 63:  0](R/W) The value in this register is totally software defined. */
#else /* Word 0 - Little Endian */
        uint64_t data                  : 64; /**< [ 63:  0](R/W) The value in this register is totally software defined. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_epfx_scratch_s cn; */
};
typedef union bdk_slix_epfx_scratch bdk_slix_epfx_scratch_t;

static inline uint64_t BDK_SLIX_EPFX_SCRATCH(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_EPFX_SCRATCH(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=3)))
        return 0x874080028100ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x3);
    __bdk_csr_fatal("SLIX_EPFX_SCRATCH", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_EPFX_SCRATCH(a,b) bdk_slix_epfx_scratch_t
#define bustype_BDK_SLIX_EPFX_SCRATCH(a,b) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SLIX_EPFX_SCRATCH(a,b) "SLIX_EPFX_SCRATCH"
#define device_bar_BDK_SLIX_EPFX_SCRATCH(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_EPFX_SCRATCH(a,b) (a)
#define arguments_BDK_SLIX_EPFX_SCRATCH(a,b) (a),(b),-1,-1

/**
 * Register (NCB) sli#_lmac_const0#
 *
 * SLI Logical MAC Capabilities Register 0
 * These registers along with SLI()_LMAC_CONST1() create a table of logical MAC
 * capabilities.  Each entry is 128 bits, with half the information in SLI()_LMAC_CONST0()
 * and half in SLI()_LMAC_CONST1().
 * The list ends with an entry where [V] is clear.
 *
 * Internal:
 * For CN81XX the table is as follows:
 * * SLI(0)_LMAC_CONST0/1(0) [ V=1 EP=0 IFTY=0 IFN=0 MAC=0 PF=0 EPF=0 VFS=0  RINGS=0  ].
 * * SLI(0)_LMAC_CONST0/1(1) [ V=1 EP=0 IFTY=0 IFN=1 MAC=1 PF=0 EPF=1 VFS=0  RINGS=0  ].
 * * SLI(0)_LMAC_CONST0/1(2) [ V=1 EP=0 IFTY=0 IFN=2 MAC=2 PF=0 EPF=2 VFS=0  RINGS=0  ].
 * * SLI(0)_LMAC_CONST0/1(3) [ V=0 ].
 *
 * For CN83XX the table is as follows:
 * * SLI(0)_LMAC_CONST0/1(0) [ V=1 EP=1 IFTY=0 IFN=0 MAC=0 PF=0 EPF=0 VFS=64 RINGS=64 ].
 * * SLI(0)_LMAC_CONST0/1(1) [ V=1 EP=1 IFTY=0 IFN=1 MAC=1 PF=0 EPF=2 VFS=0  RINGS=0  ].
 * * SLI(0)_LMAC_CONST0/1(2) [ V=1 EP=1 IFTY=0 IFN=2 MAC=2 PF=0 EPF=1 VFS=64 RINGS=64 ].
 * * SLI(0)_LMAC_CONST0/1(3) [ V=1 EP=1 IFTY=0 IFN=3 MAC=3 PF=0 EPF=3 VFS=0  RINGS=0  ].
 * * SLI(0)_LMAC_CONST0/1(4) [ V=0 ].
 */
union bdk_slix_lmac_const0x
{
    uint64_t u;
    struct bdk_slix_lmac_const0x_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_40_63        : 24;
        uint64_t epf                   : 8;  /**< [ 39: 32](RO) EPF number. Indicates the index number to EPF registers, e.g. the second index
                                                                 of SDP()_EPF()_MBOX_RINT. */
        uint64_t pf                    : 8;  /**< [ 31: 24](RO) Physical function number. Indicates the PF number as viewed from the external
                                                                 PCI bus. */
        uint64_t mac                   : 8;  /**< [ 23: 16](RO) Relative MAC number. Indicates the index number to MAC registers, e.g. the
                                                                 second index of SLI()_S2M_MAC()_CTL. */
        uint64_t ifn                   : 8;  /**< [ 15:  8](RO) Interface number. Indicates the physical PEM number. */
        uint64_t ifty                  : 4;  /**< [  7:  4](RO) Interface type.
                                                                 0x0 = PEM. */
        uint64_t reserved_2_3          : 2;
        uint64_t ep                    : 1;  /**< [  1:  1](RO) Endpoint.
                                                                 0 = This MAC/PF does not support endpoint mode; many registers are not
                                                                 implemented including input and output ring-based registers. MSI-X message
                                                                 generation is also not implemented.
                                                                 1 = This MAC/PF combination supports endpoint mode. */
        uint64_t v                     : 1;  /**< [  0:  0](RO) Valid entry.
                                                                 0 = Fields in this register will all be zero. This ends the list of capabilities.
                                                                 1 = Fields are valid. There will be at least one subsequent list entry. */
#else /* Word 0 - Little Endian */
        uint64_t v                     : 1;  /**< [  0:  0](RO) Valid entry.
                                                                 0 = Fields in this register will all be zero. This ends the list of capabilities.
                                                                 1 = Fields are valid. There will be at least one subsequent list entry. */
        uint64_t ep                    : 1;  /**< [  1:  1](RO) Endpoint.
                                                                 0 = This MAC/PF does not support endpoint mode; many registers are not
                                                                 implemented including input and output ring-based registers. MSI-X message
                                                                 generation is also not implemented.
                                                                 1 = This MAC/PF combination supports endpoint mode. */
        uint64_t reserved_2_3          : 2;
        uint64_t ifty                  : 4;  /**< [  7:  4](RO) Interface type.
                                                                 0x0 = PEM. */
        uint64_t ifn                   : 8;  /**< [ 15:  8](RO) Interface number. Indicates the physical PEM number. */
        uint64_t mac                   : 8;  /**< [ 23: 16](RO) Relative MAC number. Indicates the index number to MAC registers, e.g. the
                                                                 second index of SLI()_S2M_MAC()_CTL. */
        uint64_t pf                    : 8;  /**< [ 31: 24](RO) Physical function number. Indicates the PF number as viewed from the external
                                                                 PCI bus. */
        uint64_t epf                   : 8;  /**< [ 39: 32](RO) EPF number. Indicates the index number to EPF registers, e.g. the second index
                                                                 of SDP()_EPF()_MBOX_RINT. */
        uint64_t reserved_40_63        : 24;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_lmac_const0x_s cn; */
};
typedef union bdk_slix_lmac_const0x bdk_slix_lmac_const0x_t;

static inline uint64_t BDK_SLIX_LMAC_CONST0X(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_LMAC_CONST0X(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN81XX) && ((a==0) && (b<=4)))
        return 0x874001004000ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x7);
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=4)))
        return 0x874001004000ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x7);
    __bdk_csr_fatal("SLIX_LMAC_CONST0X", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_LMAC_CONST0X(a,b) bdk_slix_lmac_const0x_t
#define bustype_BDK_SLIX_LMAC_CONST0X(a,b) BDK_CSR_TYPE_NCB
#define basename_BDK_SLIX_LMAC_CONST0X(a,b) "SLIX_LMAC_CONST0X"
#define device_bar_BDK_SLIX_LMAC_CONST0X(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_LMAC_CONST0X(a,b) (a)
#define arguments_BDK_SLIX_LMAC_CONST0X(a,b) (a),(b),-1,-1

/**
 * Register (NCB) sli#_lmac_const1#
 *
 * SLI Logical MAC Capabilities Register 1
 * See SLI()_LMAC_CONST0().
 */
union bdk_slix_lmac_const1x
{
    uint64_t u;
    struct bdk_slix_lmac_const1x_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_32_63        : 32;
        uint64_t rings                 : 16; /**< [ 31: 16](RO) Number of rings.
                                                                 If [EP] is set then this field indicates the number of rings assigned
                                                                 to the physical function (which can also be shared with its associated
                                                                 virtual functions by means of the SLI()_EPF()_RINFO register.)
                                                                 If [EP] is clear then this field will be zero. */
        uint64_t vfs                   : 16; /**< [ 15:  0](RO) Number of virtual functions.
                                                                 The maximum number that may be programmed into SLI()_S2M_REG()_ACC2[VF]. */
#else /* Word 0 - Little Endian */
        uint64_t vfs                   : 16; /**< [ 15:  0](RO) Number of virtual functions.
                                                                 The maximum number that may be programmed into SLI()_S2M_REG()_ACC2[VF]. */
        uint64_t rings                 : 16; /**< [ 31: 16](RO) Number of rings.
                                                                 If [EP] is set then this field indicates the number of rings assigned
                                                                 to the physical function (which can also be shared with its associated
                                                                 virtual functions by means of the SLI()_EPF()_RINFO register.)
                                                                 If [EP] is clear then this field will be zero. */
        uint64_t reserved_32_63        : 32;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_lmac_const1x_s cn; */
};
typedef union bdk_slix_lmac_const1x bdk_slix_lmac_const1x_t;

static inline uint64_t BDK_SLIX_LMAC_CONST1X(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_LMAC_CONST1X(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN81XX) && ((a==0) && (b<=4)))
        return 0x874001004008ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x7);
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=4)))
        return 0x874001004008ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x7);
    __bdk_csr_fatal("SLIX_LMAC_CONST1X", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_LMAC_CONST1X(a,b) bdk_slix_lmac_const1x_t
#define bustype_BDK_SLIX_LMAC_CONST1X(a,b) BDK_CSR_TYPE_NCB
#define basename_BDK_SLIX_LMAC_CONST1X(a,b) "SLIX_LMAC_CONST1X"
#define device_bar_BDK_SLIX_LMAC_CONST1X(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_LMAC_CONST1X(a,b) (a)
#define arguments_BDK_SLIX_LMAC_CONST1X(a,b) (a),(b),-1,-1

/**
 * Register (NCB) sli#_m2s_mac#_ctl
 *
 * SLI Control Port Registers
 * This register controls the functionality of the SLI's M2S in regards to a MAC.
 * Internal:
 * In 78xx was SLI()_CTL_PORT() and SLI()_S2M_PORT()_CTL.
 */
union bdk_slix_m2s_macx_ctl
{
    uint64_t u;
    struct bdk_slix_m2s_macx_ctl_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_21_63        : 43;
        uint64_t bige                  : 1;  /**< [ 20: 20](R/W) Atomics sent on NCBI will be marked as big endian.  If the link partner is
                                                                 big-endian and the processors are big-endian, this allows exchange of big-endian
                                                                 atomics without byte swapping. */
        uint64_t wait_pxfr             : 1;  /**< [ 19: 19](R/W) When set, will cause a posted TLP write from a MAC to follow the following sequence:
                                                                 (having this bit set will cut the posted-TLP performance about 50%).
                                                                 _ 1. Request the NCBI.
                                                                 _ 2. Wait for the grant and send the transfer on the NCBI.
                                                                 _ 3. Start the next posted TLP.

                                                                 For diagnostic use only. */
        uint64_t wvirt                 : 1;  /**< [ 18: 18](R/W) Write virtual:
                                                                   1 = Addresses in SLI()_WIN_WR_ADDR and SLI()_WIN_RD_ADDR are virtual addresses.
                                                                   0 = Addresses are physical addresses. */
        uint64_t dis_port              : 1;  /**< [ 17: 17](R/W1C/H) When set, the output to the MAC is disabled. This occurs when the MAC reset line
                                                                 transitions from de-asserted to asserted. Writing a 1 to this location clears this
                                                                 condition when the MAC is no longer in reset and the output to the MAC is at the beginning
                                                                 of a transfer. */
        uint64_t waitl_com             : 1;  /**< [ 16: 16](R/W) When set, causes the SLI to wait for a store done from the L2C for any
                                                                 previously sent stores, before sending additional completions to the L2C from
                                                                 the MAC.
                                                                 0 = More aggressive, higher-performance behavior. Suitable when device drivers are
                                                                 appropriately written for performance and do not assume that IO reads force all DMAs
                                                                 to be complete.
                                                                 1 = Compliant, lower-performing behavior. Enforce PCI-compliant completion
                                                                 versus posted/non-posted ordering. */
        uint64_t reserved_7_15         : 9;
        uint64_t ctlp_ro               : 1;  /**< [  6:  6](R/W) Relaxed ordering enable for completion TLPS. This permits the SLI to use the RO bit sent
                                                                 from
                                                                 the MACs. See WAITL_COM. */
        uint64_t ptlp_ro               : 1;  /**< [  5:  5](R/W) Relaxed ordering enable for posted TLPS. This permits the SLI to use the RO bit sent from
                                                                 the MACs. See WAIT_COM. */
        uint64_t wind_d                : 1;  /**< [  4:  4](R/W) Window disable. When set, disables access to the window registers from the MAC. */
        uint64_t bar0_d                : 1;  /**< [  3:  3](R/W) BAR0 disable. When set, disables access from the MAC to SLI BAR0 registers. */
        uint64_t ld_cmd                : 2;  /**< [  2:  1](R/W) When SLI issues a load command to the L2C that is to be cached, this field selects the
                                                                 type of load command to use. Un-cached loads will use LDT:
                                                                 0x0 = LDD.
                                                                 0x1 = LDI.
                                                                 0x2 = LDE.
                                                                 0x3 = LDY. */
        uint64_t wait_com              : 1;  /**< [  0:  0](R/W) Wait for commit. When set, causes the SLI to wait for a store done from the L2C before
                                                                 sending additional stores to the L2C from the MAC. The SLI requests a commit on the last
                                                                 store if more than one STORE operation is required on the NCB. Most applications will not
                                                                 notice a difference, so this bit should not be set. Setting the bit is more conservative
                                                                 on ordering, lower performance. */
#else /* Word 0 - Little Endian */
        uint64_t wait_com              : 1;  /**< [  0:  0](R/W) Wait for commit. When set, causes the SLI to wait for a store done from the L2C before
                                                                 sending additional stores to the L2C from the MAC. The SLI requests a commit on the last
                                                                 store if more than one STORE operation is required on the NCB. Most applications will not
                                                                 notice a difference, so this bit should not be set. Setting the bit is more conservative
                                                                 on ordering, lower performance. */
        uint64_t ld_cmd                : 2;  /**< [  2:  1](R/W) When SLI issues a load command to the L2C that is to be cached, this field selects the
                                                                 type of load command to use. Un-cached loads will use LDT:
                                                                 0x0 = LDD.
                                                                 0x1 = LDI.
                                                                 0x2 = LDE.
                                                                 0x3 = LDY. */
        uint64_t bar0_d                : 1;  /**< [  3:  3](R/W) BAR0 disable. When set, disables access from the MAC to SLI BAR0 registers. */
        uint64_t wind_d                : 1;  /**< [  4:  4](R/W) Window disable. When set, disables access to the window registers from the MAC. */
        uint64_t ptlp_ro               : 1;  /**< [  5:  5](R/W) Relaxed ordering enable for posted TLPS. This permits the SLI to use the RO bit sent from
                                                                 the MACs. See WAIT_COM. */
        uint64_t ctlp_ro               : 1;  /**< [  6:  6](R/W) Relaxed ordering enable for completion TLPS. This permits the SLI to use the RO bit sent
                                                                 from
                                                                 the MACs. See WAITL_COM. */
        uint64_t reserved_7_15         : 9;
        uint64_t waitl_com             : 1;  /**< [ 16: 16](R/W) When set, causes the SLI to wait for a store done from the L2C for any
                                                                 previously sent stores, before sending additional completions to the L2C from
                                                                 the MAC.
                                                                 0 = More aggressive, higher-performance behavior. Suitable when device drivers are
                                                                 appropriately written for performance and do not assume that IO reads force all DMAs
                                                                 to be complete.
                                                                 1 = Compliant, lower-performing behavior. Enforce PCI-compliant completion
                                                                 versus posted/non-posted ordering. */
        uint64_t dis_port              : 1;  /**< [ 17: 17](R/W1C/H) When set, the output to the MAC is disabled. This occurs when the MAC reset line
                                                                 transitions from de-asserted to asserted. Writing a 1 to this location clears this
                                                                 condition when the MAC is no longer in reset and the output to the MAC is at the beginning
                                                                 of a transfer. */
        uint64_t wvirt                 : 1;  /**< [ 18: 18](R/W) Write virtual:
                                                                   1 = Addresses in SLI()_WIN_WR_ADDR and SLI()_WIN_RD_ADDR are virtual addresses.
                                                                   0 = Addresses are physical addresses. */
        uint64_t wait_pxfr             : 1;  /**< [ 19: 19](R/W) When set, will cause a posted TLP write from a MAC to follow the following sequence:
                                                                 (having this bit set will cut the posted-TLP performance about 50%).
                                                                 _ 1. Request the NCBI.
                                                                 _ 2. Wait for the grant and send the transfer on the NCBI.
                                                                 _ 3. Start the next posted TLP.

                                                                 For diagnostic use only. */
        uint64_t bige                  : 1;  /**< [ 20: 20](R/W) Atomics sent on NCBI will be marked as big endian.  If the link partner is
                                                                 big-endian and the processors are big-endian, this allows exchange of big-endian
                                                                 atomics without byte swapping. */
        uint64_t reserved_21_63        : 43;
#endif /* Word 0 - End */
    } s;
    struct bdk_slix_m2s_macx_ctl_cn88xxp1
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_19_63        : 45;
        uint64_t wvirt                 : 1;  /**< [ 18: 18](R/W) Write virtual:
                                                                   1 = Addresses in SLI()_WIN_WR_ADDR and SLI()_WIN_RD_ADDR are virtual addresses.
                                                                   0 = Addresses are physical addresses. */
        uint64_t dis_port              : 1;  /**< [ 17: 17](R/W1C/H) When set, the output to the MAC is disabled. This occurs when the MAC reset line
                                                                 transitions from de-asserted to asserted. Writing a 1 to this location clears this
                                                                 condition when the MAC is no longer in reset and the output to the MAC is at the beginning
                                                                 of a transfer. */
        uint64_t waitl_com             : 1;  /**< [ 16: 16](R/W) When set, causes the SLI to wait for a store done from the L2C for any
                                                                 previously sent stores, before sending additional completions to the L2C from
                                                                 the MAC.
                                                                 0 = More aggressive, higher-performance behavior. Suitable when device drivers are
                                                                 appropriately written for performance and do not assume that IO reads force all DMAs
                                                                 to be complete.
                                                                 1 = Compliant, lower-performing behavior. Enforce PCI-compliant completion
                                                                 versus posted/non-posted ordering. */
        uint64_t reserved_7_15         : 9;
        uint64_t ctlp_ro               : 1;  /**< [  6:  6](R/W) Relaxed ordering enable for completion TLPS. This permits the SLI to use the RO bit sent
                                                                 from
                                                                 the MACs. See WAITL_COM. */
        uint64_t ptlp_ro               : 1;  /**< [  5:  5](R/W) Relaxed ordering enable for posted TLPS. This permits the SLI to use the RO bit sent from
                                                                 the MACs. See WAIT_COM. */
        uint64_t wind_d                : 1;  /**< [  4:  4](R/W) Window disable. When set, disables access to the window registers from the MAC. */
        uint64_t bar0_d                : 1;  /**< [  3:  3](R/W) BAR0 disable. When set, disables access from the MAC to SLI BAR0 registers. */
        uint64_t ld_cmd                : 2;  /**< [  2:  1](R/W) When SLI issues a load command to the L2C that is to be cached, this field selects the
                                                                 type of load command to use. Un-cached loads will use LDT:
                                                                 0x0 = LDD.
                                                                 0x1 = LDI.
                                                                 0x2 = LDE.
                                                                 0x3 = LDY. */
        uint64_t wait_com              : 1;  /**< [  0:  0](R/W) Wait for commit. When set, causes the SLI to wait for a store done from the L2C before
                                                                 sending additional stores to the L2C from the MAC. The SLI requests a commit on the last
                                                                 store if more than one STORE operation is required on the NCB. Most applications will not
                                                                 notice a difference, so this bit should not be set. Setting the bit is more conservative
                                                                 on ordering, lower performance. */
#else /* Word 0 - Little Endian */
        uint64_t wait_com              : 1;  /**< [  0:  0](R/W) Wait for commit. When set, causes the SLI to wait for a store done from the L2C before
                                                                 sending additional stores to the L2C from the MAC. The SLI requests a commit on the last
                                                                 store if more than one STORE operation is required on the NCB. Most applications will not
                                                                 notice a difference, so this bit should not be set. Setting the bit is more conservative
                                                                 on ordering, lower performance. */
        uint64_t ld_cmd                : 2;  /**< [  2:  1](R/W) When SLI issues a load command to the L2C that is to be cached, this field selects the
                                                                 type of load command to use. Un-cached loads will use LDT:
                                                                 0x0 = LDD.
                                                                 0x1 = LDI.
                                                                 0x2 = LDE.
                                                                 0x3 = LDY. */
        uint64_t bar0_d                : 1;  /**< [  3:  3](R/W) BAR0 disable. When set, disables access from the MAC to SLI BAR0 registers. */
        uint64_t wind_d                : 1;  /**< [  4:  4](R/W) Window disable. When set, disables access to the window registers from the MAC. */
        uint64_t ptlp_ro               : 1;  /**< [  5:  5](R/W) Relaxed ordering enable for posted TLPS. This permits the SLI to use the RO bit sent from
                                                                 the MACs. See WAIT_COM. */
        uint64_t ctlp_ro               : 1;  /**< [  6:  6](R/W) Relaxed ordering enable for completion TLPS. This permits the SLI to use the RO bit sent
                                                                 from
                                                                 the MACs. See WAITL_COM. */
        uint64_t reserved_7_15         : 9;
        uint64_t waitl_com             : 1;  /**< [ 16: 16](R/W) When set, causes the SLI to wait for a store done from the L2C for any
                                                                 previously sent stores, before sending additional completions to the L2C from
                                                                 the MAC.
                                                                 0 = More aggressive, higher-performance behavior. Suitable when device drivers are
                                                                 appropriately written for performance and do not assume that IO reads force all DMAs
                                                                 to be complete.
                                                                 1 = Compliant, lower-performing behavior. Enforce PCI-compliant completion
                                                                 versus posted/non-posted ordering. */
        uint64_t dis_port              : 1;  /**< [ 17: 17](R/W1C/H) When set, the output to the MAC is disabled. This occurs when the MAC reset line
                                                                 transitions from de-asserted to asserted. Writing a 1 to this location clears this
                                                                 condition when the MAC is no longer in reset and the output to the MAC is at the beginning
                                                                 of a transfer. */
        uint64_t wvirt                 : 1;  /**< [ 18: 18](R/W) Write virtual:
                                                                   1 = Addresses in SLI()_WIN_WR_ADDR and SLI()_WIN_RD_ADDR are virtual addresses.
                                                                   0 = Addresses are physical addresses. */
        uint64_t reserved_19_63        : 45;
#endif /* Word 0 - End */
    } cn88xxp1;
    /* struct bdk_slix_m2s_macx_ctl_s cn81xx; */
    /* struct bdk_slix_m2s_macx_ctl_s cn83xx; */
    struct bdk_slix_m2s_macx_ctl_cn88xxp2
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_20_63        : 44;
        uint64_t wait_pxfr             : 1;  /**< [ 19: 19](R/W) When set, will cause a posted TLP write from a MAC to follow the following sequence:
                                                                 (having this bit set will cut the posted-TLP performance about 50%).
                                                                 _ 1. Request the NCBI.
                                                                 _ 2. Wait for the grant and send the transfer on the NCBI.
                                                                 _ 3. Start the next posted TLP.

