aboutsummaryrefslogtreecommitdiff
path: root/src/vendorcode/cavium/include/bdk/libbdk-arch/bdk-csrs-gsern.h
blob: 1efb6f3bd27f2eecb99bf73e0eb227c14ff3ec4b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18699
18700
18701
18702
18703
18704
18705
18706
18707
18708
18709
18710
18711
18712
18713
18714
18715
18716
18717
18718
18719
18720
18721
18722
18723
18724
18725
18726
18727
18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
18809
18810
18811
18812
18813
18814
18815
18816
18817
18818
18819
18820
18821
18822
18823
18824
18825
18826
18827
18828
18829
18830
18831
18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
18879
18880
18881
18882
18883
18884
18885
18886
18887
18888
18889
18890
18891
18892
18893
18894
18895
18896
18897
18898
18899
18900
18901
18902
18903
18904
18905
18906
18907
18908
18909
18910
18911
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
18924
18925
18926
18927
18928
18929
18930
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948
18949
18950
18951
18952
18953
18954
18955
18956
18957
18958
18959
18960
18961
18962
18963
18964
18965
18966
18967
18968
18969
18970
18971
18972
18973
18974
18975
18976
18977
18978
18979
18980
18981
18982
18983
18984
18985
18986
18987
18988
18989
18990
18991
18992
18993
18994
18995
18996
18997
18998
18999
19000
19001
19002
19003
19004
19005
19006
19007
19008
19009
19010
19011
19012
19013
19014
19015
19016
19017
19018
19019
19020
19021
19022
19023
19024
19025
19026
19027
19028
19029
19030
19031
19032
19033
19034
19035
19036
19037
19038
19039
19040
19041
19042
19043
19044
19045
19046
19047
19048
19049
19050
19051
19052
19053
19054
19055
19056
19057
19058
19059
19060
19061
19062
19063
19064
19065
19066
19067
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
19082
19083
19084
19085
19086
19087
19088
19089
19090
19091
19092
19093
19094
19095
19096
19097
19098
19099
19100
19101
19102
19103
19104
19105
19106
19107
19108
19109
19110
19111
19112
19113
19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
19147
19148
19149
19150
19151
19152
19153
19154
19155
19156
19157
19158
19159
19160
19161
19162
19163
19164
19165
19166
19167
19168
19169
19170
19171
19172
19173
19174
19175
19176
19177
19178
19179
19180
19181
19182
19183
19184
19185
19186
19187
19188
19189
19190
19191
19192
19193
19194
19195
19196
19197
19198
19199
19200
19201
19202
19203
19204
19205
19206
19207
19208
19209
19210
19211
19212
19213
19214
19215
19216
19217
19218
19219
19220
19221
19222
19223
19224
19225
19226
19227
19228
19229
19230
19231
19232
19233
19234
19235
19236
19237
19238
19239
19240
19241
19242
19243
19244
19245
19246
19247
19248
19249
19250
19251
19252
19253
19254
19255
19256
19257
19258
19259
19260
19261
19262
19263
19264
19265
19266
19267
19268
19269
19270
19271
19272
19273
19274
19275
19276
19277
19278
19279
19280
19281
19282
19283
19284
19285
19286
19287
19288
19289
19290
19291
19292
19293
19294
19295
19296
19297
19298
19299
19300
19301
19302
19303
19304
19305
19306
19307
19308
19309
19310
19311
19312
19313
19314
19315
19316
19317
19318
19319
19320
19321
19322
19323
19324
19325
19326
19327
19328
19329
19330
19331
19332
19333
19334
19335
19336
19337
19338
19339
19340
19341
19342
19343
19344
19345
19346
19347
19348
19349
19350
19351
19352
19353
19354
19355
19356
19357
19358
19359
19360
19361
19362
19363
19364
19365
19366
19367
19368
19369
19370
19371
19372
19373
19374
19375
19376
19377
19378
19379
19380
19381
19382
19383
19384
19385
19386
19387
19388
19389
19390
19391
19392
19393
19394
19395
19396
19397
19398
19399
19400
19401
19402
19403
19404
19405
19406
19407
19408
19409
19410
19411
19412
19413
19414
19415
19416
19417
19418
19419
19420
19421
19422
19423
19424
19425
19426
19427
19428
19429
19430
19431
19432
19433
19434
19435
19436
19437
19438
19439
19440
19441
19442
19443
19444
19445
19446
19447
19448
19449
19450
19451
19452
19453
19454
19455
19456
19457
19458
19459
19460
19461
19462
19463
19464
19465
19466
19467
19468
19469
19470
19471
19472
19473
19474
19475
19476
19477
19478
19479
19480
19481
19482
19483
19484
19485
19486
19487
19488
19489
19490
19491
19492
19493
19494
19495
19496
19497
19498
19499
19500
19501
19502
19503
19504
19505
19506
19507
19508
19509
19510
19511
19512
19513
19514
19515
19516
19517
19518
19519
19520
19521
19522
19523
19524
19525
19526
19527
19528
19529
19530
19531
19532
19533
19534
19535
19536
19537
19538
19539
19540
19541
19542
19543
19544
19545
19546
19547
19548
19549
19550
19551
19552
19553
19554
19555
19556
19557
19558
19559
19560
19561
19562
19563
19564
19565
19566
19567
19568
19569
19570
19571
19572
19573
19574
19575
19576
19577
19578
19579
19580
19581
19582
19583
19584
19585
19586
19587
19588
19589
19590
19591
19592
19593
19594
19595
19596
19597
19598
19599
19600
19601
19602
19603
19604
19605
19606
19607
19608
19609
19610
19611
19612
19613
19614
19615
19616
19617
19618
19619
19620
19621
19622
19623
19624
19625
19626
19627
19628
19629
19630
19631
19632
19633
19634
19635
19636
19637
19638
19639
19640
19641
19642
19643
19644
19645
19646
19647
19648
19649
19650
19651
19652
19653
19654
19655
19656
19657
19658
19659
19660
19661
19662
19663
19664
19665
19666
19667
19668
19669
19670
19671
19672
19673
19674
19675
19676
19677
19678
19679
19680
19681
19682
19683
19684
19685
19686
19687
19688
19689
19690
19691
19692
19693
19694
19695
19696
19697
19698
19699
19700
19701
19702
19703
19704
19705
19706
19707
19708
19709
19710
19711
19712
19713
19714
19715
19716
19717
19718
19719
19720
19721
19722
19723
19724
19725
19726
19727
19728
19729
19730
19731
19732
19733
19734
19735
19736
19737
19738
19739
19740
19741
19742
19743
19744
19745
19746
19747
19748
19749
19750
19751
19752
19753
19754
19755
19756
19757
19758
19759
19760
19761
19762
19763
19764
19765
19766
19767
19768
19769
19770
19771
19772
19773
19774
19775
19776
19777
19778
19779
19780
19781
19782
19783
19784
19785
19786
19787
19788
19789
19790
19791
19792
19793
19794
19795
19796
19797
19798
19799
19800
19801
19802
19803
19804
19805
19806
19807
19808
19809
19810
19811
19812
19813
19814
19815
19816
19817
19818
19819
19820
19821
19822
19823
19824
19825
19826
19827
19828
19829
19830
19831
19832
19833
19834
19835
19836
19837
19838
19839
19840
19841
19842
19843
19844
19845
19846
19847
19848
19849
19850
19851
19852
19853
19854
19855
19856
19857
19858
19859
19860
19861
19862
19863
19864
19865
19866
19867
19868
19869
19870
19871
19872
19873
19874
19875
19876
19877
19878
19879
19880
19881
19882
19883
19884
19885
19886
19887
19888
19889
19890
19891
19892
19893
19894
19895
19896
19897
19898
19899
19900
19901
19902
19903
19904
19905
19906
19907
19908
19909
19910
19911
19912
19913
19914
19915
19916
19917
19918
19919
19920
19921
19922
19923
19924
19925
19926
19927
19928
19929
19930
19931
19932
19933
19934
19935
19936
19937
19938
19939
19940
19941
19942
19943
19944
19945
19946
19947
19948
19949
19950
19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965
19966
19967
19968
19969
19970
19971
19972
19973
19974
19975
19976
19977
19978
19979
19980
19981
19982
19983
19984
19985
19986
19987
19988
19989
19990
19991
19992
19993
19994
19995
19996
19997
19998
19999
20000
20001
20002
20003
20004
20005
20006
20007
20008
20009
20010
20011
20012
20013
20014
20015
20016
20017
20018
20019
20020
20021
20022
20023
20024
20025
20026
20027
20028
20029
20030
20031
20032
20033
20034
20035
20036
20037
20038
20039
20040
20041
20042
20043
20044
20045
20046
20047
20048
20049
20050
20051
20052
20053
20054
20055
20056
20057
20058
20059
20060
20061
20062
20063
20064
20065
20066
20067
20068
20069
20070
20071
20072
20073
20074
20075
20076
20077
20078
20079
20080
20081
20082
20083
20084
20085
20086
20087
20088
20089
20090
20091
20092
20093
20094
20095
20096
20097
20098
20099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
20190
20191
20192
20193
20194
20195
20196
20197
20198
20199
20200
20201
20202
20203
20204
20205
20206
20207
20208
20209
20210
20211
20212
20213
20214
20215
20216
20217
20218
20219
20220
20221
20222
20223
20224
20225
20226
20227
20228
20229
20230
20231
20232
20233
20234
20235
20236
20237
20238
20239
20240
20241
20242
20243
20244
20245
20246
20247
20248
20249
20250
20251
20252
20253
20254
20255
20256
20257
20258
20259
20260
20261
20262
20263
20264
20265
20266
20267
20268
20269
20270
20271
20272
20273
20274
20275
20276
20277
20278
20279
20280
20281
20282
20283
20284
20285
20286
20287
20288
20289
20290
20291
20292
20293
20294
20295
20296
20297
20298
20299
20300
20301
20302
20303
20304
20305
20306
20307
20308
20309
20310
20311
20312
20313
20314
20315
20316
20317
20318
20319
20320
20321
20322
20323
20324
20325
20326
20327
20328
20329
20330
20331
20332
20333
20334
20335
20336
20337
20338
20339
20340
20341
20342
20343
20344
20345
20346
20347
20348
20349
20350
20351
20352
20353
20354
20355
20356
20357
20358
20359
20360
20361
20362
20363
20364
20365
20366
20367
20368
20369
20370
20371
20372
20373
20374
20375
20376
20377
20378
20379
20380
20381
20382
20383
20384
20385
20386
20387
20388
20389
20390
20391
20392
20393
20394
20395
20396
20397
20398
20399
20400
20401
20402
20403
20404
20405
20406
20407
20408
20409
20410
20411
20412
20413
20414
20415
20416
20417
20418
20419
20420
20421
20422
20423
20424
20425
20426
20427
20428
20429
20430
20431
20432
20433
20434
20435
20436
20437
20438
20439
20440
20441
20442
20443
20444
20445
20446
20447
20448
20449
20450
20451
20452
20453
20454
20455
20456
20457
20458
20459
20460
20461
20462
20463
20464
20465
20466
20467
20468
20469
20470
20471
20472
20473
20474
20475
20476
20477
20478
20479
20480
20481
20482
20483
20484
20485
20486
20487
20488
20489
20490
20491
20492
20493
20494
20495
20496
20497
20498
20499
20500
20501
20502
20503
20504
20505
20506
20507
20508
20509
20510
20511
20512
20513
20514
20515
20516
20517
20518
20519
20520
20521
20522
20523
20524
20525
20526
20527
20528
20529
20530
20531
20532
20533
20534
20535
20536
20537
20538
20539
20540
20541
20542
20543
20544
20545
20546
20547
20548
20549
20550
20551
20552
20553
20554
20555
20556
20557
20558
20559
20560
20561
20562
20563
20564
20565
20566
20567
20568
20569
20570
20571
20572
20573
20574
20575
20576
20577
20578
20579
20580
20581
20582
20583
20584
20585
20586
20587
20588
20589
20590
20591
20592
20593
20594
20595
20596
20597
20598
20599
20600
20601
20602
20603
20604
20605
20606
20607
20608
20609
20610
20611
20612
20613
20614
20615
20616
20617
20618
20619
20620
20621
20622
20623
20624
20625
20626
20627
20628
20629
20630
20631
20632
20633
20634
20635
20636
20637
20638
20639
20640
20641
20642
20643
20644
20645
20646
20647
20648
20649
20650
20651
20652
20653
20654
20655
20656
20657
20658
20659
20660
20661
20662
20663
20664
20665
20666
20667
20668
20669
20670
20671
20672
20673
20674
20675
20676
20677
20678
20679
20680
20681
20682
20683
20684
20685
20686
20687
20688
20689
20690
20691
20692
20693
20694
20695
20696
20697
20698
20699
20700
20701
20702
20703
20704
20705
20706
20707
20708
20709
20710
20711
20712
20713
20714
20715
20716
20717
20718
20719
20720
20721
20722
20723
20724
20725
20726
20727
20728
20729
20730
20731
20732
20733
20734
20735
20736
20737
20738
20739
20740
20741
20742
20743
20744
20745
20746
20747
20748
20749
20750
20751
20752
20753
20754
20755
20756
20757
20758
20759
20760
20761
20762
20763
20764
20765
20766
20767
20768
20769
20770
20771
20772
20773
20774
20775
20776
20777
20778
20779
20780
20781
20782
20783
20784
20785
20786
20787
20788
20789
20790
20791
20792
20793
20794
20795
20796
20797
20798
20799
20800
20801
20802
20803
20804
20805
20806
20807
#ifndef __BDK_CSRS_GSERN_H__
#define __BDK_CSRS_GSERN_H__
/* This file is auto-generated. Do not edit */

/***********************license start***************
 * Copyright (c) 2003-2017  Cavium Inc. (support@cavium.com). All rights
 * reserved.
 *
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.

 *   * Neither the name of Cavium Inc. nor the names of
 *     its contributors may be used to endorse or promote products
 *     derived from this software without specific prior written
 *     permission.

 * This Software, including technical data, may be subject to U.S. export  control
 * laws, including the U.S. Export Administration Act and its  associated
 * regulations, and may be subject to export or import  regulations in other
 * countries.

 * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
 * AND WITH ALL FAULTS AND CAVIUM  NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR
 * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
 * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR
 * DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
 * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
 * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
 * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
 * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE  RISK ARISING OUT OF USE OR
 * PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
 ***********************license end**************************************/


/**
 * @file
 *
 * Configuration and status register (CSR) address and type definitions for
 * Cavium GSERN.
 *
 * This file is auto generated. Do not edit.
 *
 */

/**
 * Enumeration gsern_bar_e
 *
 * GSER Base Address Register Enumeration
 * Enumerates the base address registers.
 */
#define BDK_GSERN_BAR_E_GSERNX_PF_BAR0(a) (0x87e090000000ll + 0x1000000ll * (a))
#define BDK_GSERN_BAR_E_GSERNX_PF_BAR0_SIZE 0x100000ull

/**
 * Enumeration gsern_psb_acc_e
 *
 * GSERN Power Serial Bus Accumulator Enumeration
 * Enumerates the GSERN accumulators for LMC slaves, which correspond to index {b} of
 * PSBS_SYS()_ACCUM().
 */
#define BDK_GSERN_PSB_ACC_E_TBD0 (0)
#define BDK_GSERN_PSB_ACC_E_TBD1 (1)
#define BDK_GSERN_PSB_ACC_E_TBD2 (2)
#define BDK_GSERN_PSB_ACC_E_TBD3 (3)

/**
 * Enumeration gsern_psb_event_e
 *
 * GSERN Power Serial Bus Event Enumeration
 * Enumerates the event numbers for GSERN slaves, which correspond to index {b} of
 * PSBS_SYS()_EVENT()_CFG.
 */
#define BDK_GSERN_PSB_EVENT_E_TBD0 (0)

/**
 * Register (RSL) gsern#_common_bias_bcfg
 *
 * GSER Common Bias Base Configuration Register
 */
union bdk_gsernx_common_bias_bcfg
{
    uint64_t u;
    struct bdk_gsernx_common_bias_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_36_63        : 28;
        uint64_t dac1                  : 4;  /**< [ 35: 32](R/W) Ir25 reference current trim. Default setting (0x8) selects 0% trim. Minimum and
                                                                 Maximum settings allow for up to + or - 12.5% trim.  For debug use only. */
        uint64_t reserved_28_31        : 4;
        uint64_t dac0                  : 4;  /**< [ 27: 24](R/W) Ic25 reference current trim. Default setting (0x8) selects 0% trim. Minimum and
                                                                 Maximum settings allow for up to + or - 12.5% trim.  For debug use only. */
        uint64_t reserved_18_23        : 6;
        uint64_t bias                  : 2;  /**< [ 17: 16](R/W) Opamp bias current setting.  For debug use only.
                                                                   0x0 = 33 uA.
                                                                   0x1 = 25 uA.
                                                                   0x2 = 20 uA.
                                                                   0x3 = 17 uA. */
        uint64_t reserved_9_15         : 7;
        uint64_t bypass                : 1;  /**< [  8:  8](R/W) Assert to bypass the bandgap reference and use a resistive divider from VDDA
                                                                 instead.  For diagnostic use only. */
        uint64_t reserved_1_7          : 7;
        uint64_t bias_pwdn             : 1;  /**< [  0:  0](R/W) Bias current power down control. */
#else /* Word 0 - Little Endian */
        uint64_t bias_pwdn             : 1;  /**< [  0:  0](R/W) Bias current power down control. */
        uint64_t reserved_1_7          : 7;
        uint64_t bypass                : 1;  /**< [  8:  8](R/W) Assert to bypass the bandgap reference and use a resistive divider from VDDA
                                                                 instead.  For diagnostic use only. */
        uint64_t reserved_9_15         : 7;
        uint64_t bias                  : 2;  /**< [ 17: 16](R/W) Opamp bias current setting.  For debug use only.
                                                                   0x0 = 33 uA.
                                                                   0x1 = 25 uA.
                                                                   0x2 = 20 uA.
                                                                   0x3 = 17 uA. */
        uint64_t reserved_18_23        : 6;
        uint64_t dac0                  : 4;  /**< [ 27: 24](R/W) Ic25 reference current trim. Default setting (0x8) selects 0% trim. Minimum and
                                                                 Maximum settings allow for up to + or - 12.5% trim.  For debug use only. */
        uint64_t reserved_28_31        : 4;
        uint64_t dac1                  : 4;  /**< [ 35: 32](R/W) Ir25 reference current trim. Default setting (0x8) selects 0% trim. Minimum and
                                                                 Maximum settings allow for up to + or - 12.5% trim.  For debug use only. */
        uint64_t reserved_36_63        : 28;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_common_bias_bcfg_s cn; */
};
typedef union bdk_gsernx_common_bias_bcfg bdk_gsernx_common_bias_bcfg_t;

static inline uint64_t BDK_GSERNX_COMMON_BIAS_BCFG(unsigned long a) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_COMMON_BIAS_BCFG(unsigned long a)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && (a<=7))
        return 0x87e0900f0330ll + 0x1000000ll * ((a) & 0x7);
    __bdk_csr_fatal("GSERNX_COMMON_BIAS_BCFG", 1, a, 0, 0, 0);
}

#define typedef_BDK_GSERNX_COMMON_BIAS_BCFG(a) bdk_gsernx_common_bias_bcfg_t
#define bustype_BDK_GSERNX_COMMON_BIAS_BCFG(a) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_COMMON_BIAS_BCFG(a) "GSERNX_COMMON_BIAS_BCFG"
#define device_bar_BDK_GSERNX_COMMON_BIAS_BCFG(a) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_COMMON_BIAS_BCFG(a) (a)
#define arguments_BDK_GSERNX_COMMON_BIAS_BCFG(a) (a),-1,-1,-1

/**
 * Register (RSL) gsern#_common_const
 *
 * GSER Common Constants Register
 */
union bdk_gsernx_common_const
{
    uint64_t u;
    struct bdk_gsernx_common_const_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_0_63         : 64;
#else /* Word 0 - Little Endian */
        uint64_t reserved_0_63         : 64;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_common_const_s cn; */
};
typedef union bdk_gsernx_common_const bdk_gsernx_common_const_t;

static inline uint64_t BDK_GSERNX_COMMON_CONST(unsigned long a) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_COMMON_CONST(unsigned long a)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && (a<=7))
        return 0x87e0900f0088ll + 0x1000000ll * ((a) & 0x7);
    __bdk_csr_fatal("GSERNX_COMMON_CONST", 1, a, 0, 0, 0);
}

#define typedef_BDK_GSERNX_COMMON_CONST(a) bdk_gsernx_common_const_t
#define bustype_BDK_GSERNX_COMMON_CONST(a) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_COMMON_CONST(a) "GSERNX_COMMON_CONST"
#define device_bar_BDK_GSERNX_COMMON_CONST(a) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_COMMON_CONST(a) (a)
#define arguments_BDK_GSERNX_COMMON_CONST(a) (a),-1,-1,-1

/**
 * Register (RSL) gsern#_common_const1
 *
 * GSER Common Constants Register 1
 */
union bdk_gsernx_common_const1
{
    uint64_t u;
    struct bdk_gsernx_common_const1_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_4_63         : 60;
        uint64_t number_lanes          : 4;  /**< [  3:  0](RO/H) The number of lanes in this module, e.g., 4 for a QLM or 2 for a DLM.
                                                                 Internal:
                                                                 FIXME reset value 4 (done). Add reset_matches_size (not done). Note: for dlm
                                                                 tieoffs will set reset value to 2. */
#else /* Word 0 - Little Endian */
        uint64_t number_lanes          : 4;  /**< [  3:  0](RO/H) The number of lanes in this module, e.g., 4 for a QLM or 2 for a DLM.
                                                                 Internal:
                                                                 FIXME reset value 4 (done). Add reset_matches_size (not done). Note: for dlm
                                                                 tieoffs will set reset value to 2. */
        uint64_t reserved_4_63         : 60;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_common_const1_s cn; */
};
typedef union bdk_gsernx_common_const1 bdk_gsernx_common_const1_t;

static inline uint64_t BDK_GSERNX_COMMON_CONST1(unsigned long a) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_COMMON_CONST1(unsigned long a)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && (a<=7))
        return 0x87e0900f0110ll + 0x1000000ll * ((a) & 0x7);
    __bdk_csr_fatal("GSERNX_COMMON_CONST1", 1, a, 0, 0, 0);
}

#define typedef_BDK_GSERNX_COMMON_CONST1(a) bdk_gsernx_common_const1_t
#define bustype_BDK_GSERNX_COMMON_CONST1(a) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_COMMON_CONST1(a) "GSERNX_COMMON_CONST1"
#define device_bar_BDK_GSERNX_COMMON_CONST1(a) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_COMMON_CONST1(a) (a)
#define arguments_BDK_GSERNX_COMMON_CONST1(a) (a),-1,-1,-1

/**
 * Register (RSL) gsern#_common_eco
 *
 * INTERNAL: GSER Common ECO Register
 */
union bdk_gsernx_common_eco
{
    uint64_t u;
    struct bdk_gsernx_common_eco_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t eco_rw                : 62; /**< [ 63:  2](R/W) Internal:
                                                                 Reserved for ECO use. */
        uint64_t eco_rw_pll            : 2;  /**< [  1:  0](R/W) Internal:
                                                                 Pre-connected to the PLL. Reserved for ECO use. */
#else /* Word 0 - Little Endian */
        uint64_t eco_rw_pll            : 2;  /**< [  1:  0](R/W) Internal:
                                                                 Pre-connected to the PLL. Reserved for ECO use. */
        uint64_t eco_rw                : 62; /**< [ 63:  2](R/W) Internal:
                                                                 Reserved for ECO use. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_common_eco_s cn; */
};
typedef union bdk_gsernx_common_eco bdk_gsernx_common_eco_t;

static inline uint64_t BDK_GSERNX_COMMON_ECO(unsigned long a) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_COMMON_ECO(unsigned long a)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && (a<=7))
        return 0x87e0900f0770ll + 0x1000000ll * ((a) & 0x7);
    __bdk_csr_fatal("GSERNX_COMMON_ECO", 1, a, 0, 0, 0);
}

#define typedef_BDK_GSERNX_COMMON_ECO(a) bdk_gsernx_common_eco_t
#define bustype_BDK_GSERNX_COMMON_ECO(a) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_COMMON_ECO(a) "GSERNX_COMMON_ECO"
#define device_bar_BDK_GSERNX_COMMON_ECO(a) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_COMMON_ECO(a) (a)
#define arguments_BDK_GSERNX_COMMON_ECO(a) (a),-1,-1,-1

/**
 * Register (RSL) gsern#_common_init_bsts
 *
 * GSER Common Initialization Base-level Status Register
 */
union bdk_gsernx_common_init_bsts
{
    uint64_t u;
    struct bdk_gsernx_common_init_bsts_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_20_63        : 44;
        uint64_t pll_cp_cal            : 4;  /**< [ 19: 16](RO/H) PLL calibration state machine's resulting charge pump setting. Only
                                                                 valid if [CAL_READY] is set. */
        uint64_t reserved_13_15        : 3;
        uint64_t pll_band_cal          : 5;  /**< [ 12:  8](RO/H) PLL calibration state machine's resulting VCO band setting. Only valid
                                                                 if [CAL_READY] is set. */
        uint64_t reserved_7            : 1;
        uint64_t deep_idle             : 1;  /**< [  6:  6](RO/H) PLL reset state machine state is deep idle. */
        uint64_t rst_sm_complete       : 1;  /**< [  5:  5](RO/H) PLL reset state machine has completed. If
                                                                 [RST_SM_COMPLETE] is set and [RST_SM_READY] is not, there may still
                                                                 be CSR register settings preventing the PLL from being ready
                                                                 for use, e.g., power-down or reset overrides. */
        uint64_t rst_sm_ready          : 1;  /**< [  4:  4](RO/H) PLL reset state machine status indicating that the reset
                                                                 sequence has completed and this PLL is ready for use. */
        uint64_t lock                  : 1;  /**< [  3:  3](RO/H) PLL lock status; only valid if [LOCK_READY] is set. */
        uint64_t lock_ready            : 1;  /**< [  2:  2](RO/H) PLL lock status check is complete following most recent PLL
                                                                 reset or assertion of GSERN()_COMMON_RST_BCFG[LOCK_CHECK]. */
        uint64_t cal_fail              : 1;  /**< [  1:  1](RO/H) PLL calibration failed; valid only if [CAL_READY] is set. */
        uint64_t cal_ready             : 1;  /**< [  0:  0](RO/H) PLL calibration completed. */
#else /* Word 0 - Little Endian */
        uint64_t cal_ready             : 1;  /**< [  0:  0](RO/H) PLL calibration completed. */
        uint64_t cal_fail              : 1;  /**< [  1:  1](RO/H) PLL calibration failed; valid only if [CAL_READY] is set. */
        uint64_t lock_ready            : 1;  /**< [  2:  2](RO/H) PLL lock status check is complete following most recent PLL
                                                                 reset or assertion of GSERN()_COMMON_RST_BCFG[LOCK_CHECK]. */
        uint64_t lock                  : 1;  /**< [  3:  3](RO/H) PLL lock status; only valid if [LOCK_READY] is set. */
        uint64_t rst_sm_ready          : 1;  /**< [  4:  4](RO/H) PLL reset state machine status indicating that the reset
                                                                 sequence has completed and this PLL is ready for use. */
        uint64_t rst_sm_complete       : 1;  /**< [  5:  5](RO/H) PLL reset state machine has completed. If
                                                                 [RST_SM_COMPLETE] is set and [RST_SM_READY] is not, there may still
                                                                 be CSR register settings preventing the PLL from being ready
                                                                 for use, e.g., power-down or reset overrides. */
        uint64_t deep_idle             : 1;  /**< [  6:  6](RO/H) PLL reset state machine state is deep idle. */
        uint64_t reserved_7            : 1;
        uint64_t pll_band_cal          : 5;  /**< [ 12:  8](RO/H) PLL calibration state machine's resulting VCO band setting. Only valid
                                                                 if [CAL_READY] is set. */
        uint64_t reserved_13_15        : 3;
        uint64_t pll_cp_cal            : 4;  /**< [ 19: 16](RO/H) PLL calibration state machine's resulting charge pump setting. Only
                                                                 valid if [CAL_READY] is set. */
        uint64_t reserved_20_63        : 44;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_common_init_bsts_s cn; */
};
typedef union bdk_gsernx_common_init_bsts bdk_gsernx_common_init_bsts_t;

static inline uint64_t BDK_GSERNX_COMMON_INIT_BSTS(unsigned long a) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_COMMON_INIT_BSTS(unsigned long a)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && (a<=7))
        return 0x87e0900f05d8ll + 0x1000000ll * ((a) & 0x7);
    __bdk_csr_fatal("GSERNX_COMMON_INIT_BSTS", 1, a, 0, 0, 0);
}

#define typedef_BDK_GSERNX_COMMON_INIT_BSTS(a) bdk_gsernx_common_init_bsts_t
#define bustype_BDK_GSERNX_COMMON_INIT_BSTS(a) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_COMMON_INIT_BSTS(a) "GSERNX_COMMON_INIT_BSTS"
#define device_bar_BDK_GSERNX_COMMON_INIT_BSTS(a) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_COMMON_INIT_BSTS(a) (a)
#define arguments_BDK_GSERNX_COMMON_INIT_BSTS(a) (a),-1,-1,-1

/**
 * Register (RSL) gsern#_common_pll_1_bcfg
 *
 * GSER Common PLL Base Configuration Register 1
 */
union bdk_gsernx_common_pll_1_bcfg
{
    uint64_t u;
    struct bdk_gsernx_common_pll_1_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_62_63        : 2;
        uint64_t cal_cp_mult           : 2;  /**< [ 61: 60](R/W) PLL cal charge pump mult control. */
        uint64_t cp                    : 4;  /**< [ 59: 56](R/W) PLL charge pump configuration. */
        uint64_t cp_overide            : 1;  /**< [ 55: 55](R/W) PLL charge pump override. */
        uint64_t band_ppm              : 2;  /**< [ 54: 53](R/W) PLL band ppm setting. */
        uint64_t band                  : 5;  /**< [ 52: 48](R/W/H) PLL manual PLL band inputs; only effective if [BAND_OVERIDE] set. */
        uint64_t band_limits           : 3;  /**< [ 47: 45](R/W) Band limits for the PLL calibration procedure. */
        uint64_t band_overide          : 1;  /**< [ 44: 44](R/W/H) Bypass PLL calibration and set PLL band with band field inputs. */
        uint64_t bg_div16              : 1;  /**< [ 43: 43](R/W) Enable divide by 16 of reference clock to the band gap. */
        uint64_t bg_clk_en             : 1;  /**< [ 42: 42](R/W) Enable chopping in the band gap circuit. */
        uint64_t dither_en             : 1;  /**< [ 41: 41](R/W) Enable the dithering bit of sigma delta modulator. */
        uint64_t cal_sel               : 1;  /**< [ 40: 40](R/W) PLL calibration method select. */
        uint64_t vco_sel               : 1;  /**< [ 39: 39](R/W) PLL select one of the two VCOs in the PLL. */
        uint64_t sdm_en                : 1;  /**< [ 38: 38](R/W) Enable PLL fractional-N operation. */
        uint64_t reserved_36_37        : 2;
        uint64_t post_div              : 9;  /**< [ 35: 27](R/W) Forward PLL divider. Used in conjunction with [DIV_N] to set the
                                                                 PLL frequency given a reference clock frequency. The output frequency will
                                                                 be the VCO frequency divided by [POST_DIV]. Divider range is
                                                                 between 8 - 511. If a number less than 8 is selected it will be added to
                                                                 the minimum value of 8. For example, if 2 is specified the value will be
                                                                 interpreted to be 10. */
        uint64_t div_n                 : 9;  /**< [ 26: 18](R/W) PLL feedback divider integer portion. */
        uint64_t div_f                 : 18; /**< [ 17:  0](R/W) PLL feedback divider fractional portion (divide by 2^18 to find fraction, e.g., 2621 is
                                                                 ~10,000 ppm). */
#else /* Word 0 - Little Endian */
        uint64_t div_f                 : 18; /**< [ 17:  0](R/W) PLL feedback divider fractional portion (divide by 2^18 to find fraction, e.g., 2621 is
                                                                 ~10,000 ppm). */
        uint64_t div_n                 : 9;  /**< [ 26: 18](R/W) PLL feedback divider integer portion. */
        uint64_t post_div              : 9;  /**< [ 35: 27](R/W) Forward PLL divider. Used in conjunction with [DIV_N] to set the
                                                                 PLL frequency given a reference clock frequency. The output frequency will
                                                                 be the VCO frequency divided by [POST_DIV]. Divider range is
                                                                 between 8 - 511. If a number less than 8 is selected it will be added to
                                                                 the minimum value of 8. For example, if 2 is specified the value will be
                                                                 interpreted to be 10. */
        uint64_t reserved_36_37        : 2;
        uint64_t sdm_en                : 1;  /**< [ 38: 38](R/W) Enable PLL fractional-N operation. */
        uint64_t vco_sel               : 1;  /**< [ 39: 39](R/W) PLL select one of the two VCOs in the PLL. */
        uint64_t cal_sel               : 1;  /**< [ 40: 40](R/W) PLL calibration method select. */
        uint64_t dither_en             : 1;  /**< [ 41: 41](R/W) Enable the dithering bit of sigma delta modulator. */
        uint64_t bg_clk_en             : 1;  /**< [ 42: 42](R/W) Enable chopping in the band gap circuit. */
        uint64_t bg_div16              : 1;  /**< [ 43: 43](R/W) Enable divide by 16 of reference clock to the band gap. */
        uint64_t band_overide          : 1;  /**< [ 44: 44](R/W/H) Bypass PLL calibration and set PLL band with band field inputs. */
        uint64_t band_limits           : 3;  /**< [ 47: 45](R/W) Band limits for the PLL calibration procedure. */
        uint64_t band                  : 5;  /**< [ 52: 48](R/W/H) PLL manual PLL band inputs; only effective if [BAND_OVERIDE] set. */
        uint64_t band_ppm              : 2;  /**< [ 54: 53](R/W) PLL band ppm setting. */
        uint64_t cp_overide            : 1;  /**< [ 55: 55](R/W) PLL charge pump override. */
        uint64_t cp                    : 4;  /**< [ 59: 56](R/W) PLL charge pump configuration. */
        uint64_t cal_cp_mult           : 2;  /**< [ 61: 60](R/W) PLL cal charge pump mult control. */
        uint64_t reserved_62_63        : 2;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_common_pll_1_bcfg_s cn; */
};
typedef union bdk_gsernx_common_pll_1_bcfg bdk_gsernx_common_pll_1_bcfg_t;

static inline uint64_t BDK_GSERNX_COMMON_PLL_1_BCFG(unsigned long a) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_COMMON_PLL_1_BCFG(unsigned long a)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && (a<=7))
        return 0x87e0900f0220ll + 0x1000000ll * ((a) & 0x7);
    __bdk_csr_fatal("GSERNX_COMMON_PLL_1_BCFG", 1, a, 0, 0, 0);
}

#define typedef_BDK_GSERNX_COMMON_PLL_1_BCFG(a) bdk_gsernx_common_pll_1_bcfg_t
#define bustype_BDK_GSERNX_COMMON_PLL_1_BCFG(a) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_COMMON_PLL_1_BCFG(a) "GSERNX_COMMON_PLL_1_BCFG"
#define device_bar_BDK_GSERNX_COMMON_PLL_1_BCFG(a) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_COMMON_PLL_1_BCFG(a) (a)
#define arguments_BDK_GSERNX_COMMON_PLL_1_BCFG(a) (a),-1,-1,-1

/**
 * Register (RSL) gsern#_common_pll_2_bcfg
 *
 * GSER Common PLL Base Configuration Register 2
 */
union bdk_gsernx_common_pll_2_bcfg
{
    uint64_t u;
    struct bdk_gsernx_common_pll_2_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_57_63        : 7;
        uint64_t mio_refclk_en         : 1;  /**< [ 56: 56](R/W) Reserved.
                                                                 Internal:
                                                                 Enable sending the common PLL reference clock to the counter in MIO. */
        uint64_t lock_check_cnt_ovrd_en : 1; /**< [ 55: 55](R/W) Enable use of [LOCK_CHECK_CNT_OVRD]. */
        uint64_t lock_check_cnt_ovrd   : 15; /**< [ 54: 40](R/W) Lock check counter override value. This counter is used to wait for PLL lock to
                                                                 be valid. It counts every reference clock cycle and once its done asserts
                                                                 GSERN()_COMMON_INIT_BSTS[LOCK_READY]. For common PLL, the reference clock is the
                                                                 input from the pad. For lane PLLs, the reference clock is the output of the
                                                                 common PLL. To use value assert GSERN()_LANE()_RST1_BCFG[LOCK_CHECK] or trigger
                                                                 a PLL reset sequence. */
        uint64_t reserved_34_39        : 6;
        uint64_t vcm_sel               : 1;  /**< [ 33: 33](R/W) For diagnostic use only.
                                                                 Internal:
                                                                 See PLL designer for how to set these. */
        uint64_t cp_boost              : 1;  /**< [ 32: 32](R/W) For diagnostic use only.
                                                                 Internal:
                                                                 See PLL designer for how to set these. */
        uint64_t ssc_sata_mode         : 2;  /**< [ 31: 30](R/W) PLL SATA spread spectrum control.
                                                                  0x0 = Down spreading. PPM triangle wave total peak-to-peak spread subtracted from
                                                                 nominal frequency.
                                                                  0x1 = Up spreading. PPM triangle wave total peak-to-peak spread added to nominal
                                                                 frequency.
                                                                  0x2 = Center spreading. PPM triangle wave total peak-to-peak spread centered at nominal
                                                                 frequency.
                                                                  0x3 = Square wave subtracted from nominal frequency. */
        uint64_t ssc_ppm               : 2;  /**< [ 29: 28](R/W) Spread-spectrum clocking total peak-to-peak spread.
                                                                 0x0 = 5000 PPM.
                                                                 0x1 = 3000 PPM.
                                                                 0x2 = 2500 PPM.
                                                                 0x3 = 1000 PPM. */
        uint64_t pnr_refclk_en         : 1;  /**< [ 27: 27](R/W) Enable PLL reference clock to internal logic. */
        uint64_t ssc_en                : 1;  /**< [ 26: 26](R/W) Spread-spectrum clocking enable. */
        uint64_t ref_clk_bypass        : 1;  /**< [ 25: 25](R/W) Bypass reference clock to the PLL output. */
        uint64_t pfd_offset            : 1;  /**< [ 24: 24](R/W) PLL PFD offset enable. */
        uint64_t opamp                 : 4;  /**< [ 23: 20](R/W) PLL loop filter op-amp configuration. */
        uint64_t res                   : 4;  /**< [ 19: 16](R/W) PLL loop filter configuration. */
        uint64_t reserved_15           : 1;
        uint64_t vco_bias              : 3;  /**< [ 14: 12](R/W) VCO bias control. */
        uint64_t cal_dac_low           : 4;  /**< [ 11:  8](R/W) PLL calibration DAC low control. */
        uint64_t cal_dac_mid           : 4;  /**< [  7:  4](R/W) PLL calibration DAC middle control. */
        uint64_t cal_dac_high          : 4;  /**< [  3:  0](R/W) PLL calibration DAC high control. */
#else /* Word 0 - Little Endian */
        uint64_t cal_dac_high          : 4;  /**< [  3:  0](R/W) PLL calibration DAC high control. */
        uint64_t cal_dac_mid           : 4;  /**< [  7:  4](R/W) PLL calibration DAC middle control. */
        uint64_t cal_dac_low           : 4;  /**< [ 11:  8](R/W) PLL calibration DAC low control. */
        uint64_t vco_bias              : 3;  /**< [ 14: 12](R/W) VCO bias control. */
        uint64_t reserved_15           : 1;
        uint64_t res                   : 4;  /**< [ 19: 16](R/W) PLL loop filter configuration. */
        uint64_t opamp                 : 4;  /**< [ 23: 20](R/W) PLL loop filter op-amp configuration. */
        uint64_t pfd_offset            : 1;  /**< [ 24: 24](R/W) PLL PFD offset enable. */
        uint64_t ref_clk_bypass        : 1;  /**< [ 25: 25](R/W) Bypass reference clock to the PLL output. */
        uint64_t ssc_en                : 1;  /**< [ 26: 26](R/W) Spread-spectrum clocking enable. */
        uint64_t pnr_refclk_en         : 1;  /**< [ 27: 27](R/W) Enable PLL reference clock to internal logic. */
        uint64_t ssc_ppm               : 2;  /**< [ 29: 28](R/W) Spread-spectrum clocking total peak-to-peak spread.
                                                                 0x0 = 5000 PPM.
                                                                 0x1 = 3000 PPM.
                                                                 0x2 = 2500 PPM.
                                                                 0x3 = 1000 PPM. */
        uint64_t ssc_sata_mode         : 2;  /**< [ 31: 30](R/W) PLL SATA spread spectrum control.
                                                                  0x0 = Down spreading. PPM triangle wave total peak-to-peak spread subtracted from
                                                                 nominal frequency.
                                                                  0x1 = Up spreading. PPM triangle wave total peak-to-peak spread added to nominal
                                                                 frequency.
                                                                  0x2 = Center spreading. PPM triangle wave total peak-to-peak spread centered at nominal
                                                                 frequency.
                                                                  0x3 = Square wave subtracted from nominal frequency. */
        uint64_t cp_boost              : 1;  /**< [ 32: 32](R/W) For diagnostic use only.
                                                                 Internal:
                                                                 See PLL designer for how to set these. */
        uint64_t vcm_sel               : 1;  /**< [ 33: 33](R/W) For diagnostic use only.
                                                                 Internal:
                                                                 See PLL designer for how to set these. */
        uint64_t reserved_34_39        : 6;
        uint64_t lock_check_cnt_ovrd   : 15; /**< [ 54: 40](R/W) Lock check counter override value. This counter is used to wait for PLL lock to
                                                                 be valid. It counts every reference clock cycle and once its done asserts
                                                                 GSERN()_COMMON_INIT_BSTS[LOCK_READY]. For common PLL, the reference clock is the
                                                                 input from the pad. For lane PLLs, the reference clock is the output of the
                                                                 common PLL. To use value assert GSERN()_LANE()_RST1_BCFG[LOCK_CHECK] or trigger
                                                                 a PLL reset sequence. */
        uint64_t lock_check_cnt_ovrd_en : 1; /**< [ 55: 55](R/W) Enable use of [LOCK_CHECK_CNT_OVRD]. */
        uint64_t mio_refclk_en         : 1;  /**< [ 56: 56](R/W) Reserved.
                                                                 Internal:
                                                                 Enable sending the common PLL reference clock to the counter in MIO. */
        uint64_t reserved_57_63        : 7;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_common_pll_2_bcfg_s cn; */
};
typedef union bdk_gsernx_common_pll_2_bcfg bdk_gsernx_common_pll_2_bcfg_t;

static inline uint64_t BDK_GSERNX_COMMON_PLL_2_BCFG(unsigned long a) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_COMMON_PLL_2_BCFG(unsigned long a)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && (a<=7))
        return 0x87e0900f02a8ll + 0x1000000ll * ((a) & 0x7);
    __bdk_csr_fatal("GSERNX_COMMON_PLL_2_BCFG", 1, a, 0, 0, 0);
}

#define typedef_BDK_GSERNX_COMMON_PLL_2_BCFG(a) bdk_gsernx_common_pll_2_bcfg_t
#define bustype_BDK_GSERNX_COMMON_PLL_2_BCFG(a) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_COMMON_PLL_2_BCFG(a) "GSERNX_COMMON_PLL_2_BCFG"
#define device_bar_BDK_GSERNX_COMMON_PLL_2_BCFG(a) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_COMMON_PLL_2_BCFG(a) (a)
#define arguments_BDK_GSERNX_COMMON_PLL_2_BCFG(a) (a),-1,-1,-1

/**
 * Register (RSL) gsern#_common_refclk_bcfg
 *
 * GSER Common PLL Base Configuration Register 1
 */
union bdk_gsernx_common_refclk_bcfg
{
    uint64_t u;
    struct bdk_gsernx_common_refclk_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_5_63         : 59;
        uint64_t hcsl                  : 1;  /**< [  4:  4](R/W) Enable [HCSL] and [OCT] to set HCSL on chip termination in the receiver of the
                                                                 off-chip reference clock, e.g., for a PCIe reference clock. Leave [HCSL] low for
                                                                 LVPECL on-chip termination. */
        uint64_t oct                   : 1;  /**< [  3:  3](R/W) Enable on chip termination (OCT) in the receiver of the off-chip reference
                                                                 clock. */
        uint64_t pwdn                  : 1;  /**< [  2:  2](R/W) Power down.
                                                                 0 = Power on. Set to 0 if any lanes in this module will be used.
                                                                 1 = All paths through the common block reference clock receiver will be powered
                                                                 off and no reference clock will reach the common PLL (or its bypass path). */
        uint64_t cclksel               : 2;  /**< [  1:  0](R/W) Selection controls for the reference clock
                                                                   0x0 = Choose on-chip common clock zero.
                                                                   0x1 = Choose on-chip common clock one.
                                                                   0x2 = Choose on-chip common clock two.
                                                                   0x3 = Choose the off-chip reference clock (requires that [PWDN] be low). */
#else /* Word 0 - Little Endian */
        uint64_t cclksel               : 2;  /**< [  1:  0](R/W) Selection controls for the reference clock
                                                                   0x0 = Choose on-chip common clock zero.
                                                                   0x1 = Choose on-chip common clock one.
                                                                   0x2 = Choose on-chip common clock two.
                                                                   0x3 = Choose the off-chip reference clock (requires that [PWDN] be low). */
        uint64_t pwdn                  : 1;  /**< [  2:  2](R/W) Power down.
                                                                 0 = Power on. Set to 0 if any lanes in this module will be used.
                                                                 1 = All paths through the common block reference clock receiver will be powered
                                                                 off and no reference clock will reach the common PLL (or its bypass path). */
        uint64_t oct                   : 1;  /**< [  3:  3](R/W) Enable on chip termination (OCT) in the receiver of the off-chip reference
                                                                 clock. */
        uint64_t hcsl                  : 1;  /**< [  4:  4](R/W) Enable [HCSL] and [OCT] to set HCSL on chip termination in the receiver of the
                                                                 off-chip reference clock, e.g., for a PCIe reference clock. Leave [HCSL] low for
                                                                 LVPECL on-chip termination. */
        uint64_t reserved_5_63         : 59;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_common_refclk_bcfg_s cn; */
};
typedef union bdk_gsernx_common_refclk_bcfg bdk_gsernx_common_refclk_bcfg_t;

static inline uint64_t BDK_GSERNX_COMMON_REFCLK_BCFG(unsigned long a) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_COMMON_REFCLK_BCFG(unsigned long a)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && (a<=7))
        return 0x87e0900f0198ll + 0x1000000ll * ((a) & 0x7);
    __bdk_csr_fatal("GSERNX_COMMON_REFCLK_BCFG", 1, a, 0, 0, 0);
}

#define typedef_BDK_GSERNX_COMMON_REFCLK_BCFG(a) bdk_gsernx_common_refclk_bcfg_t
#define bustype_BDK_GSERNX_COMMON_REFCLK_BCFG(a) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_COMMON_REFCLK_BCFG(a) "GSERNX_COMMON_REFCLK_BCFG"
#define device_bar_BDK_GSERNX_COMMON_REFCLK_BCFG(a) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_COMMON_REFCLK_BCFG(a) (a)
#define arguments_BDK_GSERNX_COMMON_REFCLK_BCFG(a) (a),-1,-1,-1

/**
 * Register (RSL) gsern#_common_refclk_ctr
 *
 * GSER Common Reference Clock Cycle Counter Register
 * A free-running counter of common PLL reference clock cycles to enable rough
 * confirmation of reference clock frequency via software. Read the counter; wait some
 * time, e.g., 100ms; read the counter; calculate frequency based on the difference in
 * values during the known wait time.
 */
union bdk_gsernx_common_refclk_ctr
{
    uint64_t u;
    struct bdk_gsernx_common_refclk_ctr_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t count                 : 64; /**< [ 63:  0](R/W/H) Running count of common PLL reference clock cycles. */
#else /* Word 0 - Little Endian */
        uint64_t count                 : 64; /**< [ 63:  0](R/W/H) Running count of common PLL reference clock cycles. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_common_refclk_ctr_s cn; */
};
typedef union bdk_gsernx_common_refclk_ctr bdk_gsernx_common_refclk_ctr_t;

static inline uint64_t BDK_GSERNX_COMMON_REFCLK_CTR(unsigned long a) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_COMMON_REFCLK_CTR(unsigned long a)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && (a<=7))
        return 0x87e0900f06e8ll + 0x1000000ll * ((a) & 0x7);
    __bdk_csr_fatal("GSERNX_COMMON_REFCLK_CTR", 1, a, 0, 0, 0);
}

#define typedef_BDK_GSERNX_COMMON_REFCLK_CTR(a) bdk_gsernx_common_refclk_ctr_t
#define bustype_BDK_GSERNX_COMMON_REFCLK_CTR(a) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_COMMON_REFCLK_CTR(a) "GSERNX_COMMON_REFCLK_CTR"
#define device_bar_BDK_GSERNX_COMMON_REFCLK_CTR(a) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_COMMON_REFCLK_CTR(a) (a)
#define arguments_BDK_GSERNX_COMMON_REFCLK_CTR(a) (a),-1,-1,-1

/**
 * Register (RSL) gsern#_common_rev
 *
 * GSER Common Revision Register
 * Revision number
 */
union bdk_gsernx_common_rev
{
    uint64_t u;
    struct bdk_gsernx_common_rev_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_8_63         : 56;
        uint64_t rev                   : 8;  /**< [  7:  0](RO/H) Revision number for GSERN common subblock.
                                                                 Internal:
                                                                 Used primarily for E5. */
#else /* Word 0 - Little Endian */
        uint64_t rev                   : 8;  /**< [  7:  0](RO/H) Revision number for GSERN common subblock.
                                                                 Internal:
                                                                 Used primarily for E5. */
        uint64_t reserved_8_63         : 56;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_common_rev_s cn; */
};
typedef union bdk_gsernx_common_rev bdk_gsernx_common_rev_t;

static inline uint64_t BDK_GSERNX_COMMON_REV(unsigned long a) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_COMMON_REV(unsigned long a)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && (a<=7))
        return 0x87e0900f0000ll + 0x1000000ll * ((a) & 0x7);
    __bdk_csr_fatal("GSERNX_COMMON_REV", 1, a, 0, 0, 0);
}

#define typedef_BDK_GSERNX_COMMON_REV(a) bdk_gsernx_common_rev_t
#define bustype_BDK_GSERNX_COMMON_REV(a) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_COMMON_REV(a) "GSERNX_COMMON_REV"
#define device_bar_BDK_GSERNX_COMMON_REV(a) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_COMMON_REV(a) (a)
#define arguments_BDK_GSERNX_COMMON_REV(a) (a),-1,-1,-1

/**
 * Register (RSL) gsern#_common_rst_bcfg
 *
 * GSER Common Reset State Machine Controls and Overrides Register
 */
union bdk_gsernx_common_rst_bcfg
{
    uint64_t u;
    struct bdk_gsernx_common_rst_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_56_63        : 8;
        uint64_t domain_rst_en         : 1;  /**< [ 55: 55](R/W) Domain reset enable.
                                                                 0 = Prevent reseting lane logic with domain reset.
                                                                 1 = Enable reseting all lane logic with domain reset.

                                                                 For PCIe configurations, typically 1 for a root complex and 0 for an endpoint. */
        uint64_t reserved_49_54        : 6;
        uint64_t rst_pll_rst_sm        : 1;  /**< [ 48: 48](R/W) Set to reset the full PLL reset state machine;
                                                                 deassert to run the complete reset initialization sequence
                                                                 starting with common PLL initialization. */
        uint64_t reserved_13_47        : 35;
        uint64_t pll_go2deep_idle      : 1;  /**< [ 12: 12](R/W) Set to cycle the common PLL into deep idle. */
        uint64_t lock_ppm              : 2;  /**< [ 11: 10](R/W) PLL lock PPM setting; after GSERN()_COMMON_RST_BCFG[LOCK_WAIT], compare
                                                                 reference clock and divided VCO clock for this many cycles:
                                                                   0x0 = Compare after   5000 reference clock cycles.
                                                                   0x1 = Compare after  10000 reference clock cycles.
                                                                   0x2 = Compare after  20000 reference clock cycles.
                                                                   0x3 = Compare after   2500 reference clock cycles. */
        uint64_t lock_wait             : 2;  /**< [  9:  8](R/W) Wait time for PLL lock check function to start:
                                                                   0x0 = Wait  2500 reference clock cycles.
                                                                   0x1 = Wait  5000 reference clock cycles.
                                                                   0x2 = Wait 10000 reference clock cycles.
                                                                   0x3 = Wait  1250 reference clock cycles. */
        uint64_t lock_check            : 1;  /**< [  7:  7](R/W) Trigger a PLL lock status check; result returned in
                                                                 GSERN()_COMMON_INIT_BSTS[LOCK] when GSERN()_COMMON_INIT_BSTS[LOCK_READY]
                                                                 asserts. deassert and re-assert to repeat checking. */
        uint64_t vco_cal_reset         : 1;  /**< [  6:  6](R/W) PLL VCO calibration state machine reset. */
        uint64_t fracn_reset           : 1;  /**< [  5:  5](R/W) PLL fractional-N state machine reset. */
        uint64_t ssc_reset             : 1;  /**< [  4:  4](R/W) PLL SSC state machine reset. */
        uint64_t post_div_reset        : 1;  /**< [  3:  3](RO) Reserved.
                                                                 Internal:
                                                                 Was common PLL post divider reset.  No longer used. */
        uint64_t reset                 : 1;  /**< [  2:  2](R/W) PLL primary reset; must assert [POST_DIV_RESET] if [RESET] is asserted. */
        uint64_t cal_en                : 1;  /**< [  1:  1](R/W) Enable PLL calibration procedure. */
        uint64_t pwdn                  : 1;  /**< [  0:  0](R/W) PLL power down control. */
#else /* Word 0 - Little Endian */
        uint64_t pwdn                  : 1;  /**< [  0:  0](R/W) PLL power down control. */
        uint64_t cal_en                : 1;  /**< [  1:  1](R/W) Enable PLL calibration procedure. */
        uint64_t reset                 : 1;  /**< [  2:  2](R/W) PLL primary reset; must assert [POST_DIV_RESET] if [RESET] is asserted. */
        uint64_t post_div_reset        : 1;  /**< [  3:  3](RO) Reserved.
                                                                 Internal:
                                                                 Was common PLL post divider reset.  No longer used. */
        uint64_t ssc_reset             : 1;  /**< [  4:  4](R/W) PLL SSC state machine reset. */
        uint64_t fracn_reset           : 1;  /**< [  5:  5](R/W) PLL fractional-N state machine reset. */
        uint64_t vco_cal_reset         : 1;  /**< [  6:  6](R/W) PLL VCO calibration state machine reset. */
        uint64_t lock_check            : 1;  /**< [  7:  7](R/W) Trigger a PLL lock status check; result returned in
                                                                 GSERN()_COMMON_INIT_BSTS[LOCK] when GSERN()_COMMON_INIT_BSTS[LOCK_READY]
                                                                 asserts. deassert and re-assert to repeat checking. */
        uint64_t lock_wait             : 2;  /**< [  9:  8](R/W) Wait time for PLL lock check function to start:
                                                                   0x0 = Wait  2500 reference clock cycles.
                                                                   0x1 = Wait  5000 reference clock cycles.
                                                                   0x2 = Wait 10000 reference clock cycles.
                                                                   0x3 = Wait  1250 reference clock cycles. */
        uint64_t lock_ppm              : 2;  /**< [ 11: 10](R/W) PLL lock PPM setting; after GSERN()_COMMON_RST_BCFG[LOCK_WAIT], compare
                                                                 reference clock and divided VCO clock for this many cycles:
                                                                   0x0 = Compare after   5000 reference clock cycles.
                                                                   0x1 = Compare after  10000 reference clock cycles.
                                                                   0x2 = Compare after  20000 reference clock cycles.
                                                                   0x3 = Compare after   2500 reference clock cycles. */
        uint64_t pll_go2deep_idle      : 1;  /**< [ 12: 12](R/W) Set to cycle the common PLL into deep idle. */
        uint64_t reserved_13_47        : 35;
        uint64_t rst_pll_rst_sm        : 1;  /**< [ 48: 48](R/W) Set to reset the full PLL reset state machine;
                                                                 deassert to run the complete reset initialization sequence
                                                                 starting with common PLL initialization. */
        uint64_t reserved_49_54        : 6;
        uint64_t domain_rst_en         : 1;  /**< [ 55: 55](R/W) Domain reset enable.
                                                                 0 = Prevent reseting lane logic with domain reset.
                                                                 1 = Enable reseting all lane logic with domain reset.