                                                                 For diagnostic use only. */
        uint64_t wvirt                 : 1;  /**< [ 18: 18](R/W) Write virtual:
                                                                   1 = Addresses in SLI()_WIN_WR_ADDR and SLI()_WIN_RD_ADDR are virtual addresses.
                                                                   0 = Addresses are physical addresses. */
        uint64_t dis_port              : 1;  /**< [ 17: 17](R/W1C/H) When set, the output to the MAC is disabled. This occurs when the MAC reset line
                                                                 transitions from de-asserted to asserted. Writing a 1 to this location clears this
                                                                 condition when the MAC is no longer in reset and the output to the MAC is at the beginning
                                                                 of a transfer. */
        uint64_t waitl_com             : 1;  /**< [ 16: 16](R/W) When set, causes the SLI to wait for a store done from the L2C for any
                                                                 previously sent stores, before sending additional completions to the L2C from
                                                                 the MAC.
                                                                 0 = More aggressive, higher-performance behavior. Suitable when device drivers are
                                                                 appropriately written for performance and do not assume that IO reads force all DMAs
                                                                 to be complete.
                                                                 1 = Compliant, lower-performing behavior. Enforce PCI-compliant completion
                                                                 versus posted/non-posted ordering. */
        uint64_t reserved_7_15         : 9;
        uint64_t ctlp_ro               : 1;  /**< [  6:  6](R/W) Relaxed ordering enable for completion TLPS. This permits the SLI to use the RO bit sent
                                                                 from
                                                                 the MACs. See WAITL_COM. */
        uint64_t ptlp_ro               : 1;  /**< [  5:  5](R/W) Relaxed ordering enable for posted TLPS. This permits the SLI to use the RO bit sent from
                                                                 the MACs. See WAIT_COM. */
        uint64_t wind_d                : 1;  /**< [  4:  4](R/W) Window disable. When set, disables access to the window registers from the MAC. */
        uint64_t bar0_d                : 1;  /**< [  3:  3](R/W) BAR0 disable. When set, disables access from the MAC to SLI BAR0 registers. */
        uint64_t ld_cmd                : 2;  /**< [  2:  1](R/W) When SLI issues a load command to the L2C that is to be cached, this field selects the
                                                                 type of load command to use. Un-cached loads will use LDT:
                                                                 0x0 = LDD.
                                                                 0x1 = LDI.
                                                                 0x2 = LDE.
                                                                 0x3 = LDY. */
        uint64_t wait_com              : 1;  /**< [  0:  0](R/W) Wait for commit. When set, causes the SLI to wait for a store done from the L2C before
                                                                 sending additional stores to the L2C from the MAC. The SLI requests a commit on the last
                                                                 store if more than one STORE operation is required on the NCB. Most applications will not
                                                                 notice a difference, so this bit should not be set. Setting the bit is more conservative
                                                                 on ordering, lower performance. */
#else /* Word 0 - Little Endian */
        uint64_t wait_com              : 1;  /**< [  0:  0](R/W) Wait for commit. When set, causes the SLI to wait for a store done from the L2C before
                                                                 sending additional stores to the L2C from the MAC. The SLI requests a commit on the last
                                                                 store if more than one STORE operation is required on the NCB. Most applications will not
                                                                 notice a difference, so this bit should not be set. Setting the bit is more conservative
                                                                 on ordering, lower performance. */
        uint64_t ld_cmd                : 2;  /**< [  2:  1](R/W) When SLI issues a load command to the L2C that is to be cached, this field selects the
                                                                 type of load command to use. Un-cached loads will use LDT:
                                                                 0x0 = LDD.
                                                                 0x1 = LDI.
                                                                 0x2 = LDE.
                                                                 0x3 = LDY. */
        uint64_t bar0_d                : 1;  /**< [  3:  3](R/W) BAR0 disable. When set, disables access from the MAC to SLI BAR0 registers. */
        uint64_t wind_d                : 1;  /**< [  4:  4](R/W) Window disable. When set, disables access to the window registers from the MAC. */
        uint64_t ptlp_ro               : 1;  /**< [  5:  5](R/W) Relaxed ordering enable for posted TLPS. This permits the SLI to use the RO bit sent from
                                                                 the MACs. See WAIT_COM. */
        uint64_t ctlp_ro               : 1;  /**< [  6:  6](R/W) Relaxed ordering enable for completion TLPS. This permits the SLI to use the RO bit sent
                                                                 from
                                                                 the MACs. See WAITL_COM. */
        uint64_t reserved_7_15         : 9;
        uint64_t waitl_com             : 1;  /**< [ 16: 16](R/W) When set, causes the SLI to wait for a store done from the L2C for any
                                                                 previously sent stores, before sending additional completions to the L2C from
                                                                 the MAC.
                                                                 0 = More aggressive, higher-performance behavior. Suitable when device drivers are
                                                                 appropriately written for performance and do not assume that IO reads force all DMAs
                                                                 to be complete.
                                                                 1 = Compliant, lower-performing behavior. Enforce PCI-compliant completion
                                                                 versus posted/non-posted ordering. */
        uint64_t dis_port              : 1;  /**< [ 17: 17](R/W1C/H) When set, the output to the MAC is disabled. This occurs when the MAC reset line
                                                                 transitions from de-asserted to asserted. Writing a 1 to this location clears this
                                                                 condition when the MAC is no longer in reset and the output to the MAC is at the beginning
                                                                 of a transfer. */
        uint64_t wvirt                 : 1;  /**< [ 18: 18](R/W) Write virtual:
                                                                   1 = Addresses in SLI()_WIN_WR_ADDR and SLI()_WIN_RD_ADDR are virtual addresses.
                                                                   0 = Addresses are physical addresses. */
        uint64_t wait_pxfr             : 1;  /**< [ 19: 19](R/W) When set, will cause a posted TLP write from a MAC to follow the following sequence:
                                                                 (having this bit set will cut the posted-TLP performance about 50%).
                                                                 _ 1. Request the NCBI.
                                                                 _ 2. Wait for the grant and send the transfer on the NCBI.
                                                                 _ 3. Start the next posted TLP.

                                                                 For diagnostic use only. */
        uint64_t reserved_20_63        : 44;
#endif /* Word 0 - End */
    } cn88xxp2;
};
typedef union bdk_slix_m2s_macx_ctl bdk_slix_m2s_macx_ctl_t;

static inline uint64_t BDK_SLIX_M2S_MACX_CTL(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_M2S_MACX_CTL(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN81XX) && ((a==0) && (b<=2)))
        return 0x874001002100ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x3);
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=3)))
        return 0x874001002100ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x3);
    if (CAVIUM_IS_MODEL(CAVIUM_CN88XX) && ((a<=1) && (b<=2)))
        return 0x874001002100ll + 0x1000000000ll * ((a) & 0x1) + 0x10ll * ((b) & 0x3);
    __bdk_csr_fatal("SLIX_M2S_MACX_CTL", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_M2S_MACX_CTL(a,b) bdk_slix_m2s_macx_ctl_t
#define bustype_BDK_SLIX_M2S_MACX_CTL(a,b) BDK_CSR_TYPE_NCB
#define basename_BDK_SLIX_M2S_MACX_CTL(a,b) "SLIX_M2S_MACX_CTL"
#define device_bar_BDK_SLIX_M2S_MACX_CTL(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_M2S_MACX_CTL(a,b) (a)
#define arguments_BDK_SLIX_M2S_MACX_CTL(a,b) (a),(b),-1,-1

/**
 * Register (NCB) sli#_mac#_int_ena_w1c
 *
 * SLI MAC Interrupt Enable Clear Register
 * This register clears interrupt enable bits.
 */
union bdk_slix_macx_int_ena_w1c
{
    uint64_t u;
    struct bdk_slix_macx_int_ena_w1c_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_4_63         : 60;
        uint64_t un_wi                 : 1;  /**< [  3:  3](R/W1C/H) Reads or clears enable for SLI(0..1)_MAC(0..2)_INT_SUM[UN_WI]. */
        uint64_t un_b0                 : 1;  /**< [  2:  2](R/W1C/H) Reads or clears enable for SLI(0..1)_MAC(0..2)_INT_SUM[UN_B0]. */
        uint64_t up_wi                 : 1;  /**< [  1:  1](R/W1C/H) Reads or clears enable for SLI(0..1)_MAC(0..2)_INT_SUM[UP_WI]. */
        uint64_t up_b0                 : 1;  /**< [  0:  0](R/W1C/H) Reads or clears enable for SLI(0..1)_MAC(0..2)_INT_SUM[UP_B0]. */
#else /* Word 0 - Little Endian */
        uint64_t up_b0                 : 1;  /**< [  0:  0](R/W1C/H) Reads or clears enable for SLI(0..1)_MAC(0..2)_INT_SUM[UP_B0]. */
        uint64_t up_wi                 : 1;  /**< [  1:  1](R/W1C/H) Reads or clears enable for SLI(0..1)_MAC(0..2)_INT_SUM[UP_WI]. */
        uint64_t un_b0                 : 1;  /**< [  2:  2](R/W1C/H) Reads or clears enable for SLI(0..1)_MAC(0..2)_INT_SUM[UN_B0]. */
        uint64_t un_wi                 : 1;  /**< [  3:  3](R/W1C/H) Reads or clears enable for SLI(0..1)_MAC(0..2)_INT_SUM[UN_WI]. */
        uint64_t reserved_4_63         : 60;
#endif /* Word 0 - End */
    } s;
    struct bdk_slix_macx_int_ena_w1c_cn81xx
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_4_63         : 60;
        uint64_t un_wi                 : 1;  /**< [  3:  3](R/W1C/H) Reads or clears enable for SLI(0)_MAC(0..2)_INT_SUM[UN_WI]. */
        uint64_t un_b0                 : 1;  /**< [  2:  2](R/W1C/H) Reads or clears enable for SLI(0)_MAC(0..2)_INT_SUM[UN_B0]. */
        uint64_t up_wi                 : 1;  /**< [  1:  1](R/W1C/H) Reads or clears enable for SLI(0)_MAC(0..2)_INT_SUM[UP_WI]. */
        uint64_t up_b0                 : 1;  /**< [  0:  0](R/W1C/H) Reads or clears enable for SLI(0)_MAC(0..2)_INT_SUM[UP_B0]. */
#else /* Word 0 - Little Endian */
        uint64_t up_b0                 : 1;  /**< [  0:  0](R/W1C/H) Reads or clears enable for SLI(0)_MAC(0..2)_INT_SUM[UP_B0]. */
        uint64_t up_wi                 : 1;  /**< [  1:  1](R/W1C/H) Reads or clears enable for SLI(0)_MAC(0..2)_INT_SUM[UP_WI]. */
        uint64_t un_b0                 : 1;  /**< [  2:  2](R/W1C/H) Reads or clears enable for SLI(0)_MAC(0..2)_INT_SUM[UN_B0]. */
        uint64_t un_wi                 : 1;  /**< [  3:  3](R/W1C/H) Reads or clears enable for SLI(0)_MAC(0..2)_INT_SUM[UN_WI]. */
        uint64_t reserved_4_63         : 60;
#endif /* Word 0 - End */
    } cn81xx;
    /* struct bdk_slix_macx_int_ena_w1c_s cn88xx; */
    struct bdk_slix_macx_int_ena_w1c_cn83xx
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_4_63         : 60;
        uint64_t un_wi                 : 1;  /**< [  3:  3](R/W1C/H) Reads or clears enable for SLI(0)_MAC(0..3)_INT_SUM[UN_WI]. */
        uint64_t un_b0                 : 1;  /**< [  2:  2](R/W1C/H) Reads or clears enable for SLI(0)_MAC(0..3)_INT_SUM[UN_B0]. */
        uint64_t up_wi                 : 1;  /**< [  1:  1](R/W1C/H) Reads or clears enable for SLI(0)_MAC(0..3)_INT_SUM[UP_WI]. */
        uint64_t up_b0                 : 1;  /**< [  0:  0](R/W1C/H) Reads or clears enable for SLI(0)_MAC(0..3)_INT_SUM[UP_B0]. */
#else /* Word 0 - Little Endian */
        uint64_t up_b0                 : 1;  /**< [  0:  0](R/W1C/H) Reads or clears enable for SLI(0)_MAC(0..3)_INT_SUM[UP_B0]. */
        uint64_t up_wi                 : 1;  /**< [  1:  1](R/W1C/H) Reads or clears enable for SLI(0)_MAC(0..3)_INT_SUM[UP_WI]. */
        uint64_t un_b0                 : 1;  /**< [  2:  2](R/W1C/H) Reads or clears enable for SLI(0)_MAC(0..3)_INT_SUM[UN_B0]. */
        uint64_t un_wi                 : 1;  /**< [  3:  3](R/W1C/H) Reads or clears enable for SLI(0)_MAC(0..3)_INT_SUM[UN_WI]. */
        uint64_t reserved_4_63         : 60;
#endif /* Word 0 - End */
    } cn83xx;
};
typedef union bdk_slix_macx_int_ena_w1c bdk_slix_macx_int_ena_w1c_t;

static inline uint64_t BDK_SLIX_MACX_INT_ENA_W1C(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_MACX_INT_ENA_W1C(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN81XX) && ((a==0) && (b<=2)))
        return 0x874000001200ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x3);
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=3)))
        return 0x874000001200ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x3);
    if (CAVIUM_IS_MODEL(CAVIUM_CN88XX) && ((a<=1) && (b<=2)))
        return 0x874000001200ll + 0x1000000000ll * ((a) & 0x1) + 0x10ll * ((b) & 0x3);
    __bdk_csr_fatal("SLIX_MACX_INT_ENA_W1C", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_MACX_INT_ENA_W1C(a,b) bdk_slix_macx_int_ena_w1c_t
#define bustype_BDK_SLIX_MACX_INT_ENA_W1C(a,b) BDK_CSR_TYPE_NCB
#define basename_BDK_SLIX_MACX_INT_ENA_W1C(a,b) "SLIX_MACX_INT_ENA_W1C"
#define device_bar_BDK_SLIX_MACX_INT_ENA_W1C(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_MACX_INT_ENA_W1C(a,b) (a)
#define arguments_BDK_SLIX_MACX_INT_ENA_W1C(a,b) (a),(b),-1,-1

/**
 * Register (NCB) sli#_mac#_int_ena_w1s
 *
 * SLI MAC Interrupt Enable Set Register
 * This register sets interrupt enable bits.
 */
union bdk_slix_macx_int_ena_w1s
{
    uint64_t u;
    struct bdk_slix_macx_int_ena_w1s_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_4_63         : 60;
        uint64_t un_wi                 : 1;  /**< [  3:  3](R/W1S/H) Reads or sets enable for SLI(0..1)_MAC(0..2)_INT_SUM[UN_WI]. */
        uint64_t un_b0                 : 1;  /**< [  2:  2](R/W1S/H) Reads or sets enable for SLI(0..1)_MAC(0..2)_INT_SUM[UN_B0]. */
        uint64_t up_wi                 : 1;  /**< [  1:  1](R/W1S/H) Reads or sets enable for SLI(0..1)_MAC(0..2)_INT_SUM[UP_WI]. */
        uint64_t up_b0                 : 1;  /**< [  0:  0](R/W1S/H) Reads or sets enable for SLI(0..1)_MAC(0..2)_INT_SUM[UP_B0]. */
#else /* Word 0 - Little Endian */
        uint64_t up_b0                 : 1;  /**< [  0:  0](R/W1S/H) Reads or sets enable for SLI(0..1)_MAC(0..2)_INT_SUM[UP_B0]. */
        uint64_t up_wi                 : 1;  /**< [  1:  1](R/W1S/H) Reads or sets enable for SLI(0..1)_MAC(0..2)_INT_SUM[UP_WI]. */
        uint64_t un_b0                 : 1;  /**< [  2:  2](R/W1S/H) Reads or sets enable for SLI(0..1)_MAC(0..2)_INT_SUM[UN_B0]. */
        uint64_t un_wi                 : 1;  /**< [  3:  3](R/W1S/H) Reads or sets enable for SLI(0..1)_MAC(0..2)_INT_SUM[UN_WI]. */
        uint64_t reserved_4_63         : 60;
#endif /* Word 0 - End */
    } s;
    struct bdk_slix_macx_int_ena_w1s_cn81xx
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_4_63         : 60;
        uint64_t un_wi                 : 1;  /**< [  3:  3](R/W1S/H) Reads or sets enable for SLI(0)_MAC(0..2)_INT_SUM[UN_WI]. */
        uint64_t un_b0                 : 1;  /**< [  2:  2](R/W1S/H) Reads or sets enable for SLI(0)_MAC(0..2)_INT_SUM[UN_B0]. */
        uint64_t up_wi                 : 1;  /**< [  1:  1](R/W1S/H) Reads or sets enable for SLI(0)_MAC(0..2)_INT_SUM[UP_WI]. */
        uint64_t up_b0                 : 1;  /**< [  0:  0](R/W1S/H) Reads or sets enable for SLI(0)_MAC(0..2)_INT_SUM[UP_B0]. */
#else /* Word 0 - Little Endian */
        uint64_t up_b0                 : 1;  /**< [  0:  0](R/W1S/H) Reads or sets enable for SLI(0)_MAC(0..2)_INT_SUM[UP_B0]. */
        uint64_t up_wi                 : 1;  /**< [  1:  1](R/W1S/H) Reads or sets enable for SLI(0)_MAC(0..2)_INT_SUM[UP_WI]. */
        uint64_t un_b0                 : 1;  /**< [  2:  2](R/W1S/H) Reads or sets enable for SLI(0)_MAC(0..2)_INT_SUM[UN_B0]. */
        uint64_t un_wi                 : 1;  /**< [  3:  3](R/W1S/H) Reads or sets enable for SLI(0)_MAC(0..2)_INT_SUM[UN_WI]. */
        uint64_t reserved_4_63         : 60;
#endif /* Word 0 - End */
    } cn81xx;
    /* struct bdk_slix_macx_int_ena_w1s_s cn88xx; */
    struct bdk_slix_macx_int_ena_w1s_cn83xx
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_4_63         : 60;
        uint64_t un_wi                 : 1;  /**< [  3:  3](R/W1S/H) Reads or sets enable for SLI(0)_MAC(0..3)_INT_SUM[UN_WI]. */
        uint64_t un_b0                 : 1;  /**< [  2:  2](R/W1S/H) Reads or sets enable for SLI(0)_MAC(0..3)_INT_SUM[UN_B0]. */
        uint64_t up_wi                 : 1;  /**< [  1:  1](R/W1S/H) Reads or sets enable for SLI(0)_MAC(0..3)_INT_SUM[UP_WI]. */
        uint64_t up_b0                 : 1;  /**< [  0:  0](R/W1S/H) Reads or sets enable for SLI(0)_MAC(0..3)_INT_SUM[UP_B0]. */
#else /* Word 0 - Little Endian */
        uint64_t up_b0                 : 1;  /**< [  0:  0](R/W1S/H) Reads or sets enable for SLI(0)_MAC(0..3)_INT_SUM[UP_B0]. */
        uint64_t up_wi                 : 1;  /**< [  1:  1](R/W1S/H) Reads or sets enable for SLI(0)_MAC(0..3)_INT_SUM[UP_WI]. */
        uint64_t un_b0                 : 1;  /**< [  2:  2](R/W1S/H) Reads or sets enable for SLI(0)_MAC(0..3)_INT_SUM[UN_B0]. */
        uint64_t un_wi                 : 1;  /**< [  3:  3](R/W1S/H) Reads or sets enable for SLI(0)_MAC(0..3)_INT_SUM[UN_WI]. */
        uint64_t reserved_4_63         : 60;
#endif /* Word 0 - End */
    } cn83xx;
};
typedef union bdk_slix_macx_int_ena_w1s bdk_slix_macx_int_ena_w1s_t;

static inline uint64_t BDK_SLIX_MACX_INT_ENA_W1S(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_MACX_INT_ENA_W1S(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN81XX) && ((a==0) && (b<=2)))
        return 0x874000001280ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x3);
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=3)))
        return 0x874000001280ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x3);
    if (CAVIUM_IS_MODEL(CAVIUM_CN88XX) && ((a<=1) && (b<=2)))
        return 0x874000001280ll + 0x1000000000ll * ((a) & 0x1) + 0x10ll * ((b) & 0x3);
    __bdk_csr_fatal("SLIX_MACX_INT_ENA_W1S", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_MACX_INT_ENA_W1S(a,b) bdk_slix_macx_int_ena_w1s_t
#define bustype_BDK_SLIX_MACX_INT_ENA_W1S(a,b) BDK_CSR_TYPE_NCB
#define basename_BDK_SLIX_MACX_INT_ENA_W1S(a,b) "SLIX_MACX_INT_ENA_W1S"
#define device_bar_BDK_SLIX_MACX_INT_ENA_W1S(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_MACX_INT_ENA_W1S(a,b) (a)
#define arguments_BDK_SLIX_MACX_INT_ENA_W1S(a,b) (a),(b),-1,-1

/**
 * Register (NCB) sli#_mac#_int_sum
 *
 * SLI MAC Interrupt Summary Register
 * This register contains the different interrupt-summary bits for one MAC in the SLI.
 */
union bdk_slix_macx_int_sum
{
    uint64_t u;
    struct bdk_slix_macx_int_sum_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_4_63         : 60;
        uint64_t un_wi                 : 1;  /**< [  3:  3](R/W1C/H) Received unsupported N-TLP for window register from MAC(0..2). This occurs when the window
                                                                 registers are disabled and a window register access occurs. */
        uint64_t un_b0                 : 1;  /**< [  2:  2](R/W1C/H) Received unsupported N-TLP for Bar 0 from MAC(0..2). This occurs when the BAR 0 address
                                                                 space is disabled. */
        uint64_t up_wi                 : 1;  /**< [  1:  1](R/W1C/H) Received unsupported P-TLP for window register from MAC(0..2). This occurs when the window
                                                                 registers are disabled and a window register access occurs. */
        uint64_t up_b0                 : 1;  /**< [  0:  0](R/W1C/H) Received unsupported P-TLP for Bar 0 from MAC(0..2). This occurs when the BAR 0 address
                                                                 space is disabled. */
#else /* Word 0 - Little Endian */
        uint64_t up_b0                 : 1;  /**< [  0:  0](R/W1C/H) Received unsupported P-TLP for Bar 0 from MAC(0..2). This occurs when the BAR 0 address
                                                                 space is disabled. */
        uint64_t up_wi                 : 1;  /**< [  1:  1](R/W1C/H) Received unsupported P-TLP for window register from MAC(0..2). This occurs when the window
                                                                 registers are disabled and a window register access occurs. */
        uint64_t un_b0                 : 1;  /**< [  2:  2](R/W1C/H) Received unsupported N-TLP for Bar 0 from MAC(0..2). This occurs when the BAR 0 address
                                                                 space is disabled. */
        uint64_t un_wi                 : 1;  /**< [  3:  3](R/W1C/H) Received unsupported N-TLP for window register from MAC(0..2). This occurs when the window
                                                                 registers are disabled and a window register access occurs. */
        uint64_t reserved_4_63         : 60;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_macx_int_sum_s cn81xx; */
    /* struct bdk_slix_macx_int_sum_s cn88xx; */
    struct bdk_slix_macx_int_sum_cn83xx
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_4_63         : 60;
        uint64_t un_wi                 : 1;  /**< [  3:  3](R/W1C/H) Received unsupported N-TLP for window register from the corresponding MAC. This
                                                                 occurs when the window registers are disabled and a window register access occurs. */
        uint64_t un_b0                 : 1;  /**< [  2:  2](R/W1C/H) Received unsupported N-TLP for Bar 0 from the corresponding MAC. This occurs
                                                                 when the BAR 0 address space is disabled. */
        uint64_t up_wi                 : 1;  /**< [  1:  1](R/W1C/H) Received unsupported P-TLP for window register from the corresponding MAC. This
                                                                 occurs when the window registers are disabled and a window register access occurs. */
        uint64_t up_b0                 : 1;  /**< [  0:  0](R/W1C/H) Received unsupported P-TLP for Bar 0 from the corresponding MAC. This occurs
                                                                 when the BAR 0 address space is disabled. */
#else /* Word 0 - Little Endian */
        uint64_t up_b0                 : 1;  /**< [  0:  0](R/W1C/H) Received unsupported P-TLP for Bar 0 from the corresponding MAC. This occurs
                                                                 when the BAR 0 address space is disabled. */
        uint64_t up_wi                 : 1;  /**< [  1:  1](R/W1C/H) Received unsupported P-TLP for window register from the corresponding MAC. This
                                                                 occurs when the window registers are disabled and a window register access occurs. */
        uint64_t un_b0                 : 1;  /**< [  2:  2](R/W1C/H) Received unsupported N-TLP for Bar 0 from the corresponding MAC. This occurs
                                                                 when the BAR 0 address space is disabled. */
        uint64_t un_wi                 : 1;  /**< [  3:  3](R/W1C/H) Received unsupported N-TLP for window register from the corresponding MAC. This
                                                                 occurs when the window registers are disabled and a window register access occurs. */
        uint64_t reserved_4_63         : 60;
#endif /* Word 0 - End */
    } cn83xx;
};
typedef union bdk_slix_macx_int_sum bdk_slix_macx_int_sum_t;

static inline uint64_t BDK_SLIX_MACX_INT_SUM(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_MACX_INT_SUM(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN81XX) && ((a==0) && (b<=2)))
        return 0x874000001100ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x3);
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=3)))
        return 0x874000001100ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x3);
    if (CAVIUM_IS_MODEL(CAVIUM_CN88XX) && ((a<=1) && (b<=2)))
        return 0x874000001100ll + 0x1000000000ll * ((a) & 0x1) + 0x10ll * ((b) & 0x3);
    __bdk_csr_fatal("SLIX_MACX_INT_SUM", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_MACX_INT_SUM(a,b) bdk_slix_macx_int_sum_t
#define bustype_BDK_SLIX_MACX_INT_SUM(a,b) BDK_CSR_TYPE_NCB
#define basename_BDK_SLIX_MACX_INT_SUM(a,b) "SLIX_MACX_INT_SUM"
#define device_bar_BDK_SLIX_MACX_INT_SUM(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_MACX_INT_SUM(a,b) (a)
#define arguments_BDK_SLIX_MACX_INT_SUM(a,b) (a),(b),-1,-1

/**
 * Register (NCB) sli#_mac#_int_sum_w1s
 *
 * SLI MAC Interrupt Set Register
 * This register sets interrupt bits.
 */
union bdk_slix_macx_int_sum_w1s
{
    uint64_t u;
    struct bdk_slix_macx_int_sum_w1s_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_4_63         : 60;
        uint64_t un_wi                 : 1;  /**< [  3:  3](R/W1S/H) Reads or sets SLI(0..1)_MAC(0..2)_INT_SUM[UN_WI]. */
        uint64_t un_b0                 : 1;  /**< [  2:  2](R/W1S/H) Reads or sets SLI(0..1)_MAC(0..2)_INT_SUM[UN_B0]. */
        uint64_t up_wi                 : 1;  /**< [  1:  1](R/W1S/H) Reads or sets SLI(0..1)_MAC(0..2)_INT_SUM[UP_WI]. */
        uint64_t up_b0                 : 1;  /**< [  0:  0](R/W1S/H) Reads or sets SLI(0..1)_MAC(0..2)_INT_SUM[UP_B0]. */
#else /* Word 0 - Little Endian */
        uint64_t up_b0                 : 1;  /**< [  0:  0](R/W1S/H) Reads or sets SLI(0..1)_MAC(0..2)_INT_SUM[UP_B0]. */
        uint64_t up_wi                 : 1;  /**< [  1:  1](R/W1S/H) Reads or sets SLI(0..1)_MAC(0..2)_INT_SUM[UP_WI]. */
        uint64_t un_b0                 : 1;  /**< [  2:  2](R/W1S/H) Reads or sets SLI(0..1)_MAC(0..2)_INT_SUM[UN_B0]. */
        uint64_t un_wi                 : 1;  /**< [  3:  3](R/W1S/H) Reads or sets SLI(0..1)_MAC(0..2)_INT_SUM[UN_WI]. */
        uint64_t reserved_4_63         : 60;
#endif /* Word 0 - End */
    } s;
    struct bdk_slix_macx_int_sum_w1s_cn81xx
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_4_63         : 60;
        uint64_t un_wi                 : 1;  /**< [  3:  3](R/W1S/H) Reads or sets SLI(0)_MAC(0..2)_INT_SUM[UN_WI]. */
        uint64_t un_b0                 : 1;  /**< [  2:  2](R/W1S/H) Reads or sets SLI(0)_MAC(0..2)_INT_SUM[UN_B0]. */
        uint64_t up_wi                 : 1;  /**< [  1:  1](R/W1S/H) Reads or sets SLI(0)_MAC(0..2)_INT_SUM[UP_WI]. */
        uint64_t up_b0                 : 1;  /**< [  0:  0](R/W1S/H) Reads or sets SLI(0)_MAC(0..2)_INT_SUM[UP_B0]. */
#else /* Word 0 - Little Endian */
        uint64_t up_b0                 : 1;  /**< [  0:  0](R/W1S/H) Reads or sets SLI(0)_MAC(0..2)_INT_SUM[UP_B0]. */
        uint64_t up_wi                 : 1;  /**< [  1:  1](R/W1S/H) Reads or sets SLI(0)_MAC(0..2)_INT_SUM[UP_WI]. */
        uint64_t un_b0                 : 1;  /**< [  2:  2](R/W1S/H) Reads or sets SLI(0)_MAC(0..2)_INT_SUM[UN_B0]. */
        uint64_t un_wi                 : 1;  /**< [  3:  3](R/W1S/H) Reads or sets SLI(0)_MAC(0..2)_INT_SUM[UN_WI]. */
        uint64_t reserved_4_63         : 60;
#endif /* Word 0 - End */
    } cn81xx;
    /* struct bdk_slix_macx_int_sum_w1s_s cn88xx; */
    struct bdk_slix_macx_int_sum_w1s_cn83xx
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_4_63         : 60;
        uint64_t un_wi                 : 1;  /**< [  3:  3](R/W1S/H) Reads or sets SLI(0)_MAC(0..3)_INT_SUM[UN_WI]. */
        uint64_t un_b0                 : 1;  /**< [  2:  2](R/W1S/H) Reads or sets SLI(0)_MAC(0..3)_INT_SUM[UN_B0]. */
        uint64_t up_wi                 : 1;  /**< [  1:  1](R/W1S/H) Reads or sets SLI(0)_MAC(0..3)_INT_SUM[UP_WI]. */
        uint64_t up_b0                 : 1;  /**< [  0:  0](R/W1S/H) Reads or sets SLI(0)_MAC(0..3)_INT_SUM[UP_B0]. */
#else /* Word 0 - Little Endian */
        uint64_t up_b0                 : 1;  /**< [  0:  0](R/W1S/H) Reads or sets SLI(0)_MAC(0..3)_INT_SUM[UP_B0]. */
        uint64_t up_wi                 : 1;  /**< [  1:  1](R/W1S/H) Reads or sets SLI(0)_MAC(0..3)_INT_SUM[UP_WI]. */
        uint64_t un_b0                 : 1;  /**< [  2:  2](R/W1S/H) Reads or sets SLI(0)_MAC(0..3)_INT_SUM[UN_B0]. */
        uint64_t un_wi                 : 1;  /**< [  3:  3](R/W1S/H) Reads or sets SLI(0)_MAC(0..3)_INT_SUM[UN_WI]. */
        uint64_t reserved_4_63         : 60;
#endif /* Word 0 - End */
    } cn83xx;
};
typedef union bdk_slix_macx_int_sum_w1s bdk_slix_macx_int_sum_w1s_t;

static inline uint64_t BDK_SLIX_MACX_INT_SUM_W1S(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_MACX_INT_SUM_W1S(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN81XX) && ((a==0) && (b<=2)))
        return 0x874000001180ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x3);
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=3)))
        return 0x874000001180ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x3);
    if (CAVIUM_IS_MODEL(CAVIUM_CN88XX) && ((a<=1) && (b<=2)))
        return 0x874000001180ll + 0x1000000000ll * ((a) & 0x1) + 0x10ll * ((b) & 0x3);
    __bdk_csr_fatal("SLIX_MACX_INT_SUM_W1S", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_MACX_INT_SUM_W1S(a,b) bdk_slix_macx_int_sum_w1s_t
#define bustype_BDK_SLIX_MACX_INT_SUM_W1S(a,b) BDK_CSR_TYPE_NCB
#define basename_BDK_SLIX_MACX_INT_SUM_W1S(a,b) "SLIX_MACX_INT_SUM_W1S"
#define device_bar_BDK_SLIX_MACX_INT_SUM_W1S(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_MACX_INT_SUM_W1S(a,b) (a)
#define arguments_BDK_SLIX_MACX_INT_SUM_W1S(a,b) (a),(b),-1,-1

/**
 * Register (PEXP) sli#_mac_number
 *
 * SLI MAC Number Register
 * When read from a MAC, this register returns the MAC's port number, otherwise returns zero.
 */
union bdk_slix_mac_number
{
    uint64_t u;
    struct bdk_slix_mac_number_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_32_63        : 32;
        uint64_t chip_rev              : 8;  /**< [ 31: 24](RO/H) Chip revision. See MIO_FUS_DAT2[CHIP_ID]. */
        uint64_t reserved_20_23        : 4;
        uint64_t oci_id                : 4;  /**< [ 19: 16](RO) The CCPI node ID. */
        uint64_t reserved_9_15         : 7;
        uint64_t a_mode                : 1;  /**< [  8:  8](RO/H) Trusted mode.  See RST_BOOT[TRUSTED_MODE]. */
        uint64_t num                   : 8;  /**< [  7:  0](RO/H) MAC number. */
#else /* Word 0 - Little Endian */
        uint64_t num                   : 8;  /**< [  7:  0](RO/H) MAC number. */
        uint64_t a_mode                : 1;  /**< [  8:  8](RO/H) Trusted mode.  See RST_BOOT[TRUSTED_MODE]. */
        uint64_t reserved_9_15         : 7;
        uint64_t oci_id                : 4;  /**< [ 19: 16](RO) The CCPI node ID. */
        uint64_t reserved_20_23        : 4;
        uint64_t chip_rev              : 8;  /**< [ 31: 24](RO/H) Chip revision. See MIO_FUS_DAT2[CHIP_ID]. */
        uint64_t reserved_32_63        : 32;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_mac_number_s cn; */
};
typedef union bdk_slix_mac_number bdk_slix_mac_number_t;

static inline uint64_t BDK_SLIX_MAC_NUMBER(unsigned long a) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_MAC_NUMBER(unsigned long a)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN81XX) && (a==0))
        return 0x80ll + 0x10000000000ll * ((a) & 0x0);
    if (CAVIUM_IS_MODEL(CAVIUM_CN88XX) && (a<=1))
        return 0x80ll + 0x10000000000ll * ((a) & 0x1);
    __bdk_csr_fatal("SLIX_MAC_NUMBER", 1, a, 0, 0, 0);
}

#define typedef_BDK_SLIX_MAC_NUMBER(a) bdk_slix_mac_number_t
#define bustype_BDK_SLIX_MAC_NUMBER(a) BDK_CSR_TYPE_PEXP
#define basename_BDK_SLIX_MAC_NUMBER(a) "SLIX_MAC_NUMBER"
#define busnum_BDK_SLIX_MAC_NUMBER(a) (a)
#define arguments_BDK_SLIX_MAC_NUMBER(a) (a),-1,-1,-1

/**
 * Register (PEXP) sli#_mac_number#
 *
 * SLI MAC Number Register
 * When read from a MAC, this register returns the MAC's port number; otherwise returns zero.
 */
union bdk_slix_mac_numberx
{
    uint64_t u;
    struct bdk_slix_mac_numberx_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_32_63        : 32;
        uint64_t chip_rev              : 8;  /**< [ 31: 24](RO/H) Chip revision. See MIO_FUS_DAT2[CHIP_ID]. */
        uint64_t reserved_20_23        : 4;
        uint64_t oci_id                : 4;  /**< [ 19: 16](RO/H) The CCPI node ID. */
        uint64_t reserved_9_15         : 7;
        uint64_t a_mode                : 1;  /**< [  8:  8](RO/H) Trusted mode.  See RST_BOOT[TRUSTED_MODE]. */
        uint64_t num                   : 8;  /**< [  7:  0](RO/H) MAC number. */
#else /* Word 0 - Little Endian */
        uint64_t num                   : 8;  /**< [  7:  0](RO/H) MAC number. */
        uint64_t a_mode                : 1;  /**< [  8:  8](RO/H) Trusted mode.  See RST_BOOT[TRUSTED_MODE]. */
        uint64_t reserved_9_15         : 7;
        uint64_t oci_id                : 4;  /**< [ 19: 16](RO/H) The CCPI node ID. */
        uint64_t reserved_20_23        : 4;
        uint64_t chip_rev              : 8;  /**< [ 31: 24](RO/H) Chip revision. See MIO_FUS_DAT2[CHIP_ID]. */
        uint64_t reserved_32_63        : 32;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_mac_numberx_s cn; */
};
typedef union bdk_slix_mac_numberx bdk_slix_mac_numberx_t;

static inline uint64_t BDK_SLIX_MAC_NUMBERX(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_MAC_NUMBERX(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=3)))
        return 0x2c050ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x3);
    __bdk_csr_fatal("SLIX_MAC_NUMBERX", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_MAC_NUMBERX(a,b) bdk_slix_mac_numberx_t
#define bustype_BDK_SLIX_MAC_NUMBERX(a,b) BDK_CSR_TYPE_PEXP
#define basename_BDK_SLIX_MAC_NUMBERX(a,b) "SLIX_MAC_NUMBERX"
#define busnum_BDK_SLIX_MAC_NUMBERX(a,b) (a)
#define arguments_BDK_SLIX_MAC_NUMBERX(a,b) (a),(b),-1,-1