                                                                 For PCIe configurations, typically 1 for a root complex and 0 for an endpoint. */
        uint64_t reserved_56_63        : 8;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_common_rst_bcfg_s cn; */
};
typedef union bdk_gsernx_common_rst_bcfg bdk_gsernx_common_rst_bcfg_t;

static inline uint64_t BDK_GSERNX_COMMON_RST_BCFG(unsigned long a) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_COMMON_RST_BCFG(unsigned long a)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && (a<=7))
        return 0x87e0900f03b8ll + 0x1000000ll * ((a) & 0x7);
    __bdk_csr_fatal("GSERNX_COMMON_RST_BCFG", 1, a, 0, 0, 0);
}

#define typedef_BDK_GSERNX_COMMON_RST_BCFG(a) bdk_gsernx_common_rst_bcfg_t
#define bustype_BDK_GSERNX_COMMON_RST_BCFG(a) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_COMMON_RST_BCFG(a) "GSERNX_COMMON_RST_BCFG"
#define device_bar_BDK_GSERNX_COMMON_RST_BCFG(a) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_COMMON_RST_BCFG(a) (a)
#define arguments_BDK_GSERNX_COMMON_RST_BCFG(a) (a),-1,-1,-1

/**
 * Register (RSL) gsern#_common_rst_cnt0_bcfg
 *
 * GSER Common Reset State Machine Delay Count Register 0
 * Wait counts for the common block reset state machines. All fields must be set
 * before bringing the common block out of reset.
 */
union bdk_gsernx_common_rst_cnt0_bcfg
{
    uint64_t u;
    struct bdk_gsernx_common_rst_cnt0_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_7_63         : 57;
        uint64_t pre_bias_pwup_wait    : 7;  /**< [  6:  0](R/W) Wait count in service clock cycles after initial trigger before
                                                                 deasserting powerdown to the bias generator. The actual delay will be
                                                                 three cycles more than set here, so set this field to the minimum
                                                                 specified delay, 0x40, minus three, or greater. */
#else /* Word 0 - Little Endian */
        uint64_t pre_bias_pwup_wait    : 7;  /**< [  6:  0](R/W) Wait count in service clock cycles after initial trigger before
                                                                 deasserting powerdown to the bias generator. The actual delay will be
                                                                 three cycles more than set here, so set this field to the minimum
                                                                 specified delay, 0x40, minus three, or greater. */
        uint64_t reserved_7_63         : 57;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_common_rst_cnt0_bcfg_s cn; */
};
typedef union bdk_gsernx_common_rst_cnt0_bcfg bdk_gsernx_common_rst_cnt0_bcfg_t;

static inline uint64_t BDK_GSERNX_COMMON_RST_CNT0_BCFG(unsigned long a) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_COMMON_RST_CNT0_BCFG(unsigned long a)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && (a<=7))
        return 0x87e0900f0440ll + 0x1000000ll * ((a) & 0x7);
    __bdk_csr_fatal("GSERNX_COMMON_RST_CNT0_BCFG", 1, a, 0, 0, 0);
}

#define typedef_BDK_GSERNX_COMMON_RST_CNT0_BCFG(a) bdk_gsernx_common_rst_cnt0_bcfg_t
#define bustype_BDK_GSERNX_COMMON_RST_CNT0_BCFG(a) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_COMMON_RST_CNT0_BCFG(a) "GSERNX_COMMON_RST_CNT0_BCFG"
#define device_bar_BDK_GSERNX_COMMON_RST_CNT0_BCFG(a) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_COMMON_RST_CNT0_BCFG(a) (a)
#define arguments_BDK_GSERNX_COMMON_RST_CNT0_BCFG(a) (a),-1,-1,-1

/**
 * Register (RSL) gsern#_common_rst_cnt1_bcfg
 *
 * GSER Common Reset State Machine Delay Count Register 1
 * Wait counts for the common block reset state machines. All fields must be set
 * before bringing the lane out of reset.
 */
union bdk_gsernx_common_rst_cnt1_bcfg
{
    uint64_t u;
    struct bdk_gsernx_common_rst_cnt1_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_50_63        : 14;
        uint64_t cal_en_wait           : 18; /**< [ 49: 32](R/W) Wait count in service clock cycles after calibration enable before deasserting
                                                                 calibration enable to the PLL. Set this field to one less than the desired
                                                                 number of cycles of delay. */
        uint64_t reserved_28_31        : 4;
        uint64_t pre_cal_en_wait       : 12; /**< [ 27: 16](R/W) Wait count in service clock cycles after deasserting resets to the PLL fracn,
                                                                 ssc, and cal_en state machines before asserting calibration enable to the
                                                                 PLL. Set this to one less than the desired number of cycles of delay. */
        uint64_t reserved_11_15        : 5;
        uint64_t pre_pwup_wait         : 11; /**< [ 10:  0](R/W) Wait count in service clock cycles after powering up the bias
                                                                 generator before deasserting pwdn to the PLL. The actual delay will
                                                                 be one cycle more than set here, so set this field to the minimum
                                                                 specified delay, 0x400, minus one, or greater. */
#else /* Word 0 - Little Endian */
        uint64_t pre_pwup_wait         : 11; /**< [ 10:  0](R/W) Wait count in service clock cycles after powering up the bias
                                                                 generator before deasserting pwdn to the PLL. The actual delay will
                                                                 be one cycle more than set here, so set this field to the minimum
                                                                 specified delay, 0x400, minus one, or greater. */
        uint64_t reserved_11_15        : 5;
        uint64_t pre_cal_en_wait       : 12; /**< [ 27: 16](R/W) Wait count in service clock cycles after deasserting resets to the PLL fracn,
                                                                 ssc, and cal_en state machines before asserting calibration enable to the
                                                                 PLL. Set this to one less than the desired number of cycles of delay. */
        uint64_t reserved_28_31        : 4;
        uint64_t cal_en_wait           : 18; /**< [ 49: 32](R/W) Wait count in service clock cycles after calibration enable before deasserting
                                                                 calibration enable to the PLL. Set this field to one less than the desired
                                                                 number of cycles of delay. */
        uint64_t reserved_50_63        : 14;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_common_rst_cnt1_bcfg_s cn; */
};
typedef union bdk_gsernx_common_rst_cnt1_bcfg bdk_gsernx_common_rst_cnt1_bcfg_t;

static inline uint64_t BDK_GSERNX_COMMON_RST_CNT1_BCFG(unsigned long a) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_COMMON_RST_CNT1_BCFG(unsigned long a)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && (a<=7))
        return 0x87e0900f04c8ll + 0x1000000ll * ((a) & 0x7);
    __bdk_csr_fatal("GSERNX_COMMON_RST_CNT1_BCFG", 1, a, 0, 0, 0);
}

#define typedef_BDK_GSERNX_COMMON_RST_CNT1_BCFG(a) bdk_gsernx_common_rst_cnt1_bcfg_t
#define bustype_BDK_GSERNX_COMMON_RST_CNT1_BCFG(a) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_COMMON_RST_CNT1_BCFG(a) "GSERNX_COMMON_RST_CNT1_BCFG"
#define device_bar_BDK_GSERNX_COMMON_RST_CNT1_BCFG(a) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_COMMON_RST_CNT1_BCFG(a) (a)
#define arguments_BDK_GSERNX_COMMON_RST_CNT1_BCFG(a) (a),-1,-1,-1

/**
 * Register (RSL) gsern#_common_rst_cnt2_bcfg
 *
 * GSER Common Reset State Machine Delay Count Register 2
 * Wait counts for the common block reset state machines. All fields must be set
 * before bringing the lane out of reset.
 */
union bdk_gsernx_common_rst_cnt2_bcfg
{
    uint64_t u;
    struct bdk_gsernx_common_rst_cnt2_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_62_63        : 2;
        uint64_t pre_run_wait          : 14; /**< [ 61: 48](R/W) Wait count in service clock cycles after the PLL is running before deasserting
                                                                 common lane reset to bring the lanes out of reset. */
        uint64_t reserved_41_47        : 7;
        uint64_t pre_pll_sm_reset_wait : 9;  /**< [ 40: 32](R/W) Wait count in service clock cycles after deasserting pwdn before
                                                                 deasserting resets to the PLL fracn, ssc, and cal_en state
                                                                 machines. Set this field to one less than the desired number of
                                                                 cycles of delay. */
        uint64_t reserved_29_31        : 3;
        uint64_t pre_pdiv_reset_wait   : 13; /**< [ 28: 16](R/W) Reserved.
                                                                 Internal:
                                                                 The PLL no longer has a postdivider reset. */
        uint64_t reserved_12_15        : 4;
        uint64_t pre_pll_reset_wait    : 12; /**< [ 11:  0](R/W) Wait count in service clock cycles after calibration enable deasserts
                                                                 before deasserting reset to the PLL. Set this field to one less
                                                                 than the desired number of cycles of delay. */
#else /* Word 0 - Little Endian */
        uint64_t pre_pll_reset_wait    : 12; /**< [ 11:  0](R/W) Wait count in service clock cycles after calibration enable deasserts
                                                                 before deasserting reset to the PLL. Set this field to one less
                                                                 than the desired number of cycles of delay. */
        uint64_t reserved_12_15        : 4;
        uint64_t pre_pdiv_reset_wait   : 13; /**< [ 28: 16](R/W) Reserved.
                                                                 Internal:
                                                                 The PLL no longer has a postdivider reset. */
        uint64_t reserved_29_31        : 3;
        uint64_t pre_pll_sm_reset_wait : 9;  /**< [ 40: 32](R/W) Wait count in service clock cycles after deasserting pwdn before
                                                                 deasserting resets to the PLL fracn, ssc, and cal_en state
                                                                 machines. Set this field to one less than the desired number of
                                                                 cycles of delay. */
        uint64_t reserved_41_47        : 7;
        uint64_t pre_run_wait          : 14; /**< [ 61: 48](R/W) Wait count in service clock cycles after the PLL is running before deasserting
                                                                 common lane reset to bring the lanes out of reset. */
        uint64_t reserved_62_63        : 2;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_common_rst_cnt2_bcfg_s cn; */
};
typedef union bdk_gsernx_common_rst_cnt2_bcfg bdk_gsernx_common_rst_cnt2_bcfg_t;

static inline uint64_t BDK_GSERNX_COMMON_RST_CNT2_BCFG(unsigned long a) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_COMMON_RST_CNT2_BCFG(unsigned long a)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && (a<=7))
        return 0x87e0900f0550ll + 0x1000000ll * ((a) & 0x7);
    __bdk_csr_fatal("GSERNX_COMMON_RST_CNT2_BCFG", 1, a, 0, 0, 0);
}

#define typedef_BDK_GSERNX_COMMON_RST_CNT2_BCFG(a) bdk_gsernx_common_rst_cnt2_bcfg_t
#define bustype_BDK_GSERNX_COMMON_RST_CNT2_BCFG(a) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_COMMON_RST_CNT2_BCFG(a) "GSERNX_COMMON_RST_CNT2_BCFG"
#define device_bar_BDK_GSERNX_COMMON_RST_CNT2_BCFG(a) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_COMMON_RST_CNT2_BCFG(a) (a)
#define arguments_BDK_GSERNX_COMMON_RST_CNT2_BCFG(a) (a),-1,-1,-1

/**
 * Register (RSL) gsern#_common_rst_rdy_bcfg
 *
 * GSER Common Reset Ready Control Register
 */
union bdk_gsernx_common_rst_rdy_bcfg
{
    uint64_t u;
    struct bdk_gsernx_common_rst_rdy_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_4_63         : 60;
        uint64_t ln_en                 : 4;  /**< [  3:  0](R/W) Enables for lane reset ready inclusion in aggregated QLM reset ready output to
                                                                 the reset controller.  Each bit enables contribution from the corresponding lane.
                                                                 \<0\> = Include lane 0.
                                                                 \<1\> = Include lane 1.
                                                                 \<2\> = Include lane 2.
                                                                 \<3\> = Include lane 3. */
#else /* Word 0 - Little Endian */
        uint64_t ln_en                 : 4;  /**< [  3:  0](R/W) Enables for lane reset ready inclusion in aggregated QLM reset ready output to
                                                                 the reset controller.  Each bit enables contribution from the corresponding lane.
                                                                 \<0\> = Include lane 0.
                                                                 \<1\> = Include lane 1.
                                                                 \<2\> = Include lane 2.
                                                                 \<3\> = Include lane 3. */
        uint64_t reserved_4_63         : 60;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_common_rst_rdy_bcfg_s cn; */
};
typedef union bdk_gsernx_common_rst_rdy_bcfg bdk_gsernx_common_rst_rdy_bcfg_t;

static inline uint64_t BDK_GSERNX_COMMON_RST_RDY_BCFG(unsigned long a) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_COMMON_RST_RDY_BCFG(unsigned long a)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && (a<=7))
        return 0x87e0900f0660ll + 0x1000000ll * ((a) & 0x7);
    __bdk_csr_fatal("GSERNX_COMMON_RST_RDY_BCFG", 1, a, 0, 0, 0);
}

#define typedef_BDK_GSERNX_COMMON_RST_RDY_BCFG(a) bdk_gsernx_common_rst_rdy_bcfg_t
#define bustype_BDK_GSERNX_COMMON_RST_RDY_BCFG(a) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_COMMON_RST_RDY_BCFG(a) "GSERNX_COMMON_RST_RDY_BCFG"
#define device_bar_BDK_GSERNX_COMMON_RST_RDY_BCFG(a) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_COMMON_RST_RDY_BCFG(a) (a)
#define arguments_BDK_GSERNX_COMMON_RST_RDY_BCFG(a) (a),-1,-1,-1

/**
 * Register (RSL) gsern#_lane#_btsclk_cfg
 *
 * GSER Lane BTS Synchronous Ethernet Clock Control Register
 * Register controls settings for providing a clock output from the lane which is
 * synchronous to the clock recovered from the received data stream.
 */
union bdk_gsernx_lanex_btsclk_cfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_btsclk_cfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_9_63         : 55;
        uint64_t en                    : 1;  /**< [  8:  8](R/W) Enable driving the clock output from the lane. This bit should be set low before
                                                                 changing [DRATIO]; it may be written to 1 in the same cycle that [DRATIO] is
                                                                 written. */
        uint64_t reserved_2_7          : 6;
        uint64_t dratio                : 2;  /**< [  1:  0](R/W) Divider ratio for the clock output from the lane relative to the clock for the
                                                                 parallel receive data.
                                                                 0x0 = Divide by 1, i.e., no division.
                                                                 0x1 = Divide by 2.
                                                                 0x2 = Divide by 4.
                                                                 0x3 = Divide by 8. */
#else /* Word 0 - Little Endian */
        uint64_t dratio                : 2;  /**< [  1:  0](R/W) Divider ratio for the clock output from the lane relative to the clock for the
                                                                 parallel receive data.
                                                                 0x0 = Divide by 1, i.e., no division.
                                                                 0x1 = Divide by 2.
                                                                 0x2 = Divide by 4.
                                                                 0x3 = Divide by 8. */
        uint64_t reserved_2_7          : 6;
        uint64_t en                    : 1;  /**< [  8:  8](R/W) Enable driving the clock output from the lane. This bit should be set low before
                                                                 changing [DRATIO]; it may be written to 1 in the same cycle that [DRATIO] is
                                                                 written. */
        uint64_t reserved_9_63         : 55;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_btsclk_cfg_s cn; */
};
typedef union bdk_gsernx_lanex_btsclk_cfg bdk_gsernx_lanex_btsclk_cfg_t;

static inline uint64_t BDK_GSERNX_LANEX_BTSCLK_CFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_BTSCLK_CFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090003870ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_BTSCLK_CFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_BTSCLK_CFG(a,b) bdk_gsernx_lanex_btsclk_cfg_t
#define bustype_BDK_GSERNX_LANEX_BTSCLK_CFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_BTSCLK_CFG(a,b) "GSERNX_LANEX_BTSCLK_CFG"
#define device_bar_BDK_GSERNX_LANEX_BTSCLK_CFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_BTSCLK_CFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_BTSCLK_CFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_cdrfsm_bcfg
 *
 * GSER Lane Receiver CDR FSM Base Configuration Register
 * Controls for the clock data recover PLL control finite state
 * machine. Set these controls prior to bringing the analog receiver out of
 * reset.
 */
union bdk_gsernx_lanex_cdrfsm_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_cdrfsm_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_34_63        : 30;
        uint64_t voter_sp_mask         : 1;  /**< [ 33: 33](R/W/H) Set to mask out "010" and "101" patterns in RX cdr voter. */
        uint64_t rst_n                 : 1;  /**< [ 32: 32](R/W/H) Clear to hold the receive CDR FSM in reset. */
        uint64_t clk_sel               : 2;  /**< [ 31: 30](R/W/H) 0x0 = Run off div5clk from TX.
                                                                 0x1 = Run off div3clk from TX.
                                                                 0x2 = Run off div5clk from RX.
                                                                 0x3 = Run off div3clk from RX.

                                                                 [CLK_SEL]\<0\> is also used in GSER TX to allow clocking the CDR FSM
                                                                 with a divided copy of the transmit clock.  This field should be set
                                                                 as desired before sequencing the transmitter and/or receiver reset
                                                                 state machine(s). */
        uint64_t trunc                 : 2;  /**< [ 29: 28](R/W/H) Reserved.
                                                                 Internal:
                                                                 state2[16:0] is CDR state machine 2nd order loop state variable.

                                                                 0x0 = state2[16:0] is truncated to 13 bits (plus sign bit).
                                                                 0x1 = state2[16:0] is truncated to 14 bits (plus sign bit).
                                                                 0x2 = state2[16:0] is truncated to 15 bits (plus sign bit).
                                                                 0x3 = state2[16:0] is truncated to 16 bits (plus sign bit, no truncation). */
        uint64_t limit                 : 2;  /**< [ 27: 26](R/W/H) 0x0 = Pass-through next state at boundaries.
                                                                 0x1 = Limit next state at boundaries.
                                                                 0x2-3 = Limit & pause next state at boundaries. */
        uint64_t eoffs                 : 7;  /**< [ 25: 19](R/W/H) E interp state offset. */
        uint64_t qoffs                 : 7;  /**< [ 18: 12](R/W/H) Q interp state offset. */
        uint64_t inc2                  : 6;  /**< [ 11:  6](R/W/H) 2nd order loop inc. */
        uint64_t inc1                  : 6;  /**< [  5:  0](R/W/H) 1st order loop inc. */
#else /* Word 0 - Little Endian */
        uint64_t inc1                  : 6;  /**< [  5:  0](R/W/H) 1st order loop inc. */
        uint64_t inc2                  : 6;  /**< [ 11:  6](R/W/H) 2nd order loop inc. */
        uint64_t qoffs                 : 7;  /**< [ 18: 12](R/W/H) Q interp state offset. */
        uint64_t eoffs                 : 7;  /**< [ 25: 19](R/W/H) E interp state offset. */
        uint64_t limit                 : 2;  /**< [ 27: 26](R/W/H) 0x0 = Pass-through next state at boundaries.
                                                                 0x1 = Limit next state at boundaries.
                                                                 0x2-3 = Limit & pause next state at boundaries. */
        uint64_t trunc                 : 2;  /**< [ 29: 28](R/W/H) Reserved.
                                                                 Internal:
                                                                 state2[16:0] is CDR state machine 2nd order loop state variable.

                                                                 0x0 = state2[16:0] is truncated to 13 bits (plus sign bit).
                                                                 0x1 = state2[16:0] is truncated to 14 bits (plus sign bit).
                                                                 0x2 = state2[16:0] is truncated to 15 bits (plus sign bit).
                                                                 0x3 = state2[16:0] is truncated to 16 bits (plus sign bit, no truncation). */
        uint64_t clk_sel               : 2;  /**< [ 31: 30](R/W/H) 0x0 = Run off div5clk from TX.
                                                                 0x1 = Run off div3clk from TX.
                                                                 0x2 = Run off div5clk from RX.
                                                                 0x3 = Run off div3clk from RX.

                                                                 [CLK_SEL]\<0\> is also used in GSER TX to allow clocking the CDR FSM
                                                                 with a divided copy of the transmit clock.  This field should be set
                                                                 as desired before sequencing the transmitter and/or receiver reset
                                                                 state machine(s). */
        uint64_t rst_n                 : 1;  /**< [ 32: 32](R/W/H) Clear to hold the receive CDR FSM in reset. */
        uint64_t voter_sp_mask         : 1;  /**< [ 33: 33](R/W/H) Set to mask out "010" and "101" patterns in RX cdr voter. */
        uint64_t reserved_34_63        : 30;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_cdrfsm_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_cdrfsm_bcfg bdk_gsernx_lanex_cdrfsm_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_CDRFSM_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_CDRFSM_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090001cf0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_CDRFSM_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_CDRFSM_BCFG(a,b) bdk_gsernx_lanex_cdrfsm_bcfg_t
#define bustype_BDK_GSERNX_LANEX_CDRFSM_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_CDRFSM_BCFG(a,b) "GSERNX_LANEX_CDRFSM_BCFG"
#define device_bar_BDK_GSERNX_LANEX_CDRFSM_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_CDRFSM_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_CDRFSM_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_cgx_txeq_bcfg
 *
 * GSER Lane CGX Tx Equalizer Base Configuration Register
 * Register controls settings for the transmitter equalizer taps
 * when the GSER is configured for CGX mode and KR training is not enabled.
 * These fields will drive the associated control signal when
 * GSERN()_LANE()_SRCMX_BCFG[TX_CTRL_SEL] is set to 'CGX'.
 */
union bdk_gsernx_lanex_cgx_txeq_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_cgx_txeq_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_28_63        : 36;
        uint64_t tx_coeff_update       : 1;  /**< [ 27: 27](R/W/H) Transmitter coefficient update.
                                                                 An asserting edge will start the transmitter coefficient update
                                                                 sequencer. This field self-clears when the sequence has completed.
                                                                 To update the GSER transmitter euqalizer coefficients program
                                                                 * GSERN()_LANE()_CGX_TXEQ_BCFG[TX_CPOST].
                                                                 * GSERN()_LANE()_CGX_TXEQ_BCFG[TX_CMAIN].
                                                                 * GSERN()_LANE()_CGX_TXEQ_BCFG[TX_CPRE].
                                                                 * GSERN()_LANE()_CGX_TXEQ_BCFG[TX_BS].
                                                                 * GSERN()_LANE()_CGX_TXEQ_BCFG[TX_CSPD].

                                                                 then write [TX_COEFF_UPDATE] to 1. */
        uint64_t tx_enable             : 1;  /**< [ 26: 26](R/W) Transmitter enable.
                                                                 0 = Disable the serdes transmitter.
                                                                 1 = Enable the serdes transmitter.

                                                                 Internal:
                                                                 Drives the cgx_tx_enable input to the GSERN src_mux. */
        uint64_t tx_stuff              : 1;  /**< [ 25: 25](R/W) Reserved. For Diagnostic Use Only.
                                                                 Internal:
                                                                 Transmitter bit stuffing.
                                                                 Programs the transmitter PCS lite layer for bit stuffing.
                                                                 Not used for Ethernet connections.
                                                                 Leave programmed to 0x0.
                                                                 Drives the cgx_tx_stuff input to the GSERN src_mux. */
        uint64_t tx_oob                : 1;  /**< [ 24: 24](R/W) Reserved. For Diagnostic Use Only.
                                                                 Internal:
                                                                 Transmitter OOB signaling.
                                                                 Not typically used for Ethernet connnections.
                                                                 Leave programmed to 0x0.
                                                                 Drives the cgx_tx_oob input to the GSERN src_mux. */
        uint64_t tx_idle               : 1;  /**< [ 23: 23](R/W) Reserved. For Diagnostic Use Only.
                                                                 Internal:
                                                                 Transmitter electrical idle.
                                                                 Used to force the transmitter to electrical idle.
                                                                 Not typically used for Ethernet connections.
                                                                 Leave progreammed to 0x0.
                                                                 Drives the cgx_tx_idle input to the GSERN src_mux. */
        uint64_t tx_cspd               : 1;  /**< [ 22: 22](R/W) Power-down control for a second TX bias/swing leg with the same
                                                                 weight as TX_BS[3]. Normally this field is left deasserted to
                                                                 provide a minimum transmit amplitude. Asserting [TX_CSPD] will turn
                                                                 off all legs of the bias/swing generator for lower standby power. */
        uint64_t tx_bs                 : 6;  /**< [ 21: 16](R/W) TX bias/swing selection. This setting only takes effect if [TX_CSPD]
                                                                 is deasserted; with [TX_CSPD] asserted the
                                                                 bias/swing control setting seen in the analog bias generator is zero.

                                                                 Typical override values would be:
                                                                   42 = Nominal 1.0V p-p transmit amplitude.
                                                                   52 = Nominal 1.2V p-p transmit amplitude.

                                                                 The maximum usable value without transmitted waveform distortion depends
                                                                 primarily on voltage, secondarily on process corner and temperature, but is at
                                                                 least 52.  There is no minimum setting based on transmitter distortion, only
                                                                 that set by the receiver. */
        uint64_t tx_cpost              : 5;  /**< [ 15: 11](R/W) Transmitter Post (C+1) equalizer tap coefficient value.
                                                                 Programs the transmitter Post tap.
                                                                 Valid range is 0 to 0x10.
                                                                 See GSERN()_LANE()_CGX_TXEQ_BCFG[TX_CMAIN]. */
        uint64_t tx_cmain              : 6;  /**< [ 10:  5](R/W) Transmitter Main (C0) equalizer tap coefficient value.
                                                                 Programs the serdes transmitter Main tap.
                                                                 Valid range is 0x30 to 0x18.
                                                                 When programing the transmitter Pre, Main, and Post
                                                                 taps the following rules must be adhered to:
                                                                 _ ([TX_CMAIN] + [TX_CPRE] + [TX_CPOST]) \<= 0x30.
                                                                 _ ([TX_CMAIN] - [TX_CPRE] - [TX_CPOST]) \>= 0x6.
                                                                 _ 0x30 \<= [TX_CMAIN] \<= 0x18.
                                                                 _ 0x16 \>= [TX_CPRE] \>= 0x0.
                                                                 _ 0x16 \>= [TX_CPOST] \>= 0x0.

                                                                 [TX_CMAIN] should be adjusted when either [TX_CPRE] or [TX_CPOST] is adjusted to
                                                                 provide constant power transmitter amplitude adjustments.

                                                                 To update the GSER serdes transmitter Pre, Main, and Post
                                                                 equalizer taps from the [TX_CPOST], [TX_CMAIN], and [TX_CPRE]
                                                                 fields write GSERN()_LANE()_CGX_TXEQ_BCFG[TX_COEFF_UPDATE]
                                                                 to 1 and subsequently clear [TX_COEFF_UPDATE] to 0. This step
                                                                 transfers the [TX_CPOST], [TX_CMAIN], and [TX_CPRE] to the
                                                                 serdes transmitter equalizer.

                                                                 Related CSRs:
                                                                 * GSERN()_LANE()_CGX_TXEQ_BCFG[TX_COEFF_UPDATE].
                                                                 * GSERN()_LANE()_CGX_TXEQ_BCFG[TX_CPOST].
                                                                 * GSERN()_LANE()_CGX_TXEQ_BCFG[TX_CPRE].
                                                                 * GSERN()_LANE()_CGX_TXEQ_BCFG[TX_BS].
                                                                 * GSERN()_LANE()_CGX_TXEQ_BCFG[TX_CSPD]. */
        uint64_t tx_cpre               : 5;  /**< [  4:  0](R/W) Transmitter Pre (C-1) equalizer tap coefficient value.
                                                                 Programs the transmitter Pre tap.
                                                                 Valid range is 0 to 0x10.
                                                                 See GSERN()_LANE()_CGX_TXEQ_BCFG[TX_CMAIN]. */
#else /* Word 0 - Little Endian */
        uint64_t tx_cpre               : 5;  /**< [  4:  0](R/W) Transmitter Pre (C-1) equalizer tap coefficient value.
                                                                 Programs the transmitter Pre tap.
                                                                 Valid range is 0 to 0x10.
                                                                 See GSERN()_LANE()_CGX_TXEQ_BCFG[TX_CMAIN]. */
        uint64_t tx_cmain              : 6;  /**< [ 10:  5](R/W) Transmitter Main (C0) equalizer tap coefficient value.
                                                                 Programs the serdes transmitter Main tap.
                                                                 Valid range is 0x30 to 0x18.
                                                                 When programing the transmitter Pre, Main, and Post
                                                                 taps the following rules must be adhered to:
                                                                 _ ([TX_CMAIN] + [TX_CPRE] + [TX_CPOST]) \<= 0x30.
                                                                 _ ([TX_CMAIN] - [TX_CPRE] - [TX_CPOST]) \>= 0x6.
                                                                 _ 0x30 \<= [TX_CMAIN] \<= 0x18.
                                                                 _ 0x16 \>= [TX_CPRE] \>= 0x0.
                                                                 _ 0x16 \>= [TX_CPOST] \>= 0x0.

                                                                 [TX_CMAIN] should be adjusted when either [TX_CPRE] or [TX_CPOST] is adjusted to
                                                                 provide constant power transmitter amplitude adjustments.

                                                                 To update the GSER serdes transmitter Pre, Main, and Post
                                                                 equalizer taps from the [TX_CPOST], [TX_CMAIN], and [TX_CPRE]
                                                                 fields write GSERN()_LANE()_CGX_TXEQ_BCFG[TX_COEFF_UPDATE]
                                                                 to 1 and subsequently clear [TX_COEFF_UPDATE] to 0. This step
                                                                 transfers the [TX_CPOST], [TX_CMAIN], and [TX_CPRE] to the
                                                                 serdes transmitter equalizer.

                                                                 Related CSRs:
                                                                 * GSERN()_LANE()_CGX_TXEQ_BCFG[TX_COEFF_UPDATE].
                                                                 * GSERN()_LANE()_CGX_TXEQ_BCFG[TX_CPOST].
                                                                 * GSERN()_LANE()_CGX_TXEQ_BCFG[TX_CPRE].
                                                                 * GSERN()_LANE()_CGX_TXEQ_BCFG[TX_BS].
                                                                 * GSERN()_LANE()_CGX_TXEQ_BCFG[TX_CSPD]. */
        uint64_t tx_cpost              : 5;  /**< [ 15: 11](R/W) Transmitter Post (C+1) equalizer tap coefficient value.
                                                                 Programs the transmitter Post tap.
                                                                 Valid range is 0 to 0x10.
                                                                 See GSERN()_LANE()_CGX_TXEQ_BCFG[TX_CMAIN]. */
        uint64_t tx_bs                 : 6;  /**< [ 21: 16](R/W) TX bias/swing selection. This setting only takes effect if [TX_CSPD]
                                                                 is deasserted; with [TX_CSPD] asserted the
                                                                 bias/swing control setting seen in the analog bias generator is zero.

                                                                 Typical override values would be:
                                                                   42 = Nominal 1.0V p-p transmit amplitude.
                                                                   52 = Nominal 1.2V p-p transmit amplitude.

                                                                 The maximum usable value without transmitted waveform distortion depends
                                                                 primarily on voltage, secondarily on process corner and temperature, but is at
                                                                 least 52.  There is no minimum setting based on transmitter distortion, only
                                                                 that set by the receiver. */
        uint64_t tx_cspd               : 1;  /**< [ 22: 22](R/W) Power-down control for a second TX bias/swing leg with the same
                                                                 weight as TX_BS[3]. Normally this field is left deasserted to
                                                                 provide a minimum transmit amplitude. Asserting [TX_CSPD] will turn
                                                                 off all legs of the bias/swing generator for lower standby power. */
        uint64_t tx_idle               : 1;  /**< [ 23: 23](R/W) Reserved. For Diagnostic Use Only.
                                                                 Internal:
                                                                 Transmitter electrical idle.
                                                                 Used to force the transmitter to electrical idle.
                                                                 Not typically used for Ethernet connections.
                                                                 Leave progreammed to 0x0.
                                                                 Drives the cgx_tx_idle input to the GSERN src_mux. */
        uint64_t tx_oob                : 1;  /**< [ 24: 24](R/W) Reserved. For Diagnostic Use Only.
                                                                 Internal:
                                                                 Transmitter OOB signaling.
                                                                 Not typically used for Ethernet connnections.
                                                                 Leave programmed to 0x0.
                                                                 Drives the cgx_tx_oob input to the GSERN src_mux. */
        uint64_t tx_stuff              : 1;  /**< [ 25: 25](R/W) Reserved. For Diagnostic Use Only.
                                                                 Internal:
                                                                 Transmitter bit stuffing.
                                                                 Programs the transmitter PCS lite layer for bit stuffing.
                                                                 Not used for Ethernet connections.
                                                                 Leave programmed to 0x0.
                                                                 Drives the cgx_tx_stuff input to the GSERN src_mux. */
        uint64_t tx_enable             : 1;  /**< [ 26: 26](R/W) Transmitter enable.
                                                                 0 = Disable the serdes transmitter.
                                                                 1 = Enable the serdes transmitter.

                                                                 Internal:
                                                                 Drives the cgx_tx_enable input to the GSERN src_mux. */
        uint64_t tx_coeff_update       : 1;  /**< [ 27: 27](R/W/H) Transmitter coefficient update.
                                                                 An asserting edge will start the transmitter coefficient update
                                                                 sequencer. This field self-clears when the sequence has completed.
                                                                 To update the GSER transmitter euqalizer coefficients program
                                                                 * GSERN()_LANE()_CGX_TXEQ_BCFG[TX_CPOST].
                                                                 * GSERN()_LANE()_CGX_TXEQ_BCFG[TX_CMAIN].
                                                                 * GSERN()_LANE()_CGX_TXEQ_BCFG[TX_CPRE].
                                                                 * GSERN()_LANE()_CGX_TXEQ_BCFG[TX_BS].
                                                                 * GSERN()_LANE()_CGX_TXEQ_BCFG[TX_CSPD].

                                                                 then write [TX_COEFF_UPDATE] to 1. */
        uint64_t reserved_28_63        : 36;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_cgx_txeq_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_cgx_txeq_bcfg bdk_gsernx_lanex_cgx_txeq_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_CGX_TXEQ_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_CGX_TXEQ_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090003450ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_CGX_TXEQ_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_CGX_TXEQ_BCFG(a,b) bdk_gsernx_lanex_cgx_txeq_bcfg_t
#define bustype_BDK_GSERNX_LANEX_CGX_TXEQ_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_CGX_TXEQ_BCFG(a,b) "GSERNX_LANEX_CGX_TXEQ_BCFG"
#define device_bar_BDK_GSERNX_LANEX_CGX_TXEQ_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_CGX_TXEQ_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_CGX_TXEQ_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_const
 *
 * GSER Lane CONST Register
 * Lane number within the multilane macro.
 */
union bdk_gsernx_lanex_const
{
    uint64_t u;
    struct bdk_gsernx_lanex_const_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_8_63         : 56;
        uint64_t lane_num              : 8;  /**< [  7:  0](RO/H) Lane number of this lane within the multilane module */
#else /* Word 0 - Little Endian */
        uint64_t lane_num              : 8;  /**< [  7:  0](RO/H) Lane number of this lane within the multilane module */
        uint64_t reserved_8_63         : 56;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_const_s cn; */
};
typedef union bdk_gsernx_lanex_const bdk_gsernx_lanex_const_t;

static inline uint64_t BDK_GSERNX_LANEX_CONST(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_CONST(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000100ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_CONST", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_CONST(a,b) bdk_gsernx_lanex_const_t
#define bustype_BDK_GSERNX_LANEX_CONST(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_CONST(a,b) "GSERNX_LANEX_CONST"
#define device_bar_BDK_GSERNX_LANEX_CONST(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_CONST(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_CONST(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_eco
 *
 * INTERNAL: GSER Lane ECO Register
 */
union bdk_gsernx_lanex_eco
{
    uint64_t u;
    struct bdk_gsernx_lanex_eco_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t eco_rw                : 50; /**< [ 63: 14](R/W) Internal:
                                                                 Reserved for ECO use. */
        uint64_t eco_rw_pll            : 2;  /**< [ 13: 12](R/W) Internal:
                                                                 Pre-connected to the PLL. Reserved for ECO use. */
        uint64_t eco_rw_tx             : 4;  /**< [ 11:  8](R/W) Internal:
                                                                 Pre-connected to Tx custom. Reserved for ECO use. */
        uint64_t eco_rw_rx_top         : 4;  /**< [  7:  4](R/W) Internal:
                                                                 Pre-connected to the north side of Rx custom. Reserved for ECO use. */
        uint64_t eco_rw_rx_bot         : 4;  /**< [  3:  0](R/W) Internal:
                                                                 Pre-connected to the south side of Rx custom. Reserved for ECO use. */
#else /* Word 0 - Little Endian */
        uint64_t eco_rw_rx_bot         : 4;  /**< [  3:  0](R/W) Internal:
                                                                 Pre-connected to the south side of Rx custom. Reserved for ECO use. */
        uint64_t eco_rw_rx_top         : 4;  /**< [  7:  4](R/W) Internal:
                                                                 Pre-connected to the north side of Rx custom. Reserved for ECO use. */
        uint64_t eco_rw_tx             : 4;  /**< [ 11:  8](R/W) Internal:
                                                                 Pre-connected to Tx custom. Reserved for ECO use. */
        uint64_t eco_rw_pll            : 2;  /**< [ 13: 12](R/W) Internal:
                                                                 Pre-connected to the PLL. Reserved for ECO use. */
        uint64_t eco_rw                : 50; /**< [ 63: 14](R/W) Internal:
                                                                 Reserved for ECO use. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_eco_s cn; */
};
typedef union bdk_gsernx_lanex_eco bdk_gsernx_lanex_eco_t;

static inline uint64_t BDK_GSERNX_LANEX_ECO(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_ECO(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090003970ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_ECO", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_ECO(a,b) bdk_gsernx_lanex_eco_t
#define bustype_BDK_GSERNX_LANEX_ECO(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_ECO(a,b) "GSERNX_LANEX_ECO"
#define device_bar_BDK_GSERNX_LANEX_ECO(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_ECO(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_ECO(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_eee_bcfg
 *
 * INTERNAL: GSER Lane EEE Base Configuration Register
 *
 * Reserved.
 * Internal:
 * Register controls settings for GSER behavior when Energy Efficient Ethernet (EEE) is
 * in use on the link.
 */
union bdk_gsernx_lanex_eee_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_eee_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_58_63        : 6;
        uint64_t rx_qa_sqlch_cnt       : 12; /**< [ 57: 46](R/W) Reserved.
                                                                 Internal:
                                                                 Receiever QUIET to DATA squelch count.
                                                                 Used to implement a delay or filter function for the receive data to the
                                                                 CGX MAC when the receiver transitions from the EEE QUIET state to the
                                                                 EEE ACTIVE state.  [RX_QA_SQLCH_CNT] counter is in units of 10ns.
                                                                 Used in conjuncton with GSERN()_LANE()_EEE_BCFG[RX_QA_SQLCH_EN]. */
        uint64_t rx_qa_sqlch_en        : 1;  /**< [ 45: 45](R/W) Reserved.
                                                                 Internal:
                                                                 Receiever QUIET to DATA squelch enable.
                                                                 When [RX_QA_SQLCH_EN] is enabled the receive data to the CGX MAC will be
                                                                 suppressed following the transition from receiver EEE QUIET state to
                                                                 receiver EEE ACTIVE state for the time defined by the
                                                                 GSERN()_LANE()_EEE_BCFG[RX_QA_SQLCH_CNT] squelch count in units of 10ns.
                                                                 This is a optional filtering function to prevent garbage data to the CGX MAC
                                                                 as the receiver is transitioning from the EEE QUIET to EEE ACTIVE states. */
        uint64_t tx_quiet_drv_en       : 1;  /**< [ 44: 44](R/W) Reserved.
                                                                 Internal:
                                                                 Transmitter QUIET drive enable.
                                                                 When [TX_QUIET_DRV_EN] is set to one the transmitter Tx+/Tx- driver outputs
                                                                 will drive to electrical idle when either the CGX MAC moves the
                                                                 SerDes transmitter block from the EEE ACTIVE state to the EEE QUIET state or
                                                                 the GSERN()_LANE()_EEE_BCFG[EEE_TX_OVRRD] is set to one.  This ensures that
                                                                 the link partner receiver energy detector sees the local device transmitter
                                                                 transition from the EEE ACTIVE state to the EEE QUIET state.
                                                                 When [TX_QUIET_DRV_EN] is set to one the transmitter Tx+/Tx- driver outputs
                                                                 will drive to electrical idle even if the GSERN()_LANE()_EEE_BCFG[TX_PWRDN_EN]
                                                                 is cleared to zero to inhibit the transmitter from powering down during EEE
                                                                 deep sleep TX QUIET state. When [TX_QUIET_DRV_EN] is cleared to zero the
                                                                 Transmitter Tx+/Tx- outputs will only drive to electrical idle when the
                                                                 transmitter is powered down by CGX or GSERN()_LANE()_EEE_BCFG[EEE_TX_OVRRD]
                                                                 is set to one and GSERN()_LANE()_EEE_BCFG[TX_PWRDN_EN] is also
                                                                 set to one to enable transmitter power down. */
        uint64_t eee_edet              : 1;  /**< [ 43: 43](RO/H) Reserved.
                                                                 Internal:
                                                                 EEE energy detected.
                                                                 For diagnostic use only. Reflects the state of
                                                                 the EEE energy detector.  Used to test signals for the wake from
                                                                 EEE deep sleep power down modes of the SerDes. */
        uint64_t eee_ovrrd             : 1;  /**< [ 42: 42](R/W) Reserved.
                                                                 Internal:
                                                                 EEE override.
                                                                 For diagnostic use only. When [EEE_OVRRD] is set to one the SerDes EEE rx and
                                                                 tx modes are controlled by GSERN()_LANE()_EEE_BCFG[EEE_RX_OVRRD] and
                                                                 GSERN()_LANE()_EEE_BCFG[EEE_TX_OVRRD]. Used to test the EEE deep sleep
                                                                 power down modes of the SerDes. */
        uint64_t eee_tx_ovrrd          : 2;  /**< [ 41: 40](R/W) Reserved.
                                                                 Internal:
                                                                 EEE Tx override.
                                                                 For diagnostic use only. When GSERN()_LANE()_EEE_BCFG[EEE_OVRRD] is set to one
                                                                 the SerDes transmitter modes are controlled by [EEE_TX_OVRRD]. Used to
                                                                 test the EEE deep sleep power down modes of the SerDes transmitter.
                                                                   0x0 = ACTIVE/DATA mode
                                                                   0x1 = QUIET
                                                                   0x2 = ALERT
                                                                   0x3 = Reserved. */
        uint64_t eee_rx_ovrrd          : 1;  /**< [ 39: 39](R/W) Reserved.
                                                                 Internal:
                                                                 EEE Rx override.
                                                                 For diagnostic use only. When GSERN()_LANE()_EEE_BCFG[EEE_OVRRD] is set to one
                                                                 the SerDes receiver modes are controlled by [EEE_RX_OVRRD].  Used to
                                                                 test the EEE deep sleep power down modes of the SerDes receiver.
                                                                   0x0 = ACTIVE/DATA mode
                                                                   0x1 = QUIET */
        uint64_t bypass_edet           : 1;  /**< [ 38: 38](R/W) Reserved.
                                                                 Internal:
                                                                 EEE energy detect bypass.
                                                                 0 = The Energy Detect EDET signal to CGX will behave normally.  EDET will be set
                                                                 to one when energy is detected at the lane receiver and EDET will be cleared to zero
                                                                 when there is no energy detected at the lane receiver.
                                                                 1 = The Energy Detect EDET signal to CGX will always be set to 1 bypassing
                                                                 the energy detect function. */
        uint64_t pwrdn_mode            : 2;  /**< [ 37: 36](R/W) Reserved.
                                                                 Internal:
                                                                 Programs the PHY power mode down during EEE.
                                                                 Used to select the P1, P2, or Shutdown powe states when entering deep sleep mode.
                                                                 0x0 = Reserved.
                                                                 0x1 = The PHY will power down to the P1 power state and the power state cntrols
                                                                 will be configured from the GSERN()_LANE()_EEE_RSTP1_BCFG register.
                                                                 0x2 = The PHY will power down to the P2 power state and the power state controls
                                                                 will be configured from the GSERN()_LANE()_EEE_RSTP2_BCFG register.
                                                                 0x3 = The PHY will power down to the shutdown (SHDN) power state and the power
                                                                 state controls will be configured from the GSERN()_LANE()_EEE_RSTSHDN_BCFG register. */
        uint64_t eyemon_pwrdn_en       : 1;  /**< [ 35: 35](R/W) Reserved.
                                                                 Internal:
                                                                 Programs the behavior of the eye monitor power down during EEE.
                                                                 0 = The eye monitor will not power down during EEE quiet mode.
                                                                 1 = The eye monitor will power down during the EEE quiet mode. */
        uint64_t lpll_pwrdn_en         : 1;  /**< [ 34: 34](R/W) Reserved.
                                                                 Internal:
                                                                 Programs the behavior of the lane PLL power down during EEE.
                                                                 0 = The lane PLL will not power down during EEE quiet mode.
                                                                 1 = The lane PLL will power down during the EEE quiet mode. */
        uint64_t tx_pwrdn_en           : 1;  /**< [ 33: 33](R/W) Reserved.
                                                                 Internal:
                                                                 Programs the behavior of the transmitter power down during EEE.
                                                                 0 = The transmitter will not power down during EEE quiet mode.
                                                                 1 = The transmitter will power down during the EEE quiet mode. */
        uint64_t rx_pwrdn_en           : 1;  /**< [ 32: 32](R/W) Reserved.
                                                                 Internal:
                                                                 Programs the behavior of the receiver power down during EEE.
                                                                 0 = The receiver will not power down during EEE quiet mode.
                                                                 1 = The receiver will power down during the EEE Quiet mode. */
        uint64_t tx_dly_cnt            : 16; /**< [ 31: 16](R/W) Reserved.
                                                                 Internal:
                                                                 Programs the delay of the TX PCS layer when the Tx side is transitione from the EEE QUIET
                                                                 phase to the ALERT or ACTIVE phase.  This programmable delay adds delau to ensure that
                                                                 txdivclk is running and stable before Tx data resumes.
                                                                 The delay units are in units of service-clock cycles. For diagnostic use only. */
        uint64_t rx_dly_cnt            : 16; /**< [ 15:  0](R/W) Reserved.
                                                                 Internal:
                                                                 Programs the delay of the RX PCS layer when the receiver is transitioned froom the EEE
                                                                 QUIET to ACTIVE phase.  The programmable delay adds delay to ensure that the rxdivclk
                                                                 is running and stable before Rx data resumes.
                                                                 The delay units are in units of service-clock cycles. For diagnostic use only. */
#else /* Word 0 - Little Endian */
        uint64_t rx_dly_cnt            : 16; /**< [ 15:  0](R/W) Reserved.
                                                                 Internal:
                                                                 Programs the delay of the RX PCS layer when the receiver is transitioned froom the EEE
                                                                 QUIET to ACTIVE phase.  The programmable delay adds delay to ensure that the rxdivclk
                                                                 is running and stable before Rx data resumes.
                                                                 The delay units are in units of service-clock cycles. For diagnostic use only. */
        uint64_t tx_dly_cnt            : 16; /**< [ 31: 16](R/W) Reserved.
                                                                 Internal:
                                                                 Programs the delay of the TX PCS layer when the Tx side is transitione from the EEE QUIET
                                                                 phase to the ALERT or ACTIVE phase.  This programmable delay adds delau to ensure that
                                                                 txdivclk is running and stable before Tx data resumes.
                                                                 The delay units are in units of service-clock cycles. For diagnostic use only. */
        uint64_t rx_pwrdn_en           : 1;  /**< [ 32: 32](R/W) Reserved.
                                                                 Internal:
                                                                 Programs the behavior of the receiver power down during EEE.
                                                                 0 = The receiver will not power down during EEE quiet mode.
                                                                 1 = The receiver will power down during the EEE Quiet mode. */
        uint64_t tx_pwrdn_en           : 1;  /**< [ 33: 33](R/W) Reserved.
                                                                 Internal:
                                                                 Programs the behavior of the transmitter power down during EEE.
                                                                 0 = The transmitter will not power down during EEE quiet mode.
                                                                 1 = The transmitter will power down during the EEE quiet mode. */
        uint64_t lpll_pwrdn_en         : 1;  /**< [ 34: 34](R/W) Reserved.
                                                                 Internal:
                                                                 Programs the behavior of the lane PLL power down during EEE.
                                                                 0 = The lane PLL will not power down during EEE quiet mode.
                                                                 1 = The lane PLL will power down during the EEE quiet mode. */
        uint64_t eyemon_pwrdn_en       : 1;  /**< [ 35: 35](R/W) Reserved.
                                                                 Internal:
                                                                 Programs the behavior of the eye monitor power down during EEE.
                                                                 0 = The eye monitor will not power down during EEE quiet mode.
                                                                 1 = The eye monitor will power down during the EEE quiet mode. */
        uint64_t pwrdn_mode            : 2;  /**< [ 37: 36](R/W) Reserved.
                                                                 Internal:
                                                                 Programs the PHY power mode down during EEE.
                                                                 Used to select the P1, P2, or Shutdown powe states when entering deep sleep mode.
                                                                 0x0 = Reserved.
                                                                 0x1 = The PHY will power down to the P1 power state and the power state cntrols
                                                                 will be configured from the GSERN()_LANE()_EEE_RSTP1_BCFG register.
                                                                 0x2 = The PHY will power down to the P2 power state and the power state controls
                                                                 will be configured from the GSERN()_LANE()_EEE_RSTP2_BCFG register.
                                                                 0x3 = The PHY will power down to the shutdown (SHDN) power state and the power
                                                                 state controls will be configured from the GSERN()_LANE()_EEE_RSTSHDN_BCFG register. */
        uint64_t bypass_edet           : 1;  /**< [ 38: 38](R/W) Reserved.
                                                                 Internal:
                                                                 EEE energy detect bypass.
                                                                 0 = The Energy Detect EDET signal to CGX will behave normally.  EDET will be set
                                                                 to one when energy is detected at the lane receiver and EDET will be cleared to zero
                                                                 when there is no energy detected at the lane receiver.
                                                                 1 = The Energy Detect EDET signal to CGX will always be set to 1 bypassing
                                                                 the energy detect function. */
        uint64_t eee_rx_ovrrd          : 1;  /**< [ 39: 39](R/W) Reserved.
                                                                 Internal:
                                                                 EEE Rx override.
                                                                 For diagnostic use only. When GSERN()_LANE()_EEE_BCFG[EEE_OVRRD] is set to one
                                                                 the SerDes receiver modes are controlled by [EEE_RX_OVRRD].  Used to
                                                                 test the EEE deep sleep power down modes of the SerDes receiver.
                                                                   0x0 = ACTIVE/DATA mode
                                                                   0x1 = QUIET */
        uint64_t eee_tx_ovrrd          : 2;  /**< [ 41: 40](R/W) Reserved.
                                                                 Internal:
                                                                 EEE Tx override.
                                                                 For diagnostic use only. When GSERN()_LANE()_EEE_BCFG[EEE_OVRRD] is set to one
                                                                 the SerDes transmitter modes are controlled by [EEE_TX_OVRRD]. Used to
                                                                 test the EEE deep sleep power down modes of the SerDes transmitter.
                                                                   0x0 = ACTIVE/DATA mode
                                                                   0x1 = QUIET
                                                                   0x2 = ALERT
                                                                   0x3 = Reserved. */
        uint64_t eee_ovrrd             : 1;  /**< [ 42: 42](R/W) Reserved.
                                                                 Internal:
                                                                 EEE override.
                                                                 For diagnostic use only. When [EEE_OVRRD] is set to one the SerDes EEE rx and
                                                                 tx modes are controlled by GSERN()_LANE()_EEE_BCFG[EEE_RX_OVRRD] and
                                                                 GSERN()_LANE()_EEE_BCFG[EEE_TX_OVRRD]. Used to test the EEE deep sleep
                                                                 power down modes of the SerDes. */
        uint64_t eee_edet              : 1;  /**< [ 43: 43](RO/H) Reserved.
                                                                 Internal:
                                                                 EEE energy detected.
                                                                 For diagnostic use only. Reflects the state of
                                                                 the EEE energy detector.  Used to test signals for the wake from
                                                                 EEE deep sleep power down modes of the SerDes. */
        uint64_t tx_quiet_drv_en       : 1;  /**< [ 44: 44](R/W) Reserved.
                                                                 Internal:
                                                                 Transmitter QUIET drive enable.
                                                                 When [TX_QUIET_DRV_EN] is set to one the transmitter Tx+/Tx- driver outputs
                                                                 will drive to electrical idle when either the CGX MAC moves the
                                                                 SerDes transmitter block from the EEE ACTIVE state to the EEE QUIET state or
                                                                 the GSERN()_LANE()_EEE_BCFG[EEE_TX_OVRRD] is set to one.  This ensures that
                                                                 the link partner receiver energy detector sees the local device transmitter
                                                                 transition from the EEE ACTIVE state to the EEE QUIET state.
                                                                 When [TX_QUIET_DRV_EN] is set to one the transmitter Tx+/Tx- driver outputs
                                                                 will drive to electrical idle even if the GSERN()_LANE()_EEE_BCFG[TX_PWRDN_EN]
                                                                 is cleared to zero to inhibit the transmitter from powering down during EEE
                                                                 deep sleep TX QUIET state. When [TX_QUIET_DRV_EN] is cleared to zero the
                                                                 Transmitter Tx+/Tx- outputs will only drive to electrical idle when the
                                                                 transmitter is powered down by CGX or GSERN()_LANE()_EEE_BCFG[EEE_TX_OVRRD]
                                                                 is set to one and GSERN()_LANE()_EEE_BCFG[TX_PWRDN_EN] is also
                                                                 set to one to enable transmitter power down. */
        uint64_t rx_qa_sqlch_en        : 1;  /**< [ 45: 45](R/W) Reserved.
                                                                 Internal:
                                                                 Receiever QUIET to DATA squelch enable.
                                                                 When [RX_QA_SQLCH_EN] is enabled the receive data to the CGX MAC will be
                                                                 suppressed following the transition from receiver EEE QUIET state to
                                                                 receiver EEE ACTIVE state for the time defined by the
                                                                 GSERN()_LANE()_EEE_BCFG[RX_QA_SQLCH_CNT] squelch count in units of 10ns.
                                                                 This is a optional filtering function to prevent garbage data to the CGX MAC
                                                                 as the receiver is transitioning from the EEE QUIET to EEE ACTIVE states. */
        uint64_t rx_qa_sqlch_cnt       : 12; /**< [ 57: 46](R/W) Reserved.
                                                                 Internal:
                                                                 Receiever QUIET to DATA squelch count.
                                                                 Used to implement a delay or filter function for the receive data to the
                                                                 CGX MAC when the receiver transitions from the EEE QUIET state to the
                                                                 EEE ACTIVE state.  [RX_QA_SQLCH_CNT] counter is in units of 10ns.
                                                                 Used in conjuncton with GSERN()_LANE()_EEE_BCFG[RX_QA_SQLCH_EN]. */
        uint64_t reserved_58_63        : 6;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_eee_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_eee_bcfg bdk_gsernx_lanex_eee_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_EEE_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_EEE_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090003650ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_EEE_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_EEE_BCFG(a,b) bdk_gsernx_lanex_eee_bcfg_t
#define bustype_BDK_GSERNX_LANEX_EEE_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_EEE_BCFG(a,b) "GSERNX_LANEX_EEE_BCFG"
#define device_bar_BDK_GSERNX_LANEX_EEE_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_EEE_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_EEE_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_eee_rstp1_bcfg
 *
 * INTERNAL: GSER Lane EEE PowerDown P1 Reset States Control Register
 *
 * Reserved.
 * Internal:
 * Controls the power down and reset states of the serdes lane PLL, transmitter, receiver,
 * receiver adaptation, and eye monitor blocks during the EEE deep sleep power down P1 state.
 */
union bdk_gsernx_lanex_eee_rstp1_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_eee_rstp1_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_33_63        : 31;
        uint64_t adapt_rst             : 1;  /**< [ 32: 32](R/W) Reserved.
                                                                 Internal:
                                                                 Rx Adapt state Pause (0) or Hard Reset (1) during EEE deep sleep P1 PowerDown state. */
        uint64_t reserved_29_31        : 3;
        uint64_t eye_rst               : 5;  /**< [ 28: 24](R/W) Reserved.
                                                                 Internal:
                                                                 Eye monitor reset state during EEE deep sleep P1 PowerDown state. */
        uint64_t reserved_21_23        : 3;
        uint64_t rx_rst                : 5;  /**< [ 20: 16](R/W) Reserved.
                                                                 Internal:
                                                                 RX reset state during EEE deep sleep P1 PowerDown state. */
        uint64_t reserved_12_15        : 4;
        uint64_t tx_rst                : 4;  /**< [ 11:  8](R/W) Reserved.
                                                                 Internal:
                                                                 TX reset state during EEE deep sleep P1 PowerDown state. */
        uint64_t reserved_4_7          : 4;
        uint64_t lnpll_rst             : 4;  /**< [  3:  0](R/W) Reserved.
                                                                 Internal:
                                                                 LANE PLL reset state during EEE deep sleep P1 PowerDown state.
                                                                 Note: this value is never likely to be changed from the normal run state (0x8). */
#else /* Word 0 - Little Endian */
        uint64_t lnpll_rst             : 4;  /**< [  3:  0](R/W) Reserved.
                                                                 Internal:
                                                                 LANE PLL reset state during EEE deep sleep P1 PowerDown state.
                                                                 Note: this value is never likely to be changed from the normal run state (0x8). */
        uint64_t reserved_4_7          : 4;
        uint64_t tx_rst                : 4;  /**< [ 11:  8](R/W) Reserved.
                                                                 Internal:
                                                                 TX reset state during EEE deep sleep P1 PowerDown state. */
        uint64_t reserved_12_15        : 4;
        uint64_t rx_rst                : 5;  /**< [ 20: 16](R/W) Reserved.
                                                                 Internal:
                                                                 RX reset state during EEE deep sleep P1 PowerDown state. */
        uint64_t reserved_21_23        : 3;
        uint64_t eye_rst               : 5;  /**< [ 28: 24](R/W) Reserved.
                                                                 Internal:
                                                                 Eye monitor reset state during EEE deep sleep P1 PowerDown state. */
        uint64_t reserved_29_31        : 3;
        uint64_t adapt_rst             : 1;  /**< [ 32: 32](R/W) Reserved.
                                                                 Internal:
                                                                 Rx Adapt state Pause (0) or Hard Reset (1) during EEE deep sleep P1 PowerDown state. */
        uint64_t reserved_33_63        : 31;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_eee_rstp1_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_eee_rstp1_bcfg bdk_gsernx_lanex_eee_rstp1_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_EEE_RSTP1_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_EEE_RSTP1_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090003750ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_EEE_RSTP1_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_EEE_RSTP1_BCFG(a,b) bdk_gsernx_lanex_eee_rstp1_bcfg_t
#define bustype_BDK_GSERNX_LANEX_EEE_RSTP1_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_EEE_RSTP1_BCFG(a,b) "GSERNX_LANEX_EEE_RSTP1_BCFG"
#define device_bar_BDK_GSERNX_LANEX_EEE_RSTP1_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_EEE_RSTP1_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_EEE_RSTP1_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_eee_rstp2_bcfg
 *
 * INTERNAL: GSER Lane EEE PowerDown P2 Reset States Control Register
 *
 * Reserved.
 * Internal:
 * Controls the power down and reset states of the serdes lane PLL, transmitter, receiver,
 * receiver adaptation, and eye monitor blocks during the EEE deep sleep power down P2 state.
 */
union bdk_gsernx_lanex_eee_rstp2_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_eee_rstp2_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_33_63        : 31;
        uint64_t adapt_rst             : 1;  /**< [ 32: 32](R/W) Reserved.
                                                                 Internal:
                                                                 Rx Adapt state Pause (0) or Hard Reset (1) during EEE deep sleep P2 PowerDown state. */
        uint64_t reserved_29_31        : 3;
        uint64_t eye_rst               : 5;  /**< [ 28: 24](R/W) Reserved.
                                                                 Internal:
                                                                 Eye monitor reset state during EEE deep sleep P2 PowerDown state. */
        uint64_t reserved_21_23        : 3;
        uint64_t rx_rst                : 5;  /**< [ 20: 16](R/W) Reserved.
                                                                 Internal:
                                                                 RX reset state during EEE deep sleep P2 PowerDown state. */
        uint64_t reserved_12_15        : 4;
        uint64_t tx_rst                : 4;  /**< [ 11:  8](R/W) Reserved.
                                                                 Internal:
                                                                 TX reset state during EEE deep sleep P2 PowerDown state. */
        uint64_t reserved_4_7          : 4;
        uint64_t lnpll_rst             : 4;  /**< [  3:  0](R/W) Reserved.
                                                                 Internal:
                                                                 LANE PLL reset state during EEE deep sleep P2 PowerDown state. */
#else /* Word 0 - Little Endian */
        uint64_t lnpll_rst             : 4;  /**< [  3:  0](R/W) Reserved.
                                                                 Internal:
                                                                 LANE PLL reset state during EEE deep sleep P2 PowerDown state. */
        uint64_t reserved_4_7          : 4;
        uint64_t tx_rst                : 4;  /**< [ 11:  8](R/W) Reserved.
                                                                 Internal:
                                                                 TX reset state during EEE deep sleep P2 PowerDown state. */
        uint64_t reserved_12_15        : 4;
        uint64_t rx_rst                : 5;  /**< [ 20: 16](R/W) Reserved.
                                                                 Internal:
                                                                 RX reset state during EEE deep sleep P2 PowerDown state. */
        uint64_t reserved_21_23        : 3;
        uint64_t eye_rst               : 5;  /**< [ 28: 24](R/W) Reserved.
                                                                 Internal:
                                                                 Eye monitor reset state during EEE deep sleep P2 PowerDown state. */
        uint64_t reserved_29_31        : 3;
        uint64_t adapt_rst             : 1;  /**< [ 32: 32](R/W) Reserved.
                                                                 Internal:
                                                                 Rx Adapt state Pause (0) or Hard Reset (1) during EEE deep sleep P2 PowerDown state. */
        uint64_t reserved_33_63        : 31;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_eee_rstp2_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_eee_rstp2_bcfg bdk_gsernx_lanex_eee_rstp2_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_EEE_RSTP2_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_EEE_RSTP2_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090003760ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_EEE_RSTP2_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_EEE_RSTP2_BCFG(a,b) bdk_gsernx_lanex_eee_rstp2_bcfg_t
#define bustype_BDK_GSERNX_LANEX_EEE_RSTP2_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_EEE_RSTP2_BCFG(a,b) "GSERNX_LANEX_EEE_RSTP2_BCFG"
#define device_bar_BDK_GSERNX_LANEX_EEE_RSTP2_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_EEE_RSTP2_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_EEE_RSTP2_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_eee_rstshdn_bcfg
 *
 * INTERNAL: GSER Lane EEE PowerDown P2 Reset States Control Register
 *
 * Reserved.
 * Internal:
 * Controls the power down and reset states of the serdes lane PLL, transmitter, receiver,
 * receiver adaptation, and eye monitor blocks during the EEE deep sleep power shut down state.
 */
union bdk_gsernx_lanex_eee_rstshdn_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_eee_rstshdn_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_33_63        : 31;
        uint64_t adapt_rst             : 1;  /**< [ 32: 32](R/W) Reserved.
                                                                 Internal:
                                                                 Rx Adapt state Pause (0) or Hard Reset (1) during EEE deep sleep shutdown PowerDown state. */
        uint64_t reserved_29_31        : 3;
        uint64_t eye_rst               : 5;  /**< [ 28: 24](R/W) Reserved.
                                                                 Internal:
                                                                 Eye monitor reset state during EEE deep sleep shutdown PowerDown state. */
        uint64_t reserved_21_23        : 3;
        uint64_t rx_rst                : 5;  /**< [ 20: 16](R/W) Reserved.
                                                                 Internal:
                                                                 RX reset state during EEE deep sleep shutdown PowerDown state. */
        uint64_t reserved_12_15        : 4;
        uint64_t tx_rst                : 4;  /**< [ 11:  8](R/W) Reserved.
                                                                 Internal:
                                                                 TX reset state during EEE deep sleep shutdown PowerDown state. */
        uint64_t reserved_4_7          : 4;
        uint64_t lnpll_rst             : 4;  /**< [  3:  0](R/W) Reserved.
                                                                 Internal:
                                                                 LANE PLL reset state during EEE deep sleep shutdown PowerDown state. */
#else /* Word 0 - Little Endian */
        uint64_t lnpll_rst             : 4;  /**< [  3:  0](R/W) Reserved.
                                                                 Internal:
                                                                 LANE PLL reset state during EEE deep sleep shutdown PowerDown state. */
        uint64_t reserved_4_7          : 4;
        uint64_t tx_rst                : 4;  /**< [ 11:  8](R/W) Reserved.
                                                                 Internal:
                                                                 TX reset state during EEE deep sleep shutdown PowerDown state. */
        uint64_t reserved_12_15        : 4;
        uint64_t rx_rst                : 5;  /**< [ 20: 16](R/W) Reserved.
                                                                 Internal:
                                                                 RX reset state during EEE deep sleep shutdown PowerDown state. */
        uint64_t reserved_21_23        : 3;
        uint64_t eye_rst               : 5;  /**< [ 28: 24](R/W) Reserved.
                                                                 Internal:
                                                                 Eye monitor reset state during EEE deep sleep shutdown PowerDown state. */
        uint64_t reserved_29_31        : 3;
        uint64_t adapt_rst             : 1;  /**< [ 32: 32](R/W) Reserved.
                                                                 Internal:
                                                                 Rx Adapt state Pause (0) or Hard Reset (1) during EEE deep sleep shutdown PowerDown state. */
        uint64_t reserved_33_63        : 31;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_eee_rstshdn_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_eee_rstshdn_bcfg bdk_gsernx_lanex_eee_rstshdn_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_EEE_RSTSHDN_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_EEE_RSTSHDN_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090003770ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_EEE_RSTSHDN_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_EEE_RSTSHDN_BCFG(a,b) bdk_gsernx_lanex_eee_rstshdn_bcfg_t
#define bustype_BDK_GSERNX_LANEX_EEE_RSTSHDN_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_EEE_RSTSHDN_BCFG(a,b) "GSERNX_LANEX_EEE_RSTSHDN_BCFG"
#define device_bar_BDK_GSERNX_LANEX_EEE_RSTSHDN_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_EEE_RSTSHDN_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_EEE_RSTSHDN_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_eye_ctl
 *
 * GSER Lane PCS Lite Eye Data Gathering Control Register
 */
union bdk_gsernx_lanex_eye_ctl
{
    uint64_t u;
    struct bdk_gsernx_lanex_eye_ctl_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_57_63        : 7;
        uint64_t rst_n                 : 1;  /**< [ 56: 56](R/W) Clear and then set to reset the cycle count timer, the
                                                                 done indicator, and the eye error counts. */
        uint64_t reserved_49_55        : 7;
        uint64_t eye_en                : 1;  /**< [ 48: 48](R/W) Enable eye error counting (with or without cycle count limits,
                                                                 depending on GSERN()_LANE()_EYE_CTL[CYCLE_CNT_EN]). If the cycle count
                                                                 limit feature is not used, counting will stop when
                                                                 GSERN()_LANE()_EYE_CTL[EYE_EN] deasserts. Set this bit prior to
                                                                 deasserting GSERN()_LANE()_EYE_CTL[RST_N] to use the eye data gathering
                                                                 feature. */
        uint64_t reserved_41_47        : 7;
        uint64_t cycle_cnt_en          : 1;  /**< [ 40: 40](R/W) Enable use of GSERN()_LANE()_EYE_CTL[CYCLE_CNT] to limit number of cycles
                                                                 of PCS RX clock over which the errors are accumulated. Set this bit
                                                                 prior to deasserting GSERN()_LANE()_EYE_CTL[RST_N] to use cycle count
                                                                 limiting in the eye data gathering feature. */
        uint64_t cycle_cnt             : 40; /**< [ 39:  0](R/W) When enabled, this contains the count of PCS receive-clock cycles
                                                                 over which error counts are accumulated. Set
                                                                 GSERN()_LANE()_EYE_CTL[CYCLE_CNT] prior to deasserting
                                                                 GSERN()_LANE()_EYE_CTL[RST_N] to use cycle count limiting in the eye data
                                                                 gathering feature. */
#else /* Word 0 - Little Endian */
        uint64_t cycle_cnt             : 40; /**< [ 39:  0](R/W) When enabled, this contains the count of PCS receive-clock cycles
                                                                 over which error counts are accumulated. Set
                                                                 GSERN()_LANE()_EYE_CTL[CYCLE_CNT] prior to deasserting
                                                                 GSERN()_LANE()_EYE_CTL[RST_N] to use cycle count limiting in the eye data
                                                                 gathering feature. */
        uint64_t cycle_cnt_en          : 1;  /**< [ 40: 40](R/W) Enable use of GSERN()_LANE()_EYE_CTL[CYCLE_CNT] to limit number of cycles
                                                                 of PCS RX clock over which the errors are accumulated. Set this bit
                                                                 prior to deasserting GSERN()_LANE()_EYE_CTL[RST_N] to use cycle count
                                                                 limiting in the eye data gathering feature. */
        uint64_t reserved_41_47        : 7;
        uint64_t eye_en                : 1;  /**< [ 48: 48](R/W) Enable eye error counting (with or without cycle count limits,
                                                                 depending on GSERN()_LANE()_EYE_CTL[CYCLE_CNT_EN]). If the cycle count
                                                                 limit feature is not used, counting will stop when
                                                                 GSERN()_LANE()_EYE_CTL[EYE_EN] deasserts. Set this bit prior to
                                                                 deasserting GSERN()_LANE()_EYE_CTL[RST_N] to use the eye data gathering
                                                                 feature. */
        uint64_t reserved_49_55        : 7;
        uint64_t rst_n                 : 1;  /**< [ 56: 56](R/W) Clear and then set to reset the cycle count timer, the
                                                                 done indicator, and the eye error counts. */
        uint64_t reserved_57_63        : 7;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_eye_ctl_s cn; */
};
typedef union bdk_gsernx_lanex_eye_ctl bdk_gsernx_lanex_eye_ctl_t;

static inline uint64_t BDK_GSERNX_LANEX_EYE_CTL(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_EYE_CTL(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e0900007b0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_EYE_CTL", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_EYE_CTL(a,b) bdk_gsernx_lanex_eye_ctl_t
#define bustype_BDK_GSERNX_LANEX_EYE_CTL(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_EYE_CTL(a,b) "GSERNX_LANEX_EYE_CTL"
#define device_bar_BDK_GSERNX_LANEX_EYE_CTL(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_EYE_CTL(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_EYE_CTL(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_eye_ctl_2
 *
 * GSER Lane PCS Lite Eye Data Gathering Control Register 2
 * The low 4 bits in this register allow for shifting either the doutq or
 * doute_cal data by 1 or 2 UI to allow for an offset in the framing of the
 * deserialized data between these two data paths in the receiver. Software
 * will need to iterate eye or scope measurement with identical settings
 * for the quadurature and eye datapaths, adjusting the shift bits in this
 * register until no differences are accumulated. (Note that shifting both
 * doutq and doute_cal would typically not be useful, since the resulting
 * alignment would be the same as if neither were shifted.)
 *
 * The remaining bits control various aspects of the eye monitor error
 * counting logic.
 */
union bdk_gsernx_lanex_eye_ctl_2
{
    uint64_t u;
    struct bdk_gsernx_lanex_eye_ctl_2_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_41_63        : 23;
        uint64_t capture_ones_en       : 1;  /**< [ 40: 40](R/W) Set to enable capture ones, so that a full eye
                                                                 diagram can be generated. deassert to capture half an eye. The
                                                                 default is to enable the full eye. */
        uint64_t capture_ones          : 1;  /**< [ 39: 39](R/W) Set to choose to capture eye data for ones bits in the serial
                                                                 order in the received data stream. Clear to choose to capture
                                                                 eye data for zero bits in serial order in the received data stream.
                                                                 Program as desired before enabling eye data capture. Unlike
                                                                 [CAPTURE_EDGEMODE], this signal sets the mode within the eye monitor
                                                                 only.
                                                                 For 00 bit sequence errors, use [CAPTURE_ONES]=0 and [CAPTURE_TRANS]=0.
                                                                 For 01 bit sequence errors, use [CAPTURE_ONES]=0 and [CAPTURE_TRANS]=1.
                                                                 For 10 bit sequence errors, use [CAPTURE_ONES]=1 and [CAPTURE_TRANS]=1.
                                                                 For 11 bit sequence errors, use [CAPTURE_ONES]=1 and [CAPTURE_TRANS]=0. */
        uint64_t reserved_33_38        : 6;
        uint64_t eye_adapt_en          : 1;  /**< [ 32: 32](R/W) Set to enable eye path in the RX calibration DFE (rxcaldfe).
                                                                 It can be asserted/deasserted with GSERN()_LANE()_EYE_CTL[EYE_EN]. It must be
                                                                 enabled for [CAPTURE_EDGEMODE] and GSERN()_LANE()_RX_OS_5_BCFG[C1_E_ADJUST] to
                                                                 be applied to the eye/E path. */
        uint64_t reserved_25_31        : 7;
        uint64_t capture_edgemode      : 1;  /**< [ 24: 24](R/W) Set to choose capture of eye data for bits that transitioned in
                                                                 serial order in the received data stream. Clear to choose capture
                                                                 of eye data for bits that did not transitioned in serial order in
                                                                 the received data stream. Program as desired before enabling eye data
                                                                 capture. Unlike [CAPTURE_TRANS] and GSERN()_LANE()_RX_8_BCFG[DFE_EDGEMODE_OVRD], this signal
                                                                 controls the calculation of the c1 bits for the eye/E path. */
        uint64_t reserved_17_23        : 7;
        uint64_t capture_trans         : 1;  /**< [ 16: 16](R/W) Set to choose capture of eye data for bits that transitioned in
                                                                 serial order in the received data stream. Clear to choose capture
                                                                 of eye data for bits that did not transitioned in serial order in
                                                                 the received data stream. Program as desired before enabling eye data
                                                                 capture. Unlike [CAPTURE_EDGEMODE], this signal sets the mode within
                                                                 the eye monitor only.
                                                                 For 00 bit sequence errors, use [CAPTURE_ONES]=0 and [CAPTURE_TRANS]=0.
                                                                 For 01 bit sequence errors, use [CAPTURE_ONES]=0 and [CAPTURE_TRANS]=1.
                                                                 For 10 bit sequence errors, use [CAPTURE_ONES]=1 and [CAPTURE_TRANS]=1.
                                                                 For 11 bit sequence errors, use [CAPTURE_ONES]=1 and [CAPTURE_TRANS]=0. */
        uint64_t reserved_10_15        : 6;
        uint64_t dbl_shift_doute       : 1;  /**< [  9:  9](R/W) Set to shift the doute_cal (receiver eye calibration path) data
                                                                 by 2 UI earlier to align with doutq for eye and scope comparison
                                                                 logic. Only data captured in the eye or scope logic is impacted by
                                                                 this setting. When asserted, the double shift control has priority
                                                                 over the (single) shift control. Program as desired before enabling eye
                                                                 data capture. */
        uint64_t shift_doute           : 1;  /**< [  8:  8](R/W) Set to shift the doute_cal (receiver eye path) data by 1 UI
                                                                 earlier to align with doutq for eye and scope comparison logic. Only
                                                                 data captured in the eye or scope logic is impacted by this
                                                                 setting. Program as desired before enabling eye data capture. */
        uint64_t reserved_2_7          : 6;
        uint64_t dbl_shift_doutq       : 1;  /**< [  1:  1](R/W) Set to shift the doutq (receiver normal quadrature path) data by
                                                                 2 UI earlier to align with doute_cal for eye and scope comparison
                                                                 logic. Only data captured in the eye or scope logic is impacted by
                                                                 this setting. When asserted, the double shift control has priority
                                                                 over the (single) shift control. Program as desired before enabling eye
                                                                 data capture. */
        uint64_t shift_doutq           : 1;  /**< [  0:  0](R/W) Set to shift the doutq (receiver normal quadrature path) data by
                                                                 1 UI earlier to align with doute_cal for eye and scope comparison
                                                                 logic. Only data captured in the eye or scope logic is impacted by
                                                                 this setting. Program as desired before enabling eye data capture. */
#else /* Word 0 - Little Endian */
        uint64_t shift_doutq           : 1;  /**< [  0:  0](R/W) Set to shift the doutq (receiver normal quadrature path) data by
                                                                 1 UI earlier to align with doute_cal for eye and scope comparison
                                                                 logic. Only data captured in the eye or scope logic is impacted by
                                                                 this setting. Program as desired before enabling eye data capture. */
        uint64_t dbl_shift_doutq       : 1;  /**< [  1:  1](R/W) Set to shift the doutq (receiver normal quadrature path) data by
                                                                 2 UI earlier to align with doute_cal for eye and scope comparison
                                                                 logic. Only data captured in the eye or scope logic is impacted by
                                                                 this setting. When asserted, the double shift control has priority
                                                                 over the (single) shift control. Program as desired before enabling eye
                                                                 data capture. */
        uint64_t reserved_2_7          : 6;
        uint64_t shift_doute           : 1;  /**< [  8:  8](R/W) Set to shift the doute_cal (receiver eye path) data by 1 UI
                                                                 earlier to align with doutq for eye and scope comparison logic. Only
                                                                 data captured in the eye or scope logic is impacted by this
                                                                 setting. Program as desired before enabling eye data capture. */
        uint64_t dbl_shift_doute       : 1;  /**< [  9:  9](R/W) Set to shift the doute_cal (receiver eye calibration path) data
                                                                 by 2 UI earlier to align with doutq for eye and scope comparison
                                                                 logic. Only data captured in the eye or scope logic is impacted by
                                                                 this setting. When asserted, the double shift control has priority
                                                                 over the (single) shift control. Program as desired before enabling eye
                                                                 data capture. */
        uint64_t reserved_10_15        : 6;
        uint64_t capture_trans         : 1;  /**< [ 16: 16](R/W) Set to choose capture of eye data for bits that transitioned in
                                                                 serial order in the received data stream. Clear to choose capture
                                                                 of eye data for bits that did not transitioned in serial order in
                                                                 the received data stream. Program as desired before enabling eye data
                                                                 capture. Unlike [CAPTURE_EDGEMODE], this signal sets the mode within
                                                                 the eye monitor only.
                                                                 For 00 bit sequence errors, use [CAPTURE_ONES]=0 and [CAPTURE_TRANS]=0.
                                                                 For 01 bit sequence errors, use [CAPTURE_ONES]=0 and [CAPTURE_TRANS]=1.
                                                                 For 10 bit sequence errors, use [CAPTURE_ONES]=1 and [CAPTURE_TRANS]=1.
                                                                 For 11 bit sequence errors, use [CAPTURE_ONES]=1 and [CAPTURE_TRANS]=0. */
        uint64_t reserved_17_23        : 7;
        uint64_t capture_edgemode      : 1;  /**< [ 24: 24](R/W) Set to choose capture of eye data for bits that transitioned in
                                                                 serial order in the received data stream. Clear to choose capture
                                                                 of eye data for bits that did not transitioned in serial order in
                                                                 the received data stream. Program as desired before enabling eye data
                                                                 capture. Unlike [CAPTURE_TRANS] and GSERN()_LANE()_RX_8_BCFG[DFE_EDGEMODE_OVRD], this signal
                                                                 controls the calculation of the c1 bits for the eye/E path. */
        uint64_t reserved_25_31        : 7;
        uint64_t eye_adapt_en          : 1;  /**< [ 32: 32](R/W) Set to enable eye path in the RX calibration DFE (rxcaldfe).
                                                                 It can be asserted/deasserted with GSERN()_LANE()_EYE_CTL[EYE_EN]. It must be
                                                                 enabled for [CAPTURE_EDGEMODE] and GSERN()_LANE()_RX_OS_5_BCFG[C1_E_ADJUST] to
                                                                 be applied to the eye/E path. */
        uint64_t reserved_33_38        : 6;
        uint64_t capture_ones          : 1;  /**< [ 39: 39](R/W) Set to choose to capture eye data for ones bits in the serial
                                                                 order in the received data stream. Clear to choose to capture
                                                                 eye data for zero bits in serial order in the received data stream.
                                                                 Program as desired before enabling eye data capture. Unlike
                                                                 [CAPTURE_EDGEMODE], this signal sets the mode within the eye monitor
                                                                 only.
                                                                 For 00 bit sequence errors, use [CAPTURE_ONES]=0 and [CAPTURE_TRANS]=0.
                                                                 For 01 bit sequence errors, use [CAPTURE_ONES]=0 and [CAPTURE_TRANS]=1.
                                                                 For 10 bit sequence errors, use [CAPTURE_ONES]=1 and [CAPTURE_TRANS]=1.
                                                                 For 11 bit sequence errors, use [CAPTURE_ONES]=1 and [CAPTURE_TRANS]=0. */
        uint64_t capture_ones_en       : 1;  /**< [ 40: 40](R/W) Set to enable capture ones, so that a full eye
                                                                 diagram can be generated. deassert to capture half an eye. The
                                                                 default is to enable the full eye. */
        uint64_t reserved_41_63        : 23;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_eye_ctl_2_s cn; */
};
typedef union bdk_gsernx_lanex_eye_ctl_2 bdk_gsernx_lanex_eye_ctl_2_t;

static inline uint64_t BDK_GSERNX_LANEX_EYE_CTL_2(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_EYE_CTL_2(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e0900007c0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_EYE_CTL_2", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_EYE_CTL_2(a,b) bdk_gsernx_lanex_eye_ctl_2_t
#define bustype_BDK_GSERNX_LANEX_EYE_CTL_2(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_EYE_CTL_2(a,b) "GSERNX_LANEX_EYE_CTL_2"
#define device_bar_BDK_GSERNX_LANEX_EYE_CTL_2(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_EYE_CTL_2(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_EYE_CTL_2(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_eye_dat
 *
 * GSER Lane PCS Lite Eye Data Gathering Result Register
 */
union bdk_gsernx_lanex_eye_dat
{
    uint64_t u;
    struct bdk_gsernx_lanex_eye_dat_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_50_63        : 14;
        uint64_t cycle_cnt_done        : 1;  /**< [ 49: 49](RO/H) Indicates the GSERN()_LANE()_EYE_CTL[CYCLE_CNT] has expired if
                                                                 GSERN()_LANE()_EYE_CTL[CYCLE_CNT_EN] is asserted. If
                                                                 GSERN()_LANE()_EYE_CTL[CYCLE_CNT_EN] is deasserted, this bit will always
                                                                 read as asserted. */
        uint64_t reserved_48           : 1;
        uint64_t err_cnt_ovf           : 1;  /**< [ 47: 47](RO/H) When set indicates GSERN()_LANE()_EYE_DAT[ERR_CNT] overflowed and is
                                                                 not accurate. */
        uint64_t reserved_45_46        : 2;
        uint64_t err_cnt               : 45; /**< [ 44:  0](RO/H) Count of bit errors seen in doute_cal relative to doutq. If
                                                                 GSERN()_LANE()_EYE_CTL[CYCLE_CNT_EN] and GSERN()_LANE()_EYE_DAT[CYCLE_CNT_DONE]
                                                                 are not both asserted, GSERN()_LANE()_EYE_DAT[ERR_CNT] may not be reliable
                                                                 unless GSERN()_LANE()_EYE_CTL[EYE_EN] is first cleared (to stop the
                                                                 error counter). */
#else /* Word 0 - Little Endian */
        uint64_t err_cnt               : 45; /**< [ 44:  0](RO/H) Count of bit errors seen in doute_cal relative to doutq. If
                                                                 GSERN()_LANE()_EYE_CTL[CYCLE_CNT_EN] and GSERN()_LANE()_EYE_DAT[CYCLE_CNT_DONE]
                                                                 are not both asserted, GSERN()_LANE()_EYE_DAT[ERR_CNT] may not be reliable
                                                                 unless GSERN()_LANE()_EYE_CTL[EYE_EN] is first cleared (to stop the
                                                                 error counter). */
        uint64_t reserved_45_46        : 2;
        uint64_t err_cnt_ovf           : 1;  /**< [ 47: 47](RO/H) When set indicates GSERN()_LANE()_EYE_DAT[ERR_CNT] overflowed and is
                                                                 not accurate. */
        uint64_t reserved_48           : 1;
        uint64_t cycle_cnt_done        : 1;  /**< [ 49: 49](RO/H) Indicates the GSERN()_LANE()_EYE_CTL[CYCLE_CNT] has expired if
                                                                 GSERN()_LANE()_EYE_CTL[CYCLE_CNT_EN] is asserted. If
                                                                 GSERN()_LANE()_EYE_CTL[CYCLE_CNT_EN] is deasserted, this bit will always
                                                                 read as asserted. */
        uint64_t reserved_50_63        : 14;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_eye_dat_s cn; */
};
typedef union bdk_gsernx_lanex_eye_dat bdk_gsernx_lanex_eye_dat_t;

static inline uint64_t BDK_GSERNX_LANEX_EYE_DAT(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_EYE_DAT(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e0900007d0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_EYE_DAT", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_EYE_DAT(a,b) bdk_gsernx_lanex_eye_dat_t
#define bustype_BDK_GSERNX_LANEX_EYE_DAT(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_EYE_DAT(a,b) "GSERNX_LANEX_EYE_DAT"
#define device_bar_BDK_GSERNX_LANEX_EYE_DAT(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_EYE_DAT(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_EYE_DAT(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_idledet_hys
 *
 * GSER Lane Receiver Idle Detector Hysteresis Control Register
 * Parameters controlling hystersis in the custom receiver's idle detector. When
 * enabled, the hysteresis function adjusts the idle detector offset to bias the
 * detector in favor of the current idle state after the current state has been stable
 * for some time. The [HYS_CNT], [HYS_POS], and [HYS_NEG] control fields should be set
 * before or concurrently with writing [HYS_EN] to 1 when the hystersis function is to
 * be used.
 */
union bdk_gsernx_lanex_idledet_hys
{
    uint64_t u;
    struct bdk_gsernx_lanex_idledet_hys_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_17_63        : 47;
        uint64_t hys_en                : 1;  /**< [ 16: 16](R/W) Enable the hysteresis function. */
        uint64_t reserved_14_15        : 2;
        uint64_t hys_cnt               : 6;  /**< [ 13:  8](R/W) Count of 10 ns cycles after a change in idle offset hysteresis direction before a new
                                                                 hysteresis direction will be applied. */
        uint64_t hys_pos               : 4;  /**< [  7:  4](R/W) Offset shift to bias the idle detector in favor of not idle after the the
                                                                 detector has reported not idle for [HYS_CNT] cycles. The offset shift is
                                                                 incremented approximately 5 mV per step. */
        uint64_t hys_neg               : 4;  /**< [  3:  0](R/W) Offset shift to bias the idle detector in favor of idle after the detector has
                                                                 reported idle for [HYS_CNT] cycles. The offset shift is incremented
                                                                 approximately 5 mV per step. */
#else /* Word 0 - Little Endian */
        uint64_t hys_neg               : 4;  /**< [  3:  0](R/W) Offset shift to bias the idle detector in favor of idle after the detector has
                                                                 reported idle for [HYS_CNT] cycles. The offset shift is incremented
                                                                 approximately 5 mV per step. */
        uint64_t hys_pos               : 4;  /**< [  7:  4](R/W) Offset shift to bias the idle detector in favor of not idle after the the
                                                                 detector has reported not idle for [HYS_CNT] cycles. The offset shift is
                                                                 incremented approximately 5 mV per step. */
        uint64_t hys_cnt               : 6;  /**< [ 13:  8](R/W) Count of 10 ns cycles after a change in idle offset hysteresis direction before a new
                                                                 hysteresis direction will be applied. */
        uint64_t reserved_14_15        : 2;
        uint64_t hys_en                : 1;  /**< [ 16: 16](R/W) Enable the hysteresis function. */
        uint64_t reserved_17_63        : 47;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_idledet_hys_s cn; */
};
typedef union bdk_gsernx_lanex_idledet_hys bdk_gsernx_lanex_idledet_hys_t;

static inline uint64_t BDK_GSERNX_LANEX_IDLEDET_HYS(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_IDLEDET_HYS(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e0900010f0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_IDLEDET_HYS", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_IDLEDET_HYS(a,b) bdk_gsernx_lanex_idledet_hys_t
#define bustype_BDK_GSERNX_LANEX_IDLEDET_HYS(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_IDLEDET_HYS(a,b) "GSERNX_LANEX_IDLEDET_HYS"
#define device_bar_BDK_GSERNX_LANEX_IDLEDET_HYS(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_IDLEDET_HYS(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_IDLEDET_HYS(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_imapsel_bcfg
 *
 * GSER Lane Interpolator Map Selection Register
 * Selection control for the interpolator map. Set prior to bringing the analog
 * receiver out of reset.
 */
union bdk_gsernx_lanex_imapsel_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_imapsel_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_5_63         : 59;
        uint64_t map_case              : 5;  /**< [  4:  0](R/W) Interpolator map case selector.
                                                                   0x0 = data_500_erc_2_c_0_20_mean.
                                                                   0x1 = data_407_erc_2_c_0_20_mean.
                                                                   0x2 = data_333_erc_3_c_0_20_mean.
                                                                   0x3 = data_167_erc_5_c_0_20_mean.
                                                                   0x4 = data_80_erc_8_c_0_20_mean.
                                                                   0x5 = data_63_erc_10_c_0_20_mean.
                                                                   0x6 = data_50_erc_11_c_0_20_mean.
                                                                   0x7 = data_40_erc_13_c_0_20_mean.
                                                                   0x8 = data_39_erc_14_c_0_20_mean.
                                                                   0x9 = data_36_erc_15_c_0_20_mean.
                                                                   0xa = data_31_erc_15_c_0_20_mean.
                                                                   0xf = {GSERN()_LANE()_MAP1, GSERN()_LANE()_MAP0}.
                                                                   all others = 0. */
#else /* Word 0 - Little Endian */
        uint64_t map_case              : 5;  /**< [  4:  0](R/W) Interpolator map case selector.
                                                                   0x0 = data_500_erc_2_c_0_20_mean.
                                                                   0x1 = data_407_erc_2_c_0_20_mean.
                                                                   0x2 = data_333_erc_3_c_0_20_mean.
                                                                   0x3 = data_167_erc_5_c_0_20_mean.
                                                                   0x4 = data_80_erc_8_c_0_20_mean.
                                                                   0x5 = data_63_erc_10_c_0_20_mean.
                                                                   0x6 = data_50_erc_11_c_0_20_mean.
                                                                   0x7 = data_40_erc_13_c_0_20_mean.
                                                                   0x8 = data_39_erc_14_c_0_20_mean.
                                                                   0x9 = data_36_erc_15_c_0_20_mean.
                                                                   0xa = data_31_erc_15_c_0_20_mean.
                                                                   0xf = {GSERN()_LANE()_MAP1, GSERN()_LANE()_MAP0}.
                                                                   all others = 0. */
        uint64_t reserved_5_63         : 59;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_imapsel_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_imapsel_bcfg bdk_gsernx_lanex_imapsel_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_IMAPSEL_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_IMAPSEL_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090001df0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_IMAPSEL_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_IMAPSEL_BCFG(a,b) bdk_gsernx_lanex_imapsel_bcfg_t
#define bustype_BDK_GSERNX_LANEX_IMAPSEL_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_IMAPSEL_BCFG(a,b) "GSERNX_LANEX_IMAPSEL_BCFG"
#define device_bar_BDK_GSERNX_LANEX_IMAPSEL_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_IMAPSEL_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_IMAPSEL_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_init_bsts
 *
 * GSER Lane Initialization Base-level Status Register
 */
union bdk_gsernx_lanex_init_bsts
{
    uint64_t u;
    struct bdk_gsernx_lanex_init_bsts_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_43_63        : 21;
        uint64_t eye_deep_idle         : 1;  /**< [ 42: 42](RO/H) Receiver eye path state is deep idle. */
        uint64_t eye_rst_sm_complete   : 1;  /**< [ 41: 41](RO/H) Indicates that the lane eye receive reset state machine has
                                                                 completed. If [EYE_RST_SM_COMPLETE] is set and [EYE_READY] is not,
                                                                 there may be CSR register setting which prevent the receiver eye data
                                                                 path from being ready for use, e.g., power-down or reset overrides. */
        uint64_t eye_ready             : 1;  /**< [ 40: 40](RO/H) Lane analog receiver eye data path reset state machine completion
                                                                 status indicating that the lane receiver eye path ready for use. */
        uint64_t tx_pcie_p2            : 1;  /**< [ 39: 39](RO/H) Transmitter state is PCIe power state P2. */
        uint64_t tx_pcie_p1s2          : 1;  /**< [ 38: 38](RO/H) Transmitter state is PCIe power state P1 substate 2. */
        uint64_t tx_pcie_p1s1          : 1;  /**< [ 37: 37](RO/H) Transmitter state is PCIe power state P1 substate 1. */
        uint64_t tx_pcie_p1cpm         : 1;  /**< [ 36: 36](RO/H) Transmitter state is PCIe power state P1.CPM (entry to P1 substates
                                                                 or clock disabled state for normal P1 with clock PM support). */
        uint64_t tx_pcie_p1            : 1;  /**< [ 35: 35](RO/H) Transmitter state is PCIe power state P1. */
        uint64_t tx_deep_idle          : 1;  /**< [ 34: 34](RO/H) Transmitter state is deep idle. */
        uint64_t tx_rst_sm_complete    : 1;  /**< [ 33: 33](RO/H) Indicates that the lane transmitter reset state machine has
                                                                 completed. If [TX_RST_SM_COMPLETE] is set and [TX_READY] is not,
                                                                 there may be CSR register setting which prevent the transmitter from
                                                                 being ready for use, e.g., power-down or reset overrides. */
        uint64_t tx_ready              : 1;  /**< [ 32: 32](RO/H) Lane analog transmitter reset state machine completion status
                                                                 indicating that the lane transmitter is in "idle" configuration and
                                                                 ready to start transmitting data after changing the transmitter drive
                                                                 settings to transmit data. */
        uint64_t rx_pcie_p2            : 1;  /**< [ 31: 31](RO/H) Receiver state is PCIe power state P2. */
        uint64_t rx_pcie_p1s2          : 1;  /**< [ 30: 30](RO/H) Receiver state is PCIe power state P1 substate 2. */
        uint64_t rx_pcie_p1s1          : 1;  /**< [ 29: 29](RO/H) Receiver state is PCIe power state P1 substate 1. */
        uint64_t rx_pcie_p1cpm         : 1;  /**< [ 28: 28](RO/H) Receiver state is PCIe power state P1.CPM (entry to P1 substates or
                                                                 clock disabled state for normal P1 with clock PM support). */
        uint64_t rx_pcie_p1            : 1;  /**< [ 27: 27](RO/H) Receiver state is PCIe power state P1. */
        uint64_t rx_deep_idle          : 1;  /**< [ 26: 26](RO/H) Receiver state is deep idle. */
        uint64_t rx_rst_sm_complete    : 1;  /**< [ 25: 25](RO/H) Indicates that the lane receiver reset state machine has
                                                                 completed. If [RX_RST_SM_COMPLETE] is set and [RX_READY] is not,
                                                                 there may be CSR register setting which prevent the receiver from
                                                                 being ready for use, e.g., power-down or reset overrides. */
        uint64_t rx_ready              : 1;  /**< [ 24: 24](RO/H) Lane analog receiver reset state machine completion status that the
                                                                 reset sequence has completed and the lane receiver is ready for afe
                                                                 and dfe adaptation. */
        uint64_t pll_cp_cal            : 4;  /**< [ 23: 20](RO/H) PLL calibration state machine's resulting charge pump setting. Only
                                                                 valid if [CAL_READY] is set. */
        uint64_t reserved_17_19        : 3;
        uint64_t pll_band_cal          : 5;  /**< [ 16: 12](RO/H) PLL calibration state machine's resulting VCO band setting. Only valid
                                                                 if [CAL_READY] is set. */
        uint64_t pll_pcie_p2           : 1;  /**< [ 11: 11](RO/H) Lane PLL state is PCIe power state P2. */
        uint64_t pll_pcie_p1s2         : 1;  /**< [ 10: 10](RO/H) Lane PLL state is PCIe power state P1 substate 2. */
        uint64_t pll_pcie_p1s1         : 1;  /**< [  9:  9](RO/H) Lane PLL state is PCIe power state P1 substate 1. */
        uint64_t pll_pcie_p1cpm        : 1;  /**< [  8:  8](RO/H) Lane PLL state is PCIe power state P1.CPM (entry to P1 substates or
                                                                 clock disabled state for normal P1 with clock PM support). */
        uint64_t pll_pcie_p1           : 1;  /**< [  7:  7](RO/H) Lane PLL state is PCIe power state P1. */
        uint64_t pll_deep_idle         : 1;  /**< [  6:  6](RO/H) Lane PLL state is deep idle. */
        uint64_t rst_sm_complete       : 1;  /**< [  5:  5](RO/H) PLL reset state machine has completed. If
                                                                 [RST_SM_COMPLETE] is set and [RST_SM_READY] is not, there may still
                                                                 be CSR register settings preventing the PLL from being ready
                                                                 for use, e.g., power-down or reset overrides. */
        uint64_t rst_sm_ready          : 1;  /**< [  4:  4](RO/H) PLL reset state machine status indicating that the reset
                                                                 sequence has completed and this PLL is ready for use. */
        uint64_t lock                  : 1;  /**< [  3:  3](RO/H) PLL lock status; only valid if [LOCK_READY] is set. */
        uint64_t lock_ready            : 1;  /**< [  2:  2](RO/H) PLL lock status check is complete following most recent PLL
                                                                 reset or assertion of GSERN()_LANE()_RST1_BCFG[LOCK_CHECK]. */
        uint64_t cal_fail              : 1;  /**< [  1:  1](RO/H) PLL calibration failed; valid only if [CAL_READY] is set. */
        uint64_t cal_ready             : 1;  /**< [  0:  0](RO/H) PLL calibration completed */
#else /* Word 0 - Little Endian */
        uint64_t cal_ready             : 1;  /**< [  0:  0](RO/H) PLL calibration completed */
        uint64_t cal_fail              : 1;  /**< [  1:  1](RO/H) PLL calibration failed; valid only if [CAL_READY] is set. */
        uint64_t lock_ready            : 1;  /**< [  2:  2](RO/H) PLL lock status check is complete following most recent PLL
                                                                 reset or assertion of GSERN()_LANE()_RST1_BCFG[LOCK_CHECK]. */
        uint64_t lock                  : 1;  /**< [  3:  3](RO/H) PLL lock status; only valid if [LOCK_READY] is set. */
        uint64_t rst_sm_ready          : 1;  /**< [  4:  4](RO/H) PLL reset state machine status indicating that the reset
                                                                 sequence has completed and this PLL is ready for use. */
        uint64_t rst_sm_complete       : 1;  /**< [  5:  5](RO/H) PLL reset state machine has completed. If
                                                                 [RST_SM_COMPLETE] is set and [RST_SM_READY] is not, there may still
                                                                 be CSR register settings preventing the PLL from being ready
                                                                 for use, e.g., power-down or reset overrides. */
        uint64_t pll_deep_idle         : 1;  /**< [  6:  6](RO/H) Lane PLL state is deep idle. */
        uint64_t pll_pcie_p1           : 1;  /**< [  7:  7](RO/H) Lane PLL state is PCIe power state P1. */
        uint64_t pll_pcie_p1cpm        : 1;  /**< [  8:  8](RO/H) Lane PLL state is PCIe power state P1.CPM (entry to P1 substates or
                                                                 clock disabled state for normal P1 with clock PM support). */
        uint64_t pll_pcie_p1s1         : 1;  /**< [  9:  9](RO/H) Lane PLL state is PCIe power state P1 substate 1. */
        uint64_t pll_pcie_p1s2         : 1;  /**< [ 10: 10](RO/H) Lane PLL state is PCIe power state P1 substate 2. */
        uint64_t pll_pcie_p2           : 1;  /**< [ 11: 11](RO/H) Lane PLL state is PCIe power state P2. */
        uint64_t pll_band_cal          : 5;  /**< [ 16: 12](RO/H) PLL calibration state machine's resulting VCO band setting. Only valid
                                                                 if [CAL_READY] is set. */
        uint64_t reserved_17_19        : 3;
        uint64_t pll_cp_cal            : 4;  /**< [ 23: 20](RO/H) PLL calibration state machine's resulting charge pump setting. Only
                                                                 valid if [CAL_READY] is set. */
        uint64_t rx_ready              : 1;  /**< [ 24: 24](RO/H) Lane analog receiver reset state machine completion status that the
                                                                 reset sequence has completed and the lane receiver is ready for afe
                                                                 and dfe adaptation. */
        uint64_t rx_rst_sm_complete    : 1;  /**< [ 25: 25](RO/H) Indicates that the lane receiver reset state machine has
                                                                 completed. If [RX_RST_SM_COMPLETE] is set and [RX_READY] is not,
                                                                 there may be CSR register setting which prevent the receiver from
                                                                 being ready for use, e.g., power-down or reset overrides. */
        uint64_t rx_deep_idle          : 1;  /**< [ 26: 26](RO/H) Receiver state is deep idle. */
        uint64_t rx_pcie_p1            : 1;  /**< [ 27: 27](RO/H) Receiver state is PCIe power state P1. */
        uint64_t rx_pcie_p1cpm         : 1;  /**< [ 28: 28](RO/H) Receiver state is PCIe power state P1.CPM (entry to P1 substates or
                                                                 clock disabled state for normal P1 with clock PM support). */
        uint64_t rx_pcie_p1s1          : 1;  /**< [ 29: 29](RO/H) Receiver state is PCIe power state P1 substate 1. */
        uint64_t rx_pcie_p1s2          : 1;  /**< [ 30: 30](RO/H) Receiver state is PCIe power state P1 substate 2. */
        uint64_t rx_pcie_p2            : 1;  /**< [ 31: 31](RO/H) Receiver state is PCIe power state P2. */
        uint64_t tx_ready              : 1;  /**< [ 32: 32](RO/H) Lane analog transmitter reset state machine completion status
                                                                 indicating that the lane transmitter is in "idle" configuration and
                                                                 ready to start transmitting data after changing the transmitter drive
                                                                 settings to transmit data. */
        uint64_t tx_rst_sm_complete    : 1;  /**< [ 33: 33](RO/H) Indicates that the lane transmitter reset state machine has
                                                                 completed. If [TX_RST_SM_COMPLETE] is set and [TX_READY] is not,
                                                                 there may be CSR register setting which prevent the transmitter from
                                                                 being ready for use, e.g., power-down or reset overrides. */
        uint64_t tx_deep_idle          : 1;  /**< [ 34: 34](RO/H) Transmitter state is deep idle. */
        uint64_t tx_pcie_p1            : 1;  /**< [ 35: 35](RO/H) Transmitter state is PCIe power state P1. */
        uint64_t tx_pcie_p1cpm         : 1;  /**< [ 36: 36](RO/H) Transmitter state is PCIe power state P1.CPM (entry to P1 substates
                                                                 or clock disabled state for normal P1 with clock PM support). */
        uint64_t tx_pcie_p1s1          : 1;  /**< [ 37: 37](RO/H) Transmitter state is PCIe power state P1 substate 1. */
        uint64_t tx_pcie_p1s2          : 1;  /**< [ 38: 38](RO/H) Transmitter state is PCIe power state P1 substate 2. */
        uint64_t tx_pcie_p2            : 1;  /**< [ 39: 39](RO/H) Transmitter state is PCIe power state P2. */
        uint64_t eye_ready             : 1;  /**< [ 40: 40](RO/H) Lane analog receiver eye data path reset state machine completion
                                                                 status indicating that the lane receiver eye path ready for use. */
        uint64_t eye_rst_sm_complete   : 1;  /**< [ 41: 41](RO/H) Indicates that the lane eye receive reset state machine has
                                                                 completed. If [EYE_RST_SM_COMPLETE] is set and [EYE_READY] is not,
                                                                 there may be CSR register setting which prevent the receiver eye data
                                                                 path from being ready for use, e.g., power-down or reset overrides. */
        uint64_t eye_deep_idle         : 1;  /**< [ 42: 42](RO/H) Receiver eye path state is deep idle. */
        uint64_t reserved_43_63        : 21;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_init_bsts_s cn; */
};
typedef union bdk_gsernx_lanex_init_bsts bdk_gsernx_lanex_init_bsts_t;

static inline uint64_t BDK_GSERNX_LANEX_INIT_BSTS(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_INIT_BSTS(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000480ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_INIT_BSTS", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_INIT_BSTS(a,b) bdk_gsernx_lanex_init_bsts_t
#define bustype_BDK_GSERNX_LANEX_INIT_BSTS(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_INIT_BSTS(a,b) "GSERNX_LANEX_INIT_BSTS"
#define device_bar_BDK_GSERNX_LANEX_INIT_BSTS(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_INIT_BSTS(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_INIT_BSTS(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_lt_bcfg
 *
 * GSER Lane PCS Lite Configuration (Transmit, Receive, and Loopback) Register
 */
union bdk_gsernx_lanex_lt_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_lt_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t inj_err_cnt_rst_n     : 1;  /**< [ 63: 63](R/W/H) Set to zero to hold the error injection counter in reset. */
        uint64_t inj_err_cnt_en        : 1;  /**< [ 62: 62](R/W) PCS will inject a single bit error every other cycle in the transmit
                                                                 data stream at some time following an assertion of
                                                                 [INJ_ERR_CNT_EN]. The number of error cycles to insert is set by
                                                                 [INJ_ERR_CNT_LEN] and it increments the error bit index each
                                                                 cycle. Once all the errors have been transmitted GSER sets
                                                                 GSERN()_LANE()_LT_BSTS[INJ_ERR_CNT_DONE]. Injection of a second set of
                                                                 errors will require clearing the counter by holding [INJ_ERR_CNT_RST_N],
                                                                 asserting [INJ_ERR_CNT_EN], then releasing [INJ_ERR_CNT_RST_N]. This mode
                                                                 should be used separately from [INJ_ERR_BURST_EN] and only one of them
                                                                 can be asserted at any time. */
        uint64_t inj_err_cnt_len       : 6;  /**< [ 61: 56](R/W) Tells the PCS lite error injection logic the total number of bit errors
                                                                 to insert in a walking pattern. Every other cycle 1 bit error will be
                                                                 inserted in a walking index up to the count value specified. The max
                                                                 value is set by the valid data width transmitted. For example, if 8
                                                                 bits of valid data are transmitted each cycle only from 1-8 count
                                                                 values can be set. The same for 10, 16, 20, 32, and 40 bits. */
        uint64_t reserved_55           : 1;
        uint64_t inj_err_burst_en      : 1;  /**< [ 54: 54](R/W) PCS will inject a contiguous set of error bits in the transmit data
                                                                 stream at some time following an assertion of [INJ_ERR_BURST_EN]. The
                                                                 length of contiguous errors is set by [INJ_ERR_BURST_LEN]. Injection
                                                                 of a second set of errors will require deasserting and then
                                                                 asserting [INJ_ERR_BURST_EN] again. This mode should be used separately
                                                                 from [INJ_ERR_CNT_EN] and only one of them can be asserted at any time. */
        uint64_t inj_err_burst_len     : 6;  /**< [ 53: 48](R/W) Tells the PCS lite error injection logic what length the burst error
                                                                 mask should be. The max value is set by the valid data width
                                                                 transmitted. For example, if 8 bits of valid data are transmitted
                                                                 each cycle, only from 1-8 bits of contiguous errors can be set. The
                                                                 same for 10, 16, 20, 32, and 40 bits. */
        uint64_t reserved_44_47        : 4;
        uint64_t pat_dp_width          : 3;  /**< [ 43: 41](R/W/H) Tells the pattern memory generator/checker logic what width to use
                                                                 in the generator and checker data paths.
                                                                   0x0 = 8 (requires bit-stuffing/unstuffing or for debug).
                                                                   0x1 = 10 (requires bit-stuffing/unstuffing or for debug).
                                                                   0x2 = 16.
                                                                   0x3 = 20.
                                                                   0x4 = 32.
                                                                   0x5 = 40.

                                                                 Checking of received data
                                                                 works correctly only for clock divider ratios of 10, 20, and 40. The
                                                                 transmit data sequence is correct for all clock ratios. */
        uint64_t prbs_dp_width         : 3;  /**< [ 40: 38](R/W/H) Tells the PCS lite layer PRBS logic what width to use in the
                                                                 generator and checker data paths.
                                                                   0x0 = 8 (requires bit-stuffing/unstuffing or for debug).
                                                                   0x1 = 10 (requires bit-stuffing/unstuffing or for debug).
                                                                   0x2 = 16.
                                                                   0x3 = 20.
                                                                   0x4 = 32.
                                                                   0x5 = 40. */
        uint64_t rx_dp_width           : 3;  /**< [ 37: 35](R/W/H) Tells the PCS lite layer logic what width to use in the receive data
                                                                 path between the analog macro and downstream logic, hence what
                                                                 data bits of the doutq[39:0] bus are in use.
                                                                   0x0 = 8 (reserved; debug only).
                                                                   0x1 = 10 (reserved; debug only).
                                                                   0x2 = 16.
                                                                   0x3 = 20.
                                                                   0x4 = 32.
                                                                   0x5 = 40.

                                                                 This value must only be changed while lite layer is in reset. */
        uint64_t tx_dp_width           : 3;  /**< [ 34: 32](R/W/H) Tells the PCS lite layer logic what width to use in the transmit
                                                                 data path between the lite layer FIFO and the analog macro, hence
                                                                 what data bits of the tx_data[39:0] bus are in use. Values:
                                                                   0x0 = 8 (reserved; debug only).
                                                                   0x1 = 10 (reserved; debug only).
                                                                   0x2 = 16.
                                                                   0x3 = 20.
                                                                   0x4 = 32.
                                                                   0x5 = 40.

                                                                 This value must only be changed while lite layer is in reset. */
        uint64_t reserved_26_31        : 6;
        uint64_t core_loopback_mode    : 1;  /**< [ 25: 25](R/W/H) Enable the core-side loopback mode; controller transmit data are
                                                                 looped back to the controller as receive data in the PCS lite layer.
                                                                 This value must only be changed while lite layer is in reset. */
        uint64_t sloop_mode            : 1;  /**< [ 24: 24](R/W/H) Enable shallow loopback mode (SerDes receive data looped back to
                                                                 SerDes transmit in the PCS lite layer).
                                                                 This value must only be changed while lite layer is in reset. */
        uint64_t reserved_23           : 1;
        uint64_t bitstuff_rx_drop_even : 1;  /**< [ 22: 22](R/W/H) Tells the PCS lite receive datapath to drop even bits
                                                                 in the vector of received data from the PMA when [BITSTUFF_RX_EN] is
                                                                 set:
                                                                   0 = Drop bits 1, 3, 5, 7, ...
                                                                   1 = Drop bits 0, 2, 4, 6, ...

                                                                 This bit is also used in the eye monitor to mask out the dropped
                                                                 bits when counting mismatches.
                                                                 This value must only be changed while lite layer is in reset. */
        uint64_t bitstuff_rx_en        : 1;  /**< [ 21: 21](R/W/H) Set to expect duplicates on the PMA RX data and drop bits after
                                                                 alignment & ordering for PCS layer to consume. The drop ordering is
                                                                 determined by [BITSTUFF_RX_DROP_EVEN]. This value must only be changed
                                                                 while lite layer is in reset. */
        uint64_t inv_rx_polarity       : 1;  /**< [ 20: 20](R/W/H) Set to invert the polarity of the received data bits. Note that
                                                                 the PCS-lite PRBS checker will require [INV_RX_POLARITY] to be asserted
                                                                 when it is in use to check standard PRBS data from an external
                                                                 source. This value must only be changed while lite layer is in
                                                                 reset. */
        uint64_t reverse_rx_bit_order  : 1;  /**< [ 19: 19](R/W/H) While asserted, the normal receive order (lowest valid bit index
                                                                 received first, highest valid index last) is reversed so the highest
                                                                 valid bit index is received first and lowest valid index is received
                                                                 last. This control needs to be asserted for PRBS testing using the
                                                                 PRBS checker in the GSER macro and for PCIe Gen-1 and Gen-2. */
        uint64_t reserved_18           : 1;
        uint64_t use_bph_wrreq_psh     : 1;  /**< [ 17: 17](R/W) Reserved.
                                                                 Internal:
                                                                 Delay the transmit FIFO push request synchronization to the pop side by one
                                                                 txdivclk phase. This is a diagnostic / debug tool to help with transmit lane
                                                                 alignment issues. */
        uint64_t fifo_algn_qlm_mask    : 4;  /**< [ 16: 13](R/W) Selection control for which QLMs in this QLM's link group to align in timing the
                                                                 deassertion of reset to this lane's transmitter's clock alignment FIFO.
                                                                 \<0\> = Wait for QLM 0.
                                                                 \<1\> = Wait for QLM 1.
                                                                 \<2\> = Wait for QLM 2.
                                                                 \<3\> = Wait for QLM 3.

                                                                 If a link is made up of lanes in multiple QLMs, the mask in each lane must
                                                                 include all active QLMs (including the QLM containing the current lane). */
        uint64_t fifo_algn_lane_mask   : 4;  /**< [ 12:  9](R/W) Selection control for which lanes in the current QLM to align in timing the
                                                                 deassertion of reset to this lane's transmitter's clock alignment FIFO.
                                                                 \<0\> = Wait for Lane 0.
                                                                 \<1\> = Wait for Lane 1.
                                                                 \<2\> = Wait for Lane 2.
                                                                 \<3\> = Wait for Lane 3.

                                                                 The bit corresponding to the current Lane is ignored. */
        uint64_t fifo_bypass_en        : 1;  /**< [  8:  8](R/W) For diagnostic use only.
                                                                 Internal:
                                                                 This control is currently inactive and is left as a placeholder for
                                                                 possible re-inclusion in 7nm.

                                                                 Set to bypass the PCS lite layer transmit asynchronous FIFO
                                                                 with a single flop. This saves 1-2 cycles of latency in the transmit
                                                                 path, but imposes additional constraints on static timing
                                                                 closure. Note that shallow loopback data cannot bypass the FIFO. */
        uint64_t tx_fifo_pop_start_addr : 3; /**< [  7:  5](R/W) Reserved.
                                                                 Internal:
                                                                 Starting address for lite transmit FIFO pops
                                                                 (reads). Changing this allows shifting the latency through the FIFO in steps of
                                                                 1 txdivclk cycle (8, 10, 16, 20, 32, or 40 UI, depending on data path width
                                                                 setting). The function is similar to FIFO_UNLOAD_DLY, but provides a wider range
                                                                 of adjustment. For diagnostic use only. */
        uint64_t fifo_unload_dly       : 1;  /**< [  4:  4](R/W/H) Set to add one cycle delay to the PCS lite layer transmit
                                                                 asynchronous FIFO pop data. This value must only be changed before
                                                                 releasing [FIFO_RST_N]. */
        uint64_t fifo_rst_n            : 1;  /**< [  3:  3](R/W/H) Clear to hold the PCS lite layer transmit asynchronous FIFO in
                                                                 reset. */
        uint64_t bitstuff_tx_en        : 1;  /**< [  2:  2](R/W/H) Set to duplicate the first 20 bits of TX data before
                                                                 alignment & ordering for lower data rates. This could be PCS TX
                                                                 data, PRBS data, or shallow-loopback RX data depending on mode.
                                                                 This value must only be changed while lite layer is in reset. */
        uint64_t inv_tx_polarity       : 1;  /**< [  1:  1](R/W/H) Set to invert the polarity of the transmit data bits. Note
                                                                 that the PCS-lite PRBS generator will require [INV_TX_POLARITY] to be
                                                                 asserted when PRBS data are being transmitted to match the expected
                                                                 polarity of the standard PRBS patterns.
                                                                 This value must only be changed while lite layer is in reset. */
        uint64_t reverse_tx_bit_order  : 1;  /**< [  0:  0](R/W/H) Assertion causes the normal transmit order (lowest valid bit index
                                                                 transmitted first, highest valid index last) to be reversed so the
                                                                 highest valid bit index is transmitted first and lowest valid index
                                                                 is transmitted last. Note that the PCS-lite PRBS generator will
                                                                 require [REVERSE_TX_BIT_ORDER] to be asserted.
                                                                 This value must only be changed while lite layer is in reset. */
#else /* Word 0 - Little Endian */
        uint64_t reverse_tx_bit_order  : 1;  /**< [  0:  0](R/W/H) Assertion causes the normal transmit order (lowest valid bit index
                                                                 transmitted first, highest valid index last) to be reversed so the
                                                                 highest valid bit index is transmitted first and lowest valid index
                                                                 is transmitted last. Note that the PCS-lite PRBS generator will
                                                                 require [REVERSE_TX_BIT_ORDER] to be asserted.
                                                                 This value must only be changed while lite layer is in reset. */
        uint64_t inv_tx_polarity       : 1;  /**< [  1:  1](R/W/H) Set to invert the polarity of the transmit data bits. Note
                                                                 that the PCS-lite PRBS generator will require [INV_TX_POLARITY] to be
                                                                 asserted when PRBS data are being transmitted to match the expected
                                                                 polarity of the standard PRBS patterns.
                                                                 This value must only be changed while lite layer is in reset. */
        uint64_t bitstuff_tx_en        : 1;  /**< [  2:  2](R/W/H) Set to duplicate the first 20 bits of TX data before
                                                                 alignment & ordering for lower data rates. This could be PCS TX
                                                                 data, PRBS data, or shallow-loopback RX data depending on mode.
                                                                 This value must only be changed while lite layer is in reset. */
        uint64_t fifo_rst_n            : 1;  /**< [  3:  3](R/W/H) Clear to hold the PCS lite layer transmit asynchronous FIFO in
                                                                 reset. */
        uint64_t fifo_unload_dly       : 1;  /**< [  4:  4](R/W/H) Set to add one cycle delay to the PCS lite layer transmit
                                                                 asynchronous FIFO pop data. This value must only be changed before
                                                                 releasing [FIFO_RST_N]. */
        uint64_t tx_fifo_pop_start_addr : 3; /**< [  7:  5](R/W) Reserved.
                                                                 Internal:
                                                                 Starting address for lite transmit FIFO pops
                                                                 (reads). Changing this allows shifting the latency through the FIFO in steps of
                                                                 1 txdivclk cycle (8, 10, 16, 20, 32, or 40 UI, depending on data path width
                                                                 setting). The function is similar to FIFO_UNLOAD_DLY, but provides a wider range
                                                                 of adjustment. For diagnostic use only. */
        uint64_t fifo_bypass_en        : 1;  /**< [  8:  8](R/W) For diagnostic use only.
                                                                 Internal:
                                                                 This control is currently inactive and is left as a placeholder for
                                                                 possible re-inclusion in 7nm.