/**
 * Register (NCB) sli#_mbe_int_ena_w1c
 *
 * SLI Interrupt Enable Clear Register
 * This register clears interrupt enable bits.
 */
union bdk_slix_mbe_int_ena_w1c
{
    uint64_t u;
    struct bdk_slix_mbe_int_ena_w1c_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_0_63         : 64;
#else /* Word 0 - Little Endian */
        uint64_t reserved_0_63         : 64;
#endif /* Word 0 - End */
    } s;
    struct bdk_slix_mbe_int_ena_w1c_cn81xx
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_54_63        : 10;
        uint64_t sed0_dbe              : 22; /**< [ 53: 32](R/W1C/H) Reads or clears enable for SLI(0)_MBE_INT_SUM[SED0_DBE]. */
        uint64_t reserved_22_31        : 10;
        uint64_t sed0_sbe              : 22; /**< [ 21:  0](R/W1C/H) Reads or clears enable for SLI(0)_MBE_INT_SUM[SED0_SBE]. */
#else /* Word 0 - Little Endian */
        uint64_t sed0_sbe              : 22; /**< [ 21:  0](R/W1C/H) Reads or clears enable for SLI(0)_MBE_INT_SUM[SED0_SBE]. */
        uint64_t reserved_22_31        : 10;
        uint64_t sed0_dbe              : 22; /**< [ 53: 32](R/W1C/H) Reads or clears enable for SLI(0)_MBE_INT_SUM[SED0_DBE]. */
        uint64_t reserved_54_63        : 10;
#endif /* Word 0 - End */
    } cn81xx;
    struct bdk_slix_mbe_int_ena_w1c_cn88xx
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_54_63        : 10;
        uint64_t sed0_dbe              : 22; /**< [ 53: 32](R/W1C/H) Reads or clears enable for SLI(0..1)_MBE_INT_SUM[SED0_DBE]. */
        uint64_t reserved_22_31        : 10;
        uint64_t sed0_sbe              : 22; /**< [ 21:  0](R/W1C/H) Reads or clears enable for SLI(0..1)_MBE_INT_SUM[SED0_SBE]. */
#else /* Word 0 - Little Endian */
        uint64_t sed0_sbe              : 22; /**< [ 21:  0](R/W1C/H) Reads or clears enable for SLI(0..1)_MBE_INT_SUM[SED0_SBE]. */
        uint64_t reserved_22_31        : 10;
        uint64_t sed0_dbe              : 22; /**< [ 53: 32](R/W1C/H) Reads or clears enable for SLI(0..1)_MBE_INT_SUM[SED0_DBE]. */
        uint64_t reserved_54_63        : 10;
#endif /* Word 0 - End */
    } cn88xx;
    struct bdk_slix_mbe_int_ena_w1c_cn83xx
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t dbe                   : 32; /**< [ 63: 32](R/W1C/H) Reads or clears enable for SLI(0)_MBE_INT_SUM[DBE]. */
        uint64_t sbe                   : 32; /**< [ 31:  0](R/W1C/H) Reads or clears enable for SLI(0)_MBE_INT_SUM[SBE]. */
#else /* Word 0 - Little Endian */
        uint64_t sbe                   : 32; /**< [ 31:  0](R/W1C/H) Reads or clears enable for SLI(0)_MBE_INT_SUM[SBE]. */
        uint64_t dbe                   : 32; /**< [ 63: 32](R/W1C/H) Reads or clears enable for SLI(0)_MBE_INT_SUM[DBE]. */
#endif /* Word 0 - End */
    } cn83xx;
};
typedef union bdk_slix_mbe_int_ena_w1c bdk_slix_mbe_int_ena_w1c_t;

static inline uint64_t BDK_SLIX_MBE_INT_ENA_W1C(unsigned long a) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_MBE_INT_ENA_W1C(unsigned long a)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN81XX) && (a==0))
        return 0x874001002260ll + 0x1000000000ll * ((a) & 0x0);
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && (a==0))
        return 0x874001002260ll + 0x1000000000ll * ((a) & 0x0);
    if (CAVIUM_IS_MODEL(CAVIUM_CN88XX) && (a<=1))
        return 0x874001002260ll + 0x1000000000ll * ((a) & 0x1);
    __bdk_csr_fatal("SLIX_MBE_INT_ENA_W1C", 1, a, 0, 0, 0);
}

#define typedef_BDK_SLIX_MBE_INT_ENA_W1C(a) bdk_slix_mbe_int_ena_w1c_t
#define bustype_BDK_SLIX_MBE_INT_ENA_W1C(a) BDK_CSR_TYPE_NCB
#define basename_BDK_SLIX_MBE_INT_ENA_W1C(a) "SLIX_MBE_INT_ENA_W1C"
#define device_bar_BDK_SLIX_MBE_INT_ENA_W1C(a) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_MBE_INT_ENA_W1C(a) (a)
#define arguments_BDK_SLIX_MBE_INT_ENA_W1C(a) (a),-1,-1,-1

/**
 * Register (NCB) sli#_mbe_int_ena_w1s
 *
 * SLI Interrupt Enable Set Register
 * This register sets interrupt enable bits.
 */
union bdk_slix_mbe_int_ena_w1s
{
    uint64_t u;
    struct bdk_slix_mbe_int_ena_w1s_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_0_63         : 64;
#else /* Word 0 - Little Endian */
        uint64_t reserved_0_63         : 64;
#endif /* Word 0 - End */
    } s;
    struct bdk_slix_mbe_int_ena_w1s_cn81xx
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_54_63        : 10;
        uint64_t sed0_dbe              : 22; /**< [ 53: 32](R/W1S/H) Reads or sets enable for SLI(0)_MBE_INT_SUM[SED0_DBE]. */
        uint64_t reserved_22_31        : 10;
        uint64_t sed0_sbe              : 22; /**< [ 21:  0](R/W1S/H) Reads or sets enable for SLI(0)_MBE_INT_SUM[SED0_SBE]. */
#else /* Word 0 - Little Endian */
        uint64_t sed0_sbe              : 22; /**< [ 21:  0](R/W1S/H) Reads or sets enable for SLI(0)_MBE_INT_SUM[SED0_SBE]. */
        uint64_t reserved_22_31        : 10;
        uint64_t sed0_dbe              : 22; /**< [ 53: 32](R/W1S/H) Reads or sets enable for SLI(0)_MBE_INT_SUM[SED0_DBE]. */
        uint64_t reserved_54_63        : 10;
#endif /* Word 0 - End */
    } cn81xx;
    struct bdk_slix_mbe_int_ena_w1s_cn88xx
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_54_63        : 10;
        uint64_t sed0_dbe              : 22; /**< [ 53: 32](R/W1S/H) Reads or sets enable for SLI(0..1)_MBE_INT_SUM[SED0_DBE]. */
        uint64_t reserved_22_31        : 10;
        uint64_t sed0_sbe              : 22; /**< [ 21:  0](R/W1S/H) Reads or sets enable for SLI(0..1)_MBE_INT_SUM[SED0_SBE]. */
#else /* Word 0 - Little Endian */
        uint64_t sed0_sbe              : 22; /**< [ 21:  0](R/W1S/H) Reads or sets enable for SLI(0..1)_MBE_INT_SUM[SED0_SBE]. */
        uint64_t reserved_22_31        : 10;
        uint64_t sed0_dbe              : 22; /**< [ 53: 32](R/W1S/H) Reads or sets enable for SLI(0..1)_MBE_INT_SUM[SED0_DBE]. */
        uint64_t reserved_54_63        : 10;
#endif /* Word 0 - End */
    } cn88xx;
    struct bdk_slix_mbe_int_ena_w1s_cn83xx
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t dbe                   : 32; /**< [ 63: 32](R/W1S/H) Reads or sets enable for SLI(0)_MBE_INT_SUM[DBE]. */
        uint64_t sbe                   : 32; /**< [ 31:  0](R/W1S/H) Reads or sets enable for SLI(0)_MBE_INT_SUM[SBE]. */
#else /* Word 0 - Little Endian */
        uint64_t sbe                   : 32; /**< [ 31:  0](R/W1S/H) Reads or sets enable for SLI(0)_MBE_INT_SUM[SBE]. */
        uint64_t dbe                   : 32; /**< [ 63: 32](R/W1S/H) Reads or sets enable for SLI(0)_MBE_INT_SUM[DBE]. */
#endif /* Word 0 - End */
    } cn83xx;
};
typedef union bdk_slix_mbe_int_ena_w1s bdk_slix_mbe_int_ena_w1s_t;

static inline uint64_t BDK_SLIX_MBE_INT_ENA_W1S(unsigned long a) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_MBE_INT_ENA_W1S(unsigned long a)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN81XX) && (a==0))
        return 0x874001002280ll + 0x1000000000ll * ((a) & 0x0);
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && (a==0))
        return 0x874001002280ll + 0x1000000000ll * ((a) & 0x0);
    if (CAVIUM_IS_MODEL(CAVIUM_CN88XX) && (a<=1))
        return 0x874001002280ll + 0x1000000000ll * ((a) & 0x1);
    __bdk_csr_fatal("SLIX_MBE_INT_ENA_W1S", 1, a, 0, 0, 0);
}

#define typedef_BDK_SLIX_MBE_INT_ENA_W1S(a) bdk_slix_mbe_int_ena_w1s_t
#define bustype_BDK_SLIX_MBE_INT_ENA_W1S(a) BDK_CSR_TYPE_NCB
#define basename_BDK_SLIX_MBE_INT_ENA_W1S(a) "SLIX_MBE_INT_ENA_W1S"
#define device_bar_BDK_SLIX_MBE_INT_ENA_W1S(a) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_MBE_INT_ENA_W1S(a) (a)
#define arguments_BDK_SLIX_MBE_INT_ENA_W1S(a) (a),-1,-1,-1

/**
 * Register (NCB) sli#_mbe_int_sum
 *
 * SLI MBE Interrupt Summary Register
 * This register contains the MBE interrupt-summary bits of the SLI.
 */
union bdk_slix_mbe_int_sum
{
    uint64_t u;
    struct bdk_slix_mbe_int_sum_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_0_63         : 64;
#else /* Word 0 - Little Endian */
        uint64_t reserved_0_63         : 64;
#endif /* Word 0 - End */
    } s;
    struct bdk_slix_mbe_int_sum_cn81xx
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_54_63        : 10;
        uint64_t sed0_dbe              : 22; /**< [ 53: 32](R/W1C/H) SED0 double-bit error. When set, a SED0 double-bit error has occurred. */
        uint64_t reserved_22_31        : 10;
        uint64_t sed0_sbe              : 22; /**< [ 21:  0](R/W1C/H) SED0 single-bit error. When set, a SED0 single-bit error has occurred. */
#else /* Word 0 - Little Endian */
        uint64_t sed0_sbe              : 22; /**< [ 21:  0](R/W1C/H) SED0 single-bit error. When set, a SED0 single-bit error has occurred. */
        uint64_t reserved_22_31        : 10;
        uint64_t sed0_dbe              : 22; /**< [ 53: 32](R/W1C/H) SED0 double-bit error. When set, a SED0 double-bit error has occurred. */
        uint64_t reserved_54_63        : 10;
#endif /* Word 0 - End */
    } cn81xx;
    /* struct bdk_slix_mbe_int_sum_cn81xx cn88xx; */
    struct bdk_slix_mbe_int_sum_cn83xx
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t dbe                   : 32; /**< [ 63: 32](R/W1C/H) Double-bit error detected in internal RAM. One bit per memory, enumerated by
                                                                 SLI_RAMS_E. */
        uint64_t sbe                   : 32; /**< [ 31:  0](R/W1C/H) Single-bit error detected in internal RAM. One bit per memory, enumerated by
                                                                 SLI_RAMS_E. */
#else /* Word 0 - Little Endian */
        uint64_t sbe                   : 32; /**< [ 31:  0](R/W1C/H) Single-bit error detected in internal RAM. One bit per memory, enumerated by
                                                                 SLI_RAMS_E. */
        uint64_t dbe                   : 32; /**< [ 63: 32](R/W1C/H) Double-bit error detected in internal RAM. One bit per memory, enumerated by
                                                                 SLI_RAMS_E. */
#endif /* Word 0 - End */
    } cn83xx;
};
typedef union bdk_slix_mbe_int_sum bdk_slix_mbe_int_sum_t;

static inline uint64_t BDK_SLIX_MBE_INT_SUM(unsigned long a) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_MBE_INT_SUM(unsigned long a)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN81XX) && (a==0))
        return 0x874001002220ll + 0x1000000000ll * ((a) & 0x0);
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && (a==0))
        return 0x874001002220ll + 0x1000000000ll * ((a) & 0x0);
    if (CAVIUM_IS_MODEL(CAVIUM_CN88XX) && (a<=1))
        return 0x874001002220ll + 0x1000000000ll * ((a) & 0x1);
    __bdk_csr_fatal("SLIX_MBE_INT_SUM", 1, a, 0, 0, 0);
}

#define typedef_BDK_SLIX_MBE_INT_SUM(a) bdk_slix_mbe_int_sum_t
#define bustype_BDK_SLIX_MBE_INT_SUM(a) BDK_CSR_TYPE_NCB
#define basename_BDK_SLIX_MBE_INT_SUM(a) "SLIX_MBE_INT_SUM"
#define device_bar_BDK_SLIX_MBE_INT_SUM(a) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_MBE_INT_SUM(a) (a)
#define arguments_BDK_SLIX_MBE_INT_SUM(a) (a),-1,-1,-1

/**
 * Register (NCB) sli#_mbe_int_sum_w1s
 *
 * SLI Interrupt Set Register
 * This register sets interrupt bits.
 */
union bdk_slix_mbe_int_sum_w1s
{
    uint64_t u;
    struct bdk_slix_mbe_int_sum_w1s_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_0_63         : 64;
#else /* Word 0 - Little Endian */
        uint64_t reserved_0_63         : 64;
#endif /* Word 0 - End */
    } s;
    struct bdk_slix_mbe_int_sum_w1s_cn81xx
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_54_63        : 10;
        uint64_t sed0_dbe              : 22; /**< [ 53: 32](R/W1S/H) Reads or sets SLI(0)_MBE_INT_SUM[SED0_DBE]. */
        uint64_t reserved_22_31        : 10;
        uint64_t sed0_sbe              : 22; /**< [ 21:  0](R/W1S/H) Reads or sets SLI(0)_MBE_INT_SUM[SED0_SBE]. */
#else /* Word 0 - Little Endian */
        uint64_t sed0_sbe              : 22; /**< [ 21:  0](R/W1S/H) Reads or sets SLI(0)_MBE_INT_SUM[SED0_SBE]. */
        uint64_t reserved_22_31        : 10;
        uint64_t sed0_dbe              : 22; /**< [ 53: 32](R/W1S/H) Reads or sets SLI(0)_MBE_INT_SUM[SED0_DBE]. */
        uint64_t reserved_54_63        : 10;
#endif /* Word 0 - End */
    } cn81xx;
    struct bdk_slix_mbe_int_sum_w1s_cn88xx
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_54_63        : 10;
        uint64_t sed0_dbe              : 22; /**< [ 53: 32](R/W1S/H) Reads or sets SLI(0..1)_MBE_INT_SUM[SED0_DBE]. */
        uint64_t reserved_22_31        : 10;
        uint64_t sed0_sbe              : 22; /**< [ 21:  0](R/W1S/H) Reads or sets SLI(0..1)_MBE_INT_SUM[SED0_SBE]. */
#else /* Word 0 - Little Endian */
        uint64_t sed0_sbe              : 22; /**< [ 21:  0](R/W1S/H) Reads or sets SLI(0..1)_MBE_INT_SUM[SED0_SBE]. */
        uint64_t reserved_22_31        : 10;
        uint64_t sed0_dbe              : 22; /**< [ 53: 32](R/W1S/H) Reads or sets SLI(0..1)_MBE_INT_SUM[SED0_DBE]. */
        uint64_t reserved_54_63        : 10;
#endif /* Word 0 - End */
    } cn88xx;
    struct bdk_slix_mbe_int_sum_w1s_cn83xx
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t dbe                   : 32; /**< [ 63: 32](R/W1S/H) Reads or sets SLI(0)_MBE_INT_SUM[DBE]. */
        uint64_t sbe                   : 32; /**< [ 31:  0](R/W1S/H) Reads or sets SLI(0)_MBE_INT_SUM[SBE]. */
#else /* Word 0 - Little Endian */
        uint64_t sbe                   : 32; /**< [ 31:  0](R/W1S/H) Reads or sets SLI(0)_MBE_INT_SUM[SBE]. */
        uint64_t dbe                   : 32; /**< [ 63: 32](R/W1S/H) Reads or sets SLI(0)_MBE_INT_SUM[DBE]. */
#endif /* Word 0 - End */
    } cn83xx;
};
typedef union bdk_slix_mbe_int_sum_w1s bdk_slix_mbe_int_sum_w1s_t;

static inline uint64_t BDK_SLIX_MBE_INT_SUM_W1S(unsigned long a) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_MBE_INT_SUM_W1S(unsigned long a)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN81XX) && (a==0))
        return 0x874001002240ll + 0x1000000000ll * ((a) & 0x0);
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && (a==0))
        return 0x874001002240ll + 0x1000000000ll * ((a) & 0x0);
    if (CAVIUM_IS_MODEL(CAVIUM_CN88XX) && (a<=1))
        return 0x874001002240ll + 0x1000000000ll * ((a) & 0x1);
    __bdk_csr_fatal("SLIX_MBE_INT_SUM_W1S", 1, a, 0, 0, 0);
}

#define typedef_BDK_SLIX_MBE_INT_SUM_W1S(a) bdk_slix_mbe_int_sum_w1s_t
#define bustype_BDK_SLIX_MBE_INT_SUM_W1S(a) BDK_CSR_TYPE_NCB
#define basename_BDK_SLIX_MBE_INT_SUM_W1S(a) "SLIX_MBE_INT_SUM_W1S"
#define device_bar_BDK_SLIX_MBE_INT_SUM_W1S(a) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_MBE_INT_SUM_W1S(a) (a)
#define arguments_BDK_SLIX_MBE_INT_SUM_W1S(a) (a),-1,-1,-1

/**
 * Register (NCB) sli#_mem_ctl
 *
 * SLI Memory Control Register
 * This register controls the ECC of the SLI memories.
 */
union bdk_slix_mem_ctl
{
    uint64_t u;
    struct bdk_slix_mem_ctl_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_0_63         : 64;
#else /* Word 0 - Little Endian */
        uint64_t reserved_0_63         : 64;
#endif /* Word 0 - End */
    } s;
    struct bdk_slix_mem_ctl_cn81xx
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_30_63        : 34;
        uint64_t ctl                   : 30; /**< [ 29:  0](R/W) Control memory ECC functionality.
                                                                 \<29\>    = Correction disable for csr_region_mem_csr_cor_dis.
                                                                 \<28:29\> = Flip syndrome for csr_region_mem_csr_flip_synd.

                                                                 \<26\>    = Correction disable for sndf\<h,l\>2_ffifo, sncf2_ffifo_csr_cor_dis.
                                                                 \<25:24\> = Flip syndrome for sndf\<h,l\>2_ffifo, sncf2_ffifo_csr_flip_synd.
                                                                 \<23\>    = Correction disable for sndf\<h,l\>2_ffifo, sncf2_ffifo_csr_cor_dis.
                                                                 \<22:21\> = Flip syndrome for sndf\<h,l\>2_ffifo, sncf2_ffifo_csr_flip_synd.
                                                                 \<20\>    = Correction disable for sndf\<h,l\>2_ffifo, sncf2_ffifo_csr_cor_dis.
                                                                 \<19:18\> = Flip syndrome for sndf\<h,l\>2_ffifo, sncf2_ffifo_csr_flip_synd.

                                                                 \<17\>    = Correction disable for cpl0_fifo_csr_cor_dis.
                                                                 \<16:15\> = Flip syndrome for cpl0_fifo_csr_flip_synd.
                                                                 \<14\>    = Correction disable for cpl1_fifo_csr_cor_dis.
                                                                 \<13:12\> = Flip syndrome for cpl1_fifo_csr_flip_synd.
                                                                 \<11\>    = Correction disable for cpl2_fifo_csr_cor_dis.
                                                                 \<10:9\>  = Flip syndrome for cpl2_fifo_csr_flip_synd.