                                                                 Set to bypass the PCS lite layer transmit asynchronous FIFO
                                                                 with a single flop. This saves 1-2 cycles of latency in the transmit
                                                                 path, but imposes additional constraints on static timing
                                                                 closure. Note that shallow loopback data cannot bypass the FIFO. */
        uint64_t fifo_algn_lane_mask   : 4;  /**< [ 12:  9](R/W) Selection control for which lanes in the current QLM to align in timing the
                                                                 deassertion of reset to this lane's transmitter's clock alignment FIFO.
                                                                 \<0\> = Wait for Lane 0.
                                                                 \<1\> = Wait for Lane 1.
                                                                 \<2\> = Wait for Lane 2.
                                                                 \<3\> = Wait for Lane 3.

                                                                 The bit corresponding to the current Lane is ignored. */
        uint64_t fifo_algn_qlm_mask    : 4;  /**< [ 16: 13](R/W) Selection control for which QLMs in this QLM's link group to align in timing the
                                                                 deassertion of reset to this lane's transmitter's clock alignment FIFO.
                                                                 \<0\> = Wait for QLM 0.
                                                                 \<1\> = Wait for QLM 1.
                                                                 \<2\> = Wait for QLM 2.
                                                                 \<3\> = Wait for QLM 3.

                                                                 If a link is made up of lanes in multiple QLMs, the mask in each lane must
                                                                 include all active QLMs (including the QLM containing the current lane). */
        uint64_t use_bph_wrreq_psh     : 1;  /**< [ 17: 17](R/W) Reserved.
                                                                 Internal:
                                                                 Delay the transmit FIFO push request synchronization to the pop side by one
                                                                 txdivclk phase. This is a diagnostic / debug tool to help with transmit lane
                                                                 alignment issues. */
        uint64_t reserved_18           : 1;
        uint64_t reverse_rx_bit_order  : 1;  /**< [ 19: 19](R/W/H) While asserted, the normal receive order (lowest valid bit index
                                                                 received first, highest valid index last) is reversed so the highest
                                                                 valid bit index is received first and lowest valid index is received
                                                                 last. This control needs to be asserted for PRBS testing using the
                                                                 PRBS checker in the GSER macro and for PCIe Gen-1 and Gen-2. */
        uint64_t inv_rx_polarity       : 1;  /**< [ 20: 20](R/W/H) Set to invert the polarity of the received data bits. Note that
                                                                 the PCS-lite PRBS checker will require [INV_RX_POLARITY] to be asserted
                                                                 when it is in use to check standard PRBS data from an external
                                                                 source. This value must only be changed while lite layer is in
                                                                 reset. */
        uint64_t bitstuff_rx_en        : 1;  /**< [ 21: 21](R/W/H) Set to expect duplicates on the PMA RX data and drop bits after
                                                                 alignment & ordering for PCS layer to consume. The drop ordering is
                                                                 determined by [BITSTUFF_RX_DROP_EVEN]. This value must only be changed
                                                                 while lite layer is in reset. */
        uint64_t bitstuff_rx_drop_even : 1;  /**< [ 22: 22](R/W/H) Tells the PCS lite receive datapath to drop even bits
                                                                 in the vector of received data from the PMA when [BITSTUFF_RX_EN] is
                                                                 set:
                                                                   0 = Drop bits 1, 3, 5, 7, ...
                                                                   1 = Drop bits 0, 2, 4, 6, ...

                                                                 This bit is also used in the eye monitor to mask out the dropped
                                                                 bits when counting mismatches.
                                                                 This value must only be changed while lite layer is in reset. */
        uint64_t reserved_23           : 1;
        uint64_t sloop_mode            : 1;  /**< [ 24: 24](R/W/H) Enable shallow loopback mode (SerDes receive data looped back to
                                                                 SerDes transmit in the PCS lite layer).
                                                                 This value must only be changed while lite layer is in reset. */
        uint64_t core_loopback_mode    : 1;  /**< [ 25: 25](R/W/H) Enable the core-side loopback mode; controller transmit data are
                                                                 looped back to the controller as receive data in the PCS lite layer.
                                                                 This value must only be changed while lite layer is in reset. */
        uint64_t reserved_26_31        : 6;
        uint64_t tx_dp_width           : 3;  /**< [ 34: 32](R/W/H) Tells the PCS lite layer logic what width to use in the transmit
                                                                 data path between the lite layer FIFO and the analog macro, hence
                                                                 what data bits of the tx_data[39:0] bus are in use. Values:
                                                                   0x0 = 8 (reserved; debug only).
                                                                   0x1 = 10 (reserved; debug only).
                                                                   0x2 = 16.
                                                                   0x3 = 20.
                                                                   0x4 = 32.
                                                                   0x5 = 40.

                                                                 This value must only be changed while lite layer is in reset. */
        uint64_t rx_dp_width           : 3;  /**< [ 37: 35](R/W/H) Tells the PCS lite layer logic what width to use in the receive data
                                                                 path between the analog macro and downstream logic, hence what
                                                                 data bits of the doutq[39:0] bus are in use.
                                                                   0x0 = 8 (reserved; debug only).
                                                                   0x1 = 10 (reserved; debug only).
                                                                   0x2 = 16.
                                                                   0x3 = 20.
                                                                   0x4 = 32.
                                                                   0x5 = 40.

                                                                 This value must only be changed while lite layer is in reset. */
        uint64_t prbs_dp_width         : 3;  /**< [ 40: 38](R/W/H) Tells the PCS lite layer PRBS logic what width to use in the
                                                                 generator and checker data paths.
                                                                   0x0 = 8 (requires bit-stuffing/unstuffing or for debug).
                                                                   0x1 = 10 (requires bit-stuffing/unstuffing or for debug).
                                                                   0x2 = 16.
                                                                   0x3 = 20.
                                                                   0x4 = 32.
                                                                   0x5 = 40. */
        uint64_t pat_dp_width          : 3;  /**< [ 43: 41](R/W/H) Tells the pattern memory generator/checker logic what width to use
                                                                 in the generator and checker data paths.
                                                                   0x0 = 8 (requires bit-stuffing/unstuffing or for debug).
                                                                   0x1 = 10 (requires bit-stuffing/unstuffing or for debug).
                                                                   0x2 = 16.
                                                                   0x3 = 20.
                                                                   0x4 = 32.
                                                                   0x5 = 40.

                                                                 Checking of received data
                                                                 works correctly only for clock divider ratios of 10, 20, and 40. The
                                                                 transmit data sequence is correct for all clock ratios. */
        uint64_t reserved_44_47        : 4;
        uint64_t inj_err_burst_len     : 6;  /**< [ 53: 48](R/W) Tells the PCS lite error injection logic what length the burst error
                                                                 mask should be. The max value is set by the valid data width
                                                                 transmitted. For example, if 8 bits of valid data are transmitted
                                                                 each cycle, only from 1-8 bits of contiguous errors can be set. The
                                                                 same for 10, 16, 20, 32, and 40 bits. */
        uint64_t inj_err_burst_en      : 1;  /**< [ 54: 54](R/W) PCS will inject a contiguous set of error bits in the transmit data
                                                                 stream at some time following an assertion of [INJ_ERR_BURST_EN]. The
                                                                 length of contiguous errors is set by [INJ_ERR_BURST_LEN]. Injection
                                                                 of a second set of errors will require deasserting and then
                                                                 asserting [INJ_ERR_BURST_EN] again. This mode should be used separately
                                                                 from [INJ_ERR_CNT_EN] and only one of them can be asserted at any time. */
        uint64_t reserved_55           : 1;
        uint64_t inj_err_cnt_len       : 6;  /**< [ 61: 56](R/W) Tells the PCS lite error injection logic the total number of bit errors
                                                                 to insert in a walking pattern. Every other cycle 1 bit error will be
                                                                 inserted in a walking index up to the count value specified. The max
                                                                 value is set by the valid data width transmitted. For example, if 8
                                                                 bits of valid data are transmitted each cycle only from 1-8 count
                                                                 values can be set. The same for 10, 16, 20, 32, and 40 bits. */
        uint64_t inj_err_cnt_en        : 1;  /**< [ 62: 62](R/W) PCS will inject a single bit error every other cycle in the transmit
                                                                 data stream at some time following an assertion of
                                                                 [INJ_ERR_CNT_EN]. The number of error cycles to insert is set by
                                                                 [INJ_ERR_CNT_LEN] and it increments the error bit index each
                                                                 cycle. Once all the errors have been transmitted GSER sets
                                                                 GSERN()_LANE()_LT_BSTS[INJ_ERR_CNT_DONE]. Injection of a second set of
                                                                 errors will require clearing the counter by holding [INJ_ERR_CNT_RST_N],
                                                                 asserting [INJ_ERR_CNT_EN], then releasing [INJ_ERR_CNT_RST_N]. This mode
                                                                 should be used separately from [INJ_ERR_BURST_EN] and only one of them
                                                                 can be asserted at any time. */
        uint64_t inj_err_cnt_rst_n     : 1;  /**< [ 63: 63](R/W/H) Set to zero to hold the error injection counter in reset. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_lt_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_lt_bcfg bdk_gsernx_lanex_lt_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_LT_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_LT_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000580ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_LT_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_LT_BCFG(a,b) bdk_gsernx_lanex_lt_bcfg_t
#define bustype_BDK_GSERNX_LANEX_LT_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_LT_BCFG(a,b) "GSERNX_LANEX_LT_BCFG"
#define device_bar_BDK_GSERNX_LANEX_LT_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_LT_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_LT_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_lt_bsts
 *
 * GSER Lane PCS Lite Status Register
 */
union bdk_gsernx_lanex_lt_bsts
{
    uint64_t u;
    struct bdk_gsernx_lanex_lt_bsts_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_3_63         : 61;
        uint64_t inj_err_cnt_done      : 1;  /**< [  2:  2](RO/H) Indicates the PCS error injection counter is done. */
        uint64_t bitstuff_rx_algn_is_odd : 1;/**< [  1:  1](RO/H) Indicates the PCS receive data path has detected bit-stuffed
                                                                 receive data that is aligned with duplicate bits in pairs as (1,2),
                                                                 (3,4), (5.6), ... The indication is valid only if the receive data
                                                                 are bit-stuffed and error-free. */
        uint64_t bitstuff_rx_algn_is_even : 1;/**< [  0:  0](RO/H) Indicates the PCS receive data path has detected bit-stuffed
                                                                 receive data that is aligned with duplicate bits in pairs as (0,1),
                                                                 (2,3), (4,5), ... The indication is valid only if the receive data
                                                                 are bit-stuffed and error-free. */
#else /* Word 0 - Little Endian */
        uint64_t bitstuff_rx_algn_is_even : 1;/**< [  0:  0](RO/H) Indicates the PCS receive data path has detected bit-stuffed
                                                                 receive data that is aligned with duplicate bits in pairs as (0,1),
                                                                 (2,3), (4,5), ... The indication is valid only if the receive data
                                                                 are bit-stuffed and error-free. */
        uint64_t bitstuff_rx_algn_is_odd : 1;/**< [  1:  1](RO/H) Indicates the PCS receive data path has detected bit-stuffed
                                                                 receive data that is aligned with duplicate bits in pairs as (1,2),
                                                                 (3,4), (5.6), ... The indication is valid only if the receive data
                                                                 are bit-stuffed and error-free. */
        uint64_t inj_err_cnt_done      : 1;  /**< [  2:  2](RO/H) Indicates the PCS error injection counter is done. */
        uint64_t reserved_3_63         : 61;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_lt_bsts_s cn; */
};
typedef union bdk_gsernx_lanex_lt_bsts bdk_gsernx_lanex_lt_bsts_t;

static inline uint64_t BDK_GSERNX_LANEX_LT_BSTS(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_LT_BSTS(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000590ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_LT_BSTS", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_LT_BSTS(a,b) bdk_gsernx_lanex_lt_bsts_t
#define bustype_BDK_GSERNX_LANEX_LT_BSTS(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_LT_BSTS(a,b) "GSERNX_LANEX_LT_BSTS"
#define device_bar_BDK_GSERNX_LANEX_LT_BSTS(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_LT_BSTS(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_LT_BSTS(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_lt_prbs1_bcfg
 *
 * GSER Lane PCS Lite PRBS Checker Control Register 1
 */
union bdk_gsernx_lanex_lt_prbs1_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_lt_prbs1_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_60_63        : 4;
        uint64_t prbs_rx_rst_n         : 1;  /**< [ 59: 59](R/W/H) Clear to hold the receive PRBS pattern checker in reset. */
        uint64_t prbs_rx_mode          : 1;  /**< [ 58: 58](R/W/H) Enables PRBS checking in the PCS lite layer receive data path. If
                                                                 using PRBS checking, assert GSERN()_LANE()_LT_PRBS1_BCFG[PRBS_RX_MODE]
                                                                 prior to deasserting GSERN()_LANE()_LT_PRBS1_BCFG[PRBS_RX_RST_N]. Software
                                                                 can deassert this bit to stop accumulating error counts without
                                                                 resetting the counter. */
        uint64_t prbs_tx_rst_n         : 1;  /**< [ 57: 57](R/W/H) Clear to hold the transmit PRBS pattern generator in reset. */
        uint64_t prbs_tx_mode          : 1;  /**< [ 56: 56](R/W/H) Enables PRBS generation and sending PRBS transmit data to the SERDES
                                                                 macro. If using PRBS transmitting, set
                                                                 GSERN()_LANE()_LT_PRBS1_BCFG[PRBS_TX_MODE] prior to deasserting
                                                                 GSERN()_LANE()_LT_PRBS1_BCFG[PRBS_TX_RST_N]. Note that the PCS-lite PRBS
                                                                 generator will require GSERN()_LANE()_LT_BCFG[REVERSE_TX_BIT_ORDER] to be
                                                                 asserted. */
        uint64_t reserved_52_55        : 4;
        uint64_t prbs_mode             : 4;  /**< [ 51: 48](R/W/H) Selects the PRBS pattern mode for both transmit generation and
                                                                 receive checking:
                                                                   0 = Prbs07 (taps at 6 & 7; reset default).
                                                                   1 = Prbs7a (taps at 3 & 7).
                                                                   2 = Prbs09 (taps at 5 & 9).
                                                                   3 = Prbs11 (taps at 9 & 11).
                                                                   4 = Prbs15 (taps at 14 & 15).
                                                                   5 = Prbs20 (taps at 3 & 20).
                                                                   6 = Prbs23 (taps at 18 & 23).
                                                                   7 = Prbs29 (taps at 27 & 29).
                                                                   8 = Prbs31 (taps at 28 & 31).
                                                                 others reserved. */
        uint64_t reserved_41_47        : 7;
        uint64_t cycle_cnt_en          : 1;  /**< [ 40: 40](R/W/H) Enable use of GSERN()_LANE()_LT_PRBS1_BCFG[CYCLE_CNT] to limit number of
                                                                 cycles of PCS RX clock over which PRBS errors are accumulated. */
        uint64_t cycle_cnt             : 40; /**< [ 39:  0](R/W/H) When enabled, this contains the count of PCS receive-clock cycles
                                                                 over which PRBS error counts are accumulated. */
#else /* Word 0 - Little Endian */
        uint64_t cycle_cnt             : 40; /**< [ 39:  0](R/W/H) When enabled, this contains the count of PCS receive-clock cycles
                                                                 over which PRBS error counts are accumulated. */
        uint64_t cycle_cnt_en          : 1;  /**< [ 40: 40](R/W/H) Enable use of GSERN()_LANE()_LT_PRBS1_BCFG[CYCLE_CNT] to limit number of
                                                                 cycles of PCS RX clock over which PRBS errors are accumulated. */
        uint64_t reserved_41_47        : 7;
        uint64_t prbs_mode             : 4;  /**< [ 51: 48](R/W/H) Selects the PRBS pattern mode for both transmit generation and
                                                                 receive checking:
                                                                   0 = Prbs07 (taps at 6 & 7; reset default).
                                                                   1 = Prbs7a (taps at 3 & 7).
                                                                   2 = Prbs09 (taps at 5 & 9).
                                                                   3 = Prbs11 (taps at 9 & 11).
                                                                   4 = Prbs15 (taps at 14 & 15).
                                                                   5 = Prbs20 (taps at 3 & 20).
                                                                   6 = Prbs23 (taps at 18 & 23).
                                                                   7 = Prbs29 (taps at 27 & 29).
                                                                   8 = Prbs31 (taps at 28 & 31).
                                                                 others reserved. */
        uint64_t reserved_52_55        : 4;
        uint64_t prbs_tx_mode          : 1;  /**< [ 56: 56](R/W/H) Enables PRBS generation and sending PRBS transmit data to the SERDES
                                                                 macro. If using PRBS transmitting, set
                                                                 GSERN()_LANE()_LT_PRBS1_BCFG[PRBS_TX_MODE] prior to deasserting
                                                                 GSERN()_LANE()_LT_PRBS1_BCFG[PRBS_TX_RST_N]. Note that the PCS-lite PRBS
                                                                 generator will require GSERN()_LANE()_LT_BCFG[REVERSE_TX_BIT_ORDER] to be
                                                                 asserted. */
        uint64_t prbs_tx_rst_n         : 1;  /**< [ 57: 57](R/W/H) Clear to hold the transmit PRBS pattern generator in reset. */
        uint64_t prbs_rx_mode          : 1;  /**< [ 58: 58](R/W/H) Enables PRBS checking in the PCS lite layer receive data path. If
                                                                 using PRBS checking, assert GSERN()_LANE()_LT_PRBS1_BCFG[PRBS_RX_MODE]
                                                                 prior to deasserting GSERN()_LANE()_LT_PRBS1_BCFG[PRBS_RX_RST_N]. Software
                                                                 can deassert this bit to stop accumulating error counts without
                                                                 resetting the counter. */
        uint64_t prbs_rx_rst_n         : 1;  /**< [ 59: 59](R/W/H) Clear to hold the receive PRBS pattern checker in reset. */
        uint64_t reserved_60_63        : 4;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_lt_prbs1_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_lt_prbs1_bcfg bdk_gsernx_lanex_lt_prbs1_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_LT_PRBS1_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_LT_PRBS1_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000690ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_LT_PRBS1_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_LT_PRBS1_BCFG(a,b) bdk_gsernx_lanex_lt_prbs1_bcfg_t
#define bustype_BDK_GSERNX_LANEX_LT_PRBS1_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_LT_PRBS1_BCFG(a,b) "GSERNX_LANEX_LT_PRBS1_BCFG"
#define device_bar_BDK_GSERNX_LANEX_LT_PRBS1_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_LT_PRBS1_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_LT_PRBS1_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_lt_prbs2_bcfg
 *
 * GSER Lane PCS Lite PRBS Checker Control Register 2
 */
union bdk_gsernx_lanex_lt_prbs2_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_lt_prbs2_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_56_63        : 8;
        uint64_t lock_cnt              : 8;  /**< [ 55: 48](R/W/H) One less than the number of cycles of matching receive data the PRBS
                                                                 checker needs to see before starting to count errors. Default is 31,
                                                                 for 32 cycles of matching data before starting the PRBS error
                                                                 counter; the maximum setting is 255. Set
                                                                 GSERN()_LANE()_LT_PRBS2_BCFG[LOCK_CNT] as desired before deasserting
                                                                 GSERN()_LANE()_LT_PRBS1_BCFG[PRBS_RX_RST_N]. */
        uint64_t reserved_41_47        : 7;
        uint64_t tx_lfsr_use_preload   : 1;  /**< [ 40: 40](R/W/H) Enables use of the GSERN()_LANE()_LT_PRBS2_BCFG[TX_LFSR_PRELOAD_VALUE]
                                                                 instead of all zeros in the transmitter LFSR PRBS generator. Set
                                                                 GSERN()_LANE()_LT_PRBS2_BCFG[TX_LFSR_USE_PRELOAD] and
                                                                 GSERN()_LANE()_LT_PRBS2_BCFG[TX_LFSR_PRELOAD_VALUE] as desired before
                                                                 deasserting GSERN()_LANE()_LT_PRBS1_BCFG[PRBS_TX_RST_N]. */
        uint64_t tx_lfsr_preload_value : 40; /**< [ 39:  0](R/W/H) Initial state of the transmitter LFSR PRBS generator (if enabled by
                                                                 GSERN()_LANE()_LT_PRBS2_BCFG[TX_LFSR_USE_PRELOAD]). When enabled, this
                                                                 value will be loaded when GSERN()_LANE()_LT_PRBS1_BCFG[PRBS_TX_RST_N]
                                                                 asserts (low). Do not set to all ones, or the LFSR will lock up. Set
                                                                 GSERN()_LANE()_LT_PRBS2_BCFG[TX_LFSR_USE_PRELOAD] and
                                                                 GSERN()_LANE()_LT_PRBS2_BCFG[TX_LFSR_PRELOAD_VALUE] as desired before
                                                                 deasserting GSERN()_LANE()_LT_PRBS1_BCFG[PRBS_TX_RST_N]. */
#else /* Word 0 - Little Endian */
        uint64_t tx_lfsr_preload_value : 40; /**< [ 39:  0](R/W/H) Initial state of the transmitter LFSR PRBS generator (if enabled by
                                                                 GSERN()_LANE()_LT_PRBS2_BCFG[TX_LFSR_USE_PRELOAD]). When enabled, this
                                                                 value will be loaded when GSERN()_LANE()_LT_PRBS1_BCFG[PRBS_TX_RST_N]
                                                                 asserts (low). Do not set to all ones, or the LFSR will lock up. Set
                                                                 GSERN()_LANE()_LT_PRBS2_BCFG[TX_LFSR_USE_PRELOAD] and
                                                                 GSERN()_LANE()_LT_PRBS2_BCFG[TX_LFSR_PRELOAD_VALUE] as desired before
                                                                 deasserting GSERN()_LANE()_LT_PRBS1_BCFG[PRBS_TX_RST_N]. */
        uint64_t tx_lfsr_use_preload   : 1;  /**< [ 40: 40](R/W/H) Enables use of the GSERN()_LANE()_LT_PRBS2_BCFG[TX_LFSR_PRELOAD_VALUE]
                                                                 instead of all zeros in the transmitter LFSR PRBS generator. Set
                                                                 GSERN()_LANE()_LT_PRBS2_BCFG[TX_LFSR_USE_PRELOAD] and
                                                                 GSERN()_LANE()_LT_PRBS2_BCFG[TX_LFSR_PRELOAD_VALUE] as desired before
                                                                 deasserting GSERN()_LANE()_LT_PRBS1_BCFG[PRBS_TX_RST_N]. */
        uint64_t reserved_41_47        : 7;
        uint64_t lock_cnt              : 8;  /**< [ 55: 48](R/W/H) One less than the number of cycles of matching receive data the PRBS
                                                                 checker needs to see before starting to count errors. Default is 31,
                                                                 for 32 cycles of matching data before starting the PRBS error
                                                                 counter; the maximum setting is 255. Set
                                                                 GSERN()_LANE()_LT_PRBS2_BCFG[LOCK_CNT] as desired before deasserting
                                                                 GSERN()_LANE()_LT_PRBS1_BCFG[PRBS_RX_RST_N]. */
        uint64_t reserved_56_63        : 8;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_lt_prbs2_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_lt_prbs2_bcfg bdk_gsernx_lanex_lt_prbs2_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_LT_PRBS2_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_LT_PRBS2_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e0900006a0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_LT_PRBS2_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_LT_PRBS2_BCFG(a,b) bdk_gsernx_lanex_lt_prbs2_bcfg_t
#define bustype_BDK_GSERNX_LANEX_LT_PRBS2_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_LT_PRBS2_BCFG(a,b) "GSERNX_LANEX_LT_PRBS2_BCFG"
#define device_bar_BDK_GSERNX_LANEX_LT_PRBS2_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_LT_PRBS2_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_LT_PRBS2_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_lt_prbs_sts
 *
 * GSER Lane PCS Lite PRBS Checker Status Register
 */
union bdk_gsernx_lanex_lt_prbs_sts
{
    uint64_t u;
    struct bdk_gsernx_lanex_lt_prbs_sts_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_50_63        : 14;
        uint64_t cycle_cnt_done        : 1;  /**< [ 49: 49](RO/H) Indicates the GSERN()_LANE()_LT_PRBS1_BCFG[CYCLE_CNT] has expired
                                                                 if GSERN()_LANE()_LT_PRBS1_BCFG[CYCLE_CNT_EN] is set. If
                                                                 GSERN()_LANE()_LT_PRBS1_BCFG[CYCLE_CNT_EN] is clear, this bit will
                                                                 always read as clear. */
        uint64_t lock                  : 1;  /**< [ 48: 48](RO/H) Indicates the PRBS checker logic has achieved lock prior to
                                                                 starting error counting. */
        uint64_t err_cnt_ovf           : 1;  /**< [ 47: 47](RO/H) When asserted indicates GSERN()_LANE()_LT_PRBS_STS[ERR_CNT] overflowed and
                                                                 is not accurate. */
        uint64_t reserved_45_46        : 2;
        uint64_t err_cnt               : 45; /**< [ 44:  0](RO/H) Count of PRBS bit errors seen. If GSERN()_LANE()_LT_PRBS1_BCFG[CYCLE_CNT_EN] and
                                                                 GSERN()_LANE()_LT_PRBS_STS[CYCLE_CNT_DONE] are not both asserted,
                                                                 GSERN()_LANE()_LT_PRBS_STS[ERR_CNT] may not be reliable unless
                                                                 GSERN()_LANE()_LT_PRBS1_BCFG[PRBS_RX_MODE] is first deasserted (to stop
                                                                 the error counter). */
#else /* Word 0 - Little Endian */
        uint64_t err_cnt               : 45; /**< [ 44:  0](RO/H) Count of PRBS bit errors seen. If GSERN()_LANE()_LT_PRBS1_BCFG[CYCLE_CNT_EN] and
                                                                 GSERN()_LANE()_LT_PRBS_STS[CYCLE_CNT_DONE] are not both asserted,
                                                                 GSERN()_LANE()_LT_PRBS_STS[ERR_CNT] may not be reliable unless
                                                                 GSERN()_LANE()_LT_PRBS1_BCFG[PRBS_RX_MODE] is first deasserted (to stop
                                                                 the error counter). */
        uint64_t reserved_45_46        : 2;
        uint64_t err_cnt_ovf           : 1;  /**< [ 47: 47](RO/H) When asserted indicates GSERN()_LANE()_LT_PRBS_STS[ERR_CNT] overflowed and
                                                                 is not accurate. */
        uint64_t lock                  : 1;  /**< [ 48: 48](RO/H) Indicates the PRBS checker logic has achieved lock prior to
                                                                 starting error counting. */
        uint64_t cycle_cnt_done        : 1;  /**< [ 49: 49](RO/H) Indicates the GSERN()_LANE()_LT_PRBS1_BCFG[CYCLE_CNT] has expired
                                                                 if GSERN()_LANE()_LT_PRBS1_BCFG[CYCLE_CNT_EN] is set. If
                                                                 GSERN()_LANE()_LT_PRBS1_BCFG[CYCLE_CNT_EN] is clear, this bit will
                                                                 always read as clear. */
        uint64_t reserved_50_63        : 14;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_lt_prbs_sts_s cn; */
};
typedef union bdk_gsernx_lanex_lt_prbs_sts bdk_gsernx_lanex_lt_prbs_sts_t;

static inline uint64_t BDK_GSERNX_LANEX_LT_PRBS_STS(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_LT_PRBS_STS(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e0900006b0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_LT_PRBS_STS", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_LT_PRBS_STS(a,b) bdk_gsernx_lanex_lt_prbs_sts_t
#define bustype_BDK_GSERNX_LANEX_LT_PRBS_STS(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_LT_PRBS_STS(a,b) "GSERNX_LANEX_LT_PRBS_STS"
#define device_bar_BDK_GSERNX_LANEX_LT_PRBS_STS(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_LT_PRBS_STS(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_LT_PRBS_STS(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_map0
 *
 * GSER Lane Programmable Map Register 0
 * Manually settable option for the interpolator map. If using
 * GSERN()_LANE()_IMAPSEL_BCFG[MAP_CASE]=0xf, set these bits prior to bringing analog
 * receiver out of reset.
 */
union bdk_gsernx_lanex_map0
{
    uint64_t u;
    struct bdk_gsernx_lanex_map0_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t dat                   : 64; /**< [ 63:  0](R/W) map register 0, 64 LSB of map 128b vector. */
#else /* Word 0 - Little Endian */
        uint64_t dat                   : 64; /**< [ 63:  0](R/W) map register 0, 64 LSB of map 128b vector. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_map0_s cn; */
};
typedef union bdk_gsernx_lanex_map0 bdk_gsernx_lanex_map0_t;

static inline uint64_t BDK_GSERNX_LANEX_MAP0(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_MAP0(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090001e00ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_MAP0", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_MAP0(a,b) bdk_gsernx_lanex_map0_t
#define bustype_BDK_GSERNX_LANEX_MAP0(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_MAP0(a,b) "GSERNX_LANEX_MAP0"
#define device_bar_BDK_GSERNX_LANEX_MAP0(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_MAP0(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_MAP0(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_map1
 *
 * GSER Lane Programmable Map Register 1
 * Manually settable option for the interpolator map. If using
 * (GSERN()_LANE()_IMAPSEL_BCFG[MAP_CASE]=0xf), set these bits prior to bringing
 * analog receiver out of reset.
 */
union bdk_gsernx_lanex_map1
{
    uint64_t u;
    struct bdk_gsernx_lanex_map1_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t dat                   : 64; /**< [ 63:  0](R/W) Map register 1, 64 most significant bits of map 128-bit vector. */
#else /* Word 0 - Little Endian */
        uint64_t dat                   : 64; /**< [ 63:  0](R/W) Map register 1, 64 most significant bits of map 128-bit vector. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_map1_s cn; */
};
typedef union bdk_gsernx_lanex_map1 bdk_gsernx_lanex_map1_t;

static inline uint64_t BDK_GSERNX_LANEX_MAP1(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_MAP1(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090001e10ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_MAP1", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_MAP1(a,b) bdk_gsernx_lanex_map1_t
#define bustype_BDK_GSERNX_LANEX_MAP1(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_MAP1(a,b) "GSERNX_LANEX_MAP1"
#define device_bar_BDK_GSERNX_LANEX_MAP1(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_MAP1(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_MAP1(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_max_oob_add_count
 *
 * GSER Lane RX OOB Maximum ADDER Durations Counted Register
 * Observes the maximum number of times we had to delay the idle offset
 * recalibration because of a collision with an OOB event.
 */
union bdk_gsernx_lanex_max_oob_add_count
{
    uint64_t u;
    struct bdk_gsernx_lanex_max_oob_add_count_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_8_63         : 56;
        uint64_t accumulated_oob_adders : 8; /**< [  7:  0](RO/H) Observed maximum number of OOB ADDERS applied to the idle offset
                                                                 recalibration FSM that delay the calibration.  This is in terms of
                                                                 how many GSERN()_LANE()_RX_IDLE_CAL_CFG[OOB_DELAY_ADDER_COUNT] ticks added to
                                                                 the duration between recalibration. */
#else /* Word 0 - Little Endian */
        uint64_t accumulated_oob_adders : 8; /**< [  7:  0](RO/H) Observed maximum number of OOB ADDERS applied to the idle offset
                                                                 recalibration FSM that delay the calibration.  This is in terms of
                                                                 how many GSERN()_LANE()_RX_IDLE_CAL_CFG[OOB_DELAY_ADDER_COUNT] ticks added to
                                                                 the duration between recalibration. */
        uint64_t reserved_8_63         : 56;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_max_oob_add_count_s cn; */
};
typedef union bdk_gsernx_lanex_max_oob_add_count bdk_gsernx_lanex_max_oob_add_count_t;

static inline uint64_t BDK_GSERNX_LANEX_MAX_OOB_ADD_COUNT(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_MAX_OOB_ADD_COUNT(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090001550ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_MAX_OOB_ADD_COUNT", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_MAX_OOB_ADD_COUNT(a,b) bdk_gsernx_lanex_max_oob_add_count_t
#define bustype_BDK_GSERNX_LANEX_MAX_OOB_ADD_COUNT(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_MAX_OOB_ADD_COUNT(a,b) "GSERNX_LANEX_MAX_OOB_ADD_COUNT"
#define device_bar_BDK_GSERNX_LANEX_MAX_OOB_ADD_COUNT(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_MAX_OOB_ADD_COUNT(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_MAX_OOB_ADD_COUNT(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_ocx_txeq_bcfg
 *
 * GSER Lane OCX Tx Equalizer Base Configuration Register
 * Register controls settings for the transmitter equalizer taps
 * when the GSER is configured for OCX mode and KR training is not enabled.
 * These fields will drive the associated control signal when
 * GSERN()_LANE()_SRCMX_BCFG[TX_CTRL_SEL] is set to 'OCX'.
 */
union bdk_gsernx_lanex_ocx_txeq_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_ocx_txeq_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_28_63        : 36;
        uint64_t tx_coeff_update       : 1;  /**< [ 27: 27](R/W/H) Transmitter coefficient update.
                                                                 An asserting edge will start the transmitter coefficient update
                                                                 sequencer. This field self-clears when the sequence has completed.
                                                                 To update the GSER transmitter euqalizer coefficients program
                                                                 * GSERN()_LANE()_OCX_TXEQ_BCFG[TX_CPOST].
                                                                 * GSERN()_LANE()_OCX_TXEQ_BCFG[TX_CMAIN].
                                                                 * GSERN()_LANE()_OCX_TXEQ_BCFG[TX_CPRE].
                                                                 * GSERN()_LANE()_OCX_TXEQ_BCFG[TX_BS].
                                                                 * GSERN()_LANE()_OCX_TXEQ_BCFG[TX_CSPD].

                                                                 then write [TX_COEFF_UPDATE] to 1. */
        uint64_t tx_enable             : 1;  /**< [ 26: 26](R/W) Transmitter enable.
                                                                 0 = Disable the serdes transmitter.
                                                                 1 = Enable the serdes transmitter.

                                                                 Internal:
                                                                 Drives the ocx_tx_enable input to the GSERN src_mux. */
        uint64_t tx_stuff              : 1;  /**< [ 25: 25](R/W) Reserved. For Diagnostic Use Only.
                                                                 Internal:
                                                                 Transmitter bit stuffing.
                                                                 Programs the transmitter PCS lite layer for bit stuffing.
                                                                 Not used for OCX connections.
                                                                 Leave programmed to 0x0.
                                                                 Drives the ocx_tx_stuff input to the GSERN src_mux. */
        uint64_t tx_oob                : 1;  /**< [ 24: 24](R/W) Reserved. For Diagnostic Use Only.
                                                                 Internal:
                                                                 Transmitter OOB signaling.
                                                                 Not typically used for OCX connnections.
                                                                 Leave programmed to 0x0.
                                                                 Drives the ocx_tx_oob input to the GSERN src_mux. */
        uint64_t tx_idle               : 1;  /**< [ 23: 23](R/W) Reserved. For Diagnostic Use Only.
                                                                 Internal:
                                                                 Transmitter electrical idle.
                                                                 Used to force the transmitter to electrical idle.
                                                                 Not typically used for OCX connections.
                                                                 Leave progreammed to 0x0.
                                                                 Drives the ocx_tx_idle input to the GSERN src_mux. */
        uint64_t tx_cspd               : 1;  /**< [ 22: 22](R/W) Power-down control for a second TX bias/swing leg with the same
                                                                 weight as TX_BS[3]. Normally this field is left deasserted to
                                                                 provide a minimum transmit amplitude. Asserting [TX_CSPD] will turn
                                                                 off all legs of the bias/swing generator for lower standby power. */
        uint64_t tx_bs                 : 6;  /**< [ 21: 16](R/W) TX bias/swing selection. This setting only takes effect if [TX_CSPD] is
                                                                 deasserted; with [TX_CSPD] asserted the
                                                                 bias/swing control setting seen in the analog bias generator is zero.

                                                                 Typical override values would be:
                                                                   42 = Nominal 1.0V p-p transmit amplitude.
                                                                   52 = Nominal 1.2V p-p transmit amplitude.

                                                                 The maximum usable value without transmitted waveform distortion depends
                                                                 primarily on voltage, secondarily on process corner and temperature, but is at
                                                                 least 52.  There is no minimum setting based on transmitter distortion, only
                                                                 that set by the receiver. */
        uint64_t tx_cpost              : 5;  /**< [ 15: 11](R/W) Transmitter Post (C+1) equalizer tap coefficient value.
                                                                 Programs the transmitter Post tap.
                                                                 Valid range is 0 to 0x10.
                                                                 See GSERN()_LANE()_OCX_TXEQ_BCFG[TX_CMAIN]. */
        uint64_t tx_cmain              : 6;  /**< [ 10:  5](R/W) Transmitter Main (C0) equalizer tap coefficient value.
                                                                 Programs the serdes transmitter Main tap.
                                                                 Valid range is 0x30 to 0x18.
                                                                 When programing the transmitter Pre, Main, and Post
                                                                 taps the following rules must be adhered to:
                                                                 _ ([TX_CMAIN] + [TX_CPRE] + [TX_CPOST]) \<= 0x30.
                                                                 _ ([TX_CMAIN] - [TX_CPRE] - [TX_CPOST]) \>= 0x6.
                                                                 _ 0x30 \<= [TX_CMAIN] \<= 0x18.
                                                                 _ 0x16 \>= [TX_CPRE] \>= 0x0.
                                                                 _ 0x16 \>= [TX_CPOST] \>= 0x0.

                                                                 [TX_CMAIN] should be adjusted when either [TX_CPRE] or
                                                                 [TX_CPOST] is adjusted to provide constant power transmitter
                                                                 amplitude adjustments.

                                                                 To update the GSER serdes transmitter Pre, Main, and Post
                                                                 equalizer taps from the [TX_CPOST], [TX_CMAIN], and [TX_CPRE]
                                                                 fields write GSERN()_LANE()_OCX_TXEQ_BCFG[TX_COEFF_UPDATE]
                                                                 to 1 and subsequently clear [TX_COEFF_UPDATE] to 0. This step
                                                                 transfers the [TX_CPOST], [TX_CMAIN], and [TX_CPRE] to the
                                                                 serdes transmitter equalizer.

                                                                 Related CSRs:
                                                                 * GSERN()_LANE()_OCX_TXEQ_BCFG[TX_COEFF_UPDATE].
                                                                 * GSERN()_LANE()_OCX_TXEQ_BCFG[TX_CPOST].
                                                                 * GSERN()_LANE()_OCX_TXEQ_BCFG[TX_CPRE].
                                                                 * GSERN()_LANE()_OCX_TXEQ_BCFG[TX_BS].
                                                                 * GSERN()_LANE()_OCX_TXEQ_BCFG[TX_CSPD]. */
        uint64_t tx_cpre               : 5;  /**< [  4:  0](R/W) Transmitter Pre (C-1) equalizer tap coefficient value.
                                                                 Programs the transmitter Pre tap.
                                                                 Valid range is 0 to 0x10.
                                                                 See GSERN()_LANE()_OCX_TXEQ_BCFG[TX_CMAIN]. */
#else /* Word 0 - Little Endian */
        uint64_t tx_cpre               : 5;  /**< [  4:  0](R/W) Transmitter Pre (C-1) equalizer tap coefficient value.
                                                                 Programs the transmitter Pre tap.
                                                                 Valid range is 0 to 0x10.
                                                                 See GSERN()_LANE()_OCX_TXEQ_BCFG[TX_CMAIN]. */
        uint64_t tx_cmain              : 6;  /**< [ 10:  5](R/W) Transmitter Main (C0) equalizer tap coefficient value.
                                                                 Programs the serdes transmitter Main tap.
                                                                 Valid range is 0x30 to 0x18.
                                                                 When programing the transmitter Pre, Main, and Post
                                                                 taps the following rules must be adhered to:
                                                                 _ ([TX_CMAIN] + [TX_CPRE] + [TX_CPOST]) \<= 0x30.
                                                                 _ ([TX_CMAIN] - [TX_CPRE] - [TX_CPOST]) \>= 0x6.
                                                                 _ 0x30 \<= [TX_CMAIN] \<= 0x18.
                                                                 _ 0x16 \>= [TX_CPRE] \>= 0x0.
                                                                 _ 0x16 \>= [TX_CPOST] \>= 0x0.

                                                                 [TX_CMAIN] should be adjusted when either [TX_CPRE] or
                                                                 [TX_CPOST] is adjusted to provide constant power transmitter
                                                                 amplitude adjustments.

                                                                 To update the GSER serdes transmitter Pre, Main, and Post
                                                                 equalizer taps from the [TX_CPOST], [TX_CMAIN], and [TX_CPRE]
                                                                 fields write GSERN()_LANE()_OCX_TXEQ_BCFG[TX_COEFF_UPDATE]
                                                                 to 1 and subsequently clear [TX_COEFF_UPDATE] to 0. This step
                                                                 transfers the [TX_CPOST], [TX_CMAIN], and [TX_CPRE] to the
                                                                 serdes transmitter equalizer.

                                                                 Related CSRs:
                                                                 * GSERN()_LANE()_OCX_TXEQ_BCFG[TX_COEFF_UPDATE].
                                                                 * GSERN()_LANE()_OCX_TXEQ_BCFG[TX_CPOST].
                                                                 * GSERN()_LANE()_OCX_TXEQ_BCFG[TX_CPRE].
                                                                 * GSERN()_LANE()_OCX_TXEQ_BCFG[TX_BS].
                                                                 * GSERN()_LANE()_OCX_TXEQ_BCFG[TX_CSPD]. */
        uint64_t tx_cpost              : 5;  /**< [ 15: 11](R/W) Transmitter Post (C+1) equalizer tap coefficient value.
                                                                 Programs the transmitter Post tap.
                                                                 Valid range is 0 to 0x10.
                                                                 See GSERN()_LANE()_OCX_TXEQ_BCFG[TX_CMAIN]. */
        uint64_t tx_bs                 : 6;  /**< [ 21: 16](R/W) TX bias/swing selection. This setting only takes effect if [TX_CSPD] is
                                                                 deasserted; with [TX_CSPD] asserted the
                                                                 bias/swing control setting seen in the analog bias generator is zero.

                                                                 Typical override values would be:
                                                                   42 = Nominal 1.0V p-p transmit amplitude.
                                                                   52 = Nominal 1.2V p-p transmit amplitude.

                                                                 The maximum usable value without transmitted waveform distortion depends
                                                                 primarily on voltage, secondarily on process corner and temperature, but is at
                                                                 least 52.  There is no minimum setting based on transmitter distortion, only
                                                                 that set by the receiver. */
        uint64_t tx_cspd               : 1;  /**< [ 22: 22](R/W) Power-down control for a second TX bias/swing leg with the same
                                                                 weight as TX_BS[3]. Normally this field is left deasserted to
                                                                 provide a minimum transmit amplitude. Asserting [TX_CSPD] will turn
                                                                 off all legs of the bias/swing generator for lower standby power. */
        uint64_t tx_idle               : 1;  /**< [ 23: 23](R/W) Reserved. For Diagnostic Use Only.
                                                                 Internal:
                                                                 Transmitter electrical idle.
                                                                 Used to force the transmitter to electrical idle.
                                                                 Not typically used for OCX connections.
                                                                 Leave progreammed to 0x0.
                                                                 Drives the ocx_tx_idle input to the GSERN src_mux. */
        uint64_t tx_oob                : 1;  /**< [ 24: 24](R/W) Reserved. For Diagnostic Use Only.
                                                                 Internal:
                                                                 Transmitter OOB signaling.
                                                                 Not typically used for OCX connnections.
                                                                 Leave programmed to 0x0.
                                                                 Drives the ocx_tx_oob input to the GSERN src_mux. */
        uint64_t tx_stuff              : 1;  /**< [ 25: 25](R/W) Reserved. For Diagnostic Use Only.
                                                                 Internal:
                                                                 Transmitter bit stuffing.
                                                                 Programs the transmitter PCS lite layer for bit stuffing.
                                                                 Not used for OCX connections.
                                                                 Leave programmed to 0x0.
                                                                 Drives the ocx_tx_stuff input to the GSERN src_mux. */
        uint64_t tx_enable             : 1;  /**< [ 26: 26](R/W) Transmitter enable.
                                                                 0 = Disable the serdes transmitter.
                                                                 1 = Enable the serdes transmitter.

                                                                 Internal:
                                                                 Drives the ocx_tx_enable input to the GSERN src_mux. */
        uint64_t tx_coeff_update       : 1;  /**< [ 27: 27](R/W/H) Transmitter coefficient update.
                                                                 An asserting edge will start the transmitter coefficient update
                                                                 sequencer. This field self-clears when the sequence has completed.
                                                                 To update the GSER transmitter euqalizer coefficients program
                                                                 * GSERN()_LANE()_OCX_TXEQ_BCFG[TX_CPOST].
                                                                 * GSERN()_LANE()_OCX_TXEQ_BCFG[TX_CMAIN].
                                                                 * GSERN()_LANE()_OCX_TXEQ_BCFG[TX_CPRE].
                                                                 * GSERN()_LANE()_OCX_TXEQ_BCFG[TX_BS].
                                                                 * GSERN()_LANE()_OCX_TXEQ_BCFG[TX_CSPD].

                                                                 then write [TX_COEFF_UPDATE] to 1. */
        uint64_t reserved_28_63        : 36;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_ocx_txeq_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_ocx_txeq_bcfg bdk_gsernx_lanex_ocx_txeq_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_OCX_TXEQ_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_OCX_TXEQ_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090003550ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_OCX_TXEQ_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_OCX_TXEQ_BCFG(a,b) bdk_gsernx_lanex_ocx_txeq_bcfg_t
#define bustype_BDK_GSERNX_LANEX_OCX_TXEQ_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_OCX_TXEQ_BCFG(a,b) "GSERNX_LANEX_OCX_TXEQ_BCFG"
#define device_bar_BDK_GSERNX_LANEX_OCX_TXEQ_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_OCX_TXEQ_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_OCX_TXEQ_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pat#
 *
 * GSER Lane Pattern Memory Register
 */
union bdk_gsernx_lanex_patx
{
    uint64_t u;
    struct bdk_gsernx_lanex_patx_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_40_63        : 24;
        uint64_t dat                   : 40; /**< [ 39:  0](R/W) Pattern Memory Registers. All 40b of both registers are used under
                                                                 al clock ratios except 32:1. In 32b (32:1) mode bits [31:0] of each
                                                                 register are used. The total pattern length is 64b in 32b mode and
                                                                 80b in all other clock modes.

                                                                 The bit pattern in bits [N-1:0] of PAT[0], where N is the clock
                                                                 ratio, must be unique within the overall pattern to allow the
                                                                 pattern checker to correctly lock before checking for errors.

                                                                 Internal:
                                                                 If the pattern data in this register is written while pattern transmission
                                                                 testing is in progress, the transmitted data may be briefly unpredictable. */
#else /* Word 0 - Little Endian */
        uint64_t dat                   : 40; /**< [ 39:  0](R/W) Pattern Memory Registers. All 40b of both registers are used under
                                                                 al clock ratios except 32:1. In 32b (32:1) mode bits [31:0] of each
                                                                 register are used. The total pattern length is 64b in 32b mode and
                                                                 80b in all other clock modes.

                                                                 The bit pattern in bits [N-1:0] of PAT[0], where N is the clock
                                                                 ratio, must be unique within the overall pattern to allow the
                                                                 pattern checker to correctly lock before checking for errors.

                                                                 Internal:
                                                                 If the pattern data in this register is written while pattern transmission
                                                                 testing is in progress, the transmitted data may be briefly unpredictable. */
        uint64_t reserved_40_63        : 24;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_patx_s cn; */
};
typedef union bdk_gsernx_lanex_patx bdk_gsernx_lanex_patx_t;

static inline uint64_t BDK_GSERNX_LANEX_PATX(unsigned long a, unsigned long b, unsigned long c) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PATX(unsigned long a, unsigned long b, unsigned long c)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4) && (c<=1)))
        return 0x87e090007ff0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7) + 8ll * ((c) & 0x1);
    __bdk_csr_fatal("GSERNX_LANEX_PATX", 3, a, b, c, 0);
}

#define typedef_BDK_GSERNX_LANEX_PATX(a,b,c) bdk_gsernx_lanex_patx_t
#define bustype_BDK_GSERNX_LANEX_PATX(a,b,c) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PATX(a,b,c) "GSERNX_LANEX_PATX"
#define device_bar_BDK_GSERNX_LANEX_PATX(a,b,c) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PATX(a,b,c) (a)
#define arguments_BDK_GSERNX_LANEX_PATX(a,b,c) (a),(b),(c),-1

/**
 * Register (RSL) gsern#_lane#_pat_ctrl
 *
 * GSER Lane PCS Lite Pattern Memory Stress Control Register
 */
union bdk_gsernx_lanex_pat_ctrl
{
    uint64_t u;
    struct bdk_gsernx_lanex_pat_ctrl_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_51_63        : 13;
        uint64_t tx_rst_n              : 1;  /**< [ 50: 50](R/W) Clear and then set to reset the pattern memory stress transmit
                                                                 data path, specifically the pattern memory index counter. */
        uint64_t rx_rst_n              : 1;  /**< [ 49: 49](R/W) Clear and then set to reset the pattern memory stress
                                                                 receive checking data path, including the lock indication and the
                                                                 error counts. */
        uint64_t en                    : 1;  /**< [ 48: 48](R/W) Enable (i.e., start, or stop if deasserted) pattern memory stress
                                                                 generation and checking. */
        uint64_t reserved_41_47        : 7;
        uint64_t cycle_cnt_en          : 1;  /**< [ 40: 40](R/W) Enable use of GSERN()_LANE()_PAT_CTRL[CYCLE_CNT] to limit number of cycles
                                                                 of PCS RX clock over which the pattern memory loopback errors are
                                                                 accumulated. */
        uint64_t cycle_cnt             : 40; /**< [ 39:  0](R/W) When enabled by GSERN()_LANE()_PAT_CTRL[CYCLE_CNT_EN], this contains the
                                                                 count of PCS receive-clock cycles over which pattern memory loopback
                                                                 error counts are accumulated. */
#else /* Word 0 - Little Endian */
        uint64_t cycle_cnt             : 40; /**< [ 39:  0](R/W) When enabled by GSERN()_LANE()_PAT_CTRL[CYCLE_CNT_EN], this contains the
                                                                 count of PCS receive-clock cycles over which pattern memory loopback
                                                                 error counts are accumulated. */
        uint64_t cycle_cnt_en          : 1;  /**< [ 40: 40](R/W) Enable use of GSERN()_LANE()_PAT_CTRL[CYCLE_CNT] to limit number of cycles
                                                                 of PCS RX clock over which the pattern memory loopback errors are
                                                                 accumulated. */
        uint64_t reserved_41_47        : 7;
        uint64_t en                    : 1;  /**< [ 48: 48](R/W) Enable (i.e., start, or stop if deasserted) pattern memory stress
                                                                 generation and checking. */
        uint64_t rx_rst_n              : 1;  /**< [ 49: 49](R/W) Clear and then set to reset the pattern memory stress
                                                                 receive checking data path, including the lock indication and the
                                                                 error counts. */
        uint64_t tx_rst_n              : 1;  /**< [ 50: 50](R/W) Clear and then set to reset the pattern memory stress transmit
                                                                 data path, specifically the pattern memory index counter. */
        uint64_t reserved_51_63        : 13;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pat_ctrl_s cn; */
};
typedef union bdk_gsernx_lanex_pat_ctrl bdk_gsernx_lanex_pat_ctrl_t;

static inline uint64_t BDK_GSERNX_LANEX_PAT_CTRL(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PAT_CTRL(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090007fd0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PAT_CTRL", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PAT_CTRL(a,b) bdk_gsernx_lanex_pat_ctrl_t
#define bustype_BDK_GSERNX_LANEX_PAT_CTRL(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PAT_CTRL(a,b) "GSERNX_LANEX_PAT_CTRL"
#define device_bar_BDK_GSERNX_LANEX_PAT_CTRL(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PAT_CTRL(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PAT_CTRL(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pat_dat
 *
 * GSER Lane PCS Lite Pattern Memory Stress Data Result Register
 */
union bdk_gsernx_lanex_pat_dat
{
    uint64_t u;
    struct bdk_gsernx_lanex_pat_dat_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t framing_match         : 1;  /**< [ 63: 63](RO/H) Indicates that the pattern memory checker found a framing match. This field is
                                                                 valid only after enabling pattern memory generation and checking by setting
                                                                 GSERN()_LANE()_PAT_CTRL[EN]. */
        uint64_t reserved_62           : 1;
        uint64_t framing_offset        : 6;  /**< [ 61: 56](RO/H) The offset the pattern memory checker found of the low bits of the pattern data
                                                                 in the receive data frame. This field is valid only when [FRAMING_MATCH]
                                                                 reads as asserted after enabling pattern memory generation and checking by
                                                                 setting GSERN()_LANE()_PAT_CTRL[EN]. */
        uint64_t reserved_50_55        : 6;
        uint64_t cycle_cnt_done        : 1;  /**< [ 49: 49](RO/H) Indicates the GSERN()_LANE()_PAT_CTRL[CYCLE_CNT] has expired if
                                                                 GSERN()_LANE()_PAT_CTRL[CYCLE_CNT_EN] is asserted. If
                                                                 GSERN()_LANE()_PAT_CTRL[CYCLE_CNT_EN] is deasserted,
                                                                 GSERN()_LANE()_PAT_DAT[CYCLE_CNT_DONE] will always read as asserted. */
        uint64_t lock                  : 1;  /**< [ 48: 48](RO/H) Indicates the pattern memory checker has achieved lock. */
        uint64_t err_cnt_ovf           : 1;  /**< [ 47: 47](RO/H) When asserted indicates GSERN()_LANE()_PAT_DAT[ERR_CNT] overflowed and is
                                                                 not accurate. */
        uint64_t reserved_45_46        : 2;
        uint64_t err_cnt               : 45; /**< [ 44:  0](RO/H) Count of bit errors seen in pattern memory loopback testing. If
                                                                 GSERN()_LANE()_PAT_CTRL[CYCLE_CNT_EN] and GSERN()_LANE()_PAT_DAT[CYCLE_CNT_DONE]
                                                                 are not both asserted, GSERN()_LANE()_PAT_DAT[ERR_CNT] may not be reliable
                                                                 unless GSERN()_LANE()_PAT_CTRL[EN] is first deasserted (to stop the error
                                                                 counter). */
#else /* Word 0 - Little Endian */
        uint64_t err_cnt               : 45; /**< [ 44:  0](RO/H) Count of bit errors seen in pattern memory loopback testing. If
                                                                 GSERN()_LANE()_PAT_CTRL[CYCLE_CNT_EN] and GSERN()_LANE()_PAT_DAT[CYCLE_CNT_DONE]
                                                                 are not both asserted, GSERN()_LANE()_PAT_DAT[ERR_CNT] may not be reliable
                                                                 unless GSERN()_LANE()_PAT_CTRL[EN] is first deasserted (to stop the error
                                                                 counter). */
        uint64_t reserved_45_46        : 2;
        uint64_t err_cnt_ovf           : 1;  /**< [ 47: 47](RO/H) When asserted indicates GSERN()_LANE()_PAT_DAT[ERR_CNT] overflowed and is
                                                                 not accurate. */
        uint64_t lock                  : 1;  /**< [ 48: 48](RO/H) Indicates the pattern memory checker has achieved lock. */
        uint64_t cycle_cnt_done        : 1;  /**< [ 49: 49](RO/H) Indicates the GSERN()_LANE()_PAT_CTRL[CYCLE_CNT] has expired if
                                                                 GSERN()_LANE()_PAT_CTRL[CYCLE_CNT_EN] is asserted. If
                                                                 GSERN()_LANE()_PAT_CTRL[CYCLE_CNT_EN] is deasserted,
                                                                 GSERN()_LANE()_PAT_DAT[CYCLE_CNT_DONE] will always read as asserted. */
        uint64_t reserved_50_55        : 6;
        uint64_t framing_offset        : 6;  /**< [ 61: 56](RO/H) The offset the pattern memory checker found of the low bits of the pattern data
                                                                 in the receive data frame. This field is valid only when [FRAMING_MATCH]
                                                                 reads as asserted after enabling pattern memory generation and checking by
                                                                 setting GSERN()_LANE()_PAT_CTRL[EN]. */
        uint64_t reserved_62           : 1;
        uint64_t framing_match         : 1;  /**< [ 63: 63](RO/H) Indicates that the pattern memory checker found a framing match. This field is
                                                                 valid only after enabling pattern memory generation and checking by setting
                                                                 GSERN()_LANE()_PAT_CTRL[EN]. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pat_dat_s cn; */
};
typedef union bdk_gsernx_lanex_pat_dat bdk_gsernx_lanex_pat_dat_t;