                                                                 \<8\>   = Correction disable for p2n0_tlp_\<p, n, cpl\>_fifo.
                                                                 \<7:6\> = Flip syndrome for p2n0_tlp_\<p,n,cpl\>_fifo.
                                                                 \<5\>   = Correction disable for p2n1_tlp_\<p, n, cpl\>_fifo.
                                                                 \<4:3\> = Flip syndrome for p2n1_tlp_\<p,n,cpl\>_fifo.
                                                                 \<2\>   = Correction disable for p2n2_tlp_\<p, n, cpl\>_fifo.
                                                                 \<1:0\> = Flip syndrome for p2n2_tlp_\<p,n,cpl\>_fifo. */
#else /* Word 0 - Little Endian */
        uint64_t ctl                   : 30; /**< [ 29:  0](R/W) Control memory ECC functionality.
                                                                 \<29\>    = Correction disable for csr_region_mem_csr_cor_dis.
                                                                 \<28:29\> = Flip syndrome for csr_region_mem_csr_flip_synd.

                                                                 \<26\>    = Correction disable for sndf\<h,l\>2_ffifo, sncf2_ffifo_csr_cor_dis.
                                                                 \<25:24\> = Flip syndrome for sndf\<h,l\>2_ffifo, sncf2_ffifo_csr_flip_synd.
                                                                 \<23\>    = Correction disable for sndf\<h,l\>2_ffifo, sncf2_ffifo_csr_cor_dis.
                                                                 \<22:21\> = Flip syndrome for sndf\<h,l\>2_ffifo, sncf2_ffifo_csr_flip_synd.
                                                                 \<20\>    = Correction disable for sndf\<h,l\>2_ffifo, sncf2_ffifo_csr_cor_dis.
                                                                 \<19:18\> = Flip syndrome for sndf\<h,l\>2_ffifo, sncf2_ffifo_csr_flip_synd.

                                                                 \<17\>    = Correction disable for cpl0_fifo_csr_cor_dis.
                                                                 \<16:15\> = Flip syndrome for cpl0_fifo_csr_flip_synd.
                                                                 \<14\>    = Correction disable for cpl1_fifo_csr_cor_dis.
                                                                 \<13:12\> = Flip syndrome for cpl1_fifo_csr_flip_synd.
                                                                 \<11\>    = Correction disable for cpl2_fifo_csr_cor_dis.
                                                                 \<10:9\>  = Flip syndrome for cpl2_fifo_csr_flip_synd.

                                                                 \<8\>   = Correction disable for p2n0_tlp_\<p, n, cpl\>_fifo.
                                                                 \<7:6\> = Flip syndrome for p2n0_tlp_\<p,n,cpl\>_fifo.
                                                                 \<5\>   = Correction disable for p2n1_tlp_\<p, n, cpl\>_fifo.
                                                                 \<4:3\> = Flip syndrome for p2n1_tlp_\<p,n,cpl\>_fifo.
                                                                 \<2\>   = Correction disable for p2n2_tlp_\<p, n, cpl\>_fifo.
                                                                 \<1:0\> = Flip syndrome for p2n2_tlp_\<p,n,cpl\>_fifo. */
        uint64_t reserved_30_63        : 34;
#endif /* Word 0 - End */
    } cn81xx;
    struct bdk_slix_mem_ctl_cn88xx
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_30_63        : 34;
        uint64_t ctl                   : 30; /**< [ 29:  0](R/W) Control memory ECC functionality.
                                                                 \<29\>    = Correction Disable for csr_region_mem_csr_cor_dis.
                                                                 \<28:29\> = Flip Syndrome for csr_region_mem_csr_flip_synd.

                                                                 \<26\>    = Correction Disable for sndf\<h,l\>2_ffifo, sncf2_ffifo_csr_cor_dis.
                                                                 \<25:24\> = Flip Syndrome for sndf\<h,l\>2_ffifo, sncf2_ffifo_csr_flip_synd.
                                                                 \<23\>    = Correction Disable for sndf\<h,l\>2_ffifo, sncf2_ffifo_csr_cor_dis.
                                                                 \<22:21\> = Flip Syndrome for sndf\<h,l\>2_ffifo, sncf2_ffifo_csr_flip_synd.
                                                                 \<20\>    = Correction Disable for sndf\<h,l\>2_ffifo, sncf2_ffifo_csr_cor_dis.
                                                                 \<19:18\> = Flip Syndrome for sndf\<h,l\>2_ffifo, sncf2_ffifo_csr_flip_synd.

                                                                 \<17\>    = Correction Disable for cpl0_fifo_csr_cor_dis.
                                                                 \<16:15\> = Flip Syndrome for cpl0_fifo_csr_flip_synd.
                                                                 \<14\>    = Correction Disable for cpl1_fifo_csr_cor_dis.
                                                                 \<13:12\> = Flip Syndrome for cpl1_fifo_csr_flip_synd.
                                                                 \<11\>    = Correction Disable for cpl2_fifo_csr_cor_dis.
                                                                 \<10:9\>  = Flip Syndrome for cpl2_fifo_csr_flip_synd.

                                                                 \<8\>   = Correction Disable for p2n0_tlp_\<p, n, cpl\>_fifo.
                                                                 \<7:6\> = Flip Syndrome for p2n0_tlp_\<p,n,cpl\>_fifo.
                                                                 \<5\>   = Correction Disable for p2n1_tlp_\<p, n, cpl\>_fifo.
                                                                 \<4:3\> = Flip Syndrome for p2n1_tlp_\<p,n,cpl\>_fifo.
                                                                 \<2\>   = Correction Disable for p2n2_tlp_\<p, n, cpl\>_fifo.
                                                                 \<1:0\> = Flip Syndrome for p2n2_tlp_\<p,n,cpl\>_fifo. */
#else /* Word 0 - Little Endian */
        uint64_t ctl                   : 30; /**< [ 29:  0](R/W) Control memory ECC functionality.
                                                                 \<29\>    = Correction Disable for csr_region_mem_csr_cor_dis.
                                                                 \<28:29\> = Flip Syndrome for csr_region_mem_csr_flip_synd.

                                                                 \<26\>    = Correction Disable for sndf\<h,l\>2_ffifo, sncf2_ffifo_csr_cor_dis.
                                                                 \<25:24\> = Flip Syndrome for sndf\<h,l\>2_ffifo, sncf2_ffifo_csr_flip_synd.
                                                                 \<23\>    = Correction Disable for sndf\<h,l\>2_ffifo, sncf2_ffifo_csr_cor_dis.
                                                                 \<22:21\> = Flip Syndrome for sndf\<h,l\>2_ffifo, sncf2_ffifo_csr_flip_synd.
                                                                 \<20\>    = Correction Disable for sndf\<h,l\>2_ffifo, sncf2_ffifo_csr_cor_dis.
                                                                 \<19:18\> = Flip Syndrome for sndf\<h,l\>2_ffifo, sncf2_ffifo_csr_flip_synd.

                                                                 \<17\>    = Correction Disable for cpl0_fifo_csr_cor_dis.
                                                                 \<16:15\> = Flip Syndrome for cpl0_fifo_csr_flip_synd.
                                                                 \<14\>    = Correction Disable for cpl1_fifo_csr_cor_dis.
                                                                 \<13:12\> = Flip Syndrome for cpl1_fifo_csr_flip_synd.
                                                                 \<11\>    = Correction Disable for cpl2_fifo_csr_cor_dis.
                                                                 \<10:9\>  = Flip Syndrome for cpl2_fifo_csr_flip_synd.

                                                                 \<8\>   = Correction Disable for p2n0_tlp_\<p, n, cpl\>_fifo.
                                                                 \<7:6\> = Flip Syndrome for p2n0_tlp_\<p,n,cpl\>_fifo.
                                                                 \<5\>   = Correction Disable for p2n1_tlp_\<p, n, cpl\>_fifo.
                                                                 \<4:3\> = Flip Syndrome for p2n1_tlp_\<p,n,cpl\>_fifo.
                                                                 \<2\>   = Correction Disable for p2n2_tlp_\<p, n, cpl\>_fifo.
                                                                 \<1:0\> = Flip Syndrome for p2n2_tlp_\<p,n,cpl\>_fifo. */
        uint64_t reserved_30_63        : 34;
#endif /* Word 0 - End */
    } cn88xx;
    struct bdk_slix_mem_ctl_cn83xx
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_32_63        : 32;
        uint64_t cdis                  : 32; /**< [ 31:  0](R/W) Disables ECC correction on each RAM.  Bit positions enumerated with SLI_RAMS_E. */
#else /* Word 0 - Little Endian */
        uint64_t cdis                  : 32; /**< [ 31:  0](R/W) Disables ECC correction on each RAM.  Bit positions enumerated with SLI_RAMS_E. */
        uint64_t reserved_32_63        : 32;
#endif /* Word 0 - End */
    } cn83xx;
};
typedef union bdk_slix_mem_ctl bdk_slix_mem_ctl_t;

static inline uint64_t BDK_SLIX_MEM_CTL(unsigned long a) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_MEM_CTL(unsigned long a)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN81XX) && (a==0))
        return 0x874001002200ll + 0x1000000000ll * ((a) & 0x0);
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && (a==0))
        return 0x874001002200ll + 0x1000000000ll * ((a) & 0x0);
    if (CAVIUM_IS_MODEL(CAVIUM_CN88XX) && (a<=1))
        return 0x874001002200ll + 0x1000000000ll * ((a) & 0x1);
    __bdk_csr_fatal("SLIX_MEM_CTL", 1, a, 0, 0, 0);
}

#define typedef_BDK_SLIX_MEM_CTL(a) bdk_slix_mem_ctl_t
#define bustype_BDK_SLIX_MEM_CTL(a) BDK_CSR_TYPE_NCB
#define basename_BDK_SLIX_MEM_CTL(a) "SLIX_MEM_CTL"
#define device_bar_BDK_SLIX_MEM_CTL(a) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_MEM_CTL(a) (a)
#define arguments_BDK_SLIX_MEM_CTL(a) (a),-1,-1,-1

/**
 * Register (NCB) sli#_mem_flip
 *
 * SLI ECC Control Register
 * This register controls the ECC of the SLI memories.
 */
union bdk_slix_mem_flip
{
    uint64_t u;
    struct bdk_slix_mem_flip_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t flip1                 : 32; /**< [ 63: 32](R/W) Flips syndrome bit 1 on writes.  Bit positions enumerated with SLI_RAMS_E. */
        uint64_t flip0                 : 32; /**< [ 31:  0](R/W) Flips syndrome bit 0 on writes.  Bit positions enumerated with SLI_RAMS_E. */
#else /* Word 0 - Little Endian */
        uint64_t flip0                 : 32; /**< [ 31:  0](R/W) Flips syndrome bit 0 on writes.  Bit positions enumerated with SLI_RAMS_E. */
        uint64_t flip1                 : 32; /**< [ 63: 32](R/W) Flips syndrome bit 1 on writes.  Bit positions enumerated with SLI_RAMS_E. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_mem_flip_s cn; */
};
typedef union bdk_slix_mem_flip bdk_slix_mem_flip_t;

static inline uint64_t BDK_SLIX_MEM_FLIP(unsigned long a) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_MEM_FLIP(unsigned long a)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && (a==0))
        return 0x874001002210ll + 0x1000000000ll * ((a) & 0x0);
    __bdk_csr_fatal("SLIX_MEM_FLIP", 1, a, 0, 0, 0);
}

#define typedef_BDK_SLIX_MEM_FLIP(a) bdk_slix_mem_flip_t
#define bustype_BDK_SLIX_MEM_FLIP(a) BDK_CSR_TYPE_NCB
#define basename_BDK_SLIX_MEM_FLIP(a) "SLIX_MEM_FLIP"
#define device_bar_BDK_SLIX_MEM_FLIP(a) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_MEM_FLIP(a) (a)
#define arguments_BDK_SLIX_MEM_FLIP(a) (a),-1,-1,-1

/**
 * Register (NCB) sli#_msix_pba#
 *
 * SLI MSI-X Pending Bit Array Registers
 * This register is the MSI-X PBA table; the bit number is indexed by the SLI_INT_VEC_E enumeration.
 */
union bdk_slix_msix_pbax
{
    uint64_t u;
    struct bdk_slix_msix_pbax_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t pend                  : 64; /**< [ 63:  0](RO/H) Pending message for the associated SLI_MSIX_VEC()_CTL, enumerated by SLI_INT_VEC_E. Bits
                                                                 that have no associated SLI_INT_VEC_E are 0. */
#else /* Word 0 - Little Endian */
        uint64_t pend                  : 64; /**< [ 63:  0](RO/H) Pending message for the associated SLI_MSIX_VEC()_CTL, enumerated by SLI_INT_VEC_E. Bits
                                                                 that have no associated SLI_INT_VEC_E are 0. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_msix_pbax_s cn; */
};
typedef union bdk_slix_msix_pbax bdk_slix_msix_pbax_t;

static inline uint64_t BDK_SLIX_MSIX_PBAX(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_MSIX_PBAX(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN81XX) && ((a==0) && (b==0)))
        return 0x8740100f0000ll + 0x1000000000ll * ((a) & 0x0) + 8ll * ((b) & 0x0);
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b==0)))
        return 0x874c000f0000ll + 0x1000000000ll * ((a) & 0x0) + 8ll * ((b) & 0x0);
    if (CAVIUM_IS_MODEL(CAVIUM_CN88XX) && ((a<=1) && (b==0)))
        return 0x8740100f0000ll + 0x1000000000ll * ((a) & 0x1) + 8ll * ((b) & 0x0);
    __bdk_csr_fatal("SLIX_MSIX_PBAX", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_MSIX_PBAX(a,b) bdk_slix_msix_pbax_t
#define bustype_BDK_SLIX_MSIX_PBAX(a,b) BDK_CSR_TYPE_NCB
#define basename_BDK_SLIX_MSIX_PBAX(a,b) "SLIX_MSIX_PBAX"
#define device_bar_BDK_SLIX_MSIX_PBAX(a,b) 0x4 /* PF_BAR4 */
#define busnum_BDK_SLIX_MSIX_PBAX(a,b) (a)
#define arguments_BDK_SLIX_MSIX_PBAX(a,b) (a),(b),-1,-1

/**
 * Register (NCB) sli#_msix_vec#_addr
 *
 * SLI MSI-X Vector-Table Address Register
 * This register is the MSI-X vector table, indexed by the SLI_INT_VEC_E enumeration.
 */
union bdk_slix_msix_vecx_addr
{
    uint64_t u;
    struct bdk_slix_msix_vecx_addr_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_49_63        : 15;
        uint64_t addr                  : 47; /**< [ 48:  2](R/W) IOVA to use for MSI-X delivery of this vector. */
        uint64_t reserved_1            : 1;
        uint64_t secvec                : 1;  /**< [  0:  0](SR/W) Secure vector.
                                                                 0 = This vector may be read or written by either secure or nonsecure states.
                                                                 1 = This vector's SLI_MSIX_VEC()_ADDR, SLI_MSIX_VEC()_CTL, and corresponding
                                                                 bit of SLI_MSIX_PBA() are RAZ/WI and does not cause a fault when accessed
                                                                 by the nonsecure world.

                                                                 If PCCPF_SLI_VSEC_SCTL[MSIX_SEC] (for documentation, see PCCPF_XXX_VSEC_SCTL[MSIX_SEC]) is
                                                                 set, all vectors are secure and function as if [SECVEC] was set. */
#else /* Word 0 - Little Endian */
        uint64_t secvec                : 1;  /**< [  0:  0](SR/W) Secure vector.
                                                                 0 = This vector may be read or written by either secure or nonsecure states.
                                                                 1 = This vector's SLI_MSIX_VEC()_ADDR, SLI_MSIX_VEC()_CTL, and corresponding
                                                                 bit of SLI_MSIX_PBA() are RAZ/WI and does not cause a fault when accessed
                                                                 by the nonsecure world.

                                                                 If PCCPF_SLI_VSEC_SCTL[MSIX_SEC] (for documentation, see PCCPF_XXX_VSEC_SCTL[MSIX_SEC]) is
                                                                 set, all vectors are secure and function as if [SECVEC] was set. */
        uint64_t reserved_1            : 1;
        uint64_t addr                  : 47; /**< [ 48:  2](R/W) IOVA to use for MSI-X delivery of this vector. */
        uint64_t reserved_49_63        : 15;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_msix_vecx_addr_s cn; */
};
typedef union bdk_slix_msix_vecx_addr bdk_slix_msix_vecx_addr_t;

static inline uint64_t BDK_SLIX_MSIX_VECX_ADDR(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_MSIX_VECX_ADDR(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN81XX) && ((a==0) && (b<=3)))
        return 0x874010000000ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x3);
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=16)))
        return 0x874c00000000ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x1f);
    if (CAVIUM_IS_MODEL(CAVIUM_CN88XX) && ((a<=1) && (b<=3)))
        return 0x874010000000ll + 0x1000000000ll * ((a) & 0x1) + 0x10ll * ((b) & 0x3);
    __bdk_csr_fatal("SLIX_MSIX_VECX_ADDR", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_MSIX_VECX_ADDR(a,b) bdk_slix_msix_vecx_addr_t
#define bustype_BDK_SLIX_MSIX_VECX_ADDR(a,b) BDK_CSR_TYPE_NCB
#define basename_BDK_SLIX_MSIX_VECX_ADDR(a,b) "SLIX_MSIX_VECX_ADDR"
#define device_bar_BDK_SLIX_MSIX_VECX_ADDR(a,b) 0x4 /* PF_BAR4 */
#define busnum_BDK_SLIX_MSIX_VECX_ADDR(a,b) (a)
#define arguments_BDK_SLIX_MSIX_VECX_ADDR(a,b) (a),(b),-1,-1

/**
 * Register (NCB) sli#_msix_vec#_ctl
 *
 * SLI MSI-X Vector-Table Control and Data Register
 * This register is the MSI-X vector table, indexed by the SLI_INT_VEC_E enumeration.
 */
union bdk_slix_msix_vecx_ctl
{
    uint64_t u;
    struct bdk_slix_msix_vecx_ctl_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_33_63        : 31;
        uint64_t mask                  : 1;  /**< [ 32: 32](R/W) When set, no MSI-X interrupts are sent to this vector. */
        uint64_t reserved_20_31        : 12;
        uint64_t data                  : 20; /**< [ 19:  0](R/W) Data to use for MSI-X delivery of this vector. */
#else /* Word 0 - Little Endian */
        uint64_t data                  : 20; /**< [ 19:  0](R/W) Data to use for MSI-X delivery of this vector. */
        uint64_t reserved_20_31        : 12;
        uint64_t mask                  : 1;  /**< [ 32: 32](R/W) When set, no MSI-X interrupts are sent to this vector. */
        uint64_t reserved_33_63        : 31;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_msix_vecx_ctl_s cn; */
};
typedef union bdk_slix_msix_vecx_ctl bdk_slix_msix_vecx_ctl_t;

static inline uint64_t BDK_SLIX_MSIX_VECX_CTL(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_MSIX_VECX_CTL(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN81XX) && ((a==0) && (b<=3)))
        return 0x874010000008ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x3);
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=16)))
        return 0x874c00000008ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x1f);
    if (CAVIUM_IS_MODEL(CAVIUM_CN88XX) && ((a<=1) && (b<=3)))
        return 0x874010000008ll + 0x1000000000ll * ((a) & 0x1) + 0x10ll * ((b) & 0x3);
    __bdk_csr_fatal("SLIX_MSIX_VECX_CTL", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_MSIX_VECX_CTL(a,b) bdk_slix_msix_vecx_ctl_t
#define bustype_BDK_SLIX_MSIX_VECX_CTL(a,b) BDK_CSR_TYPE_NCB
#define basename_BDK_SLIX_MSIX_VECX_CTL(a,b) "SLIX_MSIX_VECX_CTL"
#define device_bar_BDK_SLIX_MSIX_VECX_CTL(a,b) 0x4 /* PF_BAR4 */
#define busnum_BDK_SLIX_MSIX_VECX_CTL(a,b) (a)
#define arguments_BDK_SLIX_MSIX_VECX_CTL(a,b) (a),(b),-1,-1

/**
 * Register (NCB) sli#_s2m_ctl
 *
 * SLI S2M Control Register
 * This register contains control functionality of the S2M attached to the SLI. This register
 * impacts all MACs attached to the S2M.
 */
union bdk_slix_s2m_ctl
{
    uint64_t u;
    struct bdk_slix_s2m_ctl_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_15_63        : 49;
        uint64_t rd_flt                : 1;  /**< [ 14: 14](R/W) Read fault.
                                                                 0 = A PCIe non-config read which is terminated by PCIe with an error (UR, etc) will return
                                                                 to the NCB/cores all-ones and non-fault.

                                                                 1 = A PCIe non-config read which is terminated by PCIe with an error (UR, etc) will return
                                                                 to the NCB/cores all-zeros and fault.  In the case of a read by a core, this fault will
                                                                 cause an synchronous external abort in the core.

                                                                 Config reads which are terminated by PCIe in with an error (UR, etc), or config reads when
                                                                 the PEM is disabled or link is down, will return to the NCB/cores all-ones and non-fault
                                                                 regardless of this bit. */
        uint64_t max_word              : 4;  /**< [ 13: 10](R/W) Maximum number of words. Specifies the maximum number of 8-byte words to merge into a
                                                                 single write operation from the cores to the MAC. Legal values are 1 to 8, with 0 treated
                                                                 as 16. */
        uint64_t timer                 : 10; /**< [  9:  0](R/W) Merge timer. When the SLI starts a core-to-MAC write, TIMER specifies the maximum wait, in
                                                                 coprocessor-clock cycles, to merge additional write operations from the cores into one
                                                                 large write. The values for this field range from 1 to 1024, with 0 treated as 1024. */
#else /* Word 0 - Little Endian */
        uint64_t timer                 : 10; /**< [  9:  0](R/W) Merge timer. When the SLI starts a core-to-MAC write, TIMER specifies the maximum wait, in
                                                                 coprocessor-clock cycles, to merge additional write operations from the cores into one
                                                                 large write. The values for this field range from 1 to 1024, with 0 treated as 1024. */
        uint64_t max_word              : 4;  /**< [ 13: 10](R/W) Maximum number of words. Specifies the maximum number of 8-byte words to merge into a
                                                                 single write operation from the cores to the MAC. Legal values are 1 to 8, with 0 treated
                                                                 as 16. */
        uint64_t rd_flt                : 1;  /**< [ 14: 14](R/W) Read fault.
                                                                 0 = A PCIe non-config read which is terminated by PCIe with an error (UR, etc) will return
                                                                 to the NCB/cores all-ones and non-fault.

                                                                 1 = A PCIe non-config read which is terminated by PCIe with an error (UR, etc) will return
                                                                 to the NCB/cores all-zeros and fault.  In the case of a read by a core, this fault will
                                                                 cause an synchronous external abort in the core.

                                                                 Config reads which are terminated by PCIe in with an error (UR, etc), or config reads when
                                                                 the PEM is disabled or link is down, will return to the NCB/cores all-ones and non-fault
                                                                 regardless of this bit. */
        uint64_t reserved_15_63        : 49;
#endif /* Word 0 - End */
    } s;
    struct bdk_slix_s2m_ctl_cn88xxp1
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_14_63        : 50;
        uint64_t max_word              : 4;  /**< [ 13: 10](R/W) Maximum number of words. Specifies the maximum number of 8-byte words to merge into a
                                                                 single write operation from the cores to the MAC. Legal values are 1 to 8, with 0 treated
                                                                 as 16. */
        uint64_t timer                 : 10; /**< [  9:  0](R/W) Merge timer. When the SLI starts a core-to-MAC write, TIMER specifies the maximum wait, in
                                                                 coprocessor-clock cycles, to merge additional write operations from the cores into one
                                                                 large write. The values for this field range from 1 to 1024, with 0 treated as 1024. */
#else /* Word 0 - Little Endian */
        uint64_t timer                 : 10; /**< [  9:  0](R/W) Merge timer. When the SLI starts a core-to-MAC write, TIMER specifies the maximum wait, in
                                                                 coprocessor-clock cycles, to merge additional write operations from the cores into one
                                                                 large write. The values for this field range from 1 to 1024, with 0 treated as 1024. */
        uint64_t max_word              : 4;  /**< [ 13: 10](R/W) Maximum number of words. Specifies the maximum number of 8-byte words to merge into a
                                                                 single write operation from the cores to the MAC. Legal values are 1 to 8, with 0 treated
                                                                 as 16. */
        uint64_t reserved_14_63        : 50;
#endif /* Word 0 - End */
    } cn88xxp1;
    /* struct bdk_slix_s2m_ctl_s cn81xx; */
    /* struct bdk_slix_s2m_ctl_s cn83xx; */
    struct bdk_slix_s2m_ctl_cn88xxp2
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_15_63        : 49;
        uint64_t rd_flt                : 1;  /**< [ 14: 14](R/W) Read fault.
                                                                 0 = A PCIe non-config read which is terminated by PCIe with an error (UR, etc) will return
                                                                 to the NCB/cores all-ones and non-fault.  This is compatible with CN88XX pass 1.0.

                                                                 1 = A PCIe non-config read which is terminated by PCIe with an error (UR, etc) will return
                                                                 to the NCB/cores all-zeros and fault.  In the case of a read by a core, this fault will
                                                                 cause an synchronous external abort in the core.

                                                                 Config reads which are terminated by PCIe in with an error (UR, etc), or config reads when
                                                                 the PEM is disabled or link is down, will return to the NCB/cores all-ones and non-fault
                                                                 regardless of this bit. */
        uint64_t max_word              : 4;  /**< [ 13: 10](R/W) Maximum number of words. Specifies the maximum number of 8-byte words to merge into a
                                                                 single write operation from the cores to the MAC. Legal values are 1 to 8, with 0 treated
                                                                 as 16. */
        uint64_t timer                 : 10; /**< [  9:  0](R/W) Merge timer. When the SLI starts a core-to-MAC write, TIMER specifies the maximum wait, in
                                                                 coprocessor-clock cycles, to merge additional write operations from the cores into one
                                                                 large write. The values for this field range from 1 to 1024, with 0 treated as 1024. */
#else /* Word 0 - Little Endian */
        uint64_t timer                 : 10; /**< [  9:  0](R/W) Merge timer. When the SLI starts a core-to-MAC write, TIMER specifies the maximum wait, in
                                                                 coprocessor-clock cycles, to merge additional write operations from the cores into one
                                                                 large write. The values for this field range from 1 to 1024, with 0 treated as 1024. */
        uint64_t max_word              : 4;  /**< [ 13: 10](R/W) Maximum number of words. Specifies the maximum number of 8-byte words to merge into a
                                                                 single write operation from the cores to the MAC. Legal values are 1 to 8, with 0 treated
                                                                 as 16. */
        uint64_t rd_flt                : 1;  /**< [ 14: 14](R/W) Read fault.
                                                                 0 = A PCIe non-config read which is terminated by PCIe with an error (UR, etc) will return
                                                                 to the NCB/cores all-ones and non-fault.  This is compatible with CN88XX pass 1.0.

                                                                 1 = A PCIe non-config read which is terminated by PCIe with an error (UR, etc) will return
                                                                 to the NCB/cores all-zeros and fault.  In the case of a read by a core, this fault will
                                                                 cause an synchronous external abort in the core.

                                                                 Config reads which are terminated by PCIe in with an error (UR, etc), or config reads when
                                                                 the PEM is disabled or link is down, will return to the NCB/cores all-ones and non-fault
                                                                 regardless of this bit. */
        uint64_t reserved_15_63        : 49;
#endif /* Word 0 - End */
    } cn88xxp2;
};
typedef union bdk_slix_s2m_ctl bdk_slix_s2m_ctl_t;

static inline uint64_t BDK_SLIX_S2M_CTL(unsigned long a) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_S2M_CTL(unsigned long a)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN81XX) && (a==0))
        return 0x874001002000ll + 0x1000000000ll * ((a) & 0x0);
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && (a==0))
        return 0x874001002000ll + 0x1000000000ll * ((a) & 0x0);
    if (CAVIUM_IS_MODEL(CAVIUM_CN88XX) && (a<=1))
        return 0x874001002000ll + 0x1000000000ll * ((a) & 0x1);
    __bdk_csr_fatal("SLIX_S2M_CTL", 1, a, 0, 0, 0);
}

#define typedef_BDK_SLIX_S2M_CTL(a) bdk_slix_s2m_ctl_t
#define bustype_BDK_SLIX_S2M_CTL(a) BDK_CSR_TYPE_NCB
#define basename_BDK_SLIX_S2M_CTL(a) "SLIX_S2M_CTL"
#define device_bar_BDK_SLIX_S2M_CTL(a) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_S2M_CTL(a) (a)
#define arguments_BDK_SLIX_S2M_CTL(a) (a),-1,-1,-1

/**
 * Register (NCB) sli#_s2m_mac#_ctl
 *
 * SLI MAC Control Register
 * This register controls the functionality of the SLI's S2M in regards to a MAC.
 * Internal:
 * In 78xx was SLI()_CTL_STATUS and SLI()_MAC_CREDIT_CNT.
 */
union bdk_slix_s2m_macx_ctl
{
    uint64_t u;
    struct bdk_slix_s2m_macx_ctl_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_32_63        : 32;
        uint64_t ccnt                  : 8;  /**< [ 31: 24](R/W/H) CPL-TLP FIFO credits. Legal values are 0x25 to 0x80. For diagnostic use only. */
        uint64_t ncnt                  : 8;  /**< [ 23: 16](R/W/H) NP-TLP FIFO credits. Legal values are 0x5 to 0x10. For diagnostic use only. */
        uint64_t pcnt                  : 8;  /**< [ 15:  8](R/W/H) P-TLP FIFO credits. Legal values are 0x25 to 0x80. For diagnostic use only. */
        uint64_t tags                  : 8;  /**< [  7:  0](R/W/H) Number of tags available for MAC.
                                                                 One tag is needed for each outbound TLP that requires a CPL TLP.
                                                                 This field should only be written as part of a reset sequence and before issuing any read
                                                                 operations, CFGs, or I/O transactions from the core(s). For diagnostic use only.
                                                                 Legal values are 1 to 32. */
#else /* Word 0 - Little Endian */
        uint64_t tags                  : 8;  /**< [  7:  0](R/W/H) Number of tags available for MAC.
                                                                 One tag is needed for each outbound TLP that requires a CPL TLP.
                                                                 This field should only be written as part of a reset sequence and before issuing any read
                                                                 operations, CFGs, or I/O transactions from the core(s). For diagnostic use only.
                                                                 Legal values are 1 to 32. */
        uint64_t pcnt                  : 8;  /**< [ 15:  8](R/W/H) P-TLP FIFO credits. Legal values are 0x25 to 0x80. For diagnostic use only. */
        uint64_t ncnt                  : 8;  /**< [ 23: 16](R/W/H) NP-TLP FIFO credits. Legal values are 0x5 to 0x10. For diagnostic use only. */
        uint64_t ccnt                  : 8;  /**< [ 31: 24](R/W/H) CPL-TLP FIFO credits. Legal values are 0x25 to 0x80. For diagnostic use only. */
        uint64_t reserved_32_63        : 32;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_s2m_macx_ctl_s cn81xx; */
    /* struct bdk_slix_s2m_macx_ctl_s cn88xx; */
    struct bdk_slix_s2m_macx_ctl_cn83xx
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_32_63        : 32;
        uint64_t ccnt                  : 8;  /**< [ 31: 24](R/W) CPL-TLP FIFO credits. Legal values are 0x25 to 0xF4. For diagnostic use only. */
        uint64_t ncnt                  : 8;  /**< [ 23: 16](R/W) NP-TLP FIFO credits. Legal values are 0x5 to 0x20. For diagnostic use only. */
        uint64_t pcnt                  : 8;  /**< [ 15:  8](R/W) P-TLP FIFO credits. Legal values are 0x25 to 0xF4. For diagnostic use only. */
        uint64_t tags                  : 8;  /**< [  7:  0](R/W) Number of tags available for MAC.
                                                                 One tag is needed for each outbound TLP that requires a CPL TLP.
                                                                 This field should only be written as part of a reset sequence and before issuing any read
                                                                 operations, CFGs, or I/O transactions from the core(s). For diagnostic use only.
                                                                 Legal values are 1 to 32. */
#else /* Word 0 - Little Endian */
        uint64_t tags                  : 8;  /**< [  7:  0](R/W) Number of tags available for MAC.
                                                                 One tag is needed for each outbound TLP that requires a CPL TLP.
                                                                 This field should only be written as part of a reset sequence and before issuing any read
                                                                 operations, CFGs, or I/O transactions from the core(s). For diagnostic use only.
                                                                 Legal values are 1 to 32. */
        uint64_t pcnt                  : 8;  /**< [ 15:  8](R/W) P-TLP FIFO credits. Legal values are 0x25 to 0xF4. For diagnostic use only. */
        uint64_t ncnt                  : 8;  /**< [ 23: 16](R/W) NP-TLP FIFO credits. Legal values are 0x5 to 0x20. For diagnostic use only. */
        uint64_t ccnt                  : 8;  /**< [ 31: 24](R/W) CPL-TLP FIFO credits. Legal values are 0x25 to 0xF4. For diagnostic use only. */
        uint64_t reserved_32_63        : 32;
#endif /* Word 0 - End */
    } cn83xx;
};
typedef union bdk_slix_s2m_macx_ctl bdk_slix_s2m_macx_ctl_t;

static inline uint64_t BDK_SLIX_S2M_MACX_CTL(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_S2M_MACX_CTL(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN81XX) && ((a==0) && (b<=2)))
        return 0x874001002080ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x3);
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=3)))
        return 0x874001002080ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0x3);
    if (CAVIUM_IS_MODEL(CAVIUM_CN88XX) && ((a<=1) && (b<=2)))
        return 0x874001002080ll + 0x1000000000ll * ((a) & 0x1) + 0x10ll * ((b) & 0x3);
    __bdk_csr_fatal("SLIX_S2M_MACX_CTL", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_S2M_MACX_CTL(a,b) bdk_slix_s2m_macx_ctl_t
#define bustype_BDK_SLIX_S2M_MACX_CTL(a,b) BDK_CSR_TYPE_NCB
#define basename_BDK_SLIX_S2M_MACX_CTL(a,b) "SLIX_S2M_MACX_CTL"
#define device_bar_BDK_SLIX_S2M_MACX_CTL(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_S2M_MACX_CTL(a,b) (a)
#define arguments_BDK_SLIX_S2M_MACX_CTL(a,b) (a),(b),-1,-1

/**
 * Register (NCB) sli#_s2m_reg#_acc
 *
 * SLI Region Access Registers
 * These registers contains address index and control bits for access to memory from cores.
 * Indexed using {NCBO DST[3:0], NCBO Address[35:32]}.
 */
union bdk_slix_s2m_regx_acc
{
    uint64_t u;
    struct bdk_slix_s2m_regx_acc_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_55_63        : 9;
        uint64_t ctype                 : 2;  /**< [ 54: 53](R/W) The command type to be generated:
                                                                 0x0 = PCI memory.
                                                                 0x1 = PCI configuration (only 8, 16, 32-bit loads are supported). Note normally the ECAM
                                                                 would be used in place of this CTYPE.
                                                                 0x2 = PCI I/O (Only 8, 16, 32-bit loads are supported).
                                                                 0x3 = Reserved. */
        uint64_t zero                  : 1;  /**< [ 52: 52](R/W) Causes all byte read operations to be zero-length read operations. Returns zeros to the
                                                                 EXEC for all read data. */
        uint64_t reserved_49_51        : 3;
        uint64_t nmerge                : 1;  /**< [ 48: 48](R/W) When set, no write merging is allowed in this window. */
        uint64_t esr                   : 2;  /**< [ 47: 46](RO) Reserved. */
        uint64_t esw                   : 2;  /**< [ 45: 44](RO) Reserved. */
        uint64_t wtype                 : 2;  /**< [ 43: 42](R/W) Write type. ADDRTYPE\<1:0\> for write operations to this region.
                                                                 ADDRTYPE\<0\> is the relaxed-order attribute.
                                                                 ADDRTYPE\<1\> is the no-snoop attribute. */
        uint64_t rtype                 : 2;  /**< [ 41: 40](R/W) Read type. ADDRTYPE\<1:0\> for read operations to this region.
                                                                 ADDRTYPE\<0\> is the relaxed-order attribute.
                                                                 ADDRTYPE\<1\> is the no-snoop attribute. */
        uint64_t reserved_32_39        : 8;
        uint64_t ba                    : 32; /**< [ 31:  0](R/W) Bus address. Address bits\<63:32\> for read/write operations that use this region. */
#else /* Word 0 - Little Endian */
        uint64_t ba                    : 32; /**< [ 31:  0](R/W) Bus address. Address bits\<63:32\> for read/write operations that use this region. */
        uint64_t reserved_32_39        : 8;
        uint64_t rtype                 : 2;  /**< [ 41: 40](R/W) Read type. ADDRTYPE\<1:0\> for read operations to this region.
                                                                 ADDRTYPE\<0\> is the relaxed-order attribute.
                                                                 ADDRTYPE\<1\> is the no-snoop attribute. */
        uint64_t wtype                 : 2;  /**< [ 43: 42](R/W) Write type. ADDRTYPE\<1:0\> for write operations to this region.
                                                                 ADDRTYPE\<0\> is the relaxed-order attribute.
                                                                 ADDRTYPE\<1\> is the no-snoop attribute. */
        uint64_t esw                   : 2;  /**< [ 45: 44](RO) Reserved. */
        uint64_t esr                   : 2;  /**< [ 47: 46](RO) Reserved. */
        uint64_t nmerge                : 1;  /**< [ 48: 48](R/W) When set, no write merging is allowed in this window. */
        uint64_t reserved_49_51        : 3;
        uint64_t zero                  : 1;  /**< [ 52: 52](R/W) Causes all byte read operations to be zero-length read operations. Returns zeros to the
                                                                 EXEC for all read data. */
        uint64_t ctype                 : 2;  /**< [ 54: 53](R/W) The command type to be generated:
                                                                 0x0 = PCI memory.
                                                                 0x1 = PCI configuration (only 8, 16, 32-bit loads are supported). Note normally the ECAM
                                                                 would be used in place of this CTYPE.
                                                                 0x2 = PCI I/O (Only 8, 16, 32-bit loads are supported).
                                                                 0x3 = Reserved. */
        uint64_t reserved_55_63        : 9;
#endif /* Word 0 - End */
    } s;
    struct bdk_slix_s2m_regx_acc_cn81xx
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_55_63        : 9;
        uint64_t ctype                 : 2;  /**< [ 54: 53](R/W) The command type to be generated:
                                                                 0x0 = PCI memory.
                                                                 0x1 = PCI configuration (only 8, 16, 32-bit loads are supported). Note normally the ECAM
                                                                 would be used in place of this CTYPE.
                                                                 0x2 = PCI I/O (Only 8, 16, 32-bit loads are supported).
                                                                 0x3 = Reserved. */
        uint64_t zero                  : 1;  /**< [ 52: 52](R/W) Causes all byte read operations to be zero-length read operations. Returns zeros to the
                                                                 EXEC for all read data. */
        uint64_t mac                   : 3;  /**< [ 51: 49](R/W) The MAC that reads/writes to this subid are sent. */
        uint64_t nmerge                : 1;  /**< [ 48: 48](R/W) When set, no write merging is allowed in this window. */
        uint64_t esr                   : 2;  /**< [ 47: 46](RO) Reserved. */
        uint64_t esw                   : 2;  /**< [ 45: 44](RO) Reserved. */
        uint64_t wtype                 : 2;  /**< [ 43: 42](R/W) Write type. ADDRTYPE\<1:0\> for write operations to this region.
                                                                 ADDRTYPE\<0\> is the relaxed-order attribute.
                                                                 ADDRTYPE\<1\> is the no-snoop attribute. */
        uint64_t rtype                 : 2;  /**< [ 41: 40](R/W) Read type. ADDRTYPE\<1:0\> for read operations to this region.
                                                                 ADDRTYPE\<0\> is the relaxed-order attribute.
                                                                 ADDRTYPE\<1\> is the no-snoop attribute. */
        uint64_t reserved_32_39        : 8;
        uint64_t ba                    : 32; /**< [ 31:  0](R/W) Bus address. Address bits\<63:32\> for read/write operations that use this region. */
#else /* Word 0 - Little Endian */
        uint64_t ba                    : 32; /**< [ 31:  0](R/W) Bus address. Address bits\<63:32\> for read/write operations that use this region. */
        uint64_t reserved_32_39        : 8;
        uint64_t rtype                 : 2;  /**< [ 41: 40](R/W) Read type. ADDRTYPE\<1:0\> for read operations to this region.
                                                                 ADDRTYPE\<0\> is the relaxed-order attribute.
                                                                 ADDRTYPE\<1\> is the no-snoop attribute. */
        uint64_t wtype                 : 2;  /**< [ 43: 42](R/W) Write type. ADDRTYPE\<1:0\> for write operations to this region.
                                                                 ADDRTYPE\<0\> is the relaxed-order attribute.
                                                                 ADDRTYPE\<1\> is the no-snoop attribute. */
        uint64_t esw                   : 2;  /**< [ 45: 44](RO) Reserved. */
        uint64_t esr                   : 2;  /**< [ 47: 46](RO) Reserved. */
        uint64_t nmerge                : 1;  /**< [ 48: 48](R/W) When set, no write merging is allowed in this window. */
        uint64_t mac                   : 3;  /**< [ 51: 49](R/W) The MAC that reads/writes to this subid are sent. */
        uint64_t zero                  : 1;  /**< [ 52: 52](R/W) Causes all byte read operations to be zero-length read operations. Returns zeros to the
                                                                 EXEC for all read data. */
        uint64_t ctype                 : 2;  /**< [ 54: 53](R/W) The command type to be generated:
                                                                 0x0 = PCI memory.
                                                                 0x1 = PCI configuration (only 8, 16, 32-bit loads are supported). Note normally the ECAM
                                                                 would be used in place of this CTYPE.
                                                                 0x2 = PCI I/O (Only 8, 16, 32-bit loads are supported).
                                                                 0x3 = Reserved. */
        uint64_t reserved_55_63        : 9;
#endif /* Word 0 - End */
    } cn81xx;
    /* struct bdk_slix_s2m_regx_acc_cn81xx cn88xx; */
    struct bdk_slix_s2m_regx_acc_cn83xx
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_55_63        : 9;
        uint64_t ctype                 : 2;  /**< [ 54: 53](R/W) The command type to be generated:
                                                                 0x0 = PCI memory.
                                                                 0x1 = PCI configuration (only 8, 16, 32-bit loads are supported). Note normally the ECAM
                                                                 would be used in place of this CTYPE.
                                                                 0x2 = PCI I/O (Only 8, 16, 32-bit loads are supported).
                                                                 0x3 = Reserved. */
        uint64_t zero                  : 1;  /**< [ 52: 52](R/W) Causes all byte read operations to be zero-length read operations. Returns zeros to the
                                                                 EXEC for all read data. */
        uint64_t epf                   : 3;  /**< [ 51: 49](R/W) The EPF that reads/writes to this subid are sent. */
        uint64_t nmerge                : 1;  /**< [ 48: 48](R/W) When set, no write merging is allowed in this window. */
        uint64_t esr                   : 2;  /**< [ 47: 46](RO) Reserved. */
        uint64_t esw                   : 2;  /**< [ 45: 44](RO) Reserved. */
        uint64_t wtype                 : 2;  /**< [ 43: 42](R/W) Write type. ADDRTYPE\<1:0\> for write operations to this region.
                                                                 ADDRTYPE\<0\> is the relaxed-order attribute.
                                                                 ADDRTYPE\<1\> is the no-snoop attribute. */
        uint64_t rtype                 : 2;  /**< [ 41: 40](R/W) Read type. ADDRTYPE\<1:0\> for read operations to this region.
                                                                 ADDRTYPE\<0\> is the relaxed-order attribute.
                                                                 ADDRTYPE\<1\> is the no-snoop attribute. */
        uint64_t reserved_32_39        : 8;
        uint64_t ba                    : 32; /**< [ 31:  0](R/W) Bus address. Address bits\<63:32\> for read/write operations that use this region. */
#else /* Word 0 - Little Endian */
        uint64_t ba                    : 32; /**< [ 31:  0](R/W) Bus address. Address bits\<63:32\> for read/write operations that use this region. */
        uint64_t reserved_32_39        : 8;
        uint64_t rtype                 : 2;  /**< [ 41: 40](R/W) Read type. ADDRTYPE\<1:0\> for read operations to this region.
                                                                 ADDRTYPE\<0\> is the relaxed-order attribute.
                                                                 ADDRTYPE\<1\> is the no-snoop attribute. */
        uint64_t wtype                 : 2;  /**< [ 43: 42](R/W) Write type. ADDRTYPE\<1:0\> for write operations to this region.
                                                                 ADDRTYPE\<0\> is the relaxed-order attribute.
                                                                 ADDRTYPE\<1\> is the no-snoop attribute. */
        uint64_t esw                   : 2;  /**< [ 45: 44](RO) Reserved. */
        uint64_t esr                   : 2;  /**< [ 47: 46](RO) Reserved. */
        uint64_t nmerge                : 1;  /**< [ 48: 48](R/W) When set, no write merging is allowed in this window. */
        uint64_t epf                   : 3;  /**< [ 51: 49](R/W) The EPF that reads/writes to this subid are sent. */
        uint64_t zero                  : 1;  /**< [ 52: 52](R/W) Causes all byte read operations to be zero-length read operations. Returns zeros to the
                                                                 EXEC for all read data. */
        uint64_t ctype                 : 2;  /**< [ 54: 53](R/W) The command type to be generated:
                                                                 0x0 = PCI memory.
                                                                 0x1 = PCI configuration (only 8, 16, 32-bit loads are supported). Note normally the ECAM
                                                                 would be used in place of this CTYPE.
                                                                 0x2 = PCI I/O (Only 8, 16, 32-bit loads are supported).
                                                                 0x3 = Reserved. */
        uint64_t reserved_55_63        : 9;
#endif /* Word 0 - End */
    } cn83xx;
};
typedef union bdk_slix_s2m_regx_acc bdk_slix_s2m_regx_acc_t;