static inline uint64_t BDK_GSERNX_LANEX_PAT_DAT(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PAT_DAT(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090007fe0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PAT_DAT", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PAT_DAT(a,b) bdk_gsernx_lanex_pat_dat_t
#define bustype_BDK_GSERNX_LANEX_PAT_DAT(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PAT_DAT(a,b) "GSERNX_LANEX_PAT_DAT"
#define device_bar_BDK_GSERNX_LANEX_PAT_DAT(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PAT_DAT(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PAT_DAT(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_pcs2_bcfg
 *
 * GSER Lane PCIe PCS Control 2 Register
 * Control settings for PCIe PCS functionality.
 */
union bdk_gsernx_lanex_pcie_pcs2_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_pcs2_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t pause_adpt_rxstandby  : 4;  /**< [ 63: 60](R/W) Set to one to allow the PIPE RxStandby to pause all adaptation functions and
                                                                 hold the CDRFSM when the PCIe lane is operating at the corresponding rate.
                                                                 The individual bits are mapped as follows:
                                                                 \<0\> = PCIe gen1.
                                                                 \<1\> = PCIe gen2.
                                                                 \<2\> = PCIe gen3.
                                                                 \<3\> = PCIe gen4. */
        uint64_t frc_unalgn_rxstandby  : 4;  /**< [ 59: 56](R/W) Enables use of RxStandby to force the RX PCS into unalign state with
                                                                 an individual control bit per PCIe rate mapped as following:
                                                                 \<0\> = PCIe gen1.
                                                                 \<1\> = PCIe gen2.
                                                                 \<2\> = PCIe gen3.
                                                                 \<3\> = PCIe gen4. */
        uint64_t frc_unalgn_rxelecidle : 4;  /**< [ 55: 52](R/W) Enables use of detected RxElecIdle to force the RX PCS into unalign state
                                                                 with an individual control bit per PCIe rate mapped as following:
                                                                 \<0\> = PCIe gen1.
                                                                 \<1\> = PCIe gen2.
                                                                 \<2\> = PCIe gen3.
                                                                 \<3\> = PCIe gen4. */
        uint64_t frc_unalgn_blkalgnctl : 2;  /**< [ 51: 50](R/W) Enables use of BlockAlignControl assertion to force the RX PCS into unalign state
                                                                 with an individual control bit per PCIe rate mapped as following:
                                                                 \<0\> = PCIe gen3.
                                                                 \<1\> = PCIe gen4. */
        uint64_t pipe_tx_sel           : 2;  /**< [ 49: 48](R/W) Selects the source for the transmit PIPE controls:
                                                                 \<0\> = PCIe pipe 0 transmit.
                                                                 \<1\> = PCIe pipe 1 transmit.
                                                                 \<2\> = PCIe pipe 2 transmit.
                                                                 \<3\> = Reserved. */
        uint64_t reserved_46_47        : 2;
        uint64_t gen34_pll_div_f       : 18; /**< [ 45: 28](R/W) PLL feedback divider fractional portion. */
        uint64_t reserved_26_27        : 2;
        uint64_t gen12_pll_div_f       : 18; /**< [ 25:  8](R/W) PLL feedback divider fractional portion. */
        uint64_t pause_adpt_on_idle    : 4;  /**< [  7:  4](R/W) Set to one to allow the Rx Electrical Idle to pause all adaptation functions and
                                                                 hold the CDRFSM when the PCIe lane is operating at the corresponding rate.
                                                                 The individual bits are mapped as follows:
                                                                 \<0\> = PCIe gen1.
                                                                 \<1\> = PCIe gen2.
                                                                 \<2\> = PCIe gen3.
                                                                 \<3\> = PCIe gen4. */
        uint64_t do_prevga_gn_adpt     : 4;  /**< [  3:  0](R/W) Set to one to allow the adaptation reset state machine to trigger PREVGA_GN adaptation
                                                                 when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted and the PCIe lane is
                                                                 operating at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = PCIe gen1.
                                                                 \<1\> = PCIe gen2.
                                                                 \<2\> = PCIe gen3.
                                                                 \<3\> = PCIe gen4. */
#else /* Word 0 - Little Endian */
        uint64_t do_prevga_gn_adpt     : 4;  /**< [  3:  0](R/W) Set to one to allow the adaptation reset state machine to trigger PREVGA_GN adaptation
                                                                 when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted and the PCIe lane is
                                                                 operating at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = PCIe gen1.
                                                                 \<1\> = PCIe gen2.
                                                                 \<2\> = PCIe gen3.
                                                                 \<3\> = PCIe gen4. */
        uint64_t pause_adpt_on_idle    : 4;  /**< [  7:  4](R/W) Set to one to allow the Rx Electrical Idle to pause all adaptation functions and
                                                                 hold the CDRFSM when the PCIe lane is operating at the corresponding rate.
                                                                 The individual bits are mapped as follows:
                                                                 \<0\> = PCIe gen1.
                                                                 \<1\> = PCIe gen2.
                                                                 \<2\> = PCIe gen3.
                                                                 \<3\> = PCIe gen4. */
        uint64_t gen12_pll_div_f       : 18; /**< [ 25:  8](R/W) PLL feedback divider fractional portion. */
        uint64_t reserved_26_27        : 2;
        uint64_t gen34_pll_div_f       : 18; /**< [ 45: 28](R/W) PLL feedback divider fractional portion. */
        uint64_t reserved_46_47        : 2;
        uint64_t pipe_tx_sel           : 2;  /**< [ 49: 48](R/W) Selects the source for the transmit PIPE controls:
                                                                 \<0\> = PCIe pipe 0 transmit.
                                                                 \<1\> = PCIe pipe 1 transmit.
                                                                 \<2\> = PCIe pipe 2 transmit.
                                                                 \<3\> = Reserved. */
        uint64_t frc_unalgn_blkalgnctl : 2;  /**< [ 51: 50](R/W) Enables use of BlockAlignControl assertion to force the RX PCS into unalign state
                                                                 with an individual control bit per PCIe rate mapped as following:
                                                                 \<0\> = PCIe gen3.
                                                                 \<1\> = PCIe gen4. */
        uint64_t frc_unalgn_rxelecidle : 4;  /**< [ 55: 52](R/W) Enables use of detected RxElecIdle to force the RX PCS into unalign state
                                                                 with an individual control bit per PCIe rate mapped as following:
                                                                 \<0\> = PCIe gen1.
                                                                 \<1\> = PCIe gen2.
                                                                 \<2\> = PCIe gen3.
                                                                 \<3\> = PCIe gen4. */
        uint64_t frc_unalgn_rxstandby  : 4;  /**< [ 59: 56](R/W) Enables use of RxStandby to force the RX PCS into unalign state with
                                                                 an individual control bit per PCIe rate mapped as following:
                                                                 \<0\> = PCIe gen1.
                                                                 \<1\> = PCIe gen2.
                                                                 \<2\> = PCIe gen3.
                                                                 \<3\> = PCIe gen4. */
        uint64_t pause_adpt_rxstandby  : 4;  /**< [ 63: 60](R/W) Set to one to allow the PIPE RxStandby to pause all adaptation functions and
                                                                 hold the CDRFSM when the PCIe lane is operating at the corresponding rate.
                                                                 The individual bits are mapped as follows:
                                                                 \<0\> = PCIe gen1.
                                                                 \<1\> = PCIe gen2.
                                                                 \<2\> = PCIe gen3.
                                                                 \<3\> = PCIe gen4. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_pcs2_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_pcs2_bcfg bdk_gsernx_lanex_pcie_pcs2_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_PCS2_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_PCS2_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090001f20ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_PCS2_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_PCS2_BCFG(a,b) bdk_gsernx_lanex_pcie_pcs2_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_PCS2_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_PCS2_BCFG(a,b) "GSERNX_LANEX_PCIE_PCS2_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_PCS2_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_PCS2_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_PCS2_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_pcs3_bcfg
 *
 * GSER Lane PCIe PCS Control 3 Register
 * Control settings for PCIe PCS functionality.
 */
union bdk_gsernx_lanex_pcie_pcs3_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_pcs3_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_36_63        : 28;
        uint64_t tx_enfast             : 4;  /**< [ 35: 32](R/W) Enables fast slew on the TX preamp output with an individual control bit
                                                                 per PCIe rate mapped as following:
                                                                 \<0\> = PCIe Gen1.
                                                                 \<1\> = PCIe Gen2.
                                                                 \<2\> = PCIe Gen3.
                                                                 \<3\> = PCIe Gen4. */
        uint64_t do_afeos_final        : 4;  /**< [ 31: 28](R/W) Set to one to allow AFEOS adaptation to keep running continuously during the final
                                                                 phase of adaptation when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted,
                                                                 GSERN()_LANE()_PCIE_PCS_BCFG[DO_AFEOS_ADPT] is set and the PCIe lane is operating
                                                                 at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = PCIe Gen1.
                                                                 \<1\> = PCIe Gen2.
                                                                 \<2\> = PCIe Gen3.
                                                                 \<3\> = PCIe Gen4. */
        uint64_t do_ctlelte_final      : 4;  /**< [ 27: 24](R/W) Set to one to allow CTLELTE adaptation to keep running continuously during the final
                                                                 phase of adaptation when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted,
                                                                 GSERN()_LANE()_PCIE_PCS_BCFG[DO_CTLELTE_ADPT] is set and the PCIe lane is operating
                                                                 at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = PCIe Gen1.
                                                                 \<1\> = PCIe Gen2.
                                                                 \<2\> = PCIe Gen3.
                                                                 \<3\> = PCIe Gen4. */
        uint64_t do_ctlez_final        : 4;  /**< [ 23: 20](R/W) Set to one to allow CTLEZ adaptation to keep running continuously during the final
                                                                 phase of adaptation when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted,
                                                                 GSERN()_LANE()_PCIE_PCS_BCFG[DO_CTLEZ_ADPT] is set and the PCIe lane is operating
                                                                 at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = PCIe Gen1.
                                                                 \<1\> = PCIe Gen2.
                                                                 \<2\> = PCIe Gen3.
                                                                 \<3\> = PCIe Gen4. */
        uint64_t do_ctle_final         : 4;  /**< [ 19: 16](R/W) Set to one to allow CTLE adaptation to keep running continuously during the final
                                                                 phase of adaptation when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted,
                                                                 GSERN()_LANE()_PCIE_PCS_BCFG[DO_CTLE_ADPT] is set and the PCIe lane is operating
                                                                 at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = PCIe Gen1.
                                                                 \<1\> = PCIe Gen2.
                                                                 \<2\> = PCIe Gen3.
                                                                 \<3\> = PCIe Gen4. */
        uint64_t do_dfe_final          : 4;  /**< [ 15: 12](R/W) Set to one to allow DFE adaptation to keep running continuously during the final
                                                                 phase of adaptation when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted,
                                                                 GSERN()_LANE()_PCIE_PCS_BCFG[DO_DFE_ADPT] is set and the PCIe lane is operating
                                                                 at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = PCIe Gen1.
                                                                 \<1\> = PCIe Gen2.
                                                                 \<2\> = PCIe Gen3.
                                                                 \<3\> = PCIe Gen4. */
        uint64_t do_vga_final          : 4;  /**< [ 11:  8](R/W) Set to one to allow VGA adaptation to keep running continuously during the final
                                                                 phase of adaptation when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted,
                                                                 GSERN()_LANE()_PCIE_PCS_BCFG[DO_VGA_ADPT] is set and the PCIe lane is operating
                                                                 at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = PCIe Gen1.
                                                                 \<1\> = PCIe Gen2.
                                                                 \<2\> = PCIe Gen3.
                                                                 \<3\> = PCIe Gen4. */
        uint64_t do_blwc_final         : 4;  /**< [  7:  4](R/W) Set to one to allow BLWC adaptation to keep running continuously during the final
                                                                 phase of adaptation when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted,
                                                                 GSERN()_LANE()_PCIE_PCS_BCFG[DO_BLWC_ADPT] is set and the PCIe lane is operating
                                                                 at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = PCIe Gen1.
                                                                 \<1\> = PCIe Gen2.
                                                                 \<2\> = PCIe Gen3.
                                                                 \<3\> = PCIe Gen4. */
        uint64_t do_prevga_gn_final    : 4;  /**< [  3:  0](R/W) Set to one to allow PREVGA_GN adaptation to keep running continuously during the final
                                                                 phase of adaptation when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted,
                                                                 GSERN()_LANE()_PCIE_PCS2_BCFG[DO_PREVGA_GN_ADPT] is set and the PCIe lane is operating
                                                                 at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = PCIe Gen1.
                                                                 \<1\> = PCIe Gen2.
                                                                 \<2\> = PCIe Gen3.
                                                                 \<3\> = PCIe Gen4. */
#else /* Word 0 - Little Endian */
        uint64_t do_prevga_gn_final    : 4;  /**< [  3:  0](R/W) Set to one to allow PREVGA_GN adaptation to keep running continuously during the final
                                                                 phase of adaptation when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted,
                                                                 GSERN()_LANE()_PCIE_PCS2_BCFG[DO_PREVGA_GN_ADPT] is set and the PCIe lane is operating
                                                                 at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = PCIe Gen1.
                                                                 \<1\> = PCIe Gen2.
                                                                 \<2\> = PCIe Gen3.
                                                                 \<3\> = PCIe Gen4. */
        uint64_t do_blwc_final         : 4;  /**< [  7:  4](R/W) Set to one to allow BLWC adaptation to keep running continuously during the final
                                                                 phase of adaptation when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted,
                                                                 GSERN()_LANE()_PCIE_PCS_BCFG[DO_BLWC_ADPT] is set and the PCIe lane is operating
                                                                 at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = PCIe Gen1.
                                                                 \<1\> = PCIe Gen2.
                                                                 \<2\> = PCIe Gen3.
                                                                 \<3\> = PCIe Gen4. */
        uint64_t do_vga_final          : 4;  /**< [ 11:  8](R/W) Set to one to allow VGA adaptation to keep running continuously during the final
                                                                 phase of adaptation when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted,
                                                                 GSERN()_LANE()_PCIE_PCS_BCFG[DO_VGA_ADPT] is set and the PCIe lane is operating
                                                                 at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = PCIe Gen1.
                                                                 \<1\> = PCIe Gen2.
                                                                 \<2\> = PCIe Gen3.
                                                                 \<3\> = PCIe Gen4. */
        uint64_t do_dfe_final          : 4;  /**< [ 15: 12](R/W) Set to one to allow DFE adaptation to keep running continuously during the final
                                                                 phase of adaptation when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted,
                                                                 GSERN()_LANE()_PCIE_PCS_BCFG[DO_DFE_ADPT] is set and the PCIe lane is operating
                                                                 at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = PCIe Gen1.
                                                                 \<1\> = PCIe Gen2.
                                                                 \<2\> = PCIe Gen3.
                                                                 \<3\> = PCIe Gen4. */
        uint64_t do_ctle_final         : 4;  /**< [ 19: 16](R/W) Set to one to allow CTLE adaptation to keep running continuously during the final
                                                                 phase of adaptation when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted,
                                                                 GSERN()_LANE()_PCIE_PCS_BCFG[DO_CTLE_ADPT] is set and the PCIe lane is operating
                                                                 at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = PCIe Gen1.
                                                                 \<1\> = PCIe Gen2.
                                                                 \<2\> = PCIe Gen3.
                                                                 \<3\> = PCIe Gen4. */
        uint64_t do_ctlez_final        : 4;  /**< [ 23: 20](R/W) Set to one to allow CTLEZ adaptation to keep running continuously during the final
                                                                 phase of adaptation when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted,
                                                                 GSERN()_LANE()_PCIE_PCS_BCFG[DO_CTLEZ_ADPT] is set and the PCIe lane is operating
                                                                 at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = PCIe Gen1.
                                                                 \<1\> = PCIe Gen2.
                                                                 \<2\> = PCIe Gen3.
                                                                 \<3\> = PCIe Gen4. */
        uint64_t do_ctlelte_final      : 4;  /**< [ 27: 24](R/W) Set to one to allow CTLELTE adaptation to keep running continuously during the final
                                                                 phase of adaptation when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted,
                                                                 GSERN()_LANE()_PCIE_PCS_BCFG[DO_CTLELTE_ADPT] is set and the PCIe lane is operating
                                                                 at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = PCIe Gen1.
                                                                 \<1\> = PCIe Gen2.
                                                                 \<2\> = PCIe Gen3.
                                                                 \<3\> = PCIe Gen4. */
        uint64_t do_afeos_final        : 4;  /**< [ 31: 28](R/W) Set to one to allow AFEOS adaptation to keep running continuously during the final
                                                                 phase of adaptation when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted,
                                                                 GSERN()_LANE()_PCIE_PCS_BCFG[DO_AFEOS_ADPT] is set and the PCIe lane is operating
                                                                 at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = PCIe Gen1.
                                                                 \<1\> = PCIe Gen2.
                                                                 \<2\> = PCIe Gen3.
                                                                 \<3\> = PCIe Gen4. */
        uint64_t tx_enfast             : 4;  /**< [ 35: 32](R/W) Enables fast slew on the TX preamp output with an individual control bit
                                                                 per PCIe rate mapped as following:
                                                                 \<0\> = PCIe Gen1.
                                                                 \<1\> = PCIe Gen2.
                                                                 \<2\> = PCIe Gen3.
                                                                 \<3\> = PCIe Gen4. */
        uint64_t reserved_36_63        : 28;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_pcs3_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_pcs3_bcfg bdk_gsernx_lanex_pcie_pcs3_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_PCS3_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_PCS3_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090001f30ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_PCS3_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_PCS3_BCFG(a,b) bdk_gsernx_lanex_pcie_pcs3_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_PCS3_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_PCS3_BCFG(a,b) "GSERNX_LANEX_PCIE_PCS3_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_PCS3_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_PCS3_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_PCS3_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_pcs_bcfg
 *
 * GSER Lane PCIe PCS Control Register
 * Control settings for PCIe PCS functionality.
 */
union bdk_gsernx_lanex_pcie_pcs_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_pcs_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t do_afeos_adpt         : 4;  /**< [ 63: 60](R/W) Set to one to allow the adaptation reset state machine to trigger AFEOS adaptation
                                                                 when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted and the PCIe lane is
                                                                 operating at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = PCIe gen1.
                                                                 \<1\> = PCIe gen2.
                                                                 \<2\> = PCIe gen3.
                                                                 \<3\> = PCIe gen4. */
        uint64_t do_ctlelte_adpt       : 4;  /**< [ 59: 56](R/W) Set to one to allow the adaptation reset state machine to trigger CTLELTE adaptation
                                                                 when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted and the PCIe lane is
                                                                 operating at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = PCIe gen1.
                                                                 \<1\> = PCIe gen2.
                                                                 \<2\> = PCIe gen3.
                                                                 \<3\> = PCIe gen4. */
        uint64_t do_ctlez_adpt         : 4;  /**< [ 55: 52](R/W) Set to one to allow the adaptation reset state machine to trigger CTLEZ adaptation
                                                                 when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted and the PCIe lane is
                                                                 operating at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = PCIe gen1.
                                                                 \<1\> = PCIe gen2.
                                                                 \<2\> = PCIe gen3.
                                                                 \<3\> = PCIe gen4. */
        uint64_t do_ctle_adpt          : 4;  /**< [ 51: 48](R/W) Set to one to allow the adaptation reset state machine to trigger CTLE adaptation
                                                                 when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted and the PCIe lane is
                                                                 operating at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = PCIe gen1.
                                                                 \<1\> = PCIe gen2.
                                                                 \<2\> = PCIe gen3.
                                                                 \<3\> = PCIe gen4. */
        uint64_t do_dfe_adpt           : 4;  /**< [ 47: 44](R/W) Set to one to allow the adaptation reset state machine to trigger DFE adaptation
                                                                 when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted and the PCIe lane is
                                                                 operating at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = PCIe gen1.
                                                                 \<1\> = PCIe gen2.
                                                                 \<2\> = PCIe gen3.
                                                                 \<3\> = PCIe gen4. */
        uint64_t do_vga_adpt           : 4;  /**< [ 43: 40](R/W) Set to one to allow the adaptation reset state machine to trigger VGA adaptation
                                                                 when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted and the PCIe lane is
                                                                 operating at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = PCIe gen1.
                                                                 \<1\> = PCIe gen2.
                                                                 \<2\> = PCIe gen3.
                                                                 \<3\> = PCIe gen4. */
        uint64_t do_blwc_adpt          : 4;  /**< [ 39: 36](R/W) Set to one to allow the adaptation reset state machine to trigger BLWC adaptation
                                                                 when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted and the PCIe lane is
                                                                 operating at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = PCIe gen1.
                                                                 \<1\> = PCIe gen2.
                                                                 \<2\> = PCIe gen3.
                                                                 \<3\> = PCIe gen4. */
        uint64_t gen34_pll_div_n       : 9;  /**< [ 35: 27](R/W) PLL feedback divider integer portion. */
        uint64_t reserved_25_26        : 2;
        uint64_t gen12_pll_div_n       : 9;  /**< [ 24: 16](R/W) PLL feedback divider integer portion. */
        uint64_t skp_add_thr           : 4;  /**< [ 15: 12](R/W) SKP addition threshold.
                                                                 The receive elastic store will add a SKP symbol (Gen1/2) or add four
                                                                 SKP symbols (Gen3/4) when the store fill level is less than or equal
                                                                 to this value. */
        uint64_t skp_del_thr           : 4;  /**< [ 11:  8](R/W) SKP deletion threshold.
                                                                 The receive elastic store will delete a SKP symbol (Gen1/2) or delete
                                                                 four SKP symbols (Gen3/4) when the store fill level is greater than or
                                                                 equal to this value plus 8. */
        uint64_t comma_thr             : 4;  /**< [  7:  4](R/W) COMMA detection threshold. The receive aligner must see this many
                                                                 COMMA characters at the same rotation before declaring symbol
                                                                 alignment (only used for Gen1/2). */
        uint64_t error_thr             : 4;  /**< [  3:  0](R/W) Error threshold. The receive aligner must see this many COMMA
                                                                 characters at a different rotation than currently in use before
                                                                 declaring loss of symbol alignment (Gen1/2). For Gen3/4 this is
                                                                 the number of invalid Sync Headers needed to cause the aligner
                                                                 to enter the Unaligned Phase and declare an alignment error. */
#else /* Word 0 - Little Endian */
        uint64_t error_thr             : 4;  /**< [  3:  0](R/W) Error threshold. The receive aligner must see this many COMMA
                                                                 characters at a different rotation than currently in use before
                                                                 declaring loss of symbol alignment (Gen1/2). For Gen3/4 this is
                                                                 the number of invalid Sync Headers needed to cause the aligner
                                                                 to enter the Unaligned Phase and declare an alignment error. */
        uint64_t comma_thr             : 4;  /**< [  7:  4](R/W) COMMA detection threshold. The receive aligner must see this many
                                                                 COMMA characters at the same rotation before declaring symbol
                                                                 alignment (only used for Gen1/2). */
        uint64_t skp_del_thr           : 4;  /**< [ 11:  8](R/W) SKP deletion threshold.
                                                                 The receive elastic store will delete a SKP symbol (Gen1/2) or delete
                                                                 four SKP symbols (Gen3/4) when the store fill level is greater than or
                                                                 equal to this value plus 8. */
        uint64_t skp_add_thr           : 4;  /**< [ 15: 12](R/W) SKP addition threshold.
                                                                 The receive elastic store will add a SKP symbol (Gen1/2) or add four
                                                                 SKP symbols (Gen3/4) when the store fill level is less than or equal
                                                                 to this value. */
        uint64_t gen12_pll_div_n       : 9;  /**< [ 24: 16](R/W) PLL feedback divider integer portion. */
        uint64_t reserved_25_26        : 2;
        uint64_t gen34_pll_div_n       : 9;  /**< [ 35: 27](R/W) PLL feedback divider integer portion. */
        uint64_t do_blwc_adpt          : 4;  /**< [ 39: 36](R/W) Set to one to allow the adaptation reset state machine to trigger BLWC adaptation
                                                                 when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted and the PCIe lane is
                                                                 operating at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = PCIe gen1.
                                                                 \<1\> = PCIe gen2.
                                                                 \<2\> = PCIe gen3.
                                                                 \<3\> = PCIe gen4. */
        uint64_t do_vga_adpt           : 4;  /**< [ 43: 40](R/W) Set to one to allow the adaptation reset state machine to trigger VGA adaptation
                                                                 when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted and the PCIe lane is
                                                                 operating at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = PCIe gen1.
                                                                 \<1\> = PCIe gen2.
                                                                 \<2\> = PCIe gen3.
                                                                 \<3\> = PCIe gen4. */
        uint64_t do_dfe_adpt           : 4;  /**< [ 47: 44](R/W) Set to one to allow the adaptation reset state machine to trigger DFE adaptation
                                                                 when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted and the PCIe lane is
                                                                 operating at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = PCIe gen1.
                                                                 \<1\> = PCIe gen2.
                                                                 \<2\> = PCIe gen3.
                                                                 \<3\> = PCIe gen4. */
        uint64_t do_ctle_adpt          : 4;  /**< [ 51: 48](R/W) Set to one to allow the adaptation reset state machine to trigger CTLE adaptation
                                                                 when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted and the PCIe lane is
                                                                 operating at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = PCIe gen1.
                                                                 \<1\> = PCIe gen2.
                                                                 \<2\> = PCIe gen3.
                                                                 \<3\> = PCIe gen4. */
        uint64_t do_ctlez_adpt         : 4;  /**< [ 55: 52](R/W) Set to one to allow the adaptation reset state machine to trigger CTLEZ adaptation
                                                                 when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted and the PCIe lane is
                                                                 operating at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = PCIe gen1.
                                                                 \<1\> = PCIe gen2.
                                                                 \<2\> = PCIe gen3.
                                                                 \<3\> = PCIe gen4. */
        uint64_t do_ctlelte_adpt       : 4;  /**< [ 59: 56](R/W) Set to one to allow the adaptation reset state machine to trigger CTLELTE adaptation
                                                                 when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted and the PCIe lane is
                                                                 operating at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = PCIe gen1.
                                                                 \<1\> = PCIe gen2.
                                                                 \<2\> = PCIe gen3.
                                                                 \<3\> = PCIe gen4. */
        uint64_t do_afeos_adpt         : 4;  /**< [ 63: 60](R/W) Set to one to allow the adaptation reset state machine to trigger AFEOS adaptation
                                                                 when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted and the PCIe lane is
                                                                 operating at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = PCIe gen1.
                                                                 \<1\> = PCIe gen2.
                                                                 \<2\> = PCIe gen3.
                                                                 \<3\> = PCIe gen4. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_pcs_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_pcs_bcfg bdk_gsernx_lanex_pcie_pcs_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_PCS_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_PCS_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090001f10ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_PCS_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_PCS_BCFG(a,b) bdk_gsernx_lanex_pcie_pcs_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_PCS_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_PCS_BCFG(a,b) "GSERNX_LANEX_PCIE_PCS_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_PCS_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_PCS_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_PCS_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_pcs_bsts
 *
 * GSER Lane PCIe PCS Status Register
 * Error Status for PCIe PCS functionality.
 */
union bdk_gsernx_lanex_pcie_pcs_bsts
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_pcs_bsts_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_28_63        : 36;
        uint64_t pcs_rx_eq_raw_fom     : 12; /**< [ 27: 16](RO/H) Raw 12-bit figure of merit for last receiver equalization evaluation. */
        uint64_t reserved_5_15         : 11;
        uint64_t pcs_8b10b_disp_error  : 1;  /**< [  4:  4](R/W1C/H) 8B10B disparity error (PCIe Gen1/2 only).
                                                                 A valid 8B10B code word was received with invalid disparity. */
        uint64_t pcs_decode_error      : 1;  /**< [  3:  3](R/W1C/H) 8B10B decode error (PCIe Gen1/2).
                                                                 An invalid 8B10B code word was detected. The invalid code word was
                                                                 replaced by an EDB symbol (0xFE).

                                                                 128B130B decode error (PCIe Gen3/4).
                                                                 An error was detected in the first 4N+1 symbols of a SKP ordered set. */
        uint64_t es_underflow          : 1;  /**< [  2:  2](R/W1C/H) Elastic store underflow.
                                                                 A read was attempted from the receive Elastic Store while it was empty.
                                                                 This would indicate a receive data rate slower than supported or a
                                                                 lack of SKP ordered sets to allow SKP symbol additions. */
        uint64_t es_overflow           : 1;  /**< [  1:  1](R/W1C/H) Elastic store overflow.
                                                                 A write was attempted to the receive Elastic Store while it was full.
                                                                 This would indicate a receive data rate faster than supported or a
                                                                 lack of SKP ordered sets to allow SKP symbol deletions. */
        uint64_t align_error           : 1;  /**< [  0:  0](R/W1C/H) Alignment error.
                                                                 The receive aligner has detected an error. For PCIe Gen1/2, an error is
                                                                 declared if GSERN()_LANE()_PCIE_PCS_BCFG[ERROR_THR]
                                                                 COMMA characters are detected at a 10 bit rotation that does not match
                                                                 the active rotation. The COMMAs do not have to all be at the same rotation.
                                                                 For PCIe Gen3/4, an error is declared if GSERN()_LANE()_PCIE_PCS_BCFG[ERROR_THR]
                                                                 invalid sync headers are detected at the current block alignment. */
#else /* Word 0 - Little Endian */
        uint64_t align_error           : 1;  /**< [  0:  0](R/W1C/H) Alignment error.
                                                                 The receive aligner has detected an error. For PCIe Gen1/2, an error is
                                                                 declared if GSERN()_LANE()_PCIE_PCS_BCFG[ERROR_THR]
                                                                 COMMA characters are detected at a 10 bit rotation that does not match
                                                                 the active rotation. The COMMAs do not have to all be at the same rotation.
                                                                 For PCIe Gen3/4, an error is declared if GSERN()_LANE()_PCIE_PCS_BCFG[ERROR_THR]
                                                                 invalid sync headers are detected at the current block alignment. */
        uint64_t es_overflow           : 1;  /**< [  1:  1](R/W1C/H) Elastic store overflow.
                                                                 A write was attempted to the receive Elastic Store while it was full.
                                                                 This would indicate a receive data rate faster than supported or a
                                                                 lack of SKP ordered sets to allow SKP symbol deletions. */
        uint64_t es_underflow          : 1;  /**< [  2:  2](R/W1C/H) Elastic store underflow.
                                                                 A read was attempted from the receive Elastic Store while it was empty.
                                                                 This would indicate a receive data rate slower than supported or a
                                                                 lack of SKP ordered sets to allow SKP symbol additions. */
        uint64_t pcs_decode_error      : 1;  /**< [  3:  3](R/W1C/H) 8B10B decode error (PCIe Gen1/2).
                                                                 An invalid 8B10B code word was detected. The invalid code word was
                                                                 replaced by an EDB symbol (0xFE).