static inline uint64_t BDK_SLIX_S2M_REGX_ACC(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_S2M_REGX_ACC(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN81XX) && ((a==0) && (b<=255)))
        return 0x874001000000ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0xff);
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=255)))
        return 0x874001000000ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0xff);
    if (CAVIUM_IS_MODEL(CAVIUM_CN88XX) && ((a<=1) && (b<=255)))
        return 0x874001000000ll + 0x1000000000ll * ((a) & 0x1) + 0x10ll * ((b) & 0xff);
    __bdk_csr_fatal("SLIX_S2M_REGX_ACC", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_S2M_REGX_ACC(a,b) bdk_slix_s2m_regx_acc_t
#define bustype_BDK_SLIX_S2M_REGX_ACC(a,b) BDK_CSR_TYPE_NCB
#define basename_BDK_SLIX_S2M_REGX_ACC(a,b) "SLIX_S2M_REGX_ACC"
#define device_bar_BDK_SLIX_S2M_REGX_ACC(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_S2M_REGX_ACC(a,b) (a)
#define arguments_BDK_SLIX_S2M_REGX_ACC(a,b) (a),(b),-1,-1

/**
 * Register (NCB) sli#_s2m_reg#_acc2
 *
 * SLI Region Access 2 Registers
 * See SLI()_LMAC_CONST0().
 */
union bdk_slix_s2m_regx_acc2
{
    uint64_t u;
    struct bdk_slix_s2m_regx_acc2_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_16_63        : 48;
        uint64_t vf_rsvd               : 9;  /**< [ 15:  7](RO) For expansion of the [VF] field for compatibility with other chips with larger
                                                                 SLI()_LMAC_CONST1()[VFS]. */
        uint64_t pvf                   : 7;  /**< [  6:  0](R/W) The PF/VF number.  0x0=PF, 0x1-0x40 is VF number (i.e 0x1=VF1).
                                                                 Must be less than SLI()_LMAC_CONST1()[VFS]. */
#else /* Word 0 - Little Endian */
        uint64_t pvf                   : 7;  /**< [  6:  0](R/W) The PF/VF number.  0x0=PF, 0x1-0x40 is VF number (i.e 0x1=VF1).
                                                                 Must be less than SLI()_LMAC_CONST1()[VFS]. */
        uint64_t vf_rsvd               : 9;  /**< [ 15:  7](RO) For expansion of the [VF] field for compatibility with other chips with larger
                                                                 SLI()_LMAC_CONST1()[VFS]. */
        uint64_t reserved_16_63        : 48;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_s2m_regx_acc2_s cn; */
};
typedef union bdk_slix_s2m_regx_acc2 bdk_slix_s2m_regx_acc2_t;

static inline uint64_t BDK_SLIX_S2M_REGX_ACC2(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_S2M_REGX_ACC2(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=255)))
        return 0x874001005000ll + 0x1000000000ll * ((a) & 0x0) + 0x10ll * ((b) & 0xff);
    __bdk_csr_fatal("SLIX_S2M_REGX_ACC2", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_S2M_REGX_ACC2(a,b) bdk_slix_s2m_regx_acc2_t
#define bustype_BDK_SLIX_S2M_REGX_ACC2(a,b) BDK_CSR_TYPE_NCB
#define basename_BDK_SLIX_S2M_REGX_ACC2(a,b) "SLIX_S2M_REGX_ACC2"
#define device_bar_BDK_SLIX_S2M_REGX_ACC2(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_S2M_REGX_ACC2(a,b) (a)
#define arguments_BDK_SLIX_S2M_REGX_ACC2(a,b) (a),(b),-1,-1

/**
 * Register (PEXP_NCB) sli#_scratch_1
 *
 * SLI Scratch 1 Register
 * These registers are general purpose 64-bit scratch registers for software use.
 */
union bdk_slix_scratch_1
{
    uint64_t u;
    struct bdk_slix_scratch_1_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t data                  : 64; /**< [ 63:  0](R/W) The value in this register is totally software defined. */
#else /* Word 0 - Little Endian */
        uint64_t data                  : 64; /**< [ 63:  0](R/W) The value in this register is totally software defined. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_scratch_1_s cn; */
};
typedef union bdk_slix_scratch_1 bdk_slix_scratch_1_t;

static inline uint64_t BDK_SLIX_SCRATCH_1(unsigned long a) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_SCRATCH_1(unsigned long a)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN81XX) && (a==0))
        return 0x874000001000ll + 0x1000000000ll * ((a) & 0x0);
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && (a==0))
        return 0x874000001000ll + 0x1000000000ll * ((a) & 0x0);
    if (CAVIUM_IS_MODEL(CAVIUM_CN88XX) && (a<=1))
        return 0x874000001000ll + 0x1000000000ll * ((a) & 0x1);
    __bdk_csr_fatal("SLIX_SCRATCH_1", 1, a, 0, 0, 0);
}

#define typedef_BDK_SLIX_SCRATCH_1(a) bdk_slix_scratch_1_t
#define bustype_BDK_SLIX_SCRATCH_1(a) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SLIX_SCRATCH_1(a) "SLIX_SCRATCH_1"
#define device_bar_BDK_SLIX_SCRATCH_1(a) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_SCRATCH_1(a) (a)
#define arguments_BDK_SLIX_SCRATCH_1(a) (a),-1,-1,-1

/**
 * Register (PEXP_NCB) sli#_scratch_2
 *
 * SLI Scratch 2 Register
 * These registers are general purpose 64-bit scratch registers for software use.
 */
union bdk_slix_scratch_2
{
    uint64_t u;
    struct bdk_slix_scratch_2_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t data                  : 64; /**< [ 63:  0](R/W) The value in this register is totally software defined. */
#else /* Word 0 - Little Endian */
        uint64_t data                  : 64; /**< [ 63:  0](R/W) The value in this register is totally software defined. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_scratch_2_s cn; */
};
typedef union bdk_slix_scratch_2 bdk_slix_scratch_2_t;

static inline uint64_t BDK_SLIX_SCRATCH_2(unsigned long a) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_SCRATCH_2(unsigned long a)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN81XX) && (a==0))
        return 0x874000001010ll + 0x1000000000ll * ((a) & 0x0);
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && (a==0))
        return 0x874000001010ll + 0x1000000000ll * ((a) & 0x0);
    if (CAVIUM_IS_MODEL(CAVIUM_CN88XX) && (a<=1))
        return 0x874000001010ll + 0x1000000000ll * ((a) & 0x1);
    __bdk_csr_fatal("SLIX_SCRATCH_2", 1, a, 0, 0, 0);
}

#define typedef_BDK_SLIX_SCRATCH_2(a) bdk_slix_scratch_2_t
#define bustype_BDK_SLIX_SCRATCH_2(a) BDK_CSR_TYPE_PEXP_NCB
#define basename_BDK_SLIX_SCRATCH_2(a) "SLIX_SCRATCH_2"
#define device_bar_BDK_SLIX_SCRATCH_2(a) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_SCRATCH_2(a) (a)
#define arguments_BDK_SLIX_SCRATCH_2(a) (a),-1,-1,-1

/**
 * Register (NCB) sli#_sctl
 *
 * SLI Secure Control Register
 */
union bdk_slix_sctl
{
    uint64_t u;
    struct bdk_slix_sctl_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_1_63         : 63;
        uint64_t scen                  : 1;  /**< [  0:  0](SR/W) Allow SLI window transactions to request secure-world accesses.

                                                                 0 = SLI()_WIN_RD_ADDR[SECEN], SLI()_WIN_WR_ADDR[SECEN] are ignored and treated
                                                                 as if zero. Window transactions onto NCB are nonsecure, though the SMMU may
                                                                 later promote them to secure.

                                                                 1 = SLI()_WIN_RD_ADDR[SECEN], SLI()_WIN_WR_ADDR[SECEN] are honored. Window
                                                                 transactions may request nonsecure or secure world. This bit should not be set
                                                                 in trusted-mode.

                                                                 Resets to 0 when in trusted-mode (RST_BOOT[TRUSTED_MODE]), else resets to 1. */
#else /* Word 0 - Little Endian */
        uint64_t scen                  : 1;  /**< [  0:  0](SR/W) Allow SLI window transactions to request secure-world accesses.

                                                                 0 = SLI()_WIN_RD_ADDR[SECEN], SLI()_WIN_WR_ADDR[SECEN] are ignored and treated
                                                                 as if zero. Window transactions onto NCB are nonsecure, though the SMMU may
                                                                 later promote them to secure.

                                                                 1 = SLI()_WIN_RD_ADDR[SECEN], SLI()_WIN_WR_ADDR[SECEN] are honored. Window
                                                                 transactions may request nonsecure or secure world. This bit should not be set
                                                                 in trusted-mode.

                                                                 Resets to 0 when in trusted-mode (RST_BOOT[TRUSTED_MODE]), else resets to 1. */
        uint64_t reserved_1_63         : 63;
#endif /* Word 0 - End */
    } s;
    struct bdk_slix_sctl_cn81xx
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_1_63         : 63;
        uint64_t scen                  : 1;  /**< [  0:  0](SR/W) Allow SLI window transactions to request secure-world accesses.

                                                                 0 = SLI()_WIN_RD_ADDR[RD_SEC], SLI()_WIN_WR_ADDR[WR_SEC] are ignored and treated
                                                                 as if zero. Window transactions onto NCB are nonsecure, though the SMMU may
                                                                 later promote them to secure.

                                                                 1 = SLI()_WIN_RD_ADDR[RD_SEC], SLI()_WIN_WR_ADDR[WR_SEC] are honored. Window
                                                                 transactions may request nonsecure or secure world. This bit should not be set
                                                                 in trusted-mode.

                                                                 Resets to 0 when in trusted-mode (RST_BOOT[TRUSTED_MODE]), else resets to 1. */
#else /* Word 0 - Little Endian */
        uint64_t scen                  : 1;  /**< [  0:  0](SR/W) Allow SLI window transactions to request secure-world accesses.

                                                                 0 = SLI()_WIN_RD_ADDR[RD_SEC], SLI()_WIN_WR_ADDR[WR_SEC] are ignored and treated
                                                                 as if zero. Window transactions onto NCB are nonsecure, though the SMMU may
                                                                 later promote them to secure.

                                                                 1 = SLI()_WIN_RD_ADDR[RD_SEC], SLI()_WIN_WR_ADDR[WR_SEC] are honored. Window
                                                                 transactions may request nonsecure or secure world. This bit should not be set
                                                                 in trusted-mode.

                                                                 Resets to 0 when in trusted-mode (RST_BOOT[TRUSTED_MODE]), else resets to 1. */
        uint64_t reserved_1_63         : 63;
#endif /* Word 0 - End */
    } cn81xx;
    /* struct bdk_slix_sctl_cn81xx cn88xx; */
    /* struct bdk_slix_sctl_s cn83xx; */
};
typedef union bdk_slix_sctl bdk_slix_sctl_t;

static inline uint64_t BDK_SLIX_SCTL(unsigned long a) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_SCTL(unsigned long a)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN81XX) && (a==0))
        return 0x874001002010ll + 0x1000000000ll * ((a) & 0x0);
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && (a==0))
        return 0x874001002010ll + 0x1000000000ll * ((a) & 0x0);
    if (CAVIUM_IS_MODEL(CAVIUM_CN88XX_PASS2_X) && (a<=1))
        return 0x874001002010ll + 0x1000000000ll * ((a) & 0x1);
    __bdk_csr_fatal("SLIX_SCTL", 1, a, 0, 0, 0);
}

#define typedef_BDK_SLIX_SCTL(a) bdk_slix_sctl_t
#define bustype_BDK_SLIX_SCTL(a) BDK_CSR_TYPE_NCB
#define basename_BDK_SLIX_SCTL(a) "SLIX_SCTL"
#define device_bar_BDK_SLIX_SCTL(a) 0x0 /* PF_BAR0 */
#define busnum_BDK_SLIX_SCTL(a) (a)
#define arguments_BDK_SLIX_SCTL(a) (a),-1,-1,-1

/**
 * Register (PEXP) sli#_win_rd_addr
 *
 * SLI Window Read Address Register
 * This register contains the address to be read when SLI()_WIN_RD_DATA is read.
 * Writing this register causes a read operation to take place.
 * This register should not be used to read SLI_* registers.
 */
union bdk_slix_win_rd_addr
{
    uint64_t u;
    struct bdk_slix_win_rd_addr_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t secen                 : 1;  /**< [ 63: 63](R/W) This request is a secure-world transaction. This is intended to be set only for
                                                                 transactions during early boot when the SMMU is in bypass mode; after SMMU
                                                                 initialization SMMU()_SDDR() may be used to control which SLI streams are secure.

                                                                 If SLI()_SCTL[SECEN] = 0, this bit is ignored and transactions are always nonsecure
                                                                 onto the NCB, though the SMMU may later promote them to secure. */
        uint64_t reserved_51_62        : 12;
        uint64_t ld_cmd                : 2;  /**< [ 50: 49](R/W) The load command size.
                                                                 0x3 = Load 8 bytes.
                                                                 0x2 = Load 4 bytes.
                                                                 0x1 = Load 2 bytes.
                                                                 0x0 = Load 1 bytes. */
        uint64_t rd_addr               : 49; /**< [ 48:  0](R/W) The IOVA sent to the NCB for this load request. */
#else /* Word 0 - Little Endian */
        uint64_t rd_addr               : 49; /**< [ 48:  0](R/W) The IOVA sent to the NCB for this load request. */
        uint64_t ld_cmd                : 2;  /**< [ 50: 49](R/W) The load command size.
                                                                 0x3 = Load 8 bytes.
                                                                 0x2 = Load 4 bytes.
                                                                 0x1 = Load 2 bytes.
                                                                 0x0 = Load 1 bytes. */
        uint64_t reserved_51_62        : 12;
        uint64_t secen                 : 1;  /**< [ 63: 63](R/W) This request is a secure-world transaction. This is intended to be set only for
                                                                 transactions during early boot when the SMMU is in bypass mode; after SMMU
                                                                 initialization SMMU()_SDDR() may be used to control which SLI streams are secure.

                                                                 If SLI()_SCTL[SECEN] = 0, this bit is ignored and transactions are always nonsecure
                                                                 onto the NCB, though the SMMU may later promote them to secure. */
#endif /* Word 0 - End */
    } s;
    struct bdk_slix_win_rd_addr_cn88xxp1
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_51_63        : 13;
        uint64_t ld_cmd                : 2;  /**< [ 50: 49](R/W) The load command size.
                                                                 0x3 = Load 8 bytes.
                                                                 0x2 = Load 4 bytes.
                                                                 0x1 = Load 2 bytes.
                                                                 0x0 = Load 1 bytes. */
        uint64_t rd_addr               : 49; /**< [ 48:  0](R/W) The IOVA sent to the NCB for this load request. */
#else /* Word 0 - Little Endian */
        uint64_t rd_addr               : 49; /**< [ 48:  0](R/W) The IOVA sent to the NCB for this load request. */
        uint64_t ld_cmd                : 2;  /**< [ 50: 49](R/W) The load command size.
                                                                 0x3 = Load 8 bytes.
                                                                 0x2 = Load 4 bytes.
                                                                 0x1 = Load 2 bytes.
                                                                 0x0 = Load 1 bytes. */
        uint64_t reserved_51_63        : 13;
#endif /* Word 0 - End */
    } cn88xxp1;
    /* struct bdk_slix_win_rd_addr_s cn81xx; */
    /* struct bdk_slix_win_rd_addr_s cn88xxp2; */
};
typedef union bdk_slix_win_rd_addr bdk_slix_win_rd_addr_t;

static inline uint64_t BDK_SLIX_WIN_RD_ADDR(unsigned long a) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_WIN_RD_ADDR(unsigned long a)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN81XX) && (a==0))
        return 0x10ll + 0x10000000000ll * ((a) & 0x0);
    if (CAVIUM_IS_MODEL(CAVIUM_CN88XX) && (a<=1))
        return 0x10ll + 0x10000000000ll * ((a) & 0x1);
    __bdk_csr_fatal("SLIX_WIN_RD_ADDR", 1, a, 0, 0, 0);
}

#define typedef_BDK_SLIX_WIN_RD_ADDR(a) bdk_slix_win_rd_addr_t
#define bustype_BDK_SLIX_WIN_RD_ADDR(a) BDK_CSR_TYPE_PEXP
#define basename_BDK_SLIX_WIN_RD_ADDR(a) "SLIX_WIN_RD_ADDR"
#define busnum_BDK_SLIX_WIN_RD_ADDR(a) (a)
#define arguments_BDK_SLIX_WIN_RD_ADDR(a) (a),-1,-1,-1

/**
 * Register (PEXP) sli#_win_rd_addr#
 *
 * SLI Window Read Address Register
 * This register contains the address to be read when SLI()_WIN_RD_DATA() is read.
 * Writing this register causes a read operation to take place.
 * This register should not be used to read SLI_* registers.
 */
union bdk_slix_win_rd_addrx
{
    uint64_t u;
    struct bdk_slix_win_rd_addrx_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t secen                 : 1;  /**< [ 63: 63](R/W) This request is a secure-world transaction. This is intended to be set only for
                                                                 transactions during early boot when the SMMU is in bypass mode; after SMMU
                                                                 initialization SMMU()_SSDR() may be used to control which SLI streams are secure.

                                                                 If SLI()_SCTL[SCEN] = 0, this bit is ignored and transactions are always nonsecure
                                                                 onto the NCB, though the SMMU may later promote them to secure. */
        uint64_t reserved_51_62        : 12;
        uint64_t ld_cmd                : 2;  /**< [ 50: 49](R/W) The load command size.
                                                                 0x3 = Load 8 bytes.
                                                                 0x2 = Load 4 bytes.
                                                                 0x1 = Load 2 bytes.
                                                                 0x0 = Load 1 bytes. */
        uint64_t rd_addr               : 49; /**< [ 48:  0](R/W) The IOVA sent to the NCB for this load request. */
#else /* Word 0 - Little Endian */
        uint64_t rd_addr               : 49; /**< [ 48:  0](R/W) The IOVA sent to the NCB for this load request. */
        uint64_t ld_cmd                : 2;  /**< [ 50: 49](R/W) The load command size.
                                                                 0x3 = Load 8 bytes.
                                                                 0x2 = Load 4 bytes.
                                                                 0x1 = Load 2 bytes.
                                                                 0x0 = Load 1 bytes. */
        uint64_t reserved_51_62        : 12;
        uint64_t secen                 : 1;  /**< [ 63: 63](R/W) This request is a secure-world transaction. This is intended to be set only for
                                                                 transactions during early boot when the SMMU is in bypass mode; after SMMU
                                                                 initialization SMMU()_SSDR() may be used to control which SLI streams are secure.

                                                                 If SLI()_SCTL[SCEN] = 0, this bit is ignored and transactions are always nonsecure
                                                                 onto the NCB, though the SMMU may later promote them to secure. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_win_rd_addrx_s cn; */
};
typedef union bdk_slix_win_rd_addrx bdk_slix_win_rd_addrx_t;

static inline uint64_t BDK_SLIX_WIN_RD_ADDRX(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_WIN_RD_ADDRX(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=3)))
        return 0x2c010ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x3);
    __bdk_csr_fatal("SLIX_WIN_RD_ADDRX", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_WIN_RD_ADDRX(a,b) bdk_slix_win_rd_addrx_t
#define bustype_BDK_SLIX_WIN_RD_ADDRX(a,b) BDK_CSR_TYPE_PEXP
#define basename_BDK_SLIX_WIN_RD_ADDRX(a,b) "SLIX_WIN_RD_ADDRX"
#define busnum_BDK_SLIX_WIN_RD_ADDRX(a,b) (a)
#define arguments_BDK_SLIX_WIN_RD_ADDRX(a,b) (a),(b),-1,-1

/**
 * Register (PEXP) sli#_win_rd_data
 *
 * SLI Window Read Data Register
 * This register contains the address to be read when SLI()_WIN_RD_DATA is read.
 */
union bdk_slix_win_rd_data
{
    uint64_t u;
    struct bdk_slix_win_rd_data_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t rd_data               : 64; /**< [ 63:  0](RO/H) The read data. */
#else /* Word 0 - Little Endian */
        uint64_t rd_data               : 64; /**< [ 63:  0](RO/H) The read data. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_win_rd_data_s cn; */
};
typedef union bdk_slix_win_rd_data bdk_slix_win_rd_data_t;

static inline uint64_t BDK_SLIX_WIN_RD_DATA(unsigned long a) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_WIN_RD_DATA(unsigned long a)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN81XX) && (a==0))
        return 0x40ll + 0x10000000000ll * ((a) & 0x0);
    if (CAVIUM_IS_MODEL(CAVIUM_CN88XX) && (a<=1))
        return 0x40ll + 0x10000000000ll * ((a) & 0x1);
    __bdk_csr_fatal("SLIX_WIN_RD_DATA", 1, a, 0, 0, 0);
}

#define typedef_BDK_SLIX_WIN_RD_DATA(a) bdk_slix_win_rd_data_t
#define bustype_BDK_SLIX_WIN_RD_DATA(a) BDK_CSR_TYPE_PEXP
#define basename_BDK_SLIX_WIN_RD_DATA(a) "SLIX_WIN_RD_DATA"
#define busnum_BDK_SLIX_WIN_RD_DATA(a) (a)
#define arguments_BDK_SLIX_WIN_RD_DATA(a) (a),-1,-1,-1

/**
 * Register (PEXP) sli#_win_rd_data#
 *
 * SLI Window Read Data Register
 * This register contains the address to be read when SLI()_WIN_RD_DATA() is read.
 */
union bdk_slix_win_rd_datax
{
    uint64_t u;
    struct bdk_slix_win_rd_datax_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t rd_data               : 64; /**< [ 63:  0](RO/H) The read data. */
#else /* Word 0 - Little Endian */
        uint64_t rd_data               : 64; /**< [ 63:  0](RO/H) The read data. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_win_rd_datax_s cn; */
};
typedef union bdk_slix_win_rd_datax bdk_slix_win_rd_datax_t;

static inline uint64_t BDK_SLIX_WIN_RD_DATAX(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_WIN_RD_DATAX(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=3)))
        return 0x2c040ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x3);
    __bdk_csr_fatal("SLIX_WIN_RD_DATAX", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_WIN_RD_DATAX(a,b) bdk_slix_win_rd_datax_t
#define bustype_BDK_SLIX_WIN_RD_DATAX(a,b) BDK_CSR_TYPE_PEXP
#define basename_BDK_SLIX_WIN_RD_DATAX(a,b) "SLIX_WIN_RD_DATAX"
#define busnum_BDK_SLIX_WIN_RD_DATAX(a,b) (a)
#define arguments_BDK_SLIX_WIN_RD_DATAX(a,b) (a),(b),-1,-1

/**
 * Register (PEXP) sli#_win_wr_addr
 *
 * SLI Window Write Address Register
 * Contains the address to be writen to when a write operation is started by writing
 * SLI()_WIN_WR_DATA.
 * This register should not be used to write SLI_* registers.
 */
union bdk_slix_win_wr_addr
{
    uint64_t u;
    struct bdk_slix_win_wr_addr_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t secen                 : 1;  /**< [ 63: 63](R/W) This request is a secure-world transaction. This is intended to be set only for
                                                                 transactions during early boot when the SMMU is in bypass mode; after SMMU
                                                                 initialization SMMU()_SDDR() may be used to control which SLI streams are secure.

                                                                 If SLI()_SCTL[SECEN] = 0, this bit is ignored and transactions are always nonsecure
                                                                 onto the NCB, though the SMMU may later promote them to secure. */
        uint64_t reserved_49_62        : 14;
        uint64_t wr_addr               : 46; /**< [ 48:  3](R/W) The IOVA sent to the NCB for this store request. */
        uint64_t reserved_0_2          : 3;
#else /* Word 0 - Little Endian */
        uint64_t reserved_0_2          : 3;
        uint64_t wr_addr               : 46; /**< [ 48:  3](R/W) The IOVA sent to the NCB for this store request. */
        uint64_t reserved_49_62        : 14;
        uint64_t secen                 : 1;  /**< [ 63: 63](R/W) This request is a secure-world transaction. This is intended to be set only for
                                                                 transactions during early boot when the SMMU is in bypass mode; after SMMU
                                                                 initialization SMMU()_SDDR() may be used to control which SLI streams are secure.

                                                                 If SLI()_SCTL[SECEN] = 0, this bit is ignored and transactions are always nonsecure
                                                                 onto the NCB, though the SMMU may later promote them to secure. */
#endif /* Word 0 - End */
    } s;
    struct bdk_slix_win_wr_addr_cn88xxp1
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_49_63        : 15;
        uint64_t wr_addr               : 46; /**< [ 48:  3](R/W) The IOVA sent to the NCB for this store request. */
        uint64_t reserved_0_2          : 3;
#else /* Word 0 - Little Endian */
        uint64_t reserved_0_2          : 3;
        uint64_t wr_addr               : 46; /**< [ 48:  3](R/W) The IOVA sent to the NCB for this store request. */
        uint64_t reserved_49_63        : 15;
#endif /* Word 0 - End */
    } cn88xxp1;
    /* struct bdk_slix_win_wr_addr_s cn81xx; */
    /* struct bdk_slix_win_wr_addr_s cn88xxp2; */
};
typedef union bdk_slix_win_wr_addr bdk_slix_win_wr_addr_t;

static inline uint64_t BDK_SLIX_WIN_WR_ADDR(unsigned long a) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_WIN_WR_ADDR(unsigned long a)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN81XX) && (a==0))
        return 0ll + 0x10000000000ll * ((a) & 0x0);
    if (CAVIUM_IS_MODEL(CAVIUM_CN88XX) && (a<=1))
        return 0ll + 0x10000000000ll * ((a) & 0x1);
    __bdk_csr_fatal("SLIX_WIN_WR_ADDR", 1, a, 0, 0, 0);
}

#define typedef_BDK_SLIX_WIN_WR_ADDR(a) bdk_slix_win_wr_addr_t
#define bustype_BDK_SLIX_WIN_WR_ADDR(a) BDK_CSR_TYPE_PEXP
#define basename_BDK_SLIX_WIN_WR_ADDR(a) "SLIX_WIN_WR_ADDR"
#define busnum_BDK_SLIX_WIN_WR_ADDR(a) (a)
#define arguments_BDK_SLIX_WIN_WR_ADDR(a) (a),-1,-1,-1

/**
 * Register (PEXP) sli#_win_wr_addr#
 *
 * SLI Window Write Address Register
 * Contains the address to be written to when a write operation is started by writing
 * SLI()_WIN_WR_DATA().
 * This register should not be used to write SLI_* registers.
 */
union bdk_slix_win_wr_addrx
{
    uint64_t u;
    struct bdk_slix_win_wr_addrx_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t secen                 : 1;  /**< [ 63: 63](R/W) This request is a secure-world transaction. This is intended to be set only for
                                                                 transactions during early boot when the SMMU is in bypass mode; after SMMU
                                                                 initialization SMMU()_SSDR() may be used to control which SLI streams are secure.

                                                                 If SLI()_SCTL[SCEN] = 0, this bit is ignored and transactions are always nonsecure
                                                                 onto the NCB, though the SMMU may later promote them to secure. */
        uint64_t reserved_49_62        : 14;
        uint64_t wr_addr               : 46; /**< [ 48:  3](R/W) The IOVA sent to the NCB for this store request. */
        uint64_t reserved_0_2          : 3;
#else /* Word 0 - Little Endian */
        uint64_t reserved_0_2          : 3;
        uint64_t wr_addr               : 46; /**< [ 48:  3](R/W) The IOVA sent to the NCB for this store request. */
        uint64_t reserved_49_62        : 14;
        uint64_t secen                 : 1;  /**< [ 63: 63](R/W) This request is a secure-world transaction. This is intended to be set only for
                                                                 transactions during early boot when the SMMU is in bypass mode; after SMMU
                                                                 initialization SMMU()_SSDR() may be used to control which SLI streams are secure.

                                                                 If SLI()_SCTL[SCEN] = 0, this bit is ignored and transactions are always nonsecure
                                                                 onto the NCB, though the SMMU may later promote them to secure. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_win_wr_addrx_s cn; */
};
typedef union bdk_slix_win_wr_addrx bdk_slix_win_wr_addrx_t;

static inline uint64_t BDK_SLIX_WIN_WR_ADDRX(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_WIN_WR_ADDRX(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=3)))
        return 0x2c000ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x3);
    __bdk_csr_fatal("SLIX_WIN_WR_ADDRX", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_WIN_WR_ADDRX(a,b) bdk_slix_win_wr_addrx_t
#define bustype_BDK_SLIX_WIN_WR_ADDRX(a,b) BDK_CSR_TYPE_PEXP
#define basename_BDK_SLIX_WIN_WR_ADDRX(a,b) "SLIX_WIN_WR_ADDRX"
#define busnum_BDK_SLIX_WIN_WR_ADDRX(a,b) (a)
#define arguments_BDK_SLIX_WIN_WR_ADDRX(a,b) (a),(b),-1,-1

/**
 * Register (PEXP) sli#_win_wr_data
 *
 * SLI Window Write Data Register
 * This register contains the data to write to the address located in SLI()_WIN_WR_ADDR.
 * Writing this register causes a write operation to take place.
 */
union bdk_slix_win_wr_data
{
    uint64_t u;
    struct bdk_slix_win_wr_data_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t wr_data               : 64; /**< [ 63:  0](R/W) The data to be written. */
#else /* Word 0 - Little Endian */
        uint64_t wr_data               : 64; /**< [ 63:  0](R/W) The data to be written. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_win_wr_data_s cn; */
};
typedef union bdk_slix_win_wr_data bdk_slix_win_wr_data_t;

static inline uint64_t BDK_SLIX_WIN_WR_DATA(unsigned long a) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_WIN_WR_DATA(unsigned long a)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN81XX) && (a==0))
        return 0x20ll + 0x10000000000ll * ((a) & 0x0);
    if (CAVIUM_IS_MODEL(CAVIUM_CN88XX) && (a<=1))
        return 0x20ll + 0x10000000000ll * ((a) & 0x1);
    __bdk_csr_fatal("SLIX_WIN_WR_DATA", 1, a, 0, 0, 0);
}

#define typedef_BDK_SLIX_WIN_WR_DATA(a) bdk_slix_win_wr_data_t
#define bustype_BDK_SLIX_WIN_WR_DATA(a) BDK_CSR_TYPE_PEXP
#define basename_BDK_SLIX_WIN_WR_DATA(a) "SLIX_WIN_WR_DATA"
#define busnum_BDK_SLIX_WIN_WR_DATA(a) (a)
#define arguments_BDK_SLIX_WIN_WR_DATA(a) (a),-1,-1,-1

/**
 * Register (PEXP) sli#_win_wr_data#
 *
 * SLI Window Write Data Register
 * This register contains the data to write to the address located in SLI()_WIN_WR_ADDR().
 * Writing this register causes a write operation to take place.
 */
union bdk_slix_win_wr_datax
{
    uint64_t u;
    struct bdk_slix_win_wr_datax_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t wr_data               : 64; /**< [ 63:  0](R/W) The data to be written. */
#else /* Word 0 - Little Endian */
        uint64_t wr_data               : 64; /**< [ 63:  0](R/W) The data to be written. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_win_wr_datax_s cn; */
};
typedef union bdk_slix_win_wr_datax bdk_slix_win_wr_datax_t;

static inline uint64_t BDK_SLIX_WIN_WR_DATAX(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_WIN_WR_DATAX(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=3)))
        return 0x2c020ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x3);
    __bdk_csr_fatal("SLIX_WIN_WR_DATAX", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_WIN_WR_DATAX(a,b) bdk_slix_win_wr_datax_t
#define bustype_BDK_SLIX_WIN_WR_DATAX(a,b) BDK_CSR_TYPE_PEXP
#define basename_BDK_SLIX_WIN_WR_DATAX(a,b) "SLIX_WIN_WR_DATAX"
#define busnum_BDK_SLIX_WIN_WR_DATAX(a,b) (a)
#define arguments_BDK_SLIX_WIN_WR_DATAX(a,b) (a),(b),-1,-1

/**
 * Register (PEXP) sli#_win_wr_mask
 *
 * SLI Window Write Mask Register
 * This register contains the mask for the data in SLI()_WIN_WR_DATA.
 */
union bdk_slix_win_wr_mask
{
    uint64_t u;
    struct bdk_slix_win_wr_mask_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_8_63         : 56;
        uint64_t wr_mask               : 8;  /**< [  7:  0](R/W) The byte enables sent to the NCB for this store request. */
#else /* Word 0 - Little Endian */
        uint64_t wr_mask               : 8;  /**< [  7:  0](R/W) The byte enables sent to the NCB for this store request. */
        uint64_t reserved_8_63         : 56;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_win_wr_mask_s cn; */
};
typedef union bdk_slix_win_wr_mask bdk_slix_win_wr_mask_t;

static inline uint64_t BDK_SLIX_WIN_WR_MASK(unsigned long a) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_WIN_WR_MASK(unsigned long a)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN81XX) && (a==0))
        return 0x30ll + 0x10000000000ll * ((a) & 0x0);
    if (CAVIUM_IS_MODEL(CAVIUM_CN88XX) && (a<=1))
        return 0x30ll + 0x10000000000ll * ((a) & 0x1);
    __bdk_csr_fatal("SLIX_WIN_WR_MASK", 1, a, 0, 0, 0);
}

#define typedef_BDK_SLIX_WIN_WR_MASK(a) bdk_slix_win_wr_mask_t
#define bustype_BDK_SLIX_WIN_WR_MASK(a) BDK_CSR_TYPE_PEXP
#define basename_BDK_SLIX_WIN_WR_MASK(a) "SLIX_WIN_WR_MASK"
#define busnum_BDK_SLIX_WIN_WR_MASK(a) (a)
#define arguments_BDK_SLIX_WIN_WR_MASK(a) (a),-1,-1,-1

/**
 * Register (PEXP) sli#_win_wr_mask#
 *
 * SLI Window Write Mask Register
 * This register contains the mask for the data in SLI()_WIN_WR_DATA().
 */
union bdk_slix_win_wr_maskx
{
    uint64_t u;
    struct bdk_slix_win_wr_maskx_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_8_63         : 56;
        uint64_t wr_mask               : 8;  /**< [  7:  0](R/W) The byte enables sent to the NCB for this store request. */
#else /* Word 0 - Little Endian */
        uint64_t wr_mask               : 8;  /**< [  7:  0](R/W) The byte enables sent to the NCB for this store request. */
        uint64_t reserved_8_63         : 56;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_slix_win_wr_maskx_s cn; */
};
typedef union bdk_slix_win_wr_maskx bdk_slix_win_wr_maskx_t;

static inline uint64_t BDK_SLIX_WIN_WR_MASKX(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_SLIX_WIN_WR_MASKX(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN83XX) && ((a==0) && (b<=3)))
        return 0x2c030ll + 0x1000000000ll * ((a) & 0x0) + 0x800000ll * ((b) & 0x3);
    __bdk_csr_fatal("SLIX_WIN_WR_MASKX", 2, a, b, 0, 0);
}

#define typedef_BDK_SLIX_WIN_WR_MASKX(a,b) bdk_slix_win_wr_maskx_t
#define bustype_BDK_SLIX_WIN_WR_MASKX(a,b) BDK_CSR_TYPE_PEXP
#define basename_BDK_SLIX_WIN_WR_MASKX(a,b) "SLIX_WIN_WR_MASKX"
#define busnum_BDK_SLIX_WIN_WR_MASKX(a,b) (a)
#define arguments_BDK_SLIX_WIN_WR_MASKX(a,b) (a),(b),-1,-1

#endif /* __BDK_CSRS_SLI_H__ */