                                                                 128B130B decode error (PCIe Gen3/4).
                                                                 An error was detected in the first 4N+1 symbols of a SKP ordered set. */
        uint64_t pcs_8b10b_disp_error  : 1;  /**< [  4:  4](R/W1C/H) 8B10B disparity error (PCIe Gen1/2 only).
                                                                 A valid 8B10B code word was received with invalid disparity. */
        uint64_t reserved_5_15         : 11;
        uint64_t pcs_rx_eq_raw_fom     : 12; /**< [ 27: 16](RO/H) Raw 12-bit figure of merit for last receiver equalization evaluation. */
        uint64_t reserved_28_63        : 36;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_pcs_bsts_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_pcs_bsts bdk_gsernx_lanex_pcie_pcs_bsts_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_PCS_BSTS(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_PCS_BSTS(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002a30ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_PCS_BSTS", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_PCS_BSTS(a,b) bdk_gsernx_lanex_pcie_pcs_bsts_t
#define bustype_BDK_GSERNX_LANEX_PCIE_PCS_BSTS(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_PCS_BSTS(a,b) "GSERNX_LANEX_PCIE_PCS_BSTS"
#define device_bar_BDK_GSERNX_LANEX_PCIE_PCS_BSTS(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_PCS_BSTS(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_PCS_BSTS(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_rstp1_bcfg
 *
 * GSER Lane PCIe PowerDown P1 Reset States Control Register
 * Controls the Reset states (Lane PLL, Tx, Rx, Adapt and Eye Monitor) corresponding to
 * PCIe PowerDown state P1.
 */
union bdk_gsernx_lanex_pcie_rstp1_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_rstp1_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_35_63        : 29;
        uint64_t txcmnmode_disable     : 1;  /**< [ 34: 34](R/W) Reserved.
                                                                 Internal:
                                                                 Set to disable Tx Common Mode voltage during P1 PowerDown state. */
        uint64_t rxidledet_disable     : 1;  /**< [ 33: 33](R/W) Reserved.
                                                                 Internal:
                                                                 Set to disable Rx Electric Idle detection during P1 PowerDown state. */
        uint64_t adapt_rst             : 1;  /**< [ 32: 32](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 Rx Adapt state Pause (0) or Hard Reset (1) during P1 PowerDown state. */
        uint64_t reserved_29_31        : 3;
        uint64_t eye_rst               : 5;  /**< [ 28: 24](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 Eye monitor reset state during P1 PowerDown state. */
        uint64_t reserved_21_23        : 3;
        uint64_t rx_rst                : 5;  /**< [ 20: 16](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 RX reset state during P1 PowerDown state. */
        uint64_t reserved_12_15        : 4;
        uint64_t tx_rst                : 4;  /**< [ 11:  8](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 TX reset state during P1 PowerDown state, but is only used when P1 is entered for
                                                                 lanes that were active in a link and that link has now returned to LTSSM.DETECT
                                                                 state and there are other lanes rejoining the link after having been turned off. */
        uint64_t reserved_4_7          : 4;
        uint64_t lnpll_rst             : 4;  /**< [  3:  0](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 LANE PLL reset state during P1 PowerDown state, but is only used when P1 is entered
                                                                 for lanes that were active in a link and that link has now returned to LTSSM.DETECT
                                                                 state and there are other lanes rejoining the link after having been turned off.
                                                                 Note: this value is never likely to be changed from the normal run state (0x8). */
#else /* Word 0 - Little Endian */
        uint64_t lnpll_rst             : 4;  /**< [  3:  0](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 LANE PLL reset state during P1 PowerDown state, but is only used when P1 is entered
                                                                 for lanes that were active in a link and that link has now returned to LTSSM.DETECT
                                                                 state and there are other lanes rejoining the link after having been turned off.
                                                                 Note: this value is never likely to be changed from the normal run state (0x8). */
        uint64_t reserved_4_7          : 4;
        uint64_t tx_rst                : 4;  /**< [ 11:  8](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 TX reset state during P1 PowerDown state, but is only used when P1 is entered for
                                                                 lanes that were active in a link and that link has now returned to LTSSM.DETECT
                                                                 state and there are other lanes rejoining the link after having been turned off. */
        uint64_t reserved_12_15        : 4;
        uint64_t rx_rst                : 5;  /**< [ 20: 16](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 RX reset state during P1 PowerDown state. */
        uint64_t reserved_21_23        : 3;
        uint64_t eye_rst               : 5;  /**< [ 28: 24](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 Eye monitor reset state during P1 PowerDown state. */
        uint64_t reserved_29_31        : 3;
        uint64_t adapt_rst             : 1;  /**< [ 32: 32](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 Rx Adapt state Pause (0) or Hard Reset (1) during P1 PowerDown state. */
        uint64_t rxidledet_disable     : 1;  /**< [ 33: 33](R/W) Reserved.
                                                                 Internal:
                                                                 Set to disable Rx Electric Idle detection during P1 PowerDown state. */
        uint64_t txcmnmode_disable     : 1;  /**< [ 34: 34](R/W) Reserved.
                                                                 Internal:
                                                                 Set to disable Tx Common Mode voltage during P1 PowerDown state. */
        uint64_t reserved_35_63        : 29;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_rstp1_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_rstp1_bcfg bdk_gsernx_lanex_pcie_rstp1_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_RSTP1_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_RSTP1_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002030ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_RSTP1_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_RSTP1_BCFG(a,b) bdk_gsernx_lanex_pcie_rstp1_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_RSTP1_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_RSTP1_BCFG(a,b) "GSERNX_LANEX_PCIE_RSTP1_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_RSTP1_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_RSTP1_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_RSTP1_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_rstp1s0_bcfg
 *
 * GSER Lane PCIe PowerDown P1 CPM Reset States Control Register
 * Controls the Reset states (Lane PLL, Tx, Rx, Adapt and Eye Monitor) corresponding to
 * PCIe PowerDown state P1 CPM (P1 substates entry).
 */
union bdk_gsernx_lanex_pcie_rstp1s0_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_rstp1s0_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_35_63        : 29;
        uint64_t txcmnmode_disable     : 1;  /**< [ 34: 34](R/W) Reserved.
                                                                 Internal:
                                                                 Set to disable Tx Common Mode voltage during P1 CPM PowerDown state. */
        uint64_t rxidledet_disable     : 1;  /**< [ 33: 33](R/W) Reserved.
                                                                 Internal:
                                                                 Set to disable Rx Electric Idle detection during P1 CPM PowerDown state. */
        uint64_t adapt_rst             : 1;  /**< [ 32: 32](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 Rx Adapt state Pause (0) or Hard Reset (1) during P1 CPM PowerDown state. */
        uint64_t reserved_29_31        : 3;
        uint64_t eye_rst               : 5;  /**< [ 28: 24](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 Eye monitor reset state during P1 CPM PowerDown state. */
        uint64_t reserved_21_23        : 3;
        uint64_t rx_rst                : 5;  /**< [ 20: 16](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 RX reset state during P1 CPM PowerDown state. */
        uint64_t reserved_12_15        : 4;
        uint64_t tx_rst                : 4;  /**< [ 11:  8](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 TX reset state during P1 CPM PowerDown state. */
        uint64_t reserved_4_7          : 4;
        uint64_t lnpll_rst             : 4;  /**< [  3:  0](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 LANE PLL reset state during P1 CPM PowerDown state. */
#else /* Word 0 - Little Endian */
        uint64_t lnpll_rst             : 4;  /**< [  3:  0](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 LANE PLL reset state during P1 CPM PowerDown state. */
        uint64_t reserved_4_7          : 4;
        uint64_t tx_rst                : 4;  /**< [ 11:  8](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 TX reset state during P1 CPM PowerDown state. */
        uint64_t reserved_12_15        : 4;
        uint64_t rx_rst                : 5;  /**< [ 20: 16](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 RX reset state during P1 CPM PowerDown state. */
        uint64_t reserved_21_23        : 3;
        uint64_t eye_rst               : 5;  /**< [ 28: 24](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 Eye monitor reset state during P1 CPM PowerDown state. */
        uint64_t reserved_29_31        : 3;
        uint64_t adapt_rst             : 1;  /**< [ 32: 32](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 Rx Adapt state Pause (0) or Hard Reset (1) during P1 CPM PowerDown state. */
        uint64_t rxidledet_disable     : 1;  /**< [ 33: 33](R/W) Reserved.
                                                                 Internal:
                                                                 Set to disable Rx Electric Idle detection during P1 CPM PowerDown state. */
        uint64_t txcmnmode_disable     : 1;  /**< [ 34: 34](R/W) Reserved.
                                                                 Internal:
                                                                 Set to disable Tx Common Mode voltage during P1 CPM PowerDown state. */
        uint64_t reserved_35_63        : 29;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_rstp1s0_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_rstp1s0_bcfg bdk_gsernx_lanex_pcie_rstp1s0_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_RSTP1S0_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_RSTP1S0_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002040ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_RSTP1S0_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_RSTP1S0_BCFG(a,b) bdk_gsernx_lanex_pcie_rstp1s0_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_RSTP1S0_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_RSTP1S0_BCFG(a,b) "GSERNX_LANEX_PCIE_RSTP1S0_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_RSTP1S0_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_RSTP1S0_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_RSTP1S0_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_rstp1s1_bcfg
 *
 * GSER Lane PCIe PowerDown P1.1 Reset States Control Register
 * Controls the Reset states (Lane PLL, Tx, Rx, Adapt and Eye Monitor) corresponding to
 * PCIe PowerDown state P1.1 (P1 substate).
 */
union bdk_gsernx_lanex_pcie_rstp1s1_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_rstp1s1_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_35_63        : 29;
        uint64_t txcmnmode_disable     : 1;  /**< [ 34: 34](R/W) Reserved.
                                                                 Internal:
                                                                 Set to disable Tx Common Mode voltage during P1.1 PowerDown state. */
        uint64_t rxidledet_disable     : 1;  /**< [ 33: 33](R/W) Reserved.
                                                                 Internal:
                                                                 Set to disable Rx Electric Idle detection during P1.1 PowerDown state. */
        uint64_t adapt_rst             : 1;  /**< [ 32: 32](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 Rx Adapt state Pause (0) or Hard Reset (1) during P1.1 PowerDown state. */
        uint64_t reserved_29_31        : 3;
        uint64_t eye_rst               : 5;  /**< [ 28: 24](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 Eye monitor reset state during P1.1 PowerDown state. */
        uint64_t reserved_21_23        : 3;
        uint64_t rx_rst                : 5;  /**< [ 20: 16](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 RX reset state during P1.1 PowerDown state. */
        uint64_t reserved_12_15        : 4;
        uint64_t tx_rst                : 4;  /**< [ 11:  8](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 TX reset state during P1.1 PowerDown state. */
        uint64_t reserved_4_7          : 4;
        uint64_t lnpll_rst             : 4;  /**< [  3:  0](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 LANE PLL reset state during P1.1 PowerDown state. */
#else /* Word 0 - Little Endian */
        uint64_t lnpll_rst             : 4;  /**< [  3:  0](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 LANE PLL reset state during P1.1 PowerDown state. */
        uint64_t reserved_4_7          : 4;
        uint64_t tx_rst                : 4;  /**< [ 11:  8](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 TX reset state during P1.1 PowerDown state. */
        uint64_t reserved_12_15        : 4;
        uint64_t rx_rst                : 5;  /**< [ 20: 16](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 RX reset state during P1.1 PowerDown state. */
        uint64_t reserved_21_23        : 3;
        uint64_t eye_rst               : 5;  /**< [ 28: 24](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 Eye monitor reset state during P1.1 PowerDown state. */
        uint64_t reserved_29_31        : 3;
        uint64_t adapt_rst             : 1;  /**< [ 32: 32](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 Rx Adapt state Pause (0) or Hard Reset (1) during P1.1 PowerDown state. */
        uint64_t rxidledet_disable     : 1;  /**< [ 33: 33](R/W) Reserved.
                                                                 Internal:
                                                                 Set to disable Rx Electric Idle detection during P1.1 PowerDown state. */
        uint64_t txcmnmode_disable     : 1;  /**< [ 34: 34](R/W) Reserved.
                                                                 Internal:
                                                                 Set to disable Tx Common Mode voltage during P1.1 PowerDown state. */
        uint64_t reserved_35_63        : 29;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_rstp1s1_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_rstp1s1_bcfg bdk_gsernx_lanex_pcie_rstp1s1_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_RSTP1S1_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_RSTP1S1_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002050ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_RSTP1S1_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_RSTP1S1_BCFG(a,b) bdk_gsernx_lanex_pcie_rstp1s1_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_RSTP1S1_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_RSTP1S1_BCFG(a,b) "GSERNX_LANEX_PCIE_RSTP1S1_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_RSTP1S1_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_RSTP1S1_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_RSTP1S1_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_rstp1s2_bcfg
 *
 * GSER Lane PCIe PowerDown P1.2 Reset States Control Register
 * Controls the Reset states (Lane PLL, Tx, Rx, Adapt and Eye Monitor) corresponding to
 * PCIe PowerDown state P1.2 (P1 substate).
 */
union bdk_gsernx_lanex_pcie_rstp1s2_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_rstp1s2_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_35_63        : 29;
        uint64_t txcmnmode_disable     : 1;  /**< [ 34: 34](R/W) Reserved.
                                                                 Internal:
                                                                 Set to disable Tx Common Mode voltage during P1.2 PowerDown state. */
        uint64_t rxidledet_disable     : 1;  /**< [ 33: 33](R/W) Reserved.
                                                                 Internal:
                                                                 Set to disable Rx Electric Idle detection during P1.2 PowerDown state. */
        uint64_t adapt_rst             : 1;  /**< [ 32: 32](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 Rx Adapt state Pause (0) or Hard Reset (1) during P1.2 PowerDown state. */
        uint64_t reserved_29_31        : 3;
        uint64_t eye_rst               : 5;  /**< [ 28: 24](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 Eye monitor reset state during P1.2 PowerDown state. */
        uint64_t reserved_21_23        : 3;
        uint64_t rx_rst                : 5;  /**< [ 20: 16](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 RX reset state during P1.2 PowerDown state. */
        uint64_t reserved_12_15        : 4;
        uint64_t tx_rst                : 4;  /**< [ 11:  8](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 TX reset state during P1.2 PowerDown state. */
        uint64_t reserved_4_7          : 4;
        uint64_t lnpll_rst             : 4;  /**< [  3:  0](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 LANE PLL reset state during P1.2 PowerDown state. */
#else /* Word 0 - Little Endian */
        uint64_t lnpll_rst             : 4;  /**< [  3:  0](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 LANE PLL reset state during P1.2 PowerDown state. */
        uint64_t reserved_4_7          : 4;
        uint64_t tx_rst                : 4;  /**< [ 11:  8](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 TX reset state during P1.2 PowerDown state. */
        uint64_t reserved_12_15        : 4;
        uint64_t rx_rst                : 5;  /**< [ 20: 16](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 RX reset state during P1.2 PowerDown state. */
        uint64_t reserved_21_23        : 3;
        uint64_t eye_rst               : 5;  /**< [ 28: 24](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 Eye monitor reset state during P1.2 PowerDown state. */
        uint64_t reserved_29_31        : 3;
        uint64_t adapt_rst             : 1;  /**< [ 32: 32](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 Rx Adapt state Pause (0) or Hard Reset (1) during P1.2 PowerDown state. */
        uint64_t rxidledet_disable     : 1;  /**< [ 33: 33](R/W) Reserved.
                                                                 Internal:
                                                                 Set to disable Rx Electric Idle detection during P1.2 PowerDown state. */
        uint64_t txcmnmode_disable     : 1;  /**< [ 34: 34](R/W) Reserved.
                                                                 Internal:
                                                                 Set to disable Tx Common Mode voltage during P1.2 PowerDown state. */
        uint64_t reserved_35_63        : 29;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_rstp1s2_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_rstp1s2_bcfg bdk_gsernx_lanex_pcie_rstp1s2_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_RSTP1S2_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_RSTP1S2_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002060ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_RSTP1S2_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_RSTP1S2_BCFG(a,b) bdk_gsernx_lanex_pcie_rstp1s2_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_RSTP1S2_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_RSTP1S2_BCFG(a,b) "GSERNX_LANEX_PCIE_RSTP1S2_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_RSTP1S2_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_RSTP1S2_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_RSTP1S2_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_rstp2_bcfg
 *
 * GSER Lane PCIe PowerDown P2 Reset States Control Register
 * Controls the Reset states (Lane PLL, Tx, Rx, Adapt and Eye Monitor) corresponding to
 * PCIe PowerDown state P2.
 */
union bdk_gsernx_lanex_pcie_rstp2_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_rstp2_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_35_63        : 29;
        uint64_t txcmnmode_disable     : 1;  /**< [ 34: 34](R/W) Reserved.
                                                                 Internal:
                                                                 Set to disable Tx Common Mode voltage during P2 PowerDown state. */
        uint64_t rxidledet_disable     : 1;  /**< [ 33: 33](R/W) Reserved.
                                                                 Internal:
                                                                 Set to disable Rx Electric Idle detection during P2 PowerDown state. */
        uint64_t adapt_rst             : 1;  /**< [ 32: 32](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 Rx Adapt state Pause (0) or Hard Reset (1) during P2 PowerDown state. */
        uint64_t reserved_29_31        : 3;
        uint64_t eye_rst               : 5;  /**< [ 28: 24](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 Eye monitor reset state during P2 PowerDown state. */
        uint64_t reserved_21_23        : 3;
        uint64_t rx_rst                : 5;  /**< [ 20: 16](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 RX reset state during P2 PowerDown state. */
        uint64_t reserved_12_15        : 4;
        uint64_t tx_rst                : 4;  /**< [ 11:  8](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 TX reset state during P2 PowerDown state. */
        uint64_t reserved_4_7          : 4;
        uint64_t lnpll_rst             : 4;  /**< [  3:  0](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 LANE PLL reset state during P2 PowerDown state. */
#else /* Word 0 - Little Endian */
        uint64_t lnpll_rst             : 4;  /**< [  3:  0](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 LANE PLL reset state during P2 PowerDown state. */
        uint64_t reserved_4_7          : 4;
        uint64_t tx_rst                : 4;  /**< [ 11:  8](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 TX reset state during P2 PowerDown state. */
        uint64_t reserved_12_15        : 4;
        uint64_t rx_rst                : 5;  /**< [ 20: 16](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 RX reset state during P2 PowerDown state. */
        uint64_t reserved_21_23        : 3;
        uint64_t eye_rst               : 5;  /**< [ 28: 24](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 Eye monitor reset state during P2 PowerDown state. */
        uint64_t reserved_29_31        : 3;
        uint64_t adapt_rst             : 1;  /**< [ 32: 32](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 Rx Adapt state Pause (0) or Hard Reset (1) during P2 PowerDown state. */
        uint64_t rxidledet_disable     : 1;  /**< [ 33: 33](R/W) Reserved.
                                                                 Internal:
                                                                 Set to disable Rx Electric Idle detection during P2 PowerDown state. */
        uint64_t txcmnmode_disable     : 1;  /**< [ 34: 34](R/W) Reserved.
                                                                 Internal:
                                                                 Set to disable Tx Common Mode voltage during P2 PowerDown state. */
        uint64_t reserved_35_63        : 29;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_rstp2_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_rstp2_bcfg bdk_gsernx_lanex_pcie_rstp2_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_RSTP2_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_RSTP2_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002070ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_RSTP2_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_RSTP2_BCFG(a,b) bdk_gsernx_lanex_pcie_rstp2_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_RSTP2_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_RSTP2_BCFG(a,b) "GSERNX_LANEX_PCIE_RSTP2_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_RSTP2_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_RSTP2_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_RSTP2_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_rstrate_bcfg
 *
 * GSER Lane PCIe Lane Rate Change Reset States Control Register
 * This register controls the reset states (Lane PLL, Tx, Rx, Adapt and Eye Monitor)
 * required for PCIe lane rate change.
 */
union bdk_gsernx_lanex_pcie_rstrate_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_rstrate_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_35_63        : 29;
        uint64_t txcmnmode_disable     : 1;  /**< [ 34: 34](R/W) Reserved.
                                                                 Internal:
                                                                 Set to disable Tx Common Mode voltage during lane rate change. */
        uint64_t rxidledet_disable     : 1;  /**< [ 33: 33](R/W) Reserved.
                                                                 Internal:
                                                                 Set to disable Rx Electric Idle detection during lane rate change. */
        uint64_t adapt_rst             : 1;  /**< [ 32: 32](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 Rx Adapt state Pause (0) or Hard Reset (1) during lane rate change. */
        uint64_t reserved_29_31        : 3;
        uint64_t eye_rst               : 5;  /**< [ 28: 24](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 Eye monitor reset state during lane rate change. */
        uint64_t reserved_21_23        : 3;
        uint64_t rx_rst                : 5;  /**< [ 20: 16](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 RX reset state during lane rate change. */
        uint64_t reserved_12_15        : 4;
        uint64_t tx_rst                : 4;  /**< [ 11:  8](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 TX reset state during lane rate change. */
        uint64_t reserved_4_7          : 4;
        uint64_t lnpll_rst             : 4;  /**< [  3:  0](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 LANE PLL reset state during lane rate change. */
#else /* Word 0 - Little Endian */
        uint64_t lnpll_rst             : 4;  /**< [  3:  0](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 LANE PLL reset state during lane rate change. */
        uint64_t reserved_4_7          : 4;
        uint64_t tx_rst                : 4;  /**< [ 11:  8](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 TX reset state during lane rate change. */
        uint64_t reserved_12_15        : 4;
        uint64_t rx_rst                : 5;  /**< [ 20: 16](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 RX reset state during lane rate change. */
        uint64_t reserved_21_23        : 3;
        uint64_t eye_rst               : 5;  /**< [ 28: 24](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 Eye monitor reset state during lane rate change. */
        uint64_t reserved_29_31        : 3;
        uint64_t adapt_rst             : 1;  /**< [ 32: 32](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 Rx Adapt state Pause (0) or Hard Reset (1) during lane rate change. */
        uint64_t rxidledet_disable     : 1;  /**< [ 33: 33](R/W) Reserved.
                                                                 Internal:
                                                                 Set to disable Rx Electric Idle detection during lane rate change. */
        uint64_t txcmnmode_disable     : 1;  /**< [ 34: 34](R/W) Reserved.
                                                                 Internal:
                                                                 Set to disable Tx Common Mode voltage during lane rate change. */
        uint64_t reserved_35_63        : 29;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_rstrate_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_rstrate_bcfg bdk_gsernx_lanex_pcie_rstrate_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_RSTRATE_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_RSTRATE_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002090ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_RSTRATE_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_RSTRATE_BCFG(a,b) bdk_gsernx_lanex_pcie_rstrate_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_RSTRATE_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_RSTRATE_BCFG(a,b) "GSERNX_LANEX_PCIE_RSTRATE_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_RSTRATE_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_RSTRATE_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_RSTRATE_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_rstshdn_bcfg
 *
 * GSER Lane PCIe Lane Shutdown Reset States Control Register
 * This register controls the reset states (Lane PLL, Tx, Rx, Adapt and Eye Monitor)
 * corresponding to PCIe Lane Shutdown state enabled by the assertion of TxCompliance &
 * TxElecIdle.
 */
union bdk_gsernx_lanex_pcie_rstshdn_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_rstshdn_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_35_63        : 29;
        uint64_t txcmnmode_disable     : 1;  /**< [ 34: 34](R/W) Reserved.
                                                                 Internal:
                                                                 Set to disable TX common mode voltage during lane shutdown state. */
        uint64_t rxidledet_disable     : 1;  /**< [ 33: 33](R/W) Reserved.
                                                                 Internal:
                                                                 Set to disable Rx electric idle detection during lane shutdown state. */
        uint64_t adapt_rst             : 1;  /**< [ 32: 32](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 Rx Adapt state Pause (0) or Hard Reset (1) during lane shutdown state. */
        uint64_t reserved_29_31        : 3;
        uint64_t eye_rst               : 5;  /**< [ 28: 24](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 Eye monitor reset state during lane shutdown state. */
        uint64_t reserved_21_23        : 3;
        uint64_t rx_rst                : 5;  /**< [ 20: 16](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 RX reset state during lane shutdown state. */
        uint64_t reserved_12_15        : 4;
        uint64_t tx_rst                : 4;  /**< [ 11:  8](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 TX reset state during lane shutdown state. */
        uint64_t reserved_4_7          : 4;
        uint64_t lnpll_rst             : 4;  /**< [  3:  0](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 LANE PLL reset state during lane shutdown state. */
#else /* Word 0 - Little Endian */
        uint64_t lnpll_rst             : 4;  /**< [  3:  0](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 LANE PLL reset state during lane shutdown state. */
        uint64_t reserved_4_7          : 4;
        uint64_t tx_rst                : 4;  /**< [ 11:  8](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 TX reset state during lane shutdown state. */
        uint64_t reserved_12_15        : 4;
        uint64_t rx_rst                : 5;  /**< [ 20: 16](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 RX reset state during lane shutdown state. */
        uint64_t reserved_21_23        : 3;
        uint64_t eye_rst               : 5;  /**< [ 28: 24](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 Eye monitor reset state during lane shutdown state. */
        uint64_t reserved_29_31        : 3;
        uint64_t adapt_rst             : 1;  /**< [ 32: 32](R/W) Reserved.
                                                                 Internal:
                                                                 FIXME - add more details
                                                                 Rx Adapt state Pause (0) or Hard Reset (1) during lane shutdown state. */
        uint64_t rxidledet_disable     : 1;  /**< [ 33: 33](R/W) Reserved.
                                                                 Internal:
                                                                 Set to disable Rx electric idle detection during lane shutdown state. */
        uint64_t txcmnmode_disable     : 1;  /**< [ 34: 34](R/W) Reserved.
                                                                 Internal:
                                                                 Set to disable TX common mode voltage during lane shutdown state. */
        uint64_t reserved_35_63        : 29;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_rstshdn_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_rstshdn_bcfg bdk_gsernx_lanex_pcie_rstshdn_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_RSTSHDN_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_RSTSHDN_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002080ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_RSTSHDN_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_RSTSHDN_BCFG(a,b) bdk_gsernx_lanex_pcie_rstshdn_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_RSTSHDN_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_RSTSHDN_BCFG(a,b) "GSERNX_LANEX_PCIE_RSTSHDN_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_RSTSHDN_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_RSTSHDN_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_RSTSHDN_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_rxeq1_1_bcfg
 *
 * GSER Lane PCIe Gen1 RX Equalizer Control Register 1
 * Parameters controlling the custom receiver equalization during PCIe Gen1 operation.
 * These fields will drive the associated control signal when
 * GSERN()_LANE()_SRCMX_BCFG[TX_CTRL_SEL]
 * is set to 'PCIe'.
 */
union bdk_gsernx_lanex_pcie_rxeq1_1_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_rxeq1_1_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_43_63        : 21;
        uint64_t pcie_g1_blwc_deadband : 12; /**< [ 42: 31](R/W) BLWC adaptation deadband settings.
                                                                 12-bit field to match accumulator, but typically a value less than 0x0FF is used. */
        uint64_t pcie_g1_erc           : 4;  /**< [ 30: 27](R/W) Interpolator edge-rate control. This control is shared between all
                                                                 interpolators in the lane.  See GSERN()_LANE()_RX_ST_BCFG.ERC
                                                                 for detailed information. */
        uint64_t pcie_g1_c6_c15_limit_hi : 6;/**< [ 26: 21](R/W) C6 to C15 postcursor limit high. */
        uint64_t pcie_g1_c6_c15_limit_lo : 6;/**< [ 20: 15](R/W) C6 to C15 postcursor limit low. */
        uint64_t pcie_g1_ctle_lte_zero_ovrd_en : 1;/**< [ 14: 14](R/W) CTLE LTE zero frequency override enable.
                                                                 By default, the override should be enabled; otherwise, CTLE_LTE_ZERO
                                                                 will be set equal to CTLE_ZERO within the RX adaptation FSM. */
        uint64_t pcie_g1_ctle_lte_zero_ovrd : 4;/**< [ 13: 10](R/W) CTLE LTE zero frequency override value. */
        uint64_t pcie_g1_settle_wait   : 4;  /**< [  9:  6](R/W) Number of clock cycles for the DFE adaptation to wait after changing the
                                                                 adjusted C1 values before resuming accumulation. */
        uint64_t pcie_g1_voter_sp_mask : 1;  /**< [  5:  5](R/W) Set to mask out "010" and "101" patterns in RX cdr voter.
                                                                 GSERN()_LANE()_CDRFSM_BCFG[VOTER_SP_MASK] will be updated
                                                                 by the hardware even when this bit drives the control. */
        uint64_t pcie_g1_c1_q_adjust   : 5;  /**< [  4:  0](R/W) Adjust value magnitude for the error slice in the Q path. */
#else /* Word 0 - Little Endian */
        uint64_t pcie_g1_c1_q_adjust   : 5;  /**< [  4:  0](R/W) Adjust value magnitude for the error slice in the Q path. */
        uint64_t pcie_g1_voter_sp_mask : 1;  /**< [  5:  5](R/W) Set to mask out "010" and "101" patterns in RX cdr voter.
                                                                 GSERN()_LANE()_CDRFSM_BCFG[VOTER_SP_MASK] will be updated
                                                                 by the hardware even when this bit drives the control. */
        uint64_t pcie_g1_settle_wait   : 4;  /**< [  9:  6](R/W) Number of clock cycles for the DFE adaptation to wait after changing the
                                                                 adjusted C1 values before resuming accumulation. */
        uint64_t pcie_g1_ctle_lte_zero_ovrd : 4;/**< [ 13: 10](R/W) CTLE LTE zero frequency override value. */
        uint64_t pcie_g1_ctle_lte_zero_ovrd_en : 1;/**< [ 14: 14](R/W) CTLE LTE zero frequency override enable.
                                                                 By default, the override should be enabled; otherwise, CTLE_LTE_ZERO
                                                                 will be set equal to CTLE_ZERO within the RX adaptation FSM. */
        uint64_t pcie_g1_c6_c15_limit_lo : 6;/**< [ 20: 15](R/W) C6 to C15 postcursor limit low. */
        uint64_t pcie_g1_c6_c15_limit_hi : 6;/**< [ 26: 21](R/W) C6 to C15 postcursor limit high. */
        uint64_t pcie_g1_erc           : 4;  /**< [ 30: 27](R/W) Interpolator edge-rate control. This control is shared between all
                                                                 interpolators in the lane.  See GSERN()_LANE()_RX_ST_BCFG.ERC
                                                                 for detailed information. */
        uint64_t pcie_g1_blwc_deadband : 12; /**< [ 42: 31](R/W) BLWC adaptation deadband settings.
                                                                 12-bit field to match accumulator, but typically a value less than 0x0FF is used. */
        uint64_t reserved_43_63        : 21;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_rxeq1_1_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_rxeq1_1_bcfg bdk_gsernx_lanex_pcie_rxeq1_1_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXEQ1_1_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXEQ1_1_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002300ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_RXEQ1_1_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_RXEQ1_1_BCFG(a,b) bdk_gsernx_lanex_pcie_rxeq1_1_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_RXEQ1_1_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_RXEQ1_1_BCFG(a,b) "GSERNX_LANEX_PCIE_RXEQ1_1_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_RXEQ1_1_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_RXEQ1_1_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_RXEQ1_1_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_rxeq1_2_bcfg
 *
 * GSER Lane PCIe Gen1 RX Equalizer Control Register 2
 * Parameters controlling the custom receiver equalization during PCIe Gen1 operation.
 * These fields will drive the associated control signal when
 * GSERN()_LANE()_SRCMX_BCFG[TX_CTRL_SEL]
 * is set to 'PCIe'.
 */
union bdk_gsernx_lanex_pcie_rxeq1_2_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_rxeq1_2_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t pcie_g1_afeos_subrate_final : 16;/**< [ 63: 48](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t pcie_g1_afeos_subrate_init : 16;/**< [ 47: 32](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t pcie_g1_subrate_final : 16; /**< [ 31: 16](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t pcie_g1_subrate_init  : 16; /**< [ 15:  0](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
#else /* Word 0 - Little Endian */
        uint64_t pcie_g1_subrate_init  : 16; /**< [ 15:  0](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t pcie_g1_subrate_final : 16; /**< [ 31: 16](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t pcie_g1_afeos_subrate_init : 16;/**< [ 47: 32](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t pcie_g1_afeos_subrate_final : 16;/**< [ 63: 48](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_rxeq1_2_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_rxeq1_2_bcfg bdk_gsernx_lanex_pcie_rxeq1_2_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXEQ1_2_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXEQ1_2_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002310ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_RXEQ1_2_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_RXEQ1_2_BCFG(a,b) bdk_gsernx_lanex_pcie_rxeq1_2_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_RXEQ1_2_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_RXEQ1_2_BCFG(a,b) "GSERNX_LANEX_PCIE_RXEQ1_2_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_RXEQ1_2_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_RXEQ1_2_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_RXEQ1_2_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_rxeq1_3_bcfg
 *
 * GSER Lane PCIe Gen1 RX Equalizer Control Register 3
 * Parameters controlling the custom receiver equalization during PCIe Gen1 operation.
 * These fields will drive the associated control signal when
 * GSERN()_LANE()_SRCMX_BCFG[TX_CTRL_SEL]
 * is set to 'PCIe'.
 */
union bdk_gsernx_lanex_pcie_rxeq1_3_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_rxeq1_3_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_62_63        : 2;
        uint64_t pcie_g1_c5_limit_hi   : 6;  /**< [ 61: 56](R/W) C5 postcursor limit high. */
        uint64_t pcie_g1_c4_limit_hi   : 6;  /**< [ 55: 50](R/W) C4 postcursor limit high. */
        uint64_t pcie_g1_c3_limit_hi   : 6;  /**< [ 49: 44](R/W) C3 postcursor limit high. */
        uint64_t pcie_g1_c2_limit_hi   : 6;  /**< [ 43: 38](R/W) C2 postcursor limit high. */
        uint64_t pcie_g1_c1_limit_hi   : 6;  /**< [ 37: 32](R/W) C1 postcursor limit high. */
        uint64_t reserved_30_31        : 2;
        uint64_t pcie_g1_c5_limit_lo   : 6;  /**< [ 29: 24](R/W) C5 postcursor limit low. */
        uint64_t pcie_g1_c4_limit_lo   : 6;  /**< [ 23: 18](R/W) C4 postcursor limit low. */
        uint64_t pcie_g1_c3_limit_lo   : 6;  /**< [ 17: 12](R/W) C3 postcursor limit low. */
        uint64_t pcie_g1_c2_limit_lo   : 6;  /**< [ 11:  6](R/W) C2 postcursor limit low. */
        uint64_t pcie_g1_c1_limit_lo   : 6;  /**< [  5:  0](R/W) C1 postcursor limit low. */
#else /* Word 0 - Little Endian */
        uint64_t pcie_g1_c1_limit_lo   : 6;  /**< [  5:  0](R/W) C1 postcursor limit low. */
        uint64_t pcie_g1_c2_limit_lo   : 6;  /**< [ 11:  6](R/W) C2 postcursor limit low. */
        uint64_t pcie_g1_c3_limit_lo   : 6;  /**< [ 17: 12](R/W) C3 postcursor limit low. */
        uint64_t pcie_g1_c4_limit_lo   : 6;  /**< [ 23: 18](R/W) C4 postcursor limit low. */
        uint64_t pcie_g1_c5_limit_lo   : 6;  /**< [ 29: 24](R/W) C5 postcursor limit low. */
        uint64_t reserved_30_31        : 2;
        uint64_t pcie_g1_c1_limit_hi   : 6;  /**< [ 37: 32](R/W) C1 postcursor limit high. */
        uint64_t pcie_g1_c2_limit_hi   : 6;  /**< [ 43: 38](R/W) C2 postcursor limit high. */
        uint64_t pcie_g1_c3_limit_hi   : 6;  /**< [ 49: 44](R/W) C3 postcursor limit high. */
        uint64_t pcie_g1_c4_limit_hi   : 6;  /**< [ 55: 50](R/W) C4 postcursor limit high. */
        uint64_t pcie_g1_c5_limit_hi   : 6;  /**< [ 61: 56](R/W) C5 postcursor limit high. */
        uint64_t reserved_62_63        : 2;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_rxeq1_3_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_rxeq1_3_bcfg bdk_gsernx_lanex_pcie_rxeq1_3_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXEQ1_3_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXEQ1_3_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002320ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_RXEQ1_3_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_RXEQ1_3_BCFG(a,b) bdk_gsernx_lanex_pcie_rxeq1_3_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_RXEQ1_3_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_RXEQ1_3_BCFG(a,b) "GSERNX_LANEX_PCIE_RXEQ1_3_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_RXEQ1_3_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_RXEQ1_3_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_RXEQ1_3_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_rxeq1_4_bcfg
 *
 * GSER Lane PCIe Gen1 RX Equalizer Control Register 4
 * Parameters controlling the custom receiver equalization during PCIe Gen1 operation.
 * These fields will drive the associated control signal when
 * GSERN()_LANE()_SRCMX_BCFG[TX_CTRL_SEL]
 * is set to 'PCIe'.
 */
union bdk_gsernx_lanex_pcie_rxeq1_4_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_rxeq1_4_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t pcie_g1_prevga_gn_subrate_fin : 16;/**< [ 63: 48](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FIN if subrate gearshifting is not enabled. */
        uint64_t pcie_g1_prevga_gn_subrate_init : 16;/**< [ 47: 32](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t pcie_g1_blwc_subrate_final : 16;/**< [ 31: 16](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t pcie_g1_blwc_subrate_init : 16;/**< [ 15:  0](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
#else /* Word 0 - Little Endian */
        uint64_t pcie_g1_blwc_subrate_init : 16;/**< [ 15:  0](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t pcie_g1_blwc_subrate_final : 16;/**< [ 31: 16](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t pcie_g1_prevga_gn_subrate_init : 16;/**< [ 47: 32](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t pcie_g1_prevga_gn_subrate_fin : 16;/**< [ 63: 48](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FIN if subrate gearshifting is not enabled. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_rxeq1_4_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_rxeq1_4_bcfg bdk_gsernx_lanex_pcie_rxeq1_4_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXEQ1_4_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXEQ1_4_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002330ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_RXEQ1_4_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_RXEQ1_4_BCFG(a,b) bdk_gsernx_lanex_pcie_rxeq1_4_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_RXEQ1_4_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_RXEQ1_4_BCFG(a,b) "GSERNX_LANEX_PCIE_RXEQ1_4_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_RXEQ1_4_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_RXEQ1_4_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_RXEQ1_4_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_rxeq2_1_bcfg
 *
 * GSER Lane PCIe Gen2 RX Equalizer Control Register 1
 * Parameters controlling the custom receiver equalization during PCIe Gen2 operation.
 * These fields will drive the associated control signal when
 * GSERN()_LANE()_SRCMX_BCFG[TX_CTRL_SEL]
 * is set to 'PCIe'.
 */
union bdk_gsernx_lanex_pcie_rxeq2_1_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_rxeq2_1_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_43_63        : 21;
        uint64_t pcie_g2_blwc_deadband : 12; /**< [ 42: 31](R/W) BLWC adaptation deadband settings.
                                                                 12-bit field to match accumulator, but typically a value less than 0x0FF is used. */
        uint64_t pcie_g2_erc           : 4;  /**< [ 30: 27](R/W) Interpolator edge-rate control. This control is shared between all
                                                                 interpolators in the lane.  See GSERN()_LANE()_RX_ST_BCFG.ERC
                                                                 for detailed information. */
        uint64_t pcie_g2_c6_c15_limit_hi : 6;/**< [ 26: 21](R/W) C6 to C15 postcursor limit high. */
        uint64_t pcie_g2_c6_c15_limit_lo : 6;/**< [ 20: 15](R/W) C6 to C15 postcursor limit low. */
        uint64_t pcie_g2_ctle_lte_zero_ovrd_en : 1;/**< [ 14: 14](R/W) CTLE LTE zero frequency override enable.
                                                                 By default, the override should be enabled; otherwise, CTLE_LTE_ZERO
                                                                 will be set equal to CTLE_ZERO within the RX adaptation FSM. */
        uint64_t pcie_g2_ctle_lte_zero_ovrd : 4;/**< [ 13: 10](R/W) CTLE LTE zero frequency override value. */
        uint64_t pcie_g2_settle_wait   : 4;  /**< [  9:  6](R/W) Number of clock cycles for the DFE adaptation to wait after changing the
                                                                 adjusted C1 values before resuming accumulation. */
        uint64_t pcie_g2_voter_sp_mask : 1;  /**< [  5:  5](R/W) Set to mask out "010" and "101" patterns in RX cdr voter.
                                                                 GSERN()_LANE()_CDRFSM_BCFG[VOTER_SP_MASK] will be updated
                                                                 by the hardware even when this bit drives the control. */
        uint64_t pcie_g2_c1_q_adjust   : 5;  /**< [  4:  0](R/W) Adjust value magnitude for the error slice in the Q path. */
#else /* Word 0 - Little Endian */
        uint64_t pcie_g2_c1_q_adjust   : 5;  /**< [  4:  0](R/W) Adjust value magnitude for the error slice in the Q path. */
        uint64_t pcie_g2_voter_sp_mask : 1;  /**< [  5:  5](R/W) Set to mask out "010" and "101" patterns in RX cdr voter.
                                                                 GSERN()_LANE()_CDRFSM_BCFG[VOTER_SP_MASK] will be updated
                                                                 by the hardware even when this bit drives the control. */
        uint64_t pcie_g2_settle_wait   : 4;  /**< [  9:  6](R/W) Number of clock cycles for the DFE adaptation to wait after changing the
                                                                 adjusted C1 values before resuming accumulation. */
        uint64_t pcie_g2_ctle_lte_zero_ovrd : 4;/**< [ 13: 10](R/W) CTLE LTE zero frequency override value. */
        uint64_t pcie_g2_ctle_lte_zero_ovrd_en : 1;/**< [ 14: 14](R/W) CTLE LTE zero frequency override enable.
                                                                 By default, the override should be enabled; otherwise, CTLE_LTE_ZERO
                                                                 will be set equal to CTLE_ZERO within the RX adaptation FSM. */
        uint64_t pcie_g2_c6_c15_limit_lo : 6;/**< [ 20: 15](R/W) C6 to C15 postcursor limit low. */
        uint64_t pcie_g2_c6_c15_limit_hi : 6;/**< [ 26: 21](R/W) C6 to C15 postcursor limit high. */
        uint64_t pcie_g2_erc           : 4;  /**< [ 30: 27](R/W) Interpolator edge-rate control. This control is shared between all
                                                                 interpolators in the lane.  See GSERN()_LANE()_RX_ST_BCFG.ERC
                                                                 for detailed information. */
        uint64_t pcie_g2_blwc_deadband : 12; /**< [ 42: 31](R/W) BLWC adaptation deadband settings.
                                                                 12-bit field to match accumulator, but typically a value less than 0x0FF is used. */
        uint64_t reserved_43_63        : 21;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_rxeq2_1_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_rxeq2_1_bcfg bdk_gsernx_lanex_pcie_rxeq2_1_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXEQ2_1_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXEQ2_1_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002340ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_RXEQ2_1_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_RXEQ2_1_BCFG(a,b) bdk_gsernx_lanex_pcie_rxeq2_1_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_RXEQ2_1_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_RXEQ2_1_BCFG(a,b) "GSERNX_LANEX_PCIE_RXEQ2_1_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_RXEQ2_1_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_RXEQ2_1_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_RXEQ2_1_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_rxeq2_2_bcfg
 *
 * GSER Lane PCIe Gen2 RX Equalizer Control Register 2
 * Parameters controlling the custom receiver equalization during PCIe Gen2 operation.
 * These fields will drive the associated control signal when
 * GSERN()_LANE()_SRCMX_BCFG[TX_CTRL_SEL]
 * is set to 'PCIe'.
 */
union bdk_gsernx_lanex_pcie_rxeq2_2_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_rxeq2_2_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t pcie_g2_afeos_subrate_final : 16;/**< [ 63: 48](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t pcie_g2_afeos_subrate_init : 16;/**< [ 47: 32](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t pcie_g2_subrate_final : 16; /**< [ 31: 16](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t pcie_g2_subrate_init  : 16; /**< [ 15:  0](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
#else /* Word 0 - Little Endian */
        uint64_t pcie_g2_subrate_init  : 16; /**< [ 15:  0](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t pcie_g2_subrate_final : 16; /**< [ 31: 16](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t pcie_g2_afeos_subrate_init : 16;/**< [ 47: 32](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t pcie_g2_afeos_subrate_final : 16;/**< [ 63: 48](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_rxeq2_2_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_rxeq2_2_bcfg bdk_gsernx_lanex_pcie_rxeq2_2_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXEQ2_2_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXEQ2_2_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002350ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_RXEQ2_2_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_RXEQ2_2_BCFG(a,b) bdk_gsernx_lanex_pcie_rxeq2_2_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_RXEQ2_2_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_RXEQ2_2_BCFG(a,b) "GSERNX_LANEX_PCIE_RXEQ2_2_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_RXEQ2_2_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_RXEQ2_2_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_RXEQ2_2_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_rxeq2_3_bcfg
 *
 * GSER Lane PCIe Gen2 RX Equalizer Control Register 3
 * Parameters controlling the custom receiver equalization during PCIe Gen2 operation.
 * These fields will drive the associated control signal when
 * GSERN()_LANE()_SRCMX_BCFG[TX_CTRL_SEL]
 * is set to 'PCIe'.
 */
union bdk_gsernx_lanex_pcie_rxeq2_3_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_rxeq2_3_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_62_63        : 2;
        uint64_t pcie_g2_c5_limit_hi   : 6;  /**< [ 61: 56](R/W) C5 postcursor limit high. */
        uint64_t pcie_g2_c4_limit_hi   : 6;  /**< [ 55: 50](R/W) C4 postcursor limit high. */
        uint64_t pcie_g2_c3_limit_hi   : 6;  /**< [ 49: 44](R/W) C3 postcursor limit high. */
        uint64_t pcie_g2_c2_limit_hi   : 6;  /**< [ 43: 38](R/W) C2 postcursor limit high. */
        uint64_t pcie_g2_c1_limit_hi   : 6;  /**< [ 37: 32](R/W) C1 postcursor limit high. */
        uint64_t reserved_30_31        : 2;
        uint64_t pcie_g2_c5_limit_lo   : 6;  /**< [ 29: 24](R/W) C5 postcursor limit low. */
        uint64_t pcie_g2_c4_limit_lo   : 6;  /**< [ 23: 18](R/W) C4 postcursor limit low. */
        uint64_t pcie_g2_c3_limit_lo   : 6;  /**< [ 17: 12](R/W) C3 postcursor limit low. */
        uint64_t pcie_g2_c2_limit_lo   : 6;  /**< [ 11:  6](R/W) C2 postcursor limit low. */
        uint64_t pcie_g2_c1_limit_lo   : 6;  /**< [  5:  0](R/W) C1 postcursor limit low. */
#else /* Word 0 - Little Endian */
        uint64_t pcie_g2_c1_limit_lo   : 6;  /**< [  5:  0](R/W) C1 postcursor limit low. */
        uint64_t pcie_g2_c2_limit_lo   : 6;  /**< [ 11:  6](R/W) C2 postcursor limit low. */
        uint64_t pcie_g2_c3_limit_lo   : 6;  /**< [ 17: 12](R/W) C3 postcursor limit low. */
        uint64_t pcie_g2_c4_limit_lo   : 6;  /**< [ 23: 18](R/W) C4 postcursor limit low. */
        uint64_t pcie_g2_c5_limit_lo   : 6;  /**< [ 29: 24](R/W) C5 postcursor limit low. */
        uint64_t reserved_30_31        : 2;
        uint64_t pcie_g2_c1_limit_hi   : 6;  /**< [ 37: 32](R/W) C1 postcursor limit high. */
        uint64_t pcie_g2_c2_limit_hi   : 6;  /**< [ 43: 38](R/W) C2 postcursor limit high. */
        uint64_t pcie_g2_c3_limit_hi   : 6;  /**< [ 49: 44](R/W) C3 postcursor limit high. */
        uint64_t pcie_g2_c4_limit_hi   : 6;  /**< [ 55: 50](R/W) C4 postcursor limit high. */
        uint64_t pcie_g2_c5_limit_hi   : 6;  /**< [ 61: 56](R/W) C5 postcursor limit high. */
        uint64_t reserved_62_63        : 2;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_rxeq2_3_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_rxeq2_3_bcfg bdk_gsernx_lanex_pcie_rxeq2_3_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXEQ2_3_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXEQ2_3_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002360ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_RXEQ2_3_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_RXEQ2_3_BCFG(a,b) bdk_gsernx_lanex_pcie_rxeq2_3_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_RXEQ2_3_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_RXEQ2_3_BCFG(a,b) "GSERNX_LANEX_PCIE_RXEQ2_3_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_RXEQ2_3_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_RXEQ2_3_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_RXEQ2_3_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_rxeq2_4_bcfg
 *
 * GSER Lane PCIe Gen2 RX Equalizer Control Register 4
 * Parameters controlling the custom receiver equalization during PCIe Gen2 operation.
 * These fields will drive the associated control signal when
 * GSERN()_LANE()_SRCMX_BCFG[TX_CTRL_SEL]
 * is set to 'PCIe'.
 */
union bdk_gsernx_lanex_pcie_rxeq2_4_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_rxeq2_4_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t pcie_g2_prevga_gn_subrate_fin : 16;/**< [ 63: 48](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FIN if subrate gearshifting is not enabled. */
        uint64_t pcie_g2_prevga_gn_subrate_init : 16;/**< [ 47: 32](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t pcie_g2_blwc_subrate_final : 16;/**< [ 31: 16](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t pcie_g2_blwc_subrate_init : 16;/**< [ 15:  0](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
#else /* Word 0 - Little Endian */
        uint64_t pcie_g2_blwc_subrate_init : 16;/**< [ 15:  0](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t pcie_g2_blwc_subrate_final : 16;/**< [ 31: 16](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t pcie_g2_prevga_gn_subrate_init : 16;/**< [ 47: 32](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t pcie_g2_prevga_gn_subrate_fin : 16;/**< [ 63: 48](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FIN if subrate gearshifting is not enabled. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_rxeq2_4_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_rxeq2_4_bcfg bdk_gsernx_lanex_pcie_rxeq2_4_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXEQ2_4_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXEQ2_4_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002370ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_RXEQ2_4_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_RXEQ2_4_BCFG(a,b) bdk_gsernx_lanex_pcie_rxeq2_4_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_RXEQ2_4_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_RXEQ2_4_BCFG(a,b) "GSERNX_LANEX_PCIE_RXEQ2_4_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_RXEQ2_4_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_RXEQ2_4_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_RXEQ2_4_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_rxeq3_1_bcfg
 *
 * GSER Lane PCIe Gen3 RX Equalizer Control Register 1
 * Parameters controlling the custom receiver equalization during PCIe Gen3 operation.
 * These fields will drive the associated control signal when
 * GSERN()_LANE()_SRCMX_BCFG[TX_CTRL_SEL]
 * is set to 'PCIe'.
 */
union bdk_gsernx_lanex_pcie_rxeq3_1_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_rxeq3_1_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_43_63        : 21;
        uint64_t pcie_g3_blwc_deadband : 12; /**< [ 42: 31](R/W) BLWC adaptation deadband settings.
                                                                 12-bit field to match accumulator, but typically a value less than 0x0FF is used. */
        uint64_t pcie_g3_erc           : 4;  /**< [ 30: 27](R/W) Interpolator edge-rate control. This control is shared between all
                                                                 interpolators in the lane.  See GSERN()_LANE()_RX_ST_BCFG.ERC
                                                                 for detailed information. */
        uint64_t pcie_g3_c6_c15_limit_hi : 6;/**< [ 26: 21](R/W) C6 to C15 postcursor limit high. */
        uint64_t pcie_g3_c6_c15_limit_lo : 6;/**< [ 20: 15](R/W) C6 to C15 postcursor limit low. */
        uint64_t pcie_g3_ctle_lte_zero_ovrd_en : 1;/**< [ 14: 14](R/W) CTLE LTE zero frequency override enable.
                                                                 By default, the override should be enabled; otherwise, CTLE_LTE_ZERO
                                                                 will be set equal to CTLE_ZERO within the RX adaptation FSM. */
        uint64_t pcie_g3_ctle_lte_zero_ovrd : 4;/**< [ 13: 10](R/W) CTLE LTE zero frequency override value. */
        uint64_t pcie_g3_settle_wait   : 4;  /**< [  9:  6](R/W) Number of clock cycles for the DFE adaptation to wait after changing the
                                                                 adjusted C1 values before resuming accumulation. */
        uint64_t pcie_g3_voter_sp_mask : 1;  /**< [  5:  5](R/W) Set to mask out "010" and "101" patterns in RX cdr voter.
                                                                 GSERN()_LANE()_CDRFSM_BCFG[VOTER_SP_MASK] will be updated
                                                                 by the hardware even when this bit drives the control. */
        uint64_t pcie_g3_c1_q_adjust   : 5;  /**< [  4:  0](R/W) Adjust value magnitude for the error slice in the Q path. */
#else /* Word 0 - Little Endian */
        uint64_t pcie_g3_c1_q_adjust   : 5;  /**< [  4:  0](R/W) Adjust value magnitude for the error slice in the Q path. */
        uint64_t pcie_g3_voter_sp_mask : 1;  /**< [  5:  5](R/W) Set to mask out "010" and "101" patterns in RX cdr voter.
                                                                 GSERN()_LANE()_CDRFSM_BCFG[VOTER_SP_MASK] will be updated
                                                                 by the hardware even when this bit drives the control. */
        uint64_t pcie_g3_settle_wait   : 4;  /**< [  9:  6](R/W) Number of clock cycles for the DFE adaptation to wait after changing the
                                                                 adjusted C1 values before resuming accumulation. */
        uint64_t pcie_g3_ctle_lte_zero_ovrd : 4;/**< [ 13: 10](R/W) CTLE LTE zero frequency override value. */
        uint64_t pcie_g3_ctle_lte_zero_ovrd_en : 1;/**< [ 14: 14](R/W) CTLE LTE zero frequency override enable.
                                                                 By default, the override should be enabled; otherwise, CTLE_LTE_ZERO
                                                                 will be set equal to CTLE_ZERO within the RX adaptation FSM. */
        uint64_t pcie_g3_c6_c15_limit_lo : 6;/**< [ 20: 15](R/W) C6 to C15 postcursor limit low. */
        uint64_t pcie_g3_c6_c15_limit_hi : 6;/**< [ 26: 21](R/W) C6 to C15 postcursor limit high. */
        uint64_t pcie_g3_erc           : 4;  /**< [ 30: 27](R/W) Interpolator edge-rate control. This control is shared between all
                                                                 interpolators in the lane.  See GSERN()_LANE()_RX_ST_BCFG.ERC
                                                                 for detailed information. */
        uint64_t pcie_g3_blwc_deadband : 12; /**< [ 42: 31](R/W) BLWC adaptation deadband settings.
                                                                 12-bit field to match accumulator, but typically a value less than 0x0FF is used. */
        uint64_t reserved_43_63        : 21;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_rxeq3_1_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_rxeq3_1_bcfg bdk_gsernx_lanex_pcie_rxeq3_1_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXEQ3_1_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXEQ3_1_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002380ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_RXEQ3_1_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_RXEQ3_1_BCFG(a,b) bdk_gsernx_lanex_pcie_rxeq3_1_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_RXEQ3_1_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_RXEQ3_1_BCFG(a,b) "GSERNX_LANEX_PCIE_RXEQ3_1_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_RXEQ3_1_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_RXEQ3_1_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_RXEQ3_1_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_rxeq3_2_bcfg
 *
 * GSER Lane PCIe Gen3 RX Equalizer Control Register 2
 * Parameters controlling the custom receiver equalization during PCIe Gen3 operation.
 * These fields will drive the associated control signal when
 * GSERN()_LANE()_SRCMX_BCFG[TX_CTRL_SEL]
 * is set to 'PCIe'.
 */
union bdk_gsernx_lanex_pcie_rxeq3_2_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_rxeq3_2_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t pcie_g3_afeos_subrate_final : 16;/**< [ 63: 48](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t pcie_g3_afeos_subrate_init : 16;/**< [ 47: 32](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t pcie_g3_subrate_final : 16; /**< [ 31: 16](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t pcie_g3_subrate_init  : 16; /**< [ 15:  0](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
#else /* Word 0 - Little Endian */
        uint64_t pcie_g3_subrate_init  : 16; /**< [ 15:  0](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t pcie_g3_subrate_final : 16; /**< [ 31: 16](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t pcie_g3_afeos_subrate_init : 16;/**< [ 47: 32](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t pcie_g3_afeos_subrate_final : 16;/**< [ 63: 48](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_rxeq3_2_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_rxeq3_2_bcfg bdk_gsernx_lanex_pcie_rxeq3_2_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXEQ3_2_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXEQ3_2_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002390ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_RXEQ3_2_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_RXEQ3_2_BCFG(a,b) bdk_gsernx_lanex_pcie_rxeq3_2_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_RXEQ3_2_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_RXEQ3_2_BCFG(a,b) "GSERNX_LANEX_PCIE_RXEQ3_2_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_RXEQ3_2_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_RXEQ3_2_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_RXEQ3_2_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_rxeq3_3_bcfg
 *
 * GSER Lane PCIe Gen3 RX Equalizer Control Register 3
 * Parameters controlling the custom receiver equalization during PCIe Gen3 operation.
 * These fields will drive the associated control signal when
 * GSERN()_LANE()_SRCMX_BCFG[TX_CTRL_SEL]
 * is set to 'PCIe'.
 */
union bdk_gsernx_lanex_pcie_rxeq3_3_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_rxeq3_3_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_62_63        : 2;
        uint64_t pcie_g3_c5_limit_hi   : 6;  /**< [ 61: 56](R/W) C5 postcursor limit high. */
        uint64_t pcie_g3_c4_limit_hi   : 6;  /**< [ 55: 50](R/W) C4 postcursor limit high. */
        uint64_t pcie_g3_c3_limit_hi   : 6;  /**< [ 49: 44](R/W) C3 postcursor limit high. */
        uint64_t pcie_g3_c2_limit_hi   : 6;  /**< [ 43: 38](R/W) C2 postcursor limit high. */
        uint64_t pcie_g3_c1_limit_hi   : 6;  /**< [ 37: 32](R/W) C1 postcursor limit high. */
        uint64_t reserved_30_31        : 2;
        uint64_t pcie_g3_c5_limit_lo   : 6;  /**< [ 29: 24](R/W) C5 postcursor limit low. */
        uint64_t pcie_g3_c4_limit_lo   : 6;  /**< [ 23: 18](R/W) C4 postcursor limit low. */
        uint64_t pcie_g3_c3_limit_lo   : 6;  /**< [ 17: 12](R/W) C3 postcursor limit low. */
        uint64_t pcie_g3_c2_limit_lo   : 6;  /**< [ 11:  6](R/W) C2 postcursor limit low. */
        uint64_t pcie_g3_c1_limit_lo   : 6;  /**< [  5:  0](R/W) C1 postcursor limit low. */
#else /* Word 0 - Little Endian */
        uint64_t pcie_g3_c1_limit_lo   : 6;  /**< [  5:  0](R/W) C1 postcursor limit low. */
        uint64_t pcie_g3_c2_limit_lo   : 6;  /**< [ 11:  6](R/W) C2 postcursor limit low. */
        uint64_t pcie_g3_c3_limit_lo   : 6;  /**< [ 17: 12](R/W) C3 postcursor limit low. */
        uint64_t pcie_g3_c4_limit_lo   : 6;  /**< [ 23: 18](R/W) C4 postcursor limit low. */
        uint64_t pcie_g3_c5_limit_lo   : 6;  /**< [ 29: 24](R/W) C5 postcursor limit low. */
        uint64_t reserved_30_31        : 2;
        uint64_t pcie_g3_c1_limit_hi   : 6;  /**< [ 37: 32](R/W) C1 postcursor limit high. */
        uint64_t pcie_g3_c2_limit_hi   : 6;  /**< [ 43: 38](R/W) C2 postcursor limit high. */
        uint64_t pcie_g3_c3_limit_hi   : 6;  /**< [ 49: 44](R/W) C3 postcursor limit high. */
        uint64_t pcie_g3_c4_limit_hi   : 6;  /**< [ 55: 50](R/W) C4 postcursor limit high. */
        uint64_t pcie_g3_c5_limit_hi   : 6;  /**< [ 61: 56](R/W) C5 postcursor limit high. */
        uint64_t reserved_62_63        : 2;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_rxeq3_3_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_rxeq3_3_bcfg bdk_gsernx_lanex_pcie_rxeq3_3_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXEQ3_3_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXEQ3_3_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e0900023a0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_RXEQ3_3_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_RXEQ3_3_BCFG(a,b) bdk_gsernx_lanex_pcie_rxeq3_3_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_RXEQ3_3_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_RXEQ3_3_BCFG(a,b) "GSERNX_LANEX_PCIE_RXEQ3_3_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_RXEQ3_3_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_RXEQ3_3_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_RXEQ3_3_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_rxeq3_4_bcfg
 *
 * GSER Lane PCIe Gen3 RX Equalizer Control Register 4
 * Parameters controlling the custom receiver equalization during PCIe Gen3 operation.
 * These fields will drive the associated control signal when
 * GSERN()_LANE()_SRCMX_BCFG[TX_CTRL_SEL]
 * is set to 'PCIe'.
 */
union bdk_gsernx_lanex_pcie_rxeq3_4_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_rxeq3_4_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t pcie_g3_prevga_gn_subrate_fin : 16;/**< [ 63: 48](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FIN if subrate gearshifting is not enabled. */
        uint64_t pcie_g3_prevga_gn_subrate_init : 16;/**< [ 47: 32](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t pcie_g3_blwc_subrate_final : 16;/**< [ 31: 16](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t pcie_g3_blwc_subrate_init : 16;/**< [ 15:  0](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
#else /* Word 0 - Little Endian */
        uint64_t pcie_g3_blwc_subrate_init : 16;/**< [ 15:  0](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t pcie_g3_blwc_subrate_final : 16;/**< [ 31: 16](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t pcie_g3_prevga_gn_subrate_init : 16;/**< [ 47: 32](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t pcie_g3_prevga_gn_subrate_fin : 16;/**< [ 63: 48](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FIN if subrate gearshifting is not enabled. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_rxeq3_4_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_rxeq3_4_bcfg bdk_gsernx_lanex_pcie_rxeq3_4_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXEQ3_4_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXEQ3_4_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e0900023b0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_RXEQ3_4_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_RXEQ3_4_BCFG(a,b) bdk_gsernx_lanex_pcie_rxeq3_4_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_RXEQ3_4_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_RXEQ3_4_BCFG(a,b) "GSERNX_LANEX_PCIE_RXEQ3_4_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_RXEQ3_4_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_RXEQ3_4_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_RXEQ3_4_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_rxeq4_1_bcfg
 *
 * GSER Lane PCIe Gen4 RX Equalizer Control Register 1
 * Parameters controlling the custom receiver equalization during PCIe Gen4 operation.
 * These fields will drive the associated control signal when
 * GSERN()_LANE()_SRCMX_BCFG[TX_CTRL_SEL]
 * is set to 'PCIe'.
 */
union bdk_gsernx_lanex_pcie_rxeq4_1_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_rxeq4_1_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_43_63        : 21;
        uint64_t pcie_g4_blwc_deadband : 12; /**< [ 42: 31](R/W) BLWC adaptation deadband settings.
                                                                 12-bit field to match accumulator, but typically a value less than 0x0FF is used. */
        uint64_t pcie_g4_erc           : 4;  /**< [ 30: 27](R/W) Interpolator edge-rate control. This control is shared between all
                                                                 interpolators in the lane.  See GSERN()_LANE()_RX_ST_BCFG.ERC
                                                                 for detailed information. */
        uint64_t pcie_g4_c6_c15_limit_hi : 6;/**< [ 26: 21](R/W) C6 to C15 postcursor limit high. */
        uint64_t pcie_g4_c6_c15_limit_lo : 6;/**< [ 20: 15](R/W) C6 to C15 postcursor limit low. */
        uint64_t pcie_g4_ctle_lte_zero_ovrd_en : 1;/**< [ 14: 14](R/W) CTLE LTE zero frequency override enable.
                                                                 By default, the override should be enabled; otherwise, CTLE_LTE_ZERO
                                                                 will be set equal to CTLE_ZERO within the RX adaptation FSM. */
        uint64_t pcie_g4_ctle_lte_zero_ovrd : 4;/**< [ 13: 10](R/W) CTLE LTE zero frequency override value. */
        uint64_t pcie_g4_settle_wait   : 4;  /**< [  9:  6](R/W) Number of clock cycles for the DFE adaptation to wait after changing the
                                                                 adjusted C1 values before resuming accumulation. */
        uint64_t pcie_g4_voter_sp_mask : 1;  /**< [  5:  5](R/W) Set to mask out "010" and "101" patterns in RX cdr voter.
                                                                 GSERN()_LANE()_CDRFSM_BCFG[VOTER_SP_MASK] will be updated
                                                                 by the hardware even when this bit drives the control. */
        uint64_t pcie_g4_c1_q_adjust   : 5;  /**< [  4:  0](R/W) Adjust value magnitude for the error slice in the Q path. */
#else /* Word 0 - Little Endian */
        uint64_t pcie_g4_c1_q_adjust   : 5;  /**< [  4:  0](R/W) Adjust value magnitude for the error slice in the Q path. */
        uint64_t pcie_g4_voter_sp_mask : 1;  /**< [  5:  5](R/W) Set to mask out "010" and "101" patterns in RX cdr voter.
                                                                 GSERN()_LANE()_CDRFSM_BCFG[VOTER_SP_MASK] will be updated
                                                                 by the hardware even when this bit drives the control. */
        uint64_t pcie_g4_settle_wait   : 4;  /**< [  9:  6](R/W) Number of clock cycles for the DFE adaptation to wait after changing the
                                                                 adjusted C1 values before resuming accumulation. */
        uint64_t pcie_g4_ctle_lte_zero_ovrd : 4;/**< [ 13: 10](R/W) CTLE LTE zero frequency override value. */
        uint64_t pcie_g4_ctle_lte_zero_ovrd_en : 1;/**< [ 14: 14](R/W) CTLE LTE zero frequency override enable.
                                                                 By default, the override should be enabled; otherwise, CTLE_LTE_ZERO
                                                                 will be set equal to CTLE_ZERO within the RX adaptation FSM. */
        uint64_t pcie_g4_c6_c15_limit_lo : 6;/**< [ 20: 15](R/W) C6 to C15 postcursor limit low. */
        uint64_t pcie_g4_c6_c15_limit_hi : 6;/**< [ 26: 21](R/W) C6 to C15 postcursor limit high. */
        uint64_t pcie_g4_erc           : 4;  /**< [ 30: 27](R/W) Interpolator edge-rate control. This control is shared between all
                                                                 interpolators in the lane.  See GSERN()_LANE()_RX_ST_BCFG.ERC
                                                                 for detailed information. */
        uint64_t pcie_g4_blwc_deadband : 12; /**< [ 42: 31](R/W) BLWC adaptation deadband settings.
                                                                 12-bit field to match accumulator, but typically a value less than 0x0FF is used. */
        uint64_t reserved_43_63        : 21;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_rxeq4_1_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_rxeq4_1_bcfg bdk_gsernx_lanex_pcie_rxeq4_1_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXEQ4_1_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXEQ4_1_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e0900023c0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_RXEQ4_1_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_RXEQ4_1_BCFG(a,b) bdk_gsernx_lanex_pcie_rxeq4_1_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_RXEQ4_1_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_RXEQ4_1_BCFG(a,b) "GSERNX_LANEX_PCIE_RXEQ4_1_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_RXEQ4_1_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_RXEQ4_1_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_RXEQ4_1_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_rxeq4_2_bcfg
 *
 * GSER Lane PCIe Gen4 RX Equalizer Control Register 2
 * Parameters controlling the custom receiver equalization during PCIe Gen4 operation.
 * These fields will drive the associated control signal when
 * GSERN()_LANE()_SRCMX_BCFG[TX_CTRL_SEL]
 * is set to 'PCIe'.
 */
union bdk_gsernx_lanex_pcie_rxeq4_2_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_rxeq4_2_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t pcie_g4_afeos_subrate_final : 16;/**< [ 63: 48](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t pcie_g4_afeos_subrate_init : 16;/**< [ 47: 32](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t pcie_g4_subrate_final : 16; /**< [ 31: 16](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t pcie_g4_subrate_init  : 16; /**< [ 15:  0](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
#else /* Word 0 - Little Endian */
        uint64_t pcie_g4_subrate_init  : 16; /**< [ 15:  0](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t pcie_g4_subrate_final : 16; /**< [ 31: 16](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t pcie_g4_afeos_subrate_init : 16;/**< [ 47: 32](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t pcie_g4_afeos_subrate_final : 16;/**< [ 63: 48](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_rxeq4_2_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_rxeq4_2_bcfg bdk_gsernx_lanex_pcie_rxeq4_2_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXEQ4_2_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXEQ4_2_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e0900023d0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_RXEQ4_2_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_RXEQ4_2_BCFG(a,b) bdk_gsernx_lanex_pcie_rxeq4_2_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_RXEQ4_2_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_RXEQ4_2_BCFG(a,b) "GSERNX_LANEX_PCIE_RXEQ4_2_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_RXEQ4_2_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_RXEQ4_2_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_RXEQ4_2_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_rxeq4_3_bcfg
 *
 * GSER Lane PCIe Gen4 RX Equalizer Control Register 3
 * Parameters controlling the custom receiver equalization during PCIe Gen4 operation.
 * These fields will drive the associated control signal when
 * GSERN()_LANE()_SRCMX_BCFG[TX_CTRL_SEL]
 * is set to 'PCIe'.
 */
union bdk_gsernx_lanex_pcie_rxeq4_3_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_rxeq4_3_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_62_63        : 2;
        uint64_t pcie_g4_c5_limit_hi   : 6;  /**< [ 61: 56](R/W) C5 postcursor limit high. */
        uint64_t pcie_g4_c4_limit_hi   : 6;  /**< [ 55: 50](R/W) C4 postcursor limit high. */
        uint64_t pcie_g4_c3_limit_hi   : 6;  /**< [ 49: 44](R/W) C3 postcursor limit high. */
        uint64_t pcie_g4_c2_limit_hi   : 6;  /**< [ 43: 38](R/W) C2 postcursor limit high. */
        uint64_t pcie_g4_c1_limit_hi   : 6;  /**< [ 37: 32](R/W) C1 postcursor limit high. */
        uint64_t reserved_30_31        : 2;
        uint64_t pcie_g4_c5_limit_lo   : 6;  /**< [ 29: 24](R/W) C5 postcursor limit low. */
        uint64_t pcie_g4_c4_limit_lo   : 6;  /**< [ 23: 18](R/W) C4 postcursor limit low. */
        uint64_t pcie_g4_c3_limit_lo   : 6;  /**< [ 17: 12](R/W) C3 postcursor limit low. */
        uint64_t pcie_g4_c2_limit_lo   : 6;  /**< [ 11:  6](R/W) C2 postcursor limit low. */
        uint64_t pcie_g4_c1_limit_lo   : 6;  /**< [  5:  0](R/W) C1 postcursor limit low. */
#else /* Word 0 - Little Endian */
        uint64_t pcie_g4_c1_limit_lo   : 6;  /**< [  5:  0](R/W) C1 postcursor limit low. */
        uint64_t pcie_g4_c2_limit_lo   : 6;  /**< [ 11:  6](R/W) C2 postcursor limit low. */
        uint64_t pcie_g4_c3_limit_lo   : 6;  /**< [ 17: 12](R/W) C3 postcursor limit low. */
        uint64_t pcie_g4_c4_limit_lo   : 6;  /**< [ 23: 18](R/W) C4 postcursor limit low. */
        uint64_t pcie_g4_c5_limit_lo   : 6;  /**< [ 29: 24](R/W) C5 postcursor limit low. */
        uint64_t reserved_30_31        : 2;
        uint64_t pcie_g4_c1_limit_hi   : 6;  /**< [ 37: 32](R/W) C1 postcursor limit high. */
        uint64_t pcie_g4_c2_limit_hi   : 6;  /**< [ 43: 38](R/W) C2 postcursor limit high. */
        uint64_t pcie_g4_c3_limit_hi   : 6;  /**< [ 49: 44](R/W) C3 postcursor limit high. */
        uint64_t pcie_g4_c4_limit_hi   : 6;  /**< [ 55: 50](R/W) C4 postcursor limit high. */
        uint64_t pcie_g4_c5_limit_hi   : 6;  /**< [ 61: 56](R/W) C5 postcursor limit high. */
        uint64_t reserved_62_63        : 2;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_rxeq4_3_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_rxeq4_3_bcfg bdk_gsernx_lanex_pcie_rxeq4_3_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXEQ4_3_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXEQ4_3_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e0900023e0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_RXEQ4_3_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_RXEQ4_3_BCFG(a,b) bdk_gsernx_lanex_pcie_rxeq4_3_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_RXEQ4_3_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_RXEQ4_3_BCFG(a,b) "GSERNX_LANEX_PCIE_RXEQ4_3_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_RXEQ4_3_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_RXEQ4_3_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_RXEQ4_3_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_rxeq4_4_bcfg
 *
 * GSER Lane PCIe Gen4 RX Equalizer Control Register 4
 * Parameters controlling the custom receiver equalization during PCIe Gen4 operation.
 * These fields will drive the associated control signal when
 * GSERN()_LANE()_SRCMX_BCFG[TX_CTRL_SEL]
 * is set to 'PCIe'.
 */
union bdk_gsernx_lanex_pcie_rxeq4_4_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_rxeq4_4_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t pcie_g4_prevga_gn_subrate_fin : 16;/**< [ 63: 48](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FIN if subrate gearshifting is not enabled. */
        uint64_t pcie_g4_prevga_gn_subrate_init : 16;/**< [ 47: 32](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FIN if subrate gearshifting is not enabled. */
        uint64_t pcie_g4_blwc_subrate_final : 16;/**< [ 31: 16](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t pcie_g4_blwc_subrate_init : 16;/**< [ 15:  0](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
#else /* Word 0 - Little Endian */
        uint64_t pcie_g4_blwc_subrate_init : 16;/**< [ 15:  0](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t pcie_g4_blwc_subrate_final : 16;/**< [ 31: 16](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t pcie_g4_prevga_gn_subrate_init : 16;/**< [ 47: 32](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FIN if subrate gearshifting is not enabled. */
        uint64_t pcie_g4_prevga_gn_subrate_fin : 16;/**< [ 63: 48](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FIN if subrate gearshifting is not enabled. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_rxeq4_4_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_rxeq4_4_bcfg bdk_gsernx_lanex_pcie_rxeq4_4_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXEQ4_4_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXEQ4_4_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e0900023f0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_RXEQ4_4_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_RXEQ4_4_BCFG(a,b) bdk_gsernx_lanex_pcie_rxeq4_4_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_RXEQ4_4_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_RXEQ4_4_BCFG(a,b) "GSERNX_LANEX_PCIE_RXEQ4_4_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_RXEQ4_4_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_RXEQ4_4_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_RXEQ4_4_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_rxidl1a_bcfg
 *
 * GSER Lane PCIe Gen1 RX Idle Detection Filter Control Register 2
 * Parameters controlling the analog detection and digital filtering of the receiver's
 * idle detection logic for PCIe Gen 1. For the digital filtering, setting all fields to 1,
 * i.e., N0=N1=I0=I1=L0=L1=1, results in no filtering.
 */
union bdk_gsernx_lanex_pcie_rxidl1a_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_rxidl1a_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t rx_idle_lowf          : 2;  /**< [ 63: 62](R/W) Control for the receiver's idle detector analog filter
                                                                 bandwidth. The two bits apply at different times.
                                                                 \<0\> = Set to 1 for low bandwidth during normal operation.
                                                                 \<1\> = Set to 1 for low bandwidth during idle offset calibration.
                                                                 The default is 1 during normal operation for large filter capacitance and low
                                                                 bandwidth, and 0 during idle offset calibration to provide faster response. */
        uint64_t reserved_61           : 1;
        uint64_t refset                : 5;  /**< [ 60: 56](R/W) Sets the reference voltage swing for idle detection. A voltage swing
                                                                 at the input of the RX less than this amount is defined as idle.
                                                                 (See GSERN()_LANE()_RX_ST_BCFG[REFSET] for bit mapping.) */
        uint64_t reserved_54_55        : 2;
        uint64_t l1                    : 27; /**< [ 53: 27](R/W) Ones count leak parameter. When a zero in the raw idle signal from the custom
                                                                 macro is encountered, the ones count is decremented by this amount, saturating
                                                                 to a minimum count of zero. (Set L1=N1 and I1=1 for a simple run-of-N1 ones to
                                                                 assert the filter output.) The minimum setting for this field is 1. */
        uint64_t l0                    : 27; /**< [ 26:  0](R/W) Zeros count leak parameter. When a one in the raw idle signal from the custom
                                                                 macro is encountered, the zeros count is decremented by this amount, saturating
                                                                 to a minimum count of zero. (Set L0=N0 and I0=1 for a simple run-of-N0 zeros to
                                                                 deassert the filter output.) The minimum setting for this field is 1. */
#else /* Word 0 - Little Endian */
        uint64_t l0                    : 27; /**< [ 26:  0](R/W) Zeros count leak parameter. When a one in the raw idle signal from the custom
                                                                 macro is encountered, the zeros count is decremented by this amount, saturating
                                                                 to a minimum count of zero. (Set L0=N0 and I0=1 for a simple run-of-N0 zeros to
                                                                 deassert the filter output.) The minimum setting for this field is 1. */
        uint64_t l1                    : 27; /**< [ 53: 27](R/W) Ones count leak parameter. When a zero in the raw idle signal from the custom
                                                                 macro is encountered, the ones count is decremented by this amount, saturating
                                                                 to a minimum count of zero. (Set L1=N1 and I1=1 for a simple run-of-N1 ones to
                                                                 assert the filter output.) The minimum setting for this field is 1. */
        uint64_t reserved_54_55        : 2;
        uint64_t refset                : 5;  /**< [ 60: 56](R/W) Sets the reference voltage swing for idle detection. A voltage swing
                                                                 at the input of the RX less than this amount is defined as idle.
                                                                 (See GSERN()_LANE()_RX_ST_BCFG[REFSET] for bit mapping.) */
        uint64_t reserved_61           : 1;
        uint64_t rx_idle_lowf          : 2;  /**< [ 63: 62](R/W) Control for the receiver's idle detector analog filter
                                                                 bandwidth. The two bits apply at different times.
                                                                 \<0\> = Set to 1 for low bandwidth during normal operation.
                                                                 \<1\> = Set to 1 for low bandwidth during idle offset calibration.
                                                                 The default is 1 during normal operation for large filter capacitance and low
                                                                 bandwidth, and 0 during idle offset calibration to provide faster response. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_rxidl1a_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_rxidl1a_bcfg bdk_gsernx_lanex_pcie_rxidl1a_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXIDL1A_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXIDL1A_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e0900021a0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_RXIDL1A_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_RXIDL1A_BCFG(a,b) bdk_gsernx_lanex_pcie_rxidl1a_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_RXIDL1A_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_RXIDL1A_BCFG(a,b) "GSERNX_LANEX_PCIE_RXIDL1A_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_RXIDL1A_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_RXIDL1A_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_RXIDL1A_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_rxidl2a_bcfg
 *
 * GSER Lane PCIe Gen2 RX Idle Detection Filter Control Register 2
 * Parameters controlling the analog detection and digital filtering of the receiver's
 * idle detection logic for PCIe Gen 2. For the digital filtering, setting all fields to 1,
 * i.e., N0=N1=I0=I1=L0=L1=1, results in no filtering.
 */
union bdk_gsernx_lanex_pcie_rxidl2a_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_rxidl2a_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t rx_idle_lowf          : 2;  /**< [ 63: 62](R/W) Control for the receiver's idle detector analog filter
                                                                 bandwidth. The two bits apply at different times.
                                                                 \<0\> = Set to 1 for low bandwidth during normal operation.
                                                                 \<1\> = Set to 1 for low bandwidth during idle offset calibration.
                                                                 The default is 1 during normal operation for large filter capacitance and low
                                                                 bandwidth, and 0 during idle offset calibration to provide faster response. */
        uint64_t reserved_61           : 1;
        uint64_t refset                : 5;  /**< [ 60: 56](R/W) Sets the reference voltage swing for idle detection. A voltage swing
                                                                 at the input of the RX less than this amount is defined as idle.
                                                                 (See GSERN()_LANE()_RX_ST_BCFG[REFSET] for bit mapping.) */
        uint64_t reserved_54_55        : 2;
        uint64_t l1                    : 27; /**< [ 53: 27](R/W) Ones count leak parameter. When a zero in the raw idle signal from the custom
                                                                 macro is encountered, the ones count is decremented by this amount, saturating
                                                                 to a minimum count of zero. (Set L1=N1 and I1=1 for a simple run-of-N1 ones to
                                                                 assert the filter output.) The minimum setting for this field is 1. */
        uint64_t l0                    : 27; /**< [ 26:  0](R/W) Zeros count leak parameter. When a one in the raw idle signal from the custom
                                                                 macro is encountered, the zeros count is decremented by this amount, saturating
                                                                 to a minimum count of zero. (Set L0=N0 and I0=1 for a simple run-of-N0 zeros to
                                                                 deassert the filter output.) The minimum setting for this field is 1. */
#else /* Word 0 - Little Endian */
        uint64_t l0                    : 27; /**< [ 26:  0](R/W) Zeros count leak parameter. When a one in the raw idle signal from the custom
                                                                 macro is encountered, the zeros count is decremented by this amount, saturating
                                                                 to a minimum count of zero. (Set L0=N0 and I0=1 for a simple run-of-N0 zeros to
                                                                 deassert the filter output.) The minimum setting for this field is 1. */
        uint64_t l1                    : 27; /**< [ 53: 27](R/W) Ones count leak parameter. When a zero in the raw idle signal from the custom
                                                                 macro is encountered, the ones count is decremented by this amount, saturating
                                                                 to a minimum count of zero. (Set L1=N1 and I1=1 for a simple run-of-N1 ones to
                                                                 assert the filter output.) The minimum setting for this field is 1. */
        uint64_t reserved_54_55        : 2;
        uint64_t refset                : 5;  /**< [ 60: 56](R/W) Sets the reference voltage swing for idle detection. A voltage swing
                                                                 at the input of the RX less than this amount is defined as idle.
                                                                 (See GSERN()_LANE()_RX_ST_BCFG[REFSET] for bit mapping.) */
        uint64_t reserved_61           : 1;
        uint64_t rx_idle_lowf          : 2;  /**< [ 63: 62](R/W) Control for the receiver's idle detector analog filter
                                                                 bandwidth. The two bits apply at different times.
                                                                 \<0\> = Set to 1 for low bandwidth during normal operation.
                                                                 \<1\> = Set to 1 for low bandwidth during idle offset calibration.
                                                                 The default is 1 during normal operation for large filter capacitance and low
                                                                 bandwidth, and 0 during idle offset calibration to provide faster response. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_rxidl2a_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_rxidl2a_bcfg bdk_gsernx_lanex_pcie_rxidl2a_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXIDL2A_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXIDL2A_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e0900021c0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_RXIDL2A_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_RXIDL2A_BCFG(a,b) bdk_gsernx_lanex_pcie_rxidl2a_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_RXIDL2A_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_RXIDL2A_BCFG(a,b) "GSERNX_LANEX_PCIE_RXIDL2A_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_RXIDL2A_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_RXIDL2A_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_RXIDL2A_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_rxidl3a_bcfg
 *
 * GSER Lane PCIe Gen3 RX Idle Detection Filter Control Register 2
 * Parameters controlling the analog detection and digital filtering of the receiver's
 * idle detection logic for PCIe Gen 3. For the digital filtering, setting all fields to 1,
 * i.e., N0=N1=I0=I1=L0=L1=1, results in no filtering.
 */
union bdk_gsernx_lanex_pcie_rxidl3a_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_rxidl3a_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t rx_idle_lowf          : 2;  /**< [ 63: 62](R/W) Control for the receiver's idle detector analog filter
                                                                 bandwidth. The two bits apply at different times.
                                                                 \<0\> = Set to 1 for low bandwidth during normal operation.
                                                                 \<1\> = Set to 1 for low bandwidth during idle offset calibration.
                                                                 The default is 1 during normal operation for large filter capacitance and low
                                                                 bandwidth, and 0 during idle offset calibration to provide faster response. */
        uint64_t reserved_61           : 1;
        uint64_t refset                : 5;  /**< [ 60: 56](R/W) Sets the reference voltage swing for idle detection. A voltage swing
                                                                 at the input of the RX less than this amount is defined as idle.
                                                                 (See GSERN()_LANE()_RX_ST_BCFG[REFSET] for bit mapping.) */
        uint64_t reserved_54_55        : 2;
        uint64_t l1                    : 27; /**< [ 53: 27](R/W) Ones count leak parameter. When a zero in the raw idle signal from the custom
                                                                 macro is encountered, the ones count is decremented by this amount, saturating
                                                                 to a minimum count of zero. (Set L1=N1 and I1=1 for a simple run-of-N1 ones to
                                                                 assert the filter output.) The minimum setting for this field is 1. */
        uint64_t l0                    : 27; /**< [ 26:  0](R/W) Zeros count leak parameter. When a one in the raw idle signal from the custom
                                                                 macro is encountered, the zeros count is decremented by this amount, saturating
                                                                 to a minimum count of zero. (Set L0=N0 and I0=1 for a simple run-of-N0 zeros to
                                                                 deassert the filter output.) The minimum setting for this field is 1. */
#else /* Word 0 - Little Endian */
        uint64_t l0                    : 27; /**< [ 26:  0](R/W) Zeros count leak parameter. When a one in the raw idle signal from the custom
                                                                 macro is encountered, the zeros count is decremented by this amount, saturating
                                                                 to a minimum count of zero. (Set L0=N0 and I0=1 for a simple run-of-N0 zeros to
                                                                 deassert the filter output.) The minimum setting for this field is 1. */
        uint64_t l1                    : 27; /**< [ 53: 27](R/W) Ones count leak parameter. When a zero in the raw idle signal from the custom
                                                                 macro is encountered, the ones count is decremented by this amount, saturating
                                                                 to a minimum count of zero. (Set L1=N1 and I1=1 for a simple run-of-N1 ones to
                                                                 assert the filter output.) The minimum setting for this field is 1. */
        uint64_t reserved_54_55        : 2;
        uint64_t refset                : 5;  /**< [ 60: 56](R/W) Sets the reference voltage swing for idle detection. A voltage swing
                                                                 at the input of the RX less than this amount is defined as idle.
                                                                 (See GSERN()_LANE()_RX_ST_BCFG[REFSET] for bit mapping.) */
        uint64_t reserved_61           : 1;
        uint64_t rx_idle_lowf          : 2;  /**< [ 63: 62](R/W) Control for the receiver's idle detector analog filter
                                                                 bandwidth. The two bits apply at different times.
                                                                 \<0\> = Set to 1 for low bandwidth during normal operation.
                                                                 \<1\> = Set to 1 for low bandwidth during idle offset calibration.
                                                                 The default is 1 during normal operation for large filter capacitance and low
                                                                 bandwidth, and 0 during idle offset calibration to provide faster response. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_rxidl3a_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_rxidl3a_bcfg bdk_gsernx_lanex_pcie_rxidl3a_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXIDL3A_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXIDL3A_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e0900021e0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_RXIDL3A_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_RXIDL3A_BCFG(a,b) bdk_gsernx_lanex_pcie_rxidl3a_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_RXIDL3A_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_RXIDL3A_BCFG(a,b) "GSERNX_LANEX_PCIE_RXIDL3A_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_RXIDL3A_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_RXIDL3A_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_RXIDL3A_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_rxidl4a_bcfg
 *
 * GSER Lane PCIe Gen4 RX Idle Detection Filter Control Register 2
 * Parameters controlling the analog detection and digital filtering of the receiver's
 * idle detection logic for PCIe Gen 4. For the digital filtering, setting all fields to 1,
 * i.e., N0=N1=I0=I1=L0=L1=1, results in no filtering.
 */
union bdk_gsernx_lanex_pcie_rxidl4a_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_rxidl4a_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t rx_idle_lowf          : 2;  /**< [ 63: 62](R/W) Control for the receiver's idle detector analog filter
                                                                 bandwidth. The two bits apply at different times.
                                                                 \<0\> = Set to 1 for low bandwidth during normal operation.
                                                                 \<1\> = Set to 1 for low bandwidth during idle offset calibration.
                                                                 The default is 1 during normal operation for large filter capacitance and low
                                                                 bandwidth, and 0 during idle offset calibration to provide faster response. */
        uint64_t reserved_61           : 1;
        uint64_t refset                : 5;  /**< [ 60: 56](R/W) Sets the reference voltage swing for idle detection. A voltage swing
                                                                 at the input of the RX less than this amount is defined as idle.
                                                                 (See GSERN()_LANE()_RX_ST_BCFG[REFSET] for bit mapping.) */
        uint64_t reserved_54_55        : 2;
        uint64_t l1                    : 27; /**< [ 53: 27](R/W) Ones count leak parameter. When a zero in the raw idle signal from the custom
                                                                 macro is encountered, the ones count is decremented by this amount, saturating
                                                                 to a minimum count of zero. (Set L1=N1 and I1=1 for a simple run-of-N1 ones to
                                                                 assert the filter output.) The minimum setting for this field is 1. */
        uint64_t l0                    : 27; /**< [ 26:  0](R/W) Zeros count leak parameter. When a one in the raw idle signal from the custom
                                                                 macro is encountered, the zeros count is decremented by this amount, saturating
                                                                 to a minimum count of zero. (Set L0=N0 and I0=1 for a simple run-of-N0 zeros to
                                                                 deassert the filter output.) The minimum setting for this field is 1. */
#else /* Word 0 - Little Endian */
        uint64_t l0                    : 27; /**< [ 26:  0](R/W) Zeros count leak parameter. When a one in the raw idle signal from the custom
                                                                 macro is encountered, the zeros count is decremented by this amount, saturating
                                                                 to a minimum count of zero. (Set L0=N0 and I0=1 for a simple run-of-N0 zeros to
                                                                 deassert the filter output.) The minimum setting for this field is 1. */
        uint64_t l1                    : 27; /**< [ 53: 27](R/W) Ones count leak parameter. When a zero in the raw idle signal from the custom
                                                                 macro is encountered, the ones count is decremented by this amount, saturating
                                                                 to a minimum count of zero. (Set L1=N1 and I1=1 for a simple run-of-N1 ones to
                                                                 assert the filter output.) The minimum setting for this field is 1. */
        uint64_t reserved_54_55        : 2;
        uint64_t refset                : 5;  /**< [ 60: 56](R/W) Sets the reference voltage swing for idle detection. A voltage swing
                                                                 at the input of the RX less than this amount is defined as idle.
                                                                 (See GSERN()_LANE()_RX_ST_BCFG[REFSET] for bit mapping.) */
        uint64_t reserved_61           : 1;
        uint64_t rx_idle_lowf          : 2;  /**< [ 63: 62](R/W) Control for the receiver's idle detector analog filter
                                                                 bandwidth. The two bits apply at different times.
                                                                 \<0\> = Set to 1 for low bandwidth during normal operation.
                                                                 \<1\> = Set to 1 for low bandwidth during idle offset calibration.
                                                                 The default is 1 during normal operation for large filter capacitance and low
                                                                 bandwidth, and 0 during idle offset calibration to provide faster response. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_rxidl4a_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_rxidl4a_bcfg bdk_gsernx_lanex_pcie_rxidl4a_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXIDL4A_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXIDL4A_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002200ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_RXIDL4A_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_RXIDL4A_BCFG(a,b) bdk_gsernx_lanex_pcie_rxidl4a_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_RXIDL4A_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_RXIDL4A_BCFG(a,b) "GSERNX_LANEX_PCIE_RXIDL4A_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_RXIDL4A_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_RXIDL4A_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_RXIDL4A_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_rxidle1_bcfg
 *
 * GSER Lane PCIe Gen1 RX Idle Detection Filter Control Register
 * Parameters controlling the analog detection and digital filtering of the receiver's
 * idle detection logic for PCIe Gen 1. For the digital filtering, setting all fields to 1,
 * i.e., N0=N1=I0=I1=L0=L1=1, results in no filtering.
 */
union bdk_gsernx_lanex_pcie_rxidle1_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_rxidle1_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_63           : 1;
        uint64_t i1                    : 4;  /**< [ 62: 59](R/W) Ones count increment parameter. When a one in the raw idle signal from the custom
                                                                 macro is encountered, the ones count is incremented by this amount, saturating
                                                                 to a maximum of [N1]. */
        uint64_t i0                    : 4;  /**< [ 58: 55](R/W) Zeros count increment parameter. When a zero in the raw idle signal from the
                                                                 custom macro is encountered, the zeros count is incremented by this amount,
                                                                 saturating to a maximum count of [N0]. */
        uint64_t reserved_54           : 1;
        uint64_t n1                    : 27; /**< [ 53: 27](R/W) Threshold for the count of ones in the raw idle signal from the custom macro
                                                                 required to assert the idle filter output. */
        uint64_t n0                    : 27; /**< [ 26:  0](R/W) Threshold for the count of zeros in the raw idle signal from the custom macro
                                                                 required to deassert the idle filter output. */
#else /* Word 0 - Little Endian */
        uint64_t n0                    : 27; /**< [ 26:  0](R/W) Threshold for the count of zeros in the raw idle signal from the custom macro
                                                                 required to deassert the idle filter output. */
        uint64_t n1                    : 27; /**< [ 53: 27](R/W) Threshold for the count of ones in the raw idle signal from the custom macro
                                                                 required to assert the idle filter output. */
        uint64_t reserved_54           : 1;
        uint64_t i0                    : 4;  /**< [ 58: 55](R/W) Zeros count increment parameter. When a zero in the raw idle signal from the
                                                                 custom macro is encountered, the zeros count is incremented by this amount,
                                                                 saturating to a maximum count of [N0]. */
        uint64_t i1                    : 4;  /**< [ 62: 59](R/W) Ones count increment parameter. When a one in the raw idle signal from the custom
                                                                 macro is encountered, the ones count is incremented by this amount, saturating
                                                                 to a maximum of [N1]. */
        uint64_t reserved_63           : 1;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_rxidle1_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_rxidle1_bcfg bdk_gsernx_lanex_pcie_rxidle1_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXIDLE1_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXIDLE1_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002190ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_RXIDLE1_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_RXIDLE1_BCFG(a,b) bdk_gsernx_lanex_pcie_rxidle1_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_RXIDLE1_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_RXIDLE1_BCFG(a,b) "GSERNX_LANEX_PCIE_RXIDLE1_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_RXIDLE1_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_RXIDLE1_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_RXIDLE1_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_rxidle2_bcfg
 *
 * GSER Lane PCIe Gen2 RX Idle Detection Filter Control Register
 * Parameters controlling the analog detection and digital filtering of the receiver's
 * idle detection logic for PCIe Gen 2. For the digital filtering, setting all fields to 1,
 * i.e., N0=N1=I0=I1=L0=L1=1, results in no filtering.
 */
union bdk_gsernx_lanex_pcie_rxidle2_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_rxidle2_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_63           : 1;
        uint64_t i1                    : 4;  /**< [ 62: 59](R/W) Ones count increment parameter. When a one in the raw idle signal from the custom
                                                                 macro is encountered, the ones count is incremented by this amount, saturating
                                                                 to a maximum of [N1]. */
        uint64_t i0                    : 4;  /**< [ 58: 55](R/W) Zeros count increment parameter. When a zero in the raw idle signal from the
                                                                 custom macro is encountered, the zeros count is incremented by this amount,
                                                                 saturating to a maximum count of [N0]. */
        uint64_t reserved_54           : 1;
        uint64_t n1                    : 27; /**< [ 53: 27](R/W) Threshold for the count of ones in the raw idle signal from the custom macro
                                                                 required to assert the idle filter output. */
        uint64_t n0                    : 27; /**< [ 26:  0](R/W) Threshold for the count of zeros in the raw idle signal from the custom macro
                                                                 required to deassert the idle filter output. */
#else /* Word 0 - Little Endian */
        uint64_t n0                    : 27; /**< [ 26:  0](R/W) Threshold for the count of zeros in the raw idle signal from the custom macro
                                                                 required to deassert the idle filter output. */
        uint64_t n1                    : 27; /**< [ 53: 27](R/W) Threshold for the count of ones in the raw idle signal from the custom macro
                                                                 required to assert the idle filter output. */
        uint64_t reserved_54           : 1;
        uint64_t i0                    : 4;  /**< [ 58: 55](R/W) Zeros count increment parameter. When a zero in the raw idle signal from the
                                                                 custom macro is encountered, the zeros count is incremented by this amount,
                                                                 saturating to a maximum count of [N0]. */
        uint64_t i1                    : 4;  /**< [ 62: 59](R/W) Ones count increment parameter. When a one in the raw idle signal from the custom
                                                                 macro is encountered, the ones count is incremented by this amount, saturating
                                                                 to a maximum of [N1]. */
        uint64_t reserved_63           : 1;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_rxidle2_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_rxidle2_bcfg bdk_gsernx_lanex_pcie_rxidle2_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXIDLE2_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXIDLE2_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e0900021b0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_RXIDLE2_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_RXIDLE2_BCFG(a,b) bdk_gsernx_lanex_pcie_rxidle2_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_RXIDLE2_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_RXIDLE2_BCFG(a,b) "GSERNX_LANEX_PCIE_RXIDLE2_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_RXIDLE2_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_RXIDLE2_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_RXIDLE2_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_rxidle3_bcfg
 *
 * GSER Lane PCIe Gen3 RX Idle Detection Filter Control Register
 * Parameters controlling the analog detection and digital filtering of the receiver's
 * idle detection logic for PCIe Gen 3. For the digital filtering, setting all fields to 1,
 * i.e., N0=N1=I0=I1=L0=L1=1, results in no filtering.
 */
union bdk_gsernx_lanex_pcie_rxidle3_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_rxidle3_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_63           : 1;
        uint64_t i1                    : 4;  /**< [ 62: 59](R/W) Ones count increment parameter. When a one in the raw idle signal from the custom
                                                                 macro is encountered, the ones count is incremented by this amount, saturating
                                                                 to a maximum of [N1]. */
        uint64_t i0                    : 4;  /**< [ 58: 55](R/W) Zeros count increment parameter. When a zero in the raw idle signal from the
                                                                 custom macro is encountered, the zeros count is incremented by this amount,
                                                                 saturating to a maximum count of [N0]. */
        uint64_t reserved_54           : 1;
        uint64_t n1                    : 27; /**< [ 53: 27](R/W) Threshold for the count of ones in the raw idle signal from the custom macro
                                                                 required to assert the idle filter output. */
        uint64_t n0                    : 27; /**< [ 26:  0](R/W) Threshold for the count of zeros in the raw idle signal from the custom macro
                                                                 required to deassert the idle filter output. */
#else /* Word 0 - Little Endian */
        uint64_t n0                    : 27; /**< [ 26:  0](R/W) Threshold for the count of zeros in the raw idle signal from the custom macro
                                                                 required to deassert the idle filter output. */
        uint64_t n1                    : 27; /**< [ 53: 27](R/W) Threshold for the count of ones in the raw idle signal from the custom macro
                                                                 required to assert the idle filter output. */
        uint64_t reserved_54           : 1;
        uint64_t i0                    : 4;  /**< [ 58: 55](R/W) Zeros count increment parameter. When a zero in the raw idle signal from the
                                                                 custom macro is encountered, the zeros count is incremented by this amount,
                                                                 saturating to a maximum count of [N0]. */
        uint64_t i1                    : 4;  /**< [ 62: 59](R/W) Ones count increment parameter. When a one in the raw idle signal from the custom
                                                                 macro is encountered, the ones count is incremented by this amount, saturating
                                                                 to a maximum of [N1]. */
        uint64_t reserved_63           : 1;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_rxidle3_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_rxidle3_bcfg bdk_gsernx_lanex_pcie_rxidle3_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXIDLE3_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXIDLE3_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e0900021d0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_RXIDLE3_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_RXIDLE3_BCFG(a,b) bdk_gsernx_lanex_pcie_rxidle3_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_RXIDLE3_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_RXIDLE3_BCFG(a,b) "GSERNX_LANEX_PCIE_RXIDLE3_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_RXIDLE3_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_RXIDLE3_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_RXIDLE3_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_rxidle4_bcfg
 *
 * GSER Lane PCIe Gen4 RX Idle Detection Filter Control Register
 * Parameters controlling the analog detection and digital filtering of the receiver's
 * idle detection logic for PCIe Gen 4. For the digital filtering, setting all fields to 1,
 * i.e., N0=N1=I0=I1=L0=L1=1, results in no filtering.
 */
union bdk_gsernx_lanex_pcie_rxidle4_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_rxidle4_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_63           : 1;
        uint64_t i1                    : 4;  /**< [ 62: 59](R/W) Ones count increment parameter. When a one in the raw idle signal from the custom
                                                                 macro is encountered, the ones count is incremented by this amount, saturating
                                                                 to a maximum of [N1]. */
        uint64_t i0                    : 4;  /**< [ 58: 55](R/W) Zeros count increment parameter. When a zero in the raw idle signal from the
                                                                 custom macro is encountered, the zeros count is incremented by this amount,
                                                                 saturating to a maximum count of [N0]. */
        uint64_t reserved_54           : 1;
        uint64_t n1                    : 27; /**< [ 53: 27](R/W) Threshold for the count of ones in the raw idle signal from the custom macro
                                                                 required to assert the idle filter output. */
        uint64_t n0                    : 27; /**< [ 26:  0](R/W) Threshold for the count of zeros in the raw idle signal from the custom macro
                                                                 required to deassert the idle filter output. */
#else /* Word 0 - Little Endian */
        uint64_t n0                    : 27; /**< [ 26:  0](R/W) Threshold for the count of zeros in the raw idle signal from the custom macro
                                                                 required to deassert the idle filter output. */
        uint64_t n1                    : 27; /**< [ 53: 27](R/W) Threshold for the count of ones in the raw idle signal from the custom macro
                                                                 required to assert the idle filter output. */
        uint64_t reserved_54           : 1;
        uint64_t i0                    : 4;  /**< [ 58: 55](R/W) Zeros count increment parameter. When a zero in the raw idle signal from the
                                                                 custom macro is encountered, the zeros count is incremented by this amount,
                                                                 saturating to a maximum count of [N0]. */
        uint64_t i1                    : 4;  /**< [ 62: 59](R/W) Ones count increment parameter. When a one in the raw idle signal from the custom
                                                                 macro is encountered, the ones count is incremented by this amount, saturating
                                                                 to a maximum of [N1]. */
        uint64_t reserved_63           : 1;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_rxidle4_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_rxidle4_bcfg bdk_gsernx_lanex_pcie_rxidle4_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXIDLE4_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_RXIDLE4_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e0900021f0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_RXIDLE4_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_RXIDLE4_BCFG(a,b) bdk_gsernx_lanex_pcie_rxidle4_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_RXIDLE4_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_RXIDLE4_BCFG(a,b) "GSERNX_LANEX_PCIE_RXIDLE4_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_RXIDLE4_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_RXIDLE4_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_RXIDLE4_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_txbias_bcfg
 *
 * GSER Lane PCIe TX Margin BIAS Control Register
 * TX BIAS values corresponding to Full Scale, Half Scale and Margin levels for both.
 */
union bdk_gsernx_lanex_pcie_txbias_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_txbias_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_60_63        : 4;
        uint64_t tx_margin_h4          : 6;  /**< [ 59: 54](R/W) TX BIAS setting for half scale, Margin 4 output drive. */
        uint64_t tx_margin_h3          : 6;  /**< [ 53: 48](R/W) TX BIAS setting for half scale, Margin 3 output drive. */
        uint64_t tx_margin_h2          : 6;  /**< [ 47: 42](R/W) TX BIAS setting for half scale, Margin 2 output drive. */
        uint64_t tx_margin_h1          : 6;  /**< [ 41: 36](R/W) TX BIAS setting for half scale, Margin 1 output drive. */
        uint64_t tx_bias_half          : 6;  /**< [ 35: 30](R/W) TX BIAS setting for half scale output drive. */
        uint64_t tx_margin_f4          : 6;  /**< [ 29: 24](R/W) TX BIAS setting for full scale, Margin 4 output drive. */
        uint64_t tx_margin_f3          : 6;  /**< [ 23: 18](R/W) TX BIAS setting for full scale, Margin 3 output drive. */
        uint64_t tx_margin_f2          : 6;  /**< [ 17: 12](R/W) TX BIAS setting for full scale, Margin 2 output drive. */
        uint64_t tx_margin_f1          : 6;  /**< [ 11:  6](R/W) TX BIAS setting for full scale, Margin 1 output drive. */
        uint64_t tx_bias_full          : 6;  /**< [  5:  0](R/W) TX BIAS setting for full scale output drive. */
#else /* Word 0 - Little Endian */
        uint64_t tx_bias_full          : 6;  /**< [  5:  0](R/W) TX BIAS setting for full scale output drive. */
        uint64_t tx_margin_f1          : 6;  /**< [ 11:  6](R/W) TX BIAS setting for full scale, Margin 1 output drive. */
        uint64_t tx_margin_f2          : 6;  /**< [ 17: 12](R/W) TX BIAS setting for full scale, Margin 2 output drive. */
        uint64_t tx_margin_f3          : 6;  /**< [ 23: 18](R/W) TX BIAS setting for full scale, Margin 3 output drive. */
        uint64_t tx_margin_f4          : 6;  /**< [ 29: 24](R/W) TX BIAS setting for full scale, Margin 4 output drive. */
        uint64_t tx_bias_half          : 6;  /**< [ 35: 30](R/W) TX BIAS setting for half scale output drive. */
        uint64_t tx_margin_h1          : 6;  /**< [ 41: 36](R/W) TX BIAS setting for half scale, Margin 1 output drive. */
        uint64_t tx_margin_h2          : 6;  /**< [ 47: 42](R/W) TX BIAS setting for half scale, Margin 2 output drive. */
        uint64_t tx_margin_h3          : 6;  /**< [ 53: 48](R/W) TX BIAS setting for half scale, Margin 3 output drive. */
        uint64_t tx_margin_h4          : 6;  /**< [ 59: 54](R/W) TX BIAS setting for half scale, Margin 4 output drive. */
        uint64_t reserved_60_63        : 4;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_txbias_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_txbias_bcfg bdk_gsernx_lanex_pcie_txbias_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXBIAS_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXBIAS_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002930ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_TXBIAS_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_TXBIAS_BCFG(a,b) bdk_gsernx_lanex_pcie_txbias_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_TXBIAS_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_TXBIAS_BCFG(a,b) "GSERNX_LANEX_PCIE_TXBIAS_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_TXBIAS_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_TXBIAS_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_TXBIAS_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_txdrv_bcfg
 *
 * GSER Lane PCIe TX Drive Reserved Presets, FS & LF Control Register
 * TX drive Cpre, Cpost and Cmain Coefficient values for the Reserved Presets
 * for Gen3 and Gen4 (the default coefficient values correspond to preset P4).
 * Cpre and Cpost are only 4 and 5 bits in length, respectively, as the full
 * 6 bits defined in the PCIe specification are not needed.
 * This register also contains the control registers for the Local FS and LF.
 */
union bdk_gsernx_lanex_pcie_txdrv_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_txdrv_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_61_63        : 3;
        uint64_t g4_rsv_cpost          : 5;  /**< [ 60: 56](R/W) Gen4 Cpost value for all reserved presets. */
        uint64_t reserved_54_55        : 2;
        uint64_t g4_rsv_cmain          : 6;  /**< [ 53: 48](R/W) Gen4 Cmain value for all reserved presets. */
        uint64_t reserved_44_47        : 4;
        uint64_t g4_rsv_cpre           : 4;  /**< [ 43: 40](R/W) Gen4 Cpost value for all reserved presets. */
        uint64_t reserved_38_39        : 2;
        uint64_t local_lf              : 6;  /**< [ 37: 32](R/W) Local LF value advertised to the MAC. */
        uint64_t reserved_30_31        : 2;
        uint64_t local_fs              : 6;  /**< [ 29: 24](R/W) Local FS value advertised to the MAC. */
        uint64_t reserved_21_23        : 3;
        uint64_t g3_rsv_cpost          : 5;  /**< [ 20: 16](R/W) Gen3 Cpost value for all reserved presets. */
        uint64_t reserved_14_15        : 2;
        uint64_t g3_rsv_cmain          : 6;  /**< [ 13:  8](R/W) Gen3 Cmain value for all reserved presets. */
        uint64_t reserved_4_7          : 4;
        uint64_t g3_rsv_cpre           : 4;  /**< [  3:  0](R/W) Gen3 Cpost value for all reserved presets. */
#else /* Word 0 - Little Endian */
        uint64_t g3_rsv_cpre           : 4;  /**< [  3:  0](R/W) Gen3 Cpost value for all reserved presets. */
        uint64_t reserved_4_7          : 4;
        uint64_t g3_rsv_cmain          : 6;  /**< [ 13:  8](R/W) Gen3 Cmain value for all reserved presets. */
        uint64_t reserved_14_15        : 2;
        uint64_t g3_rsv_cpost          : 5;  /**< [ 20: 16](R/W) Gen3 Cpost value for all reserved presets. */
        uint64_t reserved_21_23        : 3;
        uint64_t local_fs              : 6;  /**< [ 29: 24](R/W) Local FS value advertised to the MAC. */
        uint64_t reserved_30_31        : 2;
        uint64_t local_lf              : 6;  /**< [ 37: 32](R/W) Local LF value advertised to the MAC. */
        uint64_t reserved_38_39        : 2;
        uint64_t g4_rsv_cpre           : 4;  /**< [ 43: 40](R/W) Gen4 Cpost value for all reserved presets. */
        uint64_t reserved_44_47        : 4;
        uint64_t g4_rsv_cmain          : 6;  /**< [ 53: 48](R/W) Gen4 Cmain value for all reserved presets. */
        uint64_t reserved_54_55        : 2;
        uint64_t g4_rsv_cpost          : 5;  /**< [ 60: 56](R/W) Gen4 Cpost value for all reserved presets. */
        uint64_t reserved_61_63        : 3;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_txdrv_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_txdrv_bcfg bdk_gsernx_lanex_pcie_txdrv_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXDRV_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXDRV_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002830ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_TXDRV_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_TXDRV_BCFG(a,b) bdk_gsernx_lanex_pcie_txdrv_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_TXDRV_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_TXDRV_BCFG(a,b) "GSERNX_LANEX_PCIE_TXDRV_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_TXDRV_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_TXDRV_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_TXDRV_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_txpst0_bcfg
 *
 * GSER Lane PCIe TX Drive Preset Coefficients Control Register
 * TX drive Cpre, Cpost and Cmain Coefficient values for Gen3 preset P0.
 * Cpre and Cpost are only 4 and 5 bits in length, respectively, as the
 * full 6 bits defined in the PCIe specification are not needed.
 */
union bdk_gsernx_lanex_pcie_txpst0_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_txpst0_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_21_63        : 43;
        uint64_t g3_p0_cpost           : 5;  /**< [ 20: 16](R/W) Cpost value for Gen3 preset P0. */
        uint64_t reserved_14_15        : 2;
        uint64_t g3_p0_cmain           : 6;  /**< [ 13:  8](R/W) Cmain value for Gen3 preset P0. */
        uint64_t reserved_4_7          : 4;
        uint64_t g3_p0_cpre            : 4;  /**< [  3:  0](R/W) Cpost value for Gen3 preset P0. */
#else /* Word 0 - Little Endian */
        uint64_t g3_p0_cpre            : 4;  /**< [  3:  0](R/W) Cpost value for Gen3 preset P0. */
        uint64_t reserved_4_7          : 4;
        uint64_t g3_p0_cmain           : 6;  /**< [ 13:  8](R/W) Cmain value for Gen3 preset P0. */
        uint64_t reserved_14_15        : 2;
        uint64_t g3_p0_cpost           : 5;  /**< [ 20: 16](R/W) Cpost value for Gen3 preset P0. */
        uint64_t reserved_21_63        : 43;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_txpst0_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_txpst0_bcfg bdk_gsernx_lanex_pcie_txpst0_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXPST0_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXPST0_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e0900024f0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_TXPST0_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_TXPST0_BCFG(a,b) bdk_gsernx_lanex_pcie_txpst0_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_TXPST0_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_TXPST0_BCFG(a,b) "GSERNX_LANEX_PCIE_TXPST0_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_TXPST0_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_TXPST0_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_TXPST0_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_txpst10_bcfg
 *
 * GSER Lane PCIe TX Drive Preset Coefficients Control Register
 * TX drive Cpre, Cpost and Cmain Coefficient values for Gen3 preset P10.
 * Cpre and Cpost are only 4 and 5 bits in length, respectively, as the
 * full 6 bits defined in the PCIe specification are not needed.
 */
union bdk_gsernx_lanex_pcie_txpst10_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_txpst10_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_21_63        : 43;
        uint64_t g3_p10_cpost          : 5;  /**< [ 20: 16](R/W) Cpost value for Gen3 preset P10. */
        uint64_t reserved_14_15        : 2;
        uint64_t g3_p10_cmain          : 6;  /**< [ 13:  8](R/W) Cmain value for Gen3 preset P10. */
        uint64_t reserved_4_7          : 4;
        uint64_t g3_p10_cpre           : 4;  /**< [  3:  0](R/W) Cpost value for Gen3 preset P10. */
#else /* Word 0 - Little Endian */
        uint64_t g3_p10_cpre           : 4;  /**< [  3:  0](R/W) Cpost value for Gen3 preset P10. */
        uint64_t reserved_4_7          : 4;
        uint64_t g3_p10_cmain          : 6;  /**< [ 13:  8](R/W) Cmain value for Gen3 preset P10. */
        uint64_t reserved_14_15        : 2;
        uint64_t g3_p10_cpost          : 5;  /**< [ 20: 16](R/W) Cpost value for Gen3 preset P10. */
        uint64_t reserved_21_63        : 43;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_txpst10_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_txpst10_bcfg bdk_gsernx_lanex_pcie_txpst10_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXPST10_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXPST10_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002590ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_TXPST10_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_TXPST10_BCFG(a,b) bdk_gsernx_lanex_pcie_txpst10_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_TXPST10_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_TXPST10_BCFG(a,b) "GSERNX_LANEX_PCIE_TXPST10_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_TXPST10_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_TXPST10_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_TXPST10_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_txpst11_bcfg
 *
 * GSER Lane PCIe TX Drive Preset Coefficients Control Register
 * TX drive Cpre, Cpost and Cmain Coefficient values for Gen4 preset P0.
 * Cpre and Cpost are only 4 and 5 bits in length, respectively, as the
 * full 6 bits defined in the PCIe specification are not needed.
 */
union bdk_gsernx_lanex_pcie_txpst11_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_txpst11_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_21_63        : 43;
        uint64_t g4_p0_cpost           : 5;  /**< [ 20: 16](R/W) Cpost value for Gen4 preset P0. */
        uint64_t reserved_14_15        : 2;
        uint64_t g4_p0_cmain           : 6;  /**< [ 13:  8](R/W) Cmain value for Gen4 preset P0. */
        uint64_t reserved_4_7          : 4;
        uint64_t g4_p0_cpre            : 4;  /**< [  3:  0](R/W) Cpost value for Gen4 preset P0. */
#else /* Word 0 - Little Endian */
        uint64_t g4_p0_cpre            : 4;  /**< [  3:  0](R/W) Cpost value for Gen4 preset P0. */
        uint64_t reserved_4_7          : 4;
        uint64_t g4_p0_cmain           : 6;  /**< [ 13:  8](R/W) Cmain value for Gen4 preset P0. */
        uint64_t reserved_14_15        : 2;
        uint64_t g4_p0_cpost           : 5;  /**< [ 20: 16](R/W) Cpost value for Gen4 preset P0. */
        uint64_t reserved_21_63        : 43;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_txpst11_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_txpst11_bcfg bdk_gsernx_lanex_pcie_txpst11_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXPST11_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXPST11_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002690ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_TXPST11_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_TXPST11_BCFG(a,b) bdk_gsernx_lanex_pcie_txpst11_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_TXPST11_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_TXPST11_BCFG(a,b) "GSERNX_LANEX_PCIE_TXPST11_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_TXPST11_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_TXPST11_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_TXPST11_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_txpst12_bcfg
 *
 * GSER Lane PCIe TX Drive Preset Coefficients Control Register
 * TX drive Cpre, Cpost and Cmain Coefficient values for Gen4 preset P1.
 * Cpre and Cpost are only 4 and 5 bits in length, respectively, as the
 * full 6 bits defined in the PCIe specification are not needed.
 */
union bdk_gsernx_lanex_pcie_txpst12_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_txpst12_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_21_63        : 43;
        uint64_t g4_p1_cpost           : 5;  /**< [ 20: 16](R/W) Cpost value for Gen4 preset P1. */
        uint64_t reserved_14_15        : 2;
        uint64_t g4_p1_cmain           : 6;  /**< [ 13:  8](R/W) Cmain value for Gen4 preset P1. */
        uint64_t reserved_4_7          : 4;
        uint64_t g4_p1_cpre            : 4;  /**< [  3:  0](R/W) Cpost value for Gen4 preset P1. */
#else /* Word 0 - Little Endian */
        uint64_t g4_p1_cpre            : 4;  /**< [  3:  0](R/W) Cpost value for Gen4 preset P1. */
        uint64_t reserved_4_7          : 4;
        uint64_t g4_p1_cmain           : 6;  /**< [ 13:  8](R/W) Cmain value for Gen4 preset P1. */
        uint64_t reserved_14_15        : 2;
        uint64_t g4_p1_cpost           : 5;  /**< [ 20: 16](R/W) Cpost value for Gen4 preset P1. */
        uint64_t reserved_21_63        : 43;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_txpst12_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_txpst12_bcfg bdk_gsernx_lanex_pcie_txpst12_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXPST12_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXPST12_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e0900026a0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_TXPST12_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_TXPST12_BCFG(a,b) bdk_gsernx_lanex_pcie_txpst12_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_TXPST12_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_TXPST12_BCFG(a,b) "GSERNX_LANEX_PCIE_TXPST12_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_TXPST12_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_TXPST12_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_TXPST12_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_txpst13_bcfg
 *
 * GSER Lane PCIe TX Drive Preset Coefficients Control Register
 * TX drive Cpre, Cpost and Cmain Coefficient values for Gen4 preset P2.
 * Cpre and Cpost are only 4 and 5 bits in length, respectively, as the
 * full 6 bits defined in the PCIe specification are not needed.
 */
union bdk_gsernx_lanex_pcie_txpst13_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_txpst13_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_21_63        : 43;
        uint64_t g4_p2_cpost           : 5;  /**< [ 20: 16](R/W) Cpost value for Gen4 preset P2. */
        uint64_t reserved_14_15        : 2;
        uint64_t g4_p2_cmain           : 6;  /**< [ 13:  8](R/W) Cmain value for Gen4 preset P2. */
        uint64_t reserved_4_7          : 4;
        uint64_t g4_p2_cpre            : 4;  /**< [  3:  0](R/W) Cpost value for Gen4 preset P2. */
#else /* Word 0 - Little Endian */
        uint64_t g4_p2_cpre            : 4;  /**< [  3:  0](R/W) Cpost value for Gen4 preset P2. */
        uint64_t reserved_4_7          : 4;
        uint64_t g4_p2_cmain           : 6;  /**< [ 13:  8](R/W) Cmain value for Gen4 preset P2. */
        uint64_t reserved_14_15        : 2;
        uint64_t g4_p2_cpost           : 5;  /**< [ 20: 16](R/W) Cpost value for Gen4 preset P2. */
        uint64_t reserved_21_63        : 43;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_txpst13_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_txpst13_bcfg bdk_gsernx_lanex_pcie_txpst13_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXPST13_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXPST13_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e0900026b0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_TXPST13_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_TXPST13_BCFG(a,b) bdk_gsernx_lanex_pcie_txpst13_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_TXPST13_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_TXPST13_BCFG(a,b) "GSERNX_LANEX_PCIE_TXPST13_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_TXPST13_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_TXPST13_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_TXPST13_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_txpst14_bcfg
 *
 * GSER Lane PCIe TX Drive Preset Coefficients Control Register
 * TX drive Cpre, Cpost and Cmain Coefficient values for Gen4 preset P3.
 * Cpre and Cpost are only 4 and 5 bits in length, respectively, as the
 * full 6 bits defined in the PCIe specification are not needed.
 */
union bdk_gsernx_lanex_pcie_txpst14_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_txpst14_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_21_63        : 43;
        uint64_t g4_p3_cpost           : 5;  /**< [ 20: 16](R/W) Cpost value for Gen4 preset P3. */
        uint64_t reserved_14_15        : 2;
        uint64_t g4_p3_cmain           : 6;  /**< [ 13:  8](R/W) Cmain value for Gen4 preset P3. */
        uint64_t reserved_4_7          : 4;
        uint64_t g4_p3_cpre            : 4;  /**< [  3:  0](R/W) Cpost value for Gen4 preset P3. */
#else /* Word 0 - Little Endian */
        uint64_t g4_p3_cpre            : 4;  /**< [  3:  0](R/W) Cpost value for Gen4 preset P3. */
        uint64_t reserved_4_7          : 4;
        uint64_t g4_p3_cmain           : 6;  /**< [ 13:  8](R/W) Cmain value for Gen4 preset P3. */
        uint64_t reserved_14_15        : 2;
        uint64_t g4_p3_cpost           : 5;  /**< [ 20: 16](R/W) Cpost value for Gen4 preset P3. */
        uint64_t reserved_21_63        : 43;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_txpst14_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_txpst14_bcfg bdk_gsernx_lanex_pcie_txpst14_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXPST14_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXPST14_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e0900026c0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_TXPST14_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_TXPST14_BCFG(a,b) bdk_gsernx_lanex_pcie_txpst14_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_TXPST14_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_TXPST14_BCFG(a,b) "GSERNX_LANEX_PCIE_TXPST14_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_TXPST14_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_TXPST14_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_TXPST14_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_txpst15_bcfg
 *
 * GSER Lane PCIe TX Drive Preset Coefficients Control Register
 * TX drive Cpre, Cpost and Cmain Coefficient values for Gen4 preset P4.
 * Cpre and Cpost are only 4 and 5 bits in length, respectively, as the
 * full 6 bits defined in the PCIe specification are not needed.
 */
union bdk_gsernx_lanex_pcie_txpst15_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_txpst15_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_21_63        : 43;
        uint64_t g4_p4_cpost           : 5;  /**< [ 20: 16](R/W) Cpost value for Gen4 preset P4. */
        uint64_t reserved_14_15        : 2;
        uint64_t g4_p4_cmain           : 6;  /**< [ 13:  8](R/W) Cmain value for Gen4 preset P4. */
        uint64_t reserved_4_7          : 4;
        uint64_t g4_p4_cpre            : 4;  /**< [  3:  0](R/W) Cpost value for Gen4 preset P4. */
#else /* Word 0 - Little Endian */
        uint64_t g4_p4_cpre            : 4;  /**< [  3:  0](R/W) Cpost value for Gen4 preset P4. */
        uint64_t reserved_4_7          : 4;
        uint64_t g4_p4_cmain           : 6;  /**< [ 13:  8](R/W) Cmain value for Gen4 preset P4. */
        uint64_t reserved_14_15        : 2;
        uint64_t g4_p4_cpost           : 5;  /**< [ 20: 16](R/W) Cpost value for Gen4 preset P4. */
        uint64_t reserved_21_63        : 43;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_txpst15_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_txpst15_bcfg bdk_gsernx_lanex_pcie_txpst15_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXPST15_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXPST15_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e0900026d0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_TXPST15_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_TXPST15_BCFG(a,b) bdk_gsernx_lanex_pcie_txpst15_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_TXPST15_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_TXPST15_BCFG(a,b) "GSERNX_LANEX_PCIE_TXPST15_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_TXPST15_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_TXPST15_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_TXPST15_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_txpst16_bcfg
 *
 * GSER Lane PCIe TX Drive Preset Coefficients Control Register
 * TX drive Cpre, Cpost and Cmain Coefficient values for Gen4 preset P5.
 * Cpre and Cpost are only 4 and 5 bits in length, respectively, as the
 * full 6 bits defined in the PCIe specification are not needed.
 */
union bdk_gsernx_lanex_pcie_txpst16_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_txpst16_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_21_63        : 43;
        uint64_t g4_p5_cpost           : 5;  /**< [ 20: 16](R/W) Cpost value for Gen4 preset P5. */
        uint64_t reserved_14_15        : 2;
        uint64_t g4_p5_cmain           : 6;  /**< [ 13:  8](R/W) Cmain value for Gen4 preset P5. */
        uint64_t reserved_4_7          : 4;
        uint64_t g4_p5_cpre            : 4;  /**< [  3:  0](R/W) Cpost value for Gen4 preset P5. */
#else /* Word 0 - Little Endian */
        uint64_t g4_p5_cpre            : 4;  /**< [  3:  0](R/W) Cpost value for Gen4 preset P5. */
        uint64_t reserved_4_7          : 4;
        uint64_t g4_p5_cmain           : 6;  /**< [ 13:  8](R/W) Cmain value for Gen4 preset P5. */
        uint64_t reserved_14_15        : 2;
        uint64_t g4_p5_cpost           : 5;  /**< [ 20: 16](R/W) Cpost value for Gen4 preset P5. */
        uint64_t reserved_21_63        : 43;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_txpst16_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_txpst16_bcfg bdk_gsernx_lanex_pcie_txpst16_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXPST16_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXPST16_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e0900026e0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_TXPST16_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_TXPST16_BCFG(a,b) bdk_gsernx_lanex_pcie_txpst16_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_TXPST16_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_TXPST16_BCFG(a,b) "GSERNX_LANEX_PCIE_TXPST16_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_TXPST16_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_TXPST16_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_TXPST16_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_txpst17_bcfg
 *
 * GSER Lane PCIe TX Drive Preset Coefficients Control Register
 * TX drive Cpre, Cpost and Cmain Coefficient values for Gen4 preset P6.
 * Cpre and Cpost are only 4 and 5 bits in length, respectively, as the
 * full 6 bits defined in the PCIe specification are not needed.
 */
union bdk_gsernx_lanex_pcie_txpst17_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_txpst17_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_21_63        : 43;
        uint64_t g4_p6_cpost           : 5;  /**< [ 20: 16](R/W) Cpost value for Gen4 preset P6. */
        uint64_t reserved_14_15        : 2;
        uint64_t g4_p6_cmain           : 6;  /**< [ 13:  8](R/W) Cmain value for Gen4 preset P6. */
        uint64_t reserved_4_7          : 4;
        uint64_t g4_p6_cpre            : 4;  /**< [  3:  0](R/W) Cpost value for Gen4 preset P6. */
#else /* Word 0 - Little Endian */
        uint64_t g4_p6_cpre            : 4;  /**< [  3:  0](R/W) Cpost value for Gen4 preset P6. */
        uint64_t reserved_4_7          : 4;
        uint64_t g4_p6_cmain           : 6;  /**< [ 13:  8](R/W) Cmain value for Gen4 preset P6. */
        uint64_t reserved_14_15        : 2;
        uint64_t g4_p6_cpost           : 5;  /**< [ 20: 16](R/W) Cpost value for Gen4 preset P6. */
        uint64_t reserved_21_63        : 43;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_txpst17_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_txpst17_bcfg bdk_gsernx_lanex_pcie_txpst17_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXPST17_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXPST17_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e0900026f0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_TXPST17_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_TXPST17_BCFG(a,b) bdk_gsernx_lanex_pcie_txpst17_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_TXPST17_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_TXPST17_BCFG(a,b) "GSERNX_LANEX_PCIE_TXPST17_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_TXPST17_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_TXPST17_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_TXPST17_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_txpst18_bcfg
 *
 * GSER Lane PCIe TX Drive Preset Coefficients Control Register
 * TX drive Cpre, Cpost and Cmain Coefficient values for Gen4 preset P7.
 * Cpre and Cpost are only 4 and 5 bits in length, respectively, as the
 * full 6 bits defined in the PCIe specification are not needed.
 */
union bdk_gsernx_lanex_pcie_txpst18_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_txpst18_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_21_63        : 43;
        uint64_t g4_p7_cpost           : 5;  /**< [ 20: 16](R/W) Cpost value for Gen4 preset P7. */
        uint64_t reserved_14_15        : 2;
        uint64_t g4_p7_cmain           : 6;  /**< [ 13:  8](R/W) Cmain value for Gen4 preset P7. */
        uint64_t reserved_4_7          : 4;
        uint64_t g4_p7_cpre            : 4;  /**< [  3:  0](R/W) Cpost value for Gen4 preset P7. */
#else /* Word 0 - Little Endian */
        uint64_t g4_p7_cpre            : 4;  /**< [  3:  0](R/W) Cpost value for Gen4 preset P7. */
        uint64_t reserved_4_7          : 4;
        uint64_t g4_p7_cmain           : 6;  /**< [ 13:  8](R/W) Cmain value for Gen4 preset P7. */
        uint64_t reserved_14_15        : 2;
        uint64_t g4_p7_cpost           : 5;  /**< [ 20: 16](R/W) Cpost value for Gen4 preset P7. */
        uint64_t reserved_21_63        : 43;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_txpst18_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_txpst18_bcfg bdk_gsernx_lanex_pcie_txpst18_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXPST18_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXPST18_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002700ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_TXPST18_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_TXPST18_BCFG(a,b) bdk_gsernx_lanex_pcie_txpst18_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_TXPST18_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_TXPST18_BCFG(a,b) "GSERNX_LANEX_PCIE_TXPST18_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_TXPST18_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_TXPST18_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_TXPST18_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_txpst19_bcfg
 *
 * GSER Lane PCIe TX Drive Preset Coefficients Control Register
 * TX drive Cpre, Cpost and Cmain Coefficient values for Gen4 preset P8.
 * Cpre and Cpost are only 4 and 5 bits in length, respectively, as the
 * full 6 bits defined in the PCIe specification are not needed.
 */
union bdk_gsernx_lanex_pcie_txpst19_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_txpst19_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_21_63        : 43;
        uint64_t g4_p8_cpost           : 5;  /**< [ 20: 16](R/W) Cpost value for Gen4 preset P8. */
        uint64_t reserved_14_15        : 2;
        uint64_t g4_p8_cmain           : 6;  /**< [ 13:  8](R/W) Cmain value for Gen4 preset P8. */
        uint64_t reserved_4_7          : 4;
        uint64_t g4_p8_cpre            : 4;  /**< [  3:  0](R/W) Cpost value for Gen4 preset P8. */
#else /* Word 0 - Little Endian */
        uint64_t g4_p8_cpre            : 4;  /**< [  3:  0](R/W) Cpost value for Gen4 preset P8. */
        uint64_t reserved_4_7          : 4;
        uint64_t g4_p8_cmain           : 6;  /**< [ 13:  8](R/W) Cmain value for Gen4 preset P8. */
        uint64_t reserved_14_15        : 2;
        uint64_t g4_p8_cpost           : 5;  /**< [ 20: 16](R/W) Cpost value for Gen4 preset P8. */
        uint64_t reserved_21_63        : 43;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_txpst19_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_txpst19_bcfg bdk_gsernx_lanex_pcie_txpst19_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXPST19_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXPST19_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002710ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_TXPST19_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_TXPST19_BCFG(a,b) bdk_gsernx_lanex_pcie_txpst19_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_TXPST19_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_TXPST19_BCFG(a,b) "GSERNX_LANEX_PCIE_TXPST19_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_TXPST19_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_TXPST19_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_TXPST19_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_txpst1_bcfg
 *
 * GSER Lane PCIe TX Drive Preset Coefficients Control Register
 * TX drive Cpre, Cpost and Cmain Coefficient values for Gen3 preset P1.
 * Cpre and Cpost are only 4 and 5 bits in length, respectively, as the
 * full 6 bits defined in the PCIe specification are not needed.
 */
union bdk_gsernx_lanex_pcie_txpst1_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_txpst1_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_21_63        : 43;
        uint64_t g3_p1_cpost           : 5;  /**< [ 20: 16](R/W) Cpost value for Gen3 preset P1. */
        uint64_t reserved_14_15        : 2;
        uint64_t g3_p1_cmain           : 6;  /**< [ 13:  8](R/W) Cmain value for Gen3 preset P1. */
        uint64_t reserved_4_7          : 4;
        uint64_t g3_p1_cpre            : 4;  /**< [  3:  0](R/W) Cpost value for Gen3 preset P1. */
#else /* Word 0 - Little Endian */
        uint64_t g3_p1_cpre            : 4;  /**< [  3:  0](R/W) Cpost value for Gen3 preset P1. */
        uint64_t reserved_4_7          : 4;
        uint64_t g3_p1_cmain           : 6;  /**< [ 13:  8](R/W) Cmain value for Gen3 preset P1. */
        uint64_t reserved_14_15        : 2;
        uint64_t g3_p1_cpost           : 5;  /**< [ 20: 16](R/W) Cpost value for Gen3 preset P1. */
        uint64_t reserved_21_63        : 43;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_txpst1_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_txpst1_bcfg bdk_gsernx_lanex_pcie_txpst1_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXPST1_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXPST1_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002500ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_TXPST1_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_TXPST1_BCFG(a,b) bdk_gsernx_lanex_pcie_txpst1_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_TXPST1_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_TXPST1_BCFG(a,b) "GSERNX_LANEX_PCIE_TXPST1_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_TXPST1_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_TXPST1_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_TXPST1_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_txpst20_bcfg
 *
 * GSER Lane PCIe TX Drive Preset Coefficients Control Register
 * TX drive Cpre, Cpost and Cmain Coefficient values for Gen4 preset P9.
 * Cpre and Cpost are only 4 and 5 bits in length, respectively, as the
 * full 6 bits defined in the PCIe specification are not needed.
 */
union bdk_gsernx_lanex_pcie_txpst20_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_txpst20_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_21_63        : 43;
        uint64_t g4_p9_cpost           : 5;  /**< [ 20: 16](R/W) Cpost value for Gen4 preset P9. */
        uint64_t reserved_14_15        : 2;
        uint64_t g4_p9_cmain           : 6;  /**< [ 13:  8](R/W) Cmain value for Gen4 preset P9. */
        uint64_t reserved_4_7          : 4;
        uint64_t g4_p9_cpre            : 4;  /**< [  3:  0](R/W) Cpost value for Gen4 preset P9. */
#else /* Word 0 - Little Endian */
        uint64_t g4_p9_cpre            : 4;  /**< [  3:  0](R/W) Cpost value for Gen4 preset P9. */
        uint64_t reserved_4_7          : 4;
        uint64_t g4_p9_cmain           : 6;  /**< [ 13:  8](R/W) Cmain value for Gen4 preset P9. */
        uint64_t reserved_14_15        : 2;
        uint64_t g4_p9_cpost           : 5;  /**< [ 20: 16](R/W) Cpost value for Gen4 preset P9. */
        uint64_t reserved_21_63        : 43;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_txpst20_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_txpst20_bcfg bdk_gsernx_lanex_pcie_txpst20_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXPST20_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXPST20_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002720ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_TXPST20_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_TXPST20_BCFG(a,b) bdk_gsernx_lanex_pcie_txpst20_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_TXPST20_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_TXPST20_BCFG(a,b) "GSERNX_LANEX_PCIE_TXPST20_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_TXPST20_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_TXPST20_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_TXPST20_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_txpst21_bcfg
 *
 * GSER Lane PCIe TX Drive Preset Coefficients Control Register
 * TX drive Cpre, Cpost and Cmain Coefficient values for Gen4 preset P10.
 * Cpre and Cpost are only 4 and 5 bits in length, respectively, as the
 * full 6 bits defined in the PCIe specification are not needed.
 */
union bdk_gsernx_lanex_pcie_txpst21_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_txpst21_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_21_63        : 43;
        uint64_t g4_p10_cpost          : 5;  /**< [ 20: 16](R/W) Cpost value for Gen4 preset P10. */
        uint64_t reserved_14_15        : 2;
        uint64_t g4_p10_cmain          : 6;  /**< [ 13:  8](R/W) Cmain value for Gen4 preset P10. */
        uint64_t reserved_4_7          : 4;
        uint64_t g4_p10_cpre           : 4;  /**< [  3:  0](R/W) Cpost value for Gen4 preset P10. */
#else /* Word 0 - Little Endian */
        uint64_t g4_p10_cpre           : 4;  /**< [  3:  0](R/W) Cpost value for Gen4 preset P10. */
        uint64_t reserved_4_7          : 4;
        uint64_t g4_p10_cmain          : 6;  /**< [ 13:  8](R/W) Cmain value for Gen4 preset P10. */
        uint64_t reserved_14_15        : 2;
        uint64_t g4_p10_cpost          : 5;  /**< [ 20: 16](R/W) Cpost value for Gen4 preset P10. */
        uint64_t reserved_21_63        : 43;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_txpst21_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_txpst21_bcfg bdk_gsernx_lanex_pcie_txpst21_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXPST21_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXPST21_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002730ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_TXPST21_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_TXPST21_BCFG(a,b) bdk_gsernx_lanex_pcie_txpst21_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_TXPST21_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_TXPST21_BCFG(a,b) "GSERNX_LANEX_PCIE_TXPST21_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_TXPST21_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_TXPST21_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_TXPST21_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_txpst2_bcfg
 *
 * GSER Lane PCIe TX Drive Preset Coefficients Control Register
 * TX drive Cpre, Cpost and Cmain Coefficient values for Gen3 preset P2.
 * Cpre and Cpost are only 4 and 5 bits in length, respectively, as the
 * full 6 bits defined in the PCIe specification are not needed.
 */
union bdk_gsernx_lanex_pcie_txpst2_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_txpst2_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_21_63        : 43;
        uint64_t g3_p2_cpost           : 5;  /**< [ 20: 16](R/W) Cpost value for Gen3 preset P2. */
        uint64_t reserved_14_15        : 2;
        uint64_t g3_p2_cmain           : 6;  /**< [ 13:  8](R/W) Cmain value for Gen3 preset P2. */
        uint64_t reserved_4_7          : 4;
        uint64_t g3_p2_cpre            : 4;  /**< [  3:  0](R/W) Cpost value for Gen3 preset P2. */
#else /* Word 0 - Little Endian */
        uint64_t g3_p2_cpre            : 4;  /**< [  3:  0](R/W) Cpost value for Gen3 preset P2. */
        uint64_t reserved_4_7          : 4;
        uint64_t g3_p2_cmain           : 6;  /**< [ 13:  8](R/W) Cmain value for Gen3 preset P2. */
        uint64_t reserved_14_15        : 2;
        uint64_t g3_p2_cpost           : 5;  /**< [ 20: 16](R/W) Cpost value for Gen3 preset P2. */
        uint64_t reserved_21_63        : 43;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_txpst2_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_txpst2_bcfg bdk_gsernx_lanex_pcie_txpst2_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXPST2_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXPST2_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002510ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_TXPST2_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_TXPST2_BCFG(a,b) bdk_gsernx_lanex_pcie_txpst2_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_TXPST2_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_TXPST2_BCFG(a,b) "GSERNX_LANEX_PCIE_TXPST2_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_TXPST2_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_TXPST2_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_TXPST2_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_txpst3_bcfg
 *
 * GSER Lane PCIe TX Drive Preset Coefficients Control Register
 * TX drive Cpre, Cpost and Cmain Coefficient values for Gen3 preset P3.
 * Cpre and Cpost are only 4 and 5 bits in length, respectively, as the
 * full 6 bits defined in the PCIe specification are not needed.
 */
union bdk_gsernx_lanex_pcie_txpst3_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_txpst3_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_21_63        : 43;
        uint64_t g3_p3_cpost           : 5;  /**< [ 20: 16](R/W) Cpost value for Gen3 preset P3. */
        uint64_t reserved_14_15        : 2;
        uint64_t g3_p3_cmain           : 6;  /**< [ 13:  8](R/W) Cmain value for Gen3 preset P3. */
        uint64_t reserved_4_7          : 4;
        uint64_t g3_p3_cpre            : 4;  /**< [  3:  0](R/W) Cpost value for Gen3 preset P3. */
#else /* Word 0 - Little Endian */
        uint64_t g3_p3_cpre            : 4;  /**< [  3:  0](R/W) Cpost value for Gen3 preset P3. */
        uint64_t reserved_4_7          : 4;
        uint64_t g3_p3_cmain           : 6;  /**< [ 13:  8](R/W) Cmain value for Gen3 preset P3. */
        uint64_t reserved_14_15        : 2;
        uint64_t g3_p3_cpost           : 5;  /**< [ 20: 16](R/W) Cpost value for Gen3 preset P3. */
        uint64_t reserved_21_63        : 43;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_txpst3_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_txpst3_bcfg bdk_gsernx_lanex_pcie_txpst3_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXPST3_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXPST3_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002520ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_TXPST3_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_TXPST3_BCFG(a,b) bdk_gsernx_lanex_pcie_txpst3_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_TXPST3_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_TXPST3_BCFG(a,b) "GSERNX_LANEX_PCIE_TXPST3_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_TXPST3_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_TXPST3_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_TXPST3_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_txpst4_bcfg
 *
 * GSER Lane PCIe TX Drive Preset Coefficients Control Register
 * TX drive Cpre, Cpost and Cmain Coefficient values for Gen3 preset P4.
 * Cpre and Cpost are only 4 and 5 bits in length, respectively, as the
 * full 6 bits defined in the PCIe specification are not needed.
 */
union bdk_gsernx_lanex_pcie_txpst4_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_txpst4_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_21_63        : 43;
        uint64_t g3_p4_cpost           : 5;  /**< [ 20: 16](R/W) Cpost value for Gen3 preset P4. */
        uint64_t reserved_14_15        : 2;
        uint64_t g3_p4_cmain           : 6;  /**< [ 13:  8](R/W) Cmain value for Gen3 preset P4. */
        uint64_t reserved_4_7          : 4;
        uint64_t g3_p4_cpre            : 4;  /**< [  3:  0](R/W) Cpost value for Gen3 preset P4. */
#else /* Word 0 - Little Endian */
        uint64_t g3_p4_cpre            : 4;  /**< [  3:  0](R/W) Cpost value for Gen3 preset P4. */
        uint64_t reserved_4_7          : 4;
        uint64_t g3_p4_cmain           : 6;  /**< [ 13:  8](R/W) Cmain value for Gen3 preset P4. */
        uint64_t reserved_14_15        : 2;
        uint64_t g3_p4_cpost           : 5;  /**< [ 20: 16](R/W) Cpost value for Gen3 preset P4. */
        uint64_t reserved_21_63        : 43;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_txpst4_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_txpst4_bcfg bdk_gsernx_lanex_pcie_txpst4_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXPST4_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXPST4_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002530ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_TXPST4_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_TXPST4_BCFG(a,b) bdk_gsernx_lanex_pcie_txpst4_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_TXPST4_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_TXPST4_BCFG(a,b) "GSERNX_LANEX_PCIE_TXPST4_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_TXPST4_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_TXPST4_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_TXPST4_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_txpst5_bcfg
 *
 * GSER Lane PCIe TX Drive Preset Coefficients Control Register
 * TX drive Cpre, Cpost and Cmain Coefficient values for Gen3 preset P5.
 * Cpre and Cpost are only 4 and 5 bits in length, respectively, as the
 * full 6 bits defined in the PCIe specification are not needed.
 */
union bdk_gsernx_lanex_pcie_txpst5_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_txpst5_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_21_63        : 43;
        uint64_t g3_p5_cpost           : 5;  /**< [ 20: 16](R/W) Cpost value for Gen3 preset P5. */
        uint64_t reserved_14_15        : 2;
        uint64_t g3_p5_cmain           : 6;  /**< [ 13:  8](R/W) Cmain value for Gen3 preset P5. */
        uint64_t reserved_4_7          : 4;
        uint64_t g3_p5_cpre            : 4;  /**< [  3:  0](R/W) Cpost value for Gen3 preset P5. */
#else /* Word 0 - Little Endian */
        uint64_t g3_p5_cpre            : 4;  /**< [  3:  0](R/W) Cpost value for Gen3 preset P5. */
        uint64_t reserved_4_7          : 4;
        uint64_t g3_p5_cmain           : 6;  /**< [ 13:  8](R/W) Cmain value for Gen3 preset P5. */
        uint64_t reserved_14_15        : 2;
        uint64_t g3_p5_cpost           : 5;  /**< [ 20: 16](R/W) Cpost value for Gen3 preset P5. */
        uint64_t reserved_21_63        : 43;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_txpst5_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_txpst5_bcfg bdk_gsernx_lanex_pcie_txpst5_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXPST5_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXPST5_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002540ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_TXPST5_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_TXPST5_BCFG(a,b) bdk_gsernx_lanex_pcie_txpst5_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_TXPST5_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_TXPST5_BCFG(a,b) "GSERNX_LANEX_PCIE_TXPST5_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_TXPST5_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_TXPST5_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_TXPST5_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_txpst6_bcfg
 *
 * GSER Lane PCIe TX Drive Preset Coefficients Control Register
 * TX drive Cpre, Cpost and Cmain Coefficient values for Gen3 preset P6.
 * Cpre and Cpost are only 4 and 5 bits in length, respectively, as the
 * full 6 bits defined in the PCIe specification are not needed.
 */
union bdk_gsernx_lanex_pcie_txpst6_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_txpst6_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_21_63        : 43;
        uint64_t g3_p6_cpost           : 5;  /**< [ 20: 16](R/W) Cpost value for Gen3 preset P6. */
        uint64_t reserved_14_15        : 2;
        uint64_t g3_p6_cmain           : 6;  /**< [ 13:  8](R/W) Cmain value for Gen3 preset P6. */
        uint64_t reserved_4_7          : 4;
        uint64_t g3_p6_cpre            : 4;  /**< [  3:  0](R/W) Cpost value for Gen3 preset P6. */
#else /* Word 0 - Little Endian */
        uint64_t g3_p6_cpre            : 4;  /**< [  3:  0](R/W) Cpost value for Gen3 preset P6. */
        uint64_t reserved_4_7          : 4;
        uint64_t g3_p6_cmain           : 6;  /**< [ 13:  8](R/W) Cmain value for Gen3 preset P6. */
        uint64_t reserved_14_15        : 2;
        uint64_t g3_p6_cpost           : 5;  /**< [ 20: 16](R/W) Cpost value for Gen3 preset P6. */
        uint64_t reserved_21_63        : 43;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_txpst6_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_txpst6_bcfg bdk_gsernx_lanex_pcie_txpst6_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXPST6_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXPST6_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002550ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_TXPST6_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_TXPST6_BCFG(a,b) bdk_gsernx_lanex_pcie_txpst6_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_TXPST6_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_TXPST6_BCFG(a,b) "GSERNX_LANEX_PCIE_TXPST6_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_TXPST6_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_TXPST6_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_TXPST6_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_txpst7_bcfg
 *
 * GSER Lane PCIe TX Drive Preset Coefficients Control Register
 * TX drive Cpre, Cpost and Cmain Coefficient values for Gen3 preset P7.
 * Cpre and Cpost are only 4 and 5 bits in length, respectively, as the
 * full 6 bits defined in the PCIe specification are not needed.
 */
union bdk_gsernx_lanex_pcie_txpst7_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_txpst7_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_21_63        : 43;
        uint64_t g3_p7_cpost           : 5;  /**< [ 20: 16](R/W) Cpost value for Gen3 preset P7. */
        uint64_t reserved_14_15        : 2;
        uint64_t g3_p7_cmain           : 6;  /**< [ 13:  8](R/W) Cmain value for Gen3 preset P7. */
        uint64_t reserved_4_7          : 4;
        uint64_t g3_p7_cpre            : 4;  /**< [  3:  0](R/W) Cpost value for Gen3 preset P7. */
#else /* Word 0 - Little Endian */
        uint64_t g3_p7_cpre            : 4;  /**< [  3:  0](R/W) Cpost value for Gen3 preset P7. */
        uint64_t reserved_4_7          : 4;
        uint64_t g3_p7_cmain           : 6;  /**< [ 13:  8](R/W) Cmain value for Gen3 preset P7. */
        uint64_t reserved_14_15        : 2;
        uint64_t g3_p7_cpost           : 5;  /**< [ 20: 16](R/W) Cpost value for Gen3 preset P7. */
        uint64_t reserved_21_63        : 43;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_txpst7_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_txpst7_bcfg bdk_gsernx_lanex_pcie_txpst7_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXPST7_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXPST7_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002560ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_TXPST7_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_TXPST7_BCFG(a,b) bdk_gsernx_lanex_pcie_txpst7_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_TXPST7_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_TXPST7_BCFG(a,b) "GSERNX_LANEX_PCIE_TXPST7_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_TXPST7_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_TXPST7_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_TXPST7_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_txpst8_bcfg
 *
 * GSER Lane PCIe TX Drive Preset Coefficients Control Register
 * TX drive Cpre, Cpost and Cmain Coefficient values for Gen3 preset P8.
 * Cpre and Cpost are only 4 and 5 bits in length, respectively, as the
 * full 6 bits defined in the PCIe specification are not needed.
 */
union bdk_gsernx_lanex_pcie_txpst8_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_txpst8_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_21_63        : 43;
        uint64_t g3_p8_cpost           : 5;  /**< [ 20: 16](R/W) Cpost value for Gen3 preset P8. */
        uint64_t reserved_14_15        : 2;
        uint64_t g3_p8_cmain           : 6;  /**< [ 13:  8](R/W) Cmain value for Gen3 preset P8. */
        uint64_t reserved_4_7          : 4;
        uint64_t g3_p8_cpre            : 4;  /**< [  3:  0](R/W) Cpost value for Gen3 preset P8. */
#else /* Word 0 - Little Endian */
        uint64_t g3_p8_cpre            : 4;  /**< [  3:  0](R/W) Cpost value for Gen3 preset P8. */
        uint64_t reserved_4_7          : 4;
        uint64_t g3_p8_cmain           : 6;  /**< [ 13:  8](R/W) Cmain value for Gen3 preset P8. */
        uint64_t reserved_14_15        : 2;
        uint64_t g3_p8_cpost           : 5;  /**< [ 20: 16](R/W) Cpost value for Gen3 preset P8. */
        uint64_t reserved_21_63        : 43;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_txpst8_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_txpst8_bcfg bdk_gsernx_lanex_pcie_txpst8_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXPST8_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXPST8_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002570ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_TXPST8_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_TXPST8_BCFG(a,b) bdk_gsernx_lanex_pcie_txpst8_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_TXPST8_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_TXPST8_BCFG(a,b) "GSERNX_LANEX_PCIE_TXPST8_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_TXPST8_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_TXPST8_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_TXPST8_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcie_txpst9_bcfg
 *
 * GSER Lane PCIe TX Drive Preset Coefficients Control Register
 * TX drive Cpre, Cpost and Cmain Coefficient values for Gen3 preset P9.
 * Cpre and Cpost are only 4 and 5 bits in length, respectively, as the
 * full 6 bits defined in the PCIe specification are not needed.
 */
union bdk_gsernx_lanex_pcie_txpst9_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcie_txpst9_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_21_63        : 43;
        uint64_t g3_p9_cpost           : 5;  /**< [ 20: 16](R/W) Cpost value for Gen3 preset P9. */
        uint64_t reserved_14_15        : 2;
        uint64_t g3_p9_cmain           : 6;  /**< [ 13:  8](R/W) Cmain value for Gen3 preset P9. */
        uint64_t reserved_4_7          : 4;
        uint64_t g3_p9_cpre            : 4;  /**< [  3:  0](R/W) Cpost value for Gen3 preset P9. */
#else /* Word 0 - Little Endian */
        uint64_t g3_p9_cpre            : 4;  /**< [  3:  0](R/W) Cpost value for Gen3 preset P9. */
        uint64_t reserved_4_7          : 4;
        uint64_t g3_p9_cmain           : 6;  /**< [ 13:  8](R/W) Cmain value for Gen3 preset P9. */
        uint64_t reserved_14_15        : 2;
        uint64_t g3_p9_cpost           : 5;  /**< [ 20: 16](R/W) Cpost value for Gen3 preset P9. */
        uint64_t reserved_21_63        : 43;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcie_txpst9_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcie_txpst9_bcfg bdk_gsernx_lanex_pcie_txpst9_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXPST9_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCIE_TXPST9_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002580ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCIE_TXPST9_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCIE_TXPST9_BCFG(a,b) bdk_gsernx_lanex_pcie_txpst9_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCIE_TXPST9_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCIE_TXPST9_BCFG(a,b) "GSERNX_LANEX_PCIE_TXPST9_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCIE_TXPST9_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCIE_TXPST9_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCIE_TXPST9_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pcs_802p3_bcfg
 *
 * GSER Lane 802.3 PCS Base Configuration Register 0
 * This register controls settings for Ethernet IEEE 802.3 PCS layer.
 */
union bdk_gsernx_lanex_pcs_802p3_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pcs_802p3_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_4_63         : 60;
        uint64_t rx_wpk_order          : 1;  /**< [  3:  3](R/W) Receiver word packing order. Used when the Ethernet MAC is configured for SGMII
                                                                 1.25 GBaud. When GSERN()_LANE()_PCS_802P3_BCFG[RX_WPK_20B40B] is set two
                                                                 consecutive 20-bit RX data words from the PCS Lite Layer are packed into a
                                                                 40-bit word for the Ethernet SGMII MAC.

                                                                 0 = The first 20-bit word from the PCS Lite Layer is transferred to the lower
                                                                 20-bit word position, bits[19:0] of the 40-bit word and the next consecutive
                                                                 20-bit word from the PCS Lite layer is transferred to the upper 20-bit word
                                                                 position, bits[39:20] of the 40-bit word. The assembled 40-bit word is then
                                                                 forwarded the SGMII Ethernet MAC.

                                                                 1 = The first 20-bit word from the PCS Lite Layer is transferred to the upper
                                                                 20-bit word position, bits[39:20] of the 40-bit word and the next consecutive
                                                                 20-bit word from the PCS Lite layer is transferred to the lower 20-bit word
                                                                 position, bits[19:0] of the 40-bit word.  The assembled 40-bit word is then
                                                                 forwarded the SGMII Ethernet MAC.

                                                                 For diagnostic use only. */
        uint64_t tx_wup_order          : 1;  /**< [  2:  2](R/W) Transmitter word unpacking order. Used when the Ethernet MAC is configured for
                                                                 SGMII 1.25 GBaud. When GSERN()_LANE()_PCS_802P3_BCFG[TX_WUP_40B20B] is set the
                                                                 20-bit consecutive RX data word from the PCS Lite Layer are packed into 40-bit
                                                                 words for the Ethernet SGMII MAC.

                                                                 0 = The lower 20-bit word, bits[19:0] of the 40-bit
                                                                 word are transferred to the PCS Lite layer followed by the upper 20-bit word,
                                                                 bits[39:20] of the 40-bit word..

                                                                 1 = The upper 20-bit word, bits[39:20], are transferred to the PCS Lite layer
                                                                 followed by the lower 20-bit word, bits[19:0], of the 40-bit word.

                                                                 For diagnostic use only. */
        uint64_t rx_wpk_20b40b         : 1;  /**< [  1:  1](R/W) RX Word Packing 20 bits to 40 bits.  Used when the Ethernet MAC is configured for
                                                                 SGMII 1.25 GBaud.
                                                                 When set, consecutive 20-bit RX data
                                                                 words from the PCS Lite Layer are packed into 40-bit words for the Ethernet SGMII MAC.
                                                                 Used in conjunction with GSERN()_LANE()_PCS_802P3_BCFG[RX_WPK_ORDER].  Refer to
                                                                 the description for GSERN()_LANE()_PCS_802P3_BCFG[RX_WPK_ORDER].
                                                                 For diagnostic use only. */
        uint64_t tx_wup_40b20b         : 1;  /**< [  0:  0](R/W) TX Word UnPacking 40 bits to 20 bits.  Used when the Ethernet MAC is configured for
                                                                 SGMII 1.25 GBaud.
                                                                 When set, the 40-bit TX data words from
                                                                 the Ethernet SGMII MAC are transferred to the PCS Lite Layer using two consecutive
                                                                 20-bit word transfers.
                                                                 Used in conjunction with GSERN()_LANE()_PCS_802P3_BCFG[TX_WUP_ORDER]. Refer to
                                                                 the description for GSERN()_LANE()_PCS_802P3_BCFG[RX_WPK_ORDER].
                                                                 For diagnostic use only. */
#else /* Word 0 - Little Endian */
        uint64_t tx_wup_40b20b         : 1;  /**< [  0:  0](R/W) TX Word UnPacking 40 bits to 20 bits.  Used when the Ethernet MAC is configured for
                                                                 SGMII 1.25 GBaud.
                                                                 When set, the 40-bit TX data words from
                                                                 the Ethernet SGMII MAC are transferred to the PCS Lite Layer using two consecutive
                                                                 20-bit word transfers.
                                                                 Used in conjunction with GSERN()_LANE()_PCS_802P3_BCFG[TX_WUP_ORDER]. Refer to
                                                                 the description for GSERN()_LANE()_PCS_802P3_BCFG[RX_WPK_ORDER].
                                                                 For diagnostic use only. */
        uint64_t rx_wpk_20b40b         : 1;  /**< [  1:  1](R/W) RX Word Packing 20 bits to 40 bits.  Used when the Ethernet MAC is configured for
                                                                 SGMII 1.25 GBaud.
                                                                 When set, consecutive 20-bit RX data
                                                                 words from the PCS Lite Layer are packed into 40-bit words for the Ethernet SGMII MAC.
                                                                 Used in conjunction with GSERN()_LANE()_PCS_802P3_BCFG[RX_WPK_ORDER].  Refer to
                                                                 the description for GSERN()_LANE()_PCS_802P3_BCFG[RX_WPK_ORDER].
                                                                 For diagnostic use only. */
        uint64_t tx_wup_order          : 1;  /**< [  2:  2](R/W) Transmitter word unpacking order. Used when the Ethernet MAC is configured for
                                                                 SGMII 1.25 GBaud. When GSERN()_LANE()_PCS_802P3_BCFG[TX_WUP_40B20B] is set the
                                                                 20-bit consecutive RX data word from the PCS Lite Layer are packed into 40-bit
                                                                 words for the Ethernet SGMII MAC.

                                                                 0 = The lower 20-bit word, bits[19:0] of the 40-bit
                                                                 word are transferred to the PCS Lite layer followed by the upper 20-bit word,
                                                                 bits[39:20] of the 40-bit word..

                                                                 1 = The upper 20-bit word, bits[39:20], are transferred to the PCS Lite layer
                                                                 followed by the lower 20-bit word, bits[19:0], of the 40-bit word.

                                                                 For diagnostic use only. */
        uint64_t rx_wpk_order          : 1;  /**< [  3:  3](R/W) Receiver word packing order. Used when the Ethernet MAC is configured for SGMII
                                                                 1.25 GBaud. When GSERN()_LANE()_PCS_802P3_BCFG[RX_WPK_20B40B] is set two
                                                                 consecutive 20-bit RX data words from the PCS Lite Layer are packed into a
                                                                 40-bit word for the Ethernet SGMII MAC.

                                                                 0 = The first 20-bit word from the PCS Lite Layer is transferred to the lower
                                                                 20-bit word position, bits[19:0] of the 40-bit word and the next consecutive
                                                                 20-bit word from the PCS Lite layer is transferred to the upper 20-bit word
                                                                 position, bits[39:20] of the 40-bit word. The assembled 40-bit word is then
                                                                 forwarded the SGMII Ethernet MAC.

                                                                 1 = The first 20-bit word from the PCS Lite Layer is transferred to the upper
                                                                 20-bit word position, bits[39:20] of the 40-bit word and the next consecutive
                                                                 20-bit word from the PCS Lite layer is transferred to the lower 20-bit word
                                                                 position, bits[19:0] of the 40-bit word.  The assembled 40-bit word is then
                                                                 forwarded the SGMII Ethernet MAC.

                                                                 For diagnostic use only. */
        uint64_t reserved_4_63         : 60;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pcs_802p3_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pcs_802p3_bcfg bdk_gsernx_lanex_pcs_802p3_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PCS_802P3_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PCS_802P3_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090003350ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PCS_802P3_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PCS_802P3_BCFG(a,b) bdk_gsernx_lanex_pcs_802p3_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PCS_802P3_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PCS_802P3_BCFG(a,b) "GSERNX_LANEX_PCS_802P3_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PCS_802P3_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PCS_802P3_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PCS_802P3_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pll_1_bcfg
 *
 * GSER Lane PLL Base Configuration Register 1
 */
union bdk_gsernx_lanex_pll_1_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pll_1_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_62_63        : 2;
        uint64_t cal_cp_mult           : 2;  /**< [ 61: 60](R/W) PLL cal charge pump mult control. */
        uint64_t cp                    : 4;  /**< [ 59: 56](R/W) PLL charge pump configuration. */
        uint64_t cp_overide            : 1;  /**< [ 55: 55](R/W) PLL charge pump override. */
        uint64_t band_ppm              : 2;  /**< [ 54: 53](R/W) PLL band ppm setting. */
        uint64_t band                  : 5;  /**< [ 52: 48](R/W/H) PLL manual PLL band inputs; only effective if [BAND_OVERIDE] set. */
        uint64_t band_limits           : 3;  /**< [ 47: 45](R/W) Band limits for the PLL calibration procedure. */
        uint64_t band_overide          : 1;  /**< [ 44: 44](R/W/H) Bypass PLL calibration and set PLL band with band field inputs. */
        uint64_t bg_div16              : 1;  /**< [ 43: 43](R/W) Enable divide by 16 of reference clock to the band gap. */
        uint64_t bg_clk_en             : 1;  /**< [ 42: 42](R/W) Enable chopping in the band gap circuit. */
        uint64_t dither_en             : 1;  /**< [ 41: 41](R/W) Enable the dithering bit of sigma delta modulator. */
        uint64_t cal_sel               : 1;  /**< [ 40: 40](R/W) PLL calibration method select. */
        uint64_t vco_sel               : 1;  /**< [ 39: 39](R/W) PLL select one of the two VCOs in the PLL. */
        uint64_t sdm_en                : 1;  /**< [ 38: 38](R/W) Enable PLL fractional-N operation. */
        uint64_t reserved_29_37        : 9;
        uint64_t post_div              : 2;  /**< [ 28: 27](R/W) Forward PLL divider. Used in conjunction with [DIV_N] to set the
                                                                 PLL frequency given a reference clock frequency. The output frequency will
                                                                 be the VCO frequency divided by [POST_DIV].
                                                                   0x0 = Divide PLL frequency by 1.
                                                                   0x1 = Divide PLL frequency by 2.
                                                                   0x2 = Divide PLL frequency by 4.
                                                                   0x3 = Divide PLL frequency by 8. */
        uint64_t div_n                 : 9;  /**< [ 26: 18](R/W) PLL feedback divider integer portion. */
        uint64_t div_f                 : 18; /**< [ 17:  0](R/W) PLL feedback divider fractional portion. */
#else /* Word 0 - Little Endian */
        uint64_t div_f                 : 18; /**< [ 17:  0](R/W) PLL feedback divider fractional portion. */
        uint64_t div_n                 : 9;  /**< [ 26: 18](R/W) PLL feedback divider integer portion. */
        uint64_t post_div              : 2;  /**< [ 28: 27](R/W) Forward PLL divider. Used in conjunction with [DIV_N] to set the
                                                                 PLL frequency given a reference clock frequency. The output frequency will
                                                                 be the VCO frequency divided by [POST_DIV].
                                                                   0x0 = Divide PLL frequency by 1.
                                                                   0x1 = Divide PLL frequency by 2.
                                                                   0x2 = Divide PLL frequency by 4.
                                                                   0x3 = Divide PLL frequency by 8. */
        uint64_t reserved_29_37        : 9;
        uint64_t sdm_en                : 1;  /**< [ 38: 38](R/W) Enable PLL fractional-N operation. */
        uint64_t vco_sel               : 1;  /**< [ 39: 39](R/W) PLL select one of the two VCOs in the PLL. */
        uint64_t cal_sel               : 1;  /**< [ 40: 40](R/W) PLL calibration method select. */
        uint64_t dither_en             : 1;  /**< [ 41: 41](R/W) Enable the dithering bit of sigma delta modulator. */
        uint64_t bg_clk_en             : 1;  /**< [ 42: 42](R/W) Enable chopping in the band gap circuit. */
        uint64_t bg_div16              : 1;  /**< [ 43: 43](R/W) Enable divide by 16 of reference clock to the band gap. */
        uint64_t band_overide          : 1;  /**< [ 44: 44](R/W/H) Bypass PLL calibration and set PLL band with band field inputs. */
        uint64_t band_limits           : 3;  /**< [ 47: 45](R/W) Band limits for the PLL calibration procedure. */
        uint64_t band                  : 5;  /**< [ 52: 48](R/W/H) PLL manual PLL band inputs; only effective if [BAND_OVERIDE] set. */
        uint64_t band_ppm              : 2;  /**< [ 54: 53](R/W) PLL band ppm setting. */
        uint64_t cp_overide            : 1;  /**< [ 55: 55](R/W) PLL charge pump override. */
        uint64_t cp                    : 4;  /**< [ 59: 56](R/W) PLL charge pump configuration. */
        uint64_t cal_cp_mult           : 2;  /**< [ 61: 60](R/W) PLL cal charge pump mult control. */
        uint64_t reserved_62_63        : 2;
#endif /* Word 0 - End */
    } s;
    struct bdk_gsernx_lanex_pll_1_bcfg_cn
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_62_63        : 2;
        uint64_t cal_cp_mult           : 2;  /**< [ 61: 60](R/W) PLL cal charge pump mult control. */
        uint64_t cp                    : 4;  /**< [ 59: 56](R/W) PLL charge pump configuration. */
        uint64_t cp_overide            : 1;  /**< [ 55: 55](R/W) PLL charge pump override. */
        uint64_t band_ppm              : 2;  /**< [ 54: 53](R/W) PLL band ppm setting. */
        uint64_t band                  : 5;  /**< [ 52: 48](R/W/H) PLL manual PLL band inputs; only effective if [BAND_OVERIDE] set. */
        uint64_t band_limits           : 3;  /**< [ 47: 45](R/W) Band limits for the PLL calibration procedure. */
        uint64_t band_overide          : 1;  /**< [ 44: 44](R/W/H) Bypass PLL calibration and set PLL band with band field inputs. */
        uint64_t bg_div16              : 1;  /**< [ 43: 43](R/W) Enable divide by 16 of reference clock to the band gap. */
        uint64_t bg_clk_en             : 1;  /**< [ 42: 42](R/W) Enable chopping in the band gap circuit. */
        uint64_t dither_en             : 1;  /**< [ 41: 41](R/W) Enable the dithering bit of sigma delta modulator. */
        uint64_t cal_sel               : 1;  /**< [ 40: 40](R/W) PLL calibration method select. */
        uint64_t vco_sel               : 1;  /**< [ 39: 39](R/W) PLL select one of the two VCOs in the PLL. */
        uint64_t sdm_en                : 1;  /**< [ 38: 38](R/W) Enable PLL fractional-N operation. */
        uint64_t reserved_36_37        : 2;
        uint64_t reserved_29_35        : 7;
        uint64_t post_div              : 2;  /**< [ 28: 27](R/W) Forward PLL divider. Used in conjunction with [DIV_N] to set the
                                                                 PLL frequency given a reference clock frequency. The output frequency will
                                                                 be the VCO frequency divided by [POST_DIV].
                                                                   0x0 = Divide PLL frequency by 1.
                                                                   0x1 = Divide PLL frequency by 2.
                                                                   0x2 = Divide PLL frequency by 4.
                                                                   0x3 = Divide PLL frequency by 8. */
        uint64_t div_n                 : 9;  /**< [ 26: 18](R/W) PLL feedback divider integer portion. */
        uint64_t div_f                 : 18; /**< [ 17:  0](R/W) PLL feedback divider fractional portion. */
#else /* Word 0 - Little Endian */
        uint64_t div_f                 : 18; /**< [ 17:  0](R/W) PLL feedback divider fractional portion. */
        uint64_t div_n                 : 9;  /**< [ 26: 18](R/W) PLL feedback divider integer portion. */
        uint64_t post_div              : 2;  /**< [ 28: 27](R/W) Forward PLL divider. Used in conjunction with [DIV_N] to set the
                                                                 PLL frequency given a reference clock frequency. The output frequency will
                                                                 be the VCO frequency divided by [POST_DIV].
                                                                   0x0 = Divide PLL frequency by 1.
                                                                   0x1 = Divide PLL frequency by 2.
                                                                   0x2 = Divide PLL frequency by 4.
                                                                   0x3 = Divide PLL frequency by 8. */
        uint64_t reserved_29_35        : 7;
        uint64_t reserved_36_37        : 2;
        uint64_t sdm_en                : 1;  /**< [ 38: 38](R/W) Enable PLL fractional-N operation. */
        uint64_t vco_sel               : 1;  /**< [ 39: 39](R/W) PLL select one of the two VCOs in the PLL. */
        uint64_t cal_sel               : 1;  /**< [ 40: 40](R/W) PLL calibration method select. */
        uint64_t dither_en             : 1;  /**< [ 41: 41](R/W) Enable the dithering bit of sigma delta modulator. */
        uint64_t bg_clk_en             : 1;  /**< [ 42: 42](R/W) Enable chopping in the band gap circuit. */
        uint64_t bg_div16              : 1;  /**< [ 43: 43](R/W) Enable divide by 16 of reference clock to the band gap. */
        uint64_t band_overide          : 1;  /**< [ 44: 44](R/W/H) Bypass PLL calibration and set PLL band with band field inputs. */
        uint64_t band_limits           : 3;  /**< [ 47: 45](R/W) Band limits for the PLL calibration procedure. */
        uint64_t band                  : 5;  /**< [ 52: 48](R/W/H) PLL manual PLL band inputs; only effective if [BAND_OVERIDE] set. */
        uint64_t band_ppm              : 2;  /**< [ 54: 53](R/W) PLL band ppm setting. */
        uint64_t cp_overide            : 1;  /**< [ 55: 55](R/W) PLL charge pump override. */
        uint64_t cp                    : 4;  /**< [ 59: 56](R/W) PLL charge pump configuration. */
        uint64_t cal_cp_mult           : 2;  /**< [ 61: 60](R/W) PLL cal charge pump mult control. */
        uint64_t reserved_62_63        : 2;
#endif /* Word 0 - End */
    } cn;
};
typedef union bdk_gsernx_lanex_pll_1_bcfg bdk_gsernx_lanex_pll_1_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PLL_1_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PLL_1_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000200ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PLL_1_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PLL_1_BCFG(a,b) bdk_gsernx_lanex_pll_1_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PLL_1_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PLL_1_BCFG(a,b) "GSERNX_LANEX_PLL_1_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PLL_1_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PLL_1_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PLL_1_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_pll_2_bcfg
 *
 * GSER Lane PLL Base Configuration Register 2
 */
union bdk_gsernx_lanex_pll_2_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_pll_2_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_56_63        : 8;
        uint64_t lock_check_cnt_ovrd_en : 1; /**< [ 55: 55](R/W) Enable use of [LOCK_CHECK_CNT_OVRD]. */
        uint64_t lock_check_cnt_ovrd   : 15; /**< [ 54: 40](R/W) Lock check counter value override. This counter is used to wait for PLL lock to
                                                                 be valid. It counts every REFCLK cycle and once its done asserts
                                                                 GSERN()_LANE()_INIT_BSTS[LOCK_READY]. For Common PLL, REFCLK is the input from the
                                                                 pad. For Lane PLL, REFCLK is the output of the common PLL. To use value assert
                                                                 GSERN()_LANE()_RST1_BCFG[LOCK_CHECK] or trigger a PLL reset sequence. */
        uint64_t reserved_34_39        : 6;
        uint64_t vcm_sel               : 1;  /**< [ 33: 33](R/W) For diagnostic use only.
                                                                 Internal:
                                                                 See PLL designer for how to set these. */
        uint64_t cp_boost              : 1;  /**< [ 32: 32](R/W) For diagnostic use only.
                                                                 Internal:
                                                                 See PLL designer for how to set these. */
        uint64_t ssc_sata_mode         : 2;  /**< [ 31: 30](R/W) PLL SATA spread spectrum control.
                                                                  0x0 = Down spreading. PPM triangle wave total peak-to-peak spread subtracted from
                                                                 nominal frequency.
                                                                  0x1 = Up spreading. PPM triangle wave total peak-to-peak spread added to nominal
                                                                 frequency.
                                                                  0x2 = Center spreading. PPM triangle wave total peak-to-peak spread centered at nominal
                                                                 frequency.
                                                                  0x3 = Square wave subtracted from nominal frequency. */
        uint64_t ssc_ppm               : 2;  /**< [ 29: 28](R/W) Spread-spectrum clocking total peak-to-peak spread.
                                                                 0x0 = 5000 PPM.
                                                                 0x1 = 3000 PPM.
                                                                 0x2 = 2500 PPM.
                                                                 0x3 = 1000 PPM. */
        uint64_t pnr_refclk_en         : 1;  /**< [ 27: 27](R/W) Enable PLL reference clock to internal logic. */
        uint64_t ssc_en                : 1;  /**< [ 26: 26](R/W) Spread-spectrum clocking enable. */
        uint64_t shlb_en               : 1;  /**< [ 25: 25](R/W) Used when in shallow loopback mode to mux the CDR receive clock onto
                                                                 the transmit data path clock to ensure that the clock frequencies
                                                                 are matched (to prevent data overrun). */
        uint64_t pfd_offset            : 1;  /**< [ 24: 24](R/W) PLL PFD offset enable. */
        uint64_t opamp                 : 4;  /**< [ 23: 20](R/W) PLL loop filter op-amp configuration. */
        uint64_t res                   : 4;  /**< [ 19: 16](R/W) PLL loop filter configuration. */
        uint64_t reserved_15           : 1;
        uint64_t vco_bias              : 3;  /**< [ 14: 12](R/W) VCO bias control. */
        uint64_t cal_dac_low           : 4;  /**< [ 11:  8](R/W) PLL calibration DAC low control. */
        uint64_t cal_dac_mid           : 4;  /**< [  7:  4](R/W) PLL calibration DAC middle control. */
        uint64_t cal_dac_high          : 4;  /**< [  3:  0](R/W) PLL calibration DAC high control. */
#else /* Word 0 - Little Endian */
        uint64_t cal_dac_high          : 4;  /**< [  3:  0](R/W) PLL calibration DAC high control. */
        uint64_t cal_dac_mid           : 4;  /**< [  7:  4](R/W) PLL calibration DAC middle control. */
        uint64_t cal_dac_low           : 4;  /**< [ 11:  8](R/W) PLL calibration DAC low control. */
        uint64_t vco_bias              : 3;  /**< [ 14: 12](R/W) VCO bias control. */
        uint64_t reserved_15           : 1;
        uint64_t res                   : 4;  /**< [ 19: 16](R/W) PLL loop filter configuration. */
        uint64_t opamp                 : 4;  /**< [ 23: 20](R/W) PLL loop filter op-amp configuration. */
        uint64_t pfd_offset            : 1;  /**< [ 24: 24](R/W) PLL PFD offset enable. */
        uint64_t shlb_en               : 1;  /**< [ 25: 25](R/W) Used when in shallow loopback mode to mux the CDR receive clock onto
                                                                 the transmit data path clock to ensure that the clock frequencies
                                                                 are matched (to prevent data overrun). */
        uint64_t ssc_en                : 1;  /**< [ 26: 26](R/W) Spread-spectrum clocking enable. */
        uint64_t pnr_refclk_en         : 1;  /**< [ 27: 27](R/W) Enable PLL reference clock to internal logic. */
        uint64_t ssc_ppm               : 2;  /**< [ 29: 28](R/W) Spread-spectrum clocking total peak-to-peak spread.
                                                                 0x0 = 5000 PPM.
                                                                 0x1 = 3000 PPM.
                                                                 0x2 = 2500 PPM.
                                                                 0x3 = 1000 PPM. */
        uint64_t ssc_sata_mode         : 2;  /**< [ 31: 30](R/W) PLL SATA spread spectrum control.
                                                                  0x0 = Down spreading. PPM triangle wave total peak-to-peak spread subtracted from
                                                                 nominal frequency.
                                                                  0x1 = Up spreading. PPM triangle wave total peak-to-peak spread added to nominal
                                                                 frequency.
                                                                  0x2 = Center spreading. PPM triangle wave total peak-to-peak spread centered at nominal
                                                                 frequency.
                                                                  0x3 = Square wave subtracted from nominal frequency. */
        uint64_t cp_boost              : 1;  /**< [ 32: 32](R/W) For diagnostic use only.
                                                                 Internal:
                                                                 See PLL designer for how to set these. */
        uint64_t vcm_sel               : 1;  /**< [ 33: 33](R/W) For diagnostic use only.
                                                                 Internal:
                                                                 See PLL designer for how to set these. */
        uint64_t reserved_34_39        : 6;
        uint64_t lock_check_cnt_ovrd   : 15; /**< [ 54: 40](R/W) Lock check counter value override. This counter is used to wait for PLL lock to
                                                                 be valid. It counts every REFCLK cycle and once its done asserts
                                                                 GSERN()_LANE()_INIT_BSTS[LOCK_READY]. For Common PLL, REFCLK is the input from the
                                                                 pad. For Lane PLL, REFCLK is the output of the common PLL. To use value assert
                                                                 GSERN()_LANE()_RST1_BCFG[LOCK_CHECK] or trigger a PLL reset sequence. */
        uint64_t lock_check_cnt_ovrd_en : 1; /**< [ 55: 55](R/W) Enable use of [LOCK_CHECK_CNT_OVRD]. */
        uint64_t reserved_56_63        : 8;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_pll_2_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_pll_2_bcfg bdk_gsernx_lanex_pll_2_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_PLL_2_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_PLL_2_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000210ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_PLL_2_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_PLL_2_BCFG(a,b) bdk_gsernx_lanex_pll_2_bcfg_t
#define bustype_BDK_GSERNX_LANEX_PLL_2_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_PLL_2_BCFG(a,b) "GSERNX_LANEX_PLL_2_BCFG"
#define device_bar_BDK_GSERNX_LANEX_PLL_2_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_PLL_2_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_PLL_2_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rev
 *
 * GSER Lane Revision Register
 * Revision number
 */
union bdk_gsernx_lanex_rev
{
    uint64_t u;
    struct bdk_gsernx_lanex_rev_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_8_63         : 56;
        uint64_t rev                   : 8;  /**< [  7:  0](RO/H) Revision number for GSERN lane subblock.
                                                                 Internal:
                                                                 Used primarily for E5. */
#else /* Word 0 - Little Endian */
        uint64_t rev                   : 8;  /**< [  7:  0](RO/H) Revision number for GSERN lane subblock.
                                                                 Internal:
                                                                 Used primarily for E5. */
        uint64_t reserved_8_63         : 56;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rev_s cn; */
};
typedef union bdk_gsernx_lanex_rev bdk_gsernx_lanex_rev_t;

static inline uint64_t BDK_GSERNX_LANEX_REV(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_REV(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000000ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_REV", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_REV(a,b) bdk_gsernx_lanex_rev_t
#define bustype_BDK_GSERNX_LANEX_REV(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_REV(a,b) "GSERNX_LANEX_REV"
#define device_bar_BDK_GSERNX_LANEX_REV(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_REV(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_REV(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rst1_bcfg
 *
 * GSER Lane Reset State Machine Controls and Overrides Register 1
 */
union bdk_gsernx_lanex_rst1_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rst1_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_56_63        : 8;
        uint64_t domain_rst_en         : 1;  /**< [ 55: 55](R/W) Domain reset enable.
                                                                 0 = Prevent reseting lane logic with domain reset.
                                                                 1 = Enable reseting all lane logic with domain reset.

                                                                 For PCIe configurations, typically 1 for a root complex and 0 for an endpoint. */
        uint64_t reserved_48_54        : 7;
        uint64_t rx_go2deep_idle       : 1;  /**< [ 47: 47](R/W) Set to sequence the receiver into deep idle. */
        uint64_t rx_pd_qac_q           : 1;  /**< [ 46: 46](R/W) Power control for the custom analog quadrature accuracy corrector
                                                                 (QAC). This QAC corrects for phase error between the I clock and the Q
                                                                 (quadrature, doutq) clock.
                                                                 0 = Power up the I/Q QAC.
                                                                 1 = Power down the I/Q QAC. When in this state,
                                                                 GSERN()_LANE()_RX_QAC_BCFG[CDR_QAC_SELQ] should also be set to zero to
                                                                 disconnect the QAC from the clock data recovery (CDR) loop. */
        uint64_t rx_pd_qac_e           : 1;  /**< [ 45: 45](R/W) Power control for the custom analog quadrature accuracy corrector
                                                                 (QAC). This QAC corrects for phase error between the I clock and the E
                                                                 (eye, doute) clock.
                                                                 0 = Power up the I/E QAC.
                                                                 1 = Power down the I/E QAC. When in this state,
                                                                 GSERN()_LANE()_RX_QAC_BCFG[CDR_QAC_SELQ] should also be set to zero to
                                                                 disconnect the QAC from the clock data recovery (CDR) loop. */
        uint64_t rx_pd_idle            : 1;  /**< [ 44: 44](R/W) Set to power down the idle detector in the custom analog
                                                                 receiver. */
        uint64_t rx_rst_deser          : 1;  /**< [ 43: 43](R/W) Set to reset the deserializers to the offset DAC, current
                                                                 bias DAC, and interpolator re-mapping. */
        uint64_t rx_rst_dcc_q          : 1;  /**< [ 42: 42](R/W) Set to reset the integrator in the duty-cycle corrector
                                                                 (DCC) on the Q (quadrature, data, doutq) path. */
        uint64_t rx_rst_dcc_i          : 1;  /**< [ 41: 41](R/W) Set to reset the integrator in the duty-cycle corrector
                                                                 (DCC) on the I (in-phase, edge, douti) path. */
        uint64_t rx_rst_dcc_e          : 1;  /**< [ 40: 40](R/W) Set to reset the integrator in the duty-cycle corrector
                                                                 (DCC) on the E (eye, doute) path */
        uint64_t idle                  : 1;  /**< [ 39: 39](R/W) Set to idle the custom receiver and baseline wander
                                                                 compensation (bwlc). */
        uint64_t rx_rst_qac_q          : 1;  /**< [ 38: 38](R/W) Set reset to the doutq datapath quadrature corrector
                                                                 filter and associated logic. */
        uint64_t rx_rst_qac_e          : 1;  /**< [ 37: 37](R/W) Set reset to the doute quadrature corrector filter and
                                                                 associated logic. */
        uint64_t rx_rst_blwc           : 1;  /**< [ 36: 36](R/W) Set to reset the analog baseline wander compensation
                                                                 block. */
        uint64_t rx_rst_cdrfsm         : 1;  /**< [ 35: 35](R/W) Set to reset the CDR FSM. */
        uint64_t rx_rst_voter          : 1;  /**< [ 34: 34](R/W) Set to reset the analog voter block. */
        uint64_t rx_rst_div_e          : 1;  /**< [ 33: 33](R/W) Set to reset the analog CDR clock dividers in the eye data path for
                                                                 div{5, 8, 10, 16, 20}. */
        uint64_t rx_rst_div            : 1;  /**< [ 32: 32](R/W) Set to reset the analog CDR clock dividers in the quadrature data path
                                                                 for div{5, 8, 10, 16, 20}. */
        uint64_t rx_rst_interp_q       : 1;  /**< [ 31: 31](R/W) Set to reset the Q (quadrature, doutq) pipe analog
                                                                 interpolator logic (only, not the full datapaths). */
        uint64_t rx_rst_interp_i       : 1;  /**< [ 30: 30](R/W) Set to reset the I (in-phase, douti) pipe analog
                                                                 interpolator logic (only, not the full datapath). */
        uint64_t rx_rst_interp_e       : 1;  /**< [ 29: 29](R/W) Set to reset the E (eye, doute) analog interpolator logic
                                                                 (only, not the full datapath). */
        uint64_t rx_pd_interp_q        : 1;  /**< [ 28: 28](R/W) Set to power down the I (in-phase, douti) analog
                                                                 interpolator logic and output clocks (only, not the full clock path). */
        uint64_t rx_pd_interp_i        : 1;  /**< [ 27: 27](R/W) Set to power down the I (in-phase, douti) analog
                                                                 interpolator logic and output clocks (only, not the full clock path). */
        uint64_t rx_pd_interp_e        : 1;  /**< [ 26: 26](R/W) Set to power down the E (eye, doute) analog interpolator
                                                                 logic and output clocks (only, not the full clock path). */
        uint64_t rx_pd_dfe_x           : 1;  /**< [ 25: 25](R/W) Set to power down the DFE X path. The X path is passed to
                                                                 the DFE I (edge, douti) pipe depending on edgesel_{even,odd}. */
        uint64_t rx_pd_dfe_q           : 1;  /**< [ 24: 24](R/W) Set to power down the DFE Q (data, doutq) path (only, not
                                                                 the full datapath) */
        uint64_t rx_pd_dfe_i           : 1;  /**< [ 23: 23](R/W) Set to power down the DFE I (edge, douti) path (only, not
                                                                 the full datapath). */
        uint64_t rx_pd_dfe_e           : 1;  /**< [ 22: 22](R/W) Set to power down the DFE E (eye, doute) path (only, not
                                                                 the full datapath). */
        uint64_t rx_pd_dcc_q           : 1;  /**< [ 21: 21](R/W) Set to power down the duty-cycle corrector (DCC) of the Q
                                                                 (quadrature, doutq) clock after the interpolator and before the
                                                                 divider (only, not the full clock path). */
        uint64_t rx_pd_dcc_i           : 1;  /**< [ 20: 20](R/W) Set to power down the duty-cycle corrector (DCC) of the I
                                                                 (in-phase, douti) clock after the interpolator and before the divider
                                                                 (not the full clock path). */
        uint64_t rx_pd_dcc_e           : 1;  /**< [ 19: 19](R/W) Set to power down the duty-cycle corrector (DCC) of the E
                                                                 (eye, doute) clock after the interpolator and before the divider (not
                                                                 the full clock path). */
        uint64_t rx_pd_biasdac         : 1;  /**< [ 18: 18](R/W) Set to power down the current bias DAC, which would power
                                                                 down any amplifier in the RX (CTLE, VGA, DFE summer, DCC, QAC, etc.). */
        uint64_t rx_pd_afe             : 1;  /**< [ 17: 17](R/W) Set to power down the analog front-end (AFE). */
        uint64_t rx_en_cdrfsm          : 1;  /**< [ 16: 16](R/W) Set to enable (power-up) the CDR FSM. */
        uint64_t reserved_13_15        : 3;
        uint64_t pll_go2deep_idle      : 1;  /**< [ 12: 12](R/W) Set to cycle the PLL into deep idle. */
        uint64_t lock_ppm              : 2;  /**< [ 11: 10](R/W) PLL lock PPM setting; after GSERN()_LANE()_RST1_BCFG[LOCK_WAIT], compare
                                                                 reference clock and divided VCO clock for this many cycles:
                                                                   0x0 = Compare after   5000 reference clock cycles.
                                                                   0x1 = Compare after  10000 reference clock cycles.
                                                                   0x2 = Compare after  20000 reference clock cycles.
                                                                   0x3 = Compare after   2500 reference clock cycles. */
        uint64_t lock_wait             : 2;  /**< [  9:  8](R/W) Wait time for PLL lock check function to start:
                                                                   0x0 = Wait  2500 reference clock cycles.
                                                                   0x1 = Wait  5000 reference clock cycles.
                                                                   0x2 = Wait 10000 reference clock cycles.
                                                                   0x3 = Wait  1250 reference clock cycles. */
        uint64_t lock_check            : 1;  /**< [  7:  7](R/W) Trigger a PLL lock status check; result returned in
                                                                 GSERN()_LANE()_INIT_BSTS[LOCK] when GSERN()_LANE()_INIT_BSTS[LOCK_READY]
                                                                 asserts. deassert and re-assert to repeat checking. */
        uint64_t vco_cal_reset         : 1;  /**< [  6:  6](R/W) PLL VCO calibration state machine reset. */
        uint64_t fracn_reset           : 1;  /**< [  5:  5](R/W) PLL fractional-N state machine reset. */
        uint64_t ssc_reset             : 1;  /**< [  4:  4](R/W) PLL SSC state machine reset. */
        uint64_t post_div_reset        : 1;  /**< [  3:  3](RO) Reserved.
                                                                 Internal:
                                                                 Was common PLL post divider reset.  No longer used. */
        uint64_t reset                 : 1;  /**< [  2:  2](R/W) PLL primary reset; must assert [POST_DIV_RESET] if [RESET] is asserted. */
        uint64_t cal_en                : 1;  /**< [  1:  1](R/W) Enable PLL calibration procedure. */
        uint64_t pwdn                  : 1;  /**< [  0:  0](R/W) PLL power down control. */
#else /* Word 0 - Little Endian */
        uint64_t pwdn                  : 1;  /**< [  0:  0](R/W) PLL power down control. */
        uint64_t cal_en                : 1;  /**< [  1:  1](R/W) Enable PLL calibration procedure. */
        uint64_t reset                 : 1;  /**< [  2:  2](R/W) PLL primary reset; must assert [POST_DIV_RESET] if [RESET] is asserted. */
        uint64_t post_div_reset        : 1;  /**< [  3:  3](RO) Reserved.
                                                                 Internal:
                                                                 Was common PLL post divider reset.  No longer used. */
        uint64_t ssc_reset             : 1;  /**< [  4:  4](R/W) PLL SSC state machine reset. */
        uint64_t fracn_reset           : 1;  /**< [  5:  5](R/W) PLL fractional-N state machine reset. */
        uint64_t vco_cal_reset         : 1;  /**< [  6:  6](R/W) PLL VCO calibration state machine reset. */
        uint64_t lock_check            : 1;  /**< [  7:  7](R/W) Trigger a PLL lock status check; result returned in
                                                                 GSERN()_LANE()_INIT_BSTS[LOCK] when GSERN()_LANE()_INIT_BSTS[LOCK_READY]
                                                                 asserts. deassert and re-assert to repeat checking. */
        uint64_t lock_wait             : 2;  /**< [  9:  8](R/W) Wait time for PLL lock check function to start:
                                                                   0x0 = Wait  2500 reference clock cycles.
                                                                   0x1 = Wait  5000 reference clock cycles.
                                                                   0x2 = Wait 10000 reference clock cycles.
                                                                   0x3 = Wait  1250 reference clock cycles. */
        uint64_t lock_ppm              : 2;  /**< [ 11: 10](R/W) PLL lock PPM setting; after GSERN()_LANE()_RST1_BCFG[LOCK_WAIT], compare
                                                                 reference clock and divided VCO clock for this many cycles:
                                                                   0x0 = Compare after   5000 reference clock cycles.
                                                                   0x1 = Compare after  10000 reference clock cycles.
                                                                   0x2 = Compare after  20000 reference clock cycles.
                                                                   0x3 = Compare after   2500 reference clock cycles. */
        uint64_t pll_go2deep_idle      : 1;  /**< [ 12: 12](R/W) Set to cycle the PLL into deep idle. */
        uint64_t reserved_13_15        : 3;
        uint64_t rx_en_cdrfsm          : 1;  /**< [ 16: 16](R/W) Set to enable (power-up) the CDR FSM. */
        uint64_t rx_pd_afe             : 1;  /**< [ 17: 17](R/W) Set to power down the analog front-end (AFE). */
        uint64_t rx_pd_biasdac         : 1;  /**< [ 18: 18](R/W) Set to power down the current bias DAC, which would power
                                                                 down any amplifier in the RX (CTLE, VGA, DFE summer, DCC, QAC, etc.). */
        uint64_t rx_pd_dcc_e           : 1;  /**< [ 19: 19](R/W) Set to power down the duty-cycle corrector (DCC) of the E
                                                                 (eye, doute) clock after the interpolator and before the divider (not
                                                                 the full clock path). */
        uint64_t rx_pd_dcc_i           : 1;  /**< [ 20: 20](R/W) Set to power down the duty-cycle corrector (DCC) of the I
                                                                 (in-phase, douti) clock after the interpolator and before the divider
                                                                 (not the full clock path). */
        uint64_t rx_pd_dcc_q           : 1;  /**< [ 21: 21](R/W) Set to power down the duty-cycle corrector (DCC) of the Q
                                                                 (quadrature, doutq) clock after the interpolator and before the
                                                                 divider (only, not the full clock path). */
        uint64_t rx_pd_dfe_e           : 1;  /**< [ 22: 22](R/W) Set to power down the DFE E (eye, doute) path (only, not
                                                                 the full datapath). */
        uint64_t rx_pd_dfe_i           : 1;  /**< [ 23: 23](R/W) Set to power down the DFE I (edge, douti) path (only, not
                                                                 the full datapath). */
        uint64_t rx_pd_dfe_q           : 1;  /**< [ 24: 24](R/W) Set to power down the DFE Q (data, doutq) path (only, not
                                                                 the full datapath) */
        uint64_t rx_pd_dfe_x           : 1;  /**< [ 25: 25](R/W) Set to power down the DFE X path. The X path is passed to
                                                                 the DFE I (edge, douti) pipe depending on edgesel_{even,odd}. */
        uint64_t rx_pd_interp_e        : 1;  /**< [ 26: 26](R/W) Set to power down the E (eye, doute) analog interpolator
                                                                 logic and output clocks (only, not the full clock path). */
        uint64_t rx_pd_interp_i        : 1;  /**< [ 27: 27](R/W) Set to power down the I (in-phase, douti) analog
                                                                 interpolator logic and output clocks (only, not the full clock path). */
        uint64_t rx_pd_interp_q        : 1;  /**< [ 28: 28](R/W) Set to power down the I (in-phase, douti) analog
                                                                 interpolator logic and output clocks (only, not the full clock path). */
        uint64_t rx_rst_interp_e       : 1;  /**< [ 29: 29](R/W) Set to reset the E (eye, doute) analog interpolator logic
                                                                 (only, not the full datapath). */
        uint64_t rx_rst_interp_i       : 1;  /**< [ 30: 30](R/W) Set to reset the I (in-phase, douti) pipe analog
                                                                 interpolator logic (only, not the full datapath). */
        uint64_t rx_rst_interp_q       : 1;  /**< [ 31: 31](R/W) Set to reset the Q (quadrature, doutq) pipe analog
                                                                 interpolator logic (only, not the full datapaths). */
        uint64_t rx_rst_div            : 1;  /**< [ 32: 32](R/W) Set to reset the analog CDR clock dividers in the quadrature data path
                                                                 for div{5, 8, 10, 16, 20}. */
        uint64_t rx_rst_div_e          : 1;  /**< [ 33: 33](R/W) Set to reset the analog CDR clock dividers in the eye data path for
                                                                 div{5, 8, 10, 16, 20}. */
        uint64_t rx_rst_voter          : 1;  /**< [ 34: 34](R/W) Set to reset the analog voter block. */
        uint64_t rx_rst_cdrfsm         : 1;  /**< [ 35: 35](R/W) Set to reset the CDR FSM. */
        uint64_t rx_rst_blwc           : 1;  /**< [ 36: 36](R/W) Set to reset the analog baseline wander compensation
                                                                 block. */
        uint64_t rx_rst_qac_e          : 1;  /**< [ 37: 37](R/W) Set reset to the doute quadrature corrector filter and
                                                                 associated logic. */
        uint64_t rx_rst_qac_q          : 1;  /**< [ 38: 38](R/W) Set reset to the doutq datapath quadrature corrector
                                                                 filter and associated logic. */
        uint64_t idle                  : 1;  /**< [ 39: 39](R/W) Set to idle the custom receiver and baseline wander
                                                                 compensation (bwlc). */
        uint64_t rx_rst_dcc_e          : 1;  /**< [ 40: 40](R/W) Set to reset the integrator in the duty-cycle corrector
                                                                 (DCC) on the E (eye, doute) path */
        uint64_t rx_rst_dcc_i          : 1;  /**< [ 41: 41](R/W) Set to reset the integrator in the duty-cycle corrector
                                                                 (DCC) on the I (in-phase, edge, douti) path. */
        uint64_t rx_rst_dcc_q          : 1;  /**< [ 42: 42](R/W) Set to reset the integrator in the duty-cycle corrector
                                                                 (DCC) on the Q (quadrature, data, doutq) path. */
        uint64_t rx_rst_deser          : 1;  /**< [ 43: 43](R/W) Set to reset the deserializers to the offset DAC, current
                                                                 bias DAC, and interpolator re-mapping. */
        uint64_t rx_pd_idle            : 1;  /**< [ 44: 44](R/W) Set to power down the idle detector in the custom analog
                                                                 receiver. */
        uint64_t rx_pd_qac_e           : 1;  /**< [ 45: 45](R/W) Power control for the custom analog quadrature accuracy corrector
                                                                 (QAC). This QAC corrects for phase error between the I clock and the E
                                                                 (eye, doute) clock.
                                                                 0 = Power up the I/E QAC.
                                                                 1 = Power down the I/E QAC. When in this state,
                                                                 GSERN()_LANE()_RX_QAC_BCFG[CDR_QAC_SELQ] should also be set to zero to
                                                                 disconnect the QAC from the clock data recovery (CDR) loop. */
        uint64_t rx_pd_qac_q           : 1;  /**< [ 46: 46](R/W) Power control for the custom analog quadrature accuracy corrector
                                                                 (QAC). This QAC corrects for phase error between the I clock and the Q
                                                                 (quadrature, doutq) clock.
                                                                 0 = Power up the I/Q QAC.
                                                                 1 = Power down the I/Q QAC. When in this state,
                                                                 GSERN()_LANE()_RX_QAC_BCFG[CDR_QAC_SELQ] should also be set to zero to
                                                                 disconnect the QAC from the clock data recovery (CDR) loop. */
        uint64_t rx_go2deep_idle       : 1;  /**< [ 47: 47](R/W) Set to sequence the receiver into deep idle. */
        uint64_t reserved_48_54        : 7;
        uint64_t domain_rst_en         : 1;  /**< [ 55: 55](R/W) Domain reset enable.
                                                                 0 = Prevent reseting lane logic with domain reset.
                                                                 1 = Enable reseting all lane logic with domain reset.

                                                                 For PCIe configurations, typically 1 for a root complex and 0 for an endpoint. */
        uint64_t reserved_56_63        : 8;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rst1_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rst1_bcfg bdk_gsernx_lanex_rst1_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RST1_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RST1_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000310ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RST1_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RST1_BCFG(a,b) bdk_gsernx_lanex_rst1_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RST1_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RST1_BCFG(a,b) "GSERNX_LANEX_RST1_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RST1_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RST1_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RST1_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rst2_bcfg
 *
 * GSER Lane Reset State Machine Controls and Overrides Register 2
 */
union bdk_gsernx_lanex_rst2_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rst2_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_58_63        : 6;
        uint64_t adpt_trigger_wait     : 4;  /**< [ 57: 54](R/W) Wait time for after triggering adaptation before checking adaptation status. Set
                                                                 to a minimum of 3. Set to the desired value before or at the same time as
                                                                 setting [RST_ADPT_RST_SM] to zero. */
        uint64_t reserved_50_53        : 4;
        uint64_t adpt_wait             : 18; /**< [ 49: 32](R/W) Wait time for adaptation to complete. Set at least as long as the maximum of:
                                                                   * GSERN()_LANE()_RX_5_BCFG[VGA_TIMER_MAX].
                                                                   * GSERN()_LANE()_RX_5_BCFG[DFE_TIMER_MAX].
                                                                   * GSERN()_LANE()_RX_6_BCFG[CTLELTE_TIMER_MAX].
                                                                   * GSERN()_LANE()_RX_6_BCFG[CTLEZ_TIMER_MAX].
                                                                   * GSERN()_LANE()_RX_6_BCFG[CTLE_TIMER_MAX].
                                                                   * GSERN()_LANE()_RX_12_BCFG[AFEOS_TIMER_MAX].
                                                                   * GSERN()_LANE()_RX_19_BCFG[BLWC_TIMER_MAX].
                                                                   * GSERN()_LANE()_RX_23_BCFG[PREVGA_GN_TIMER_MAX].

                                                                 The adaptation state machine will move on when all enabled adaptation operations
                                                                 complete within the [ADPT_WAIT] count. If they do not complete within the wait
                                                                 time, the state machine will move on when the counter expires. Set to the
                                                                 desired value before or at the same time as setting [RST_ADPT_RST_SM] to zero. */
        uint64_t reserved_30_31        : 2;
        uint64_t do_prevga_gn_adpt     : 1;  /**< [ 29: 29](R/W) Set to one to allow the adaptation reset state machine to trigger PREVGA_GN adaptation
                                                                 when [RST_ADPT_RST_SM] is deasserted. */
        uint64_t do_blwc_adpt          : 1;  /**< [ 28: 28](R/W) Set to one to allow the adaptation reset state machine to trigger BLWC adaptation
                                                                 when [RST_ADPT_RST_SM] is deasserted. */
        uint64_t do_afeos_adpt         : 1;  /**< [ 27: 27](R/W) Set to one to allow the adaptation reset state machine to trigger AFEOS adaptation
                                                                 when [RST_ADPT_RST_SM] is deasserted. */
        uint64_t do_ctlelte_adpt       : 1;  /**< [ 26: 26](R/W) Set to one to allow the adaptation reset state machine to trigger CTLELTE adaptation
                                                                 when [RST_ADPT_RST_SM] is deasserted. */
        uint64_t do_ctlez_adpt         : 1;  /**< [ 25: 25](R/W) Set to one to allow the adaptation reset state machine to trigger CTLEZ adaptation
                                                                 when [RST_ADPT_RST_SM] is deasserted. */
        uint64_t do_ctle_adpt          : 1;  /**< [ 24: 24](R/W) Set to one to allow the adaptation reset state machine to trigger CTLE adaptation
                                                                 when [RST_ADPT_RST_SM] is deasserted. */
        uint64_t do_dfe_adpt           : 1;  /**< [ 23: 23](R/W) Set to one to allow the adaptation reset state machine to trigger DFE adaptation
                                                                 when [RST_ADPT_RST_SM] is deasserted. */
        uint64_t do_vga_adpt           : 1;  /**< [ 22: 22](R/W) Set to one to allow the adaptation reset state machine to trigger VGA adaptation
                                                                 when [RST_ADPT_RST_SM] is deasserted. */
        uint64_t rst_adpt_rst_sm       : 1;  /**< [ 21: 21](R/W) Set to one to reset the adaptation reset state machine; set to zero to allow the
                                                                 adaptation reset state machine to run. Leave set to one to run adaptation
                                                                 entirely under SW control through the GSERN()_LANE()_RX_7_BCFG[*_RST]
                                                                 controls. Write to zero at the same time or after the desired [DO_*_ADPT]
                                                                 controls are enabled to allow the reset state machine to initiate
                                                                 adaptation. Note - for pausing and restarting adaptation associated with PCIe
                                                                 rate changes and all power state transitions, the reset state machine should
                                                                 control adaptation. */
        uint64_t rst_eye_rst_sm        : 1;  /**< [ 20: 20](R/W) Set to reset the eye data path reset and power-up/power-down
                                                                 state machine; set low to allow the eye data path reset and soft
                                                                 power-up/power-down state machine to run (if [LN_RESET_USE_EYE] is
                                                                 asserted). */
        uint64_t ln_reset_use_eye      : 1;  /**< [ 19: 19](R/W) Set to enable the eye (doute) data path reset and
                                                                 power-up/power-down state machine to run at cold reset when
                                                                 [RST_EYE_RST_SM] deasserts. After cold reset, assert or deassert
                                                                 [LN_RESET_USE_EYE] to run the eye data path soft power-up or
                                                                 power-down sequence. */
        uint64_t rst_rx_rst_sm         : 1;  /**< [ 18: 18](R/W) Set to reset the receiver reset state machine; set low to run
                                                                 the receiver reset initialization state machine. */
        uint64_t rst_tx_rst_sm         : 1;  /**< [ 17: 17](R/W) Set to reset the transmitter reset state machine; set low to
                                                                 run the transmitter reset initialization state machine. */
        uint64_t rst_pll_rst_sm        : 1;  /**< [ 16: 16](R/W) Set to reset the full lane reset state machine (PLL, TX,
                                                                 and RX); set low to run the complete reset initialization sequence
                                                                 starting with lane PLL initialization. */
        uint64_t reserved_13_15        : 3;
        uint64_t tx_dcc_iboost         : 1;  /**< [ 12: 12](R/W) Set to assert the iboost control bit of the
                                                                 transmit duty cycle correcter. Should be programmed as desired before
                                                                 sequencing the transmitter reset state machine. Differs
                                                                 from [TX_DCC_LOWF] in the data rate range that it is set at. */
        uint64_t tx_go2deep_idle       : 1;  /**< [ 11: 11](R/W) Set to sequence the transmitter into deep idle. */
        uint64_t tx_dcc_lowf           : 1;  /**< [ 10: 10](R/W) Set to assert the low-frequency control bit of the transmit duty cycle
                                                                 correcter. Should be programmed as desired before sequencing the transmitter
                                                                 reset state machine. Set to 1 for data rates below 4 Gbaud. */
        uint64_t tx_idle               : 1;  /**< [  9:  9](R/W) Set to put the transmitter into idle (weak terminate). */
        uint64_t tx_div_rst            : 1;  /**< [  8:  8](R/W) Set to reset the counter in the analog transmitter clock
                                                                 divider. */
        uint64_t tx_dcc_rst            : 1;  /**< [  7:  7](R/W) Set to reset the analog duty cycle corrector in the
                                                                 transmitter. */
        uint64_t reserved_6            : 1;
        uint64_t tx_enctl              : 1;  /**< [  5:  5](R/W) Set to enable the analog TX controls (c*, en*). */
        uint64_t tx_cdrdiv3            : 1;  /**< [  4:  4](R/W) Set to enable the analog divide by 3 post scalar divider in the
                                                                 TX divider. If GSERN()_LANE()_CDRFSM_BCFG[CLK_SEL] is set to use the div3clk from
                                                                 the transmitter this bit needs to be enabled. */
        uint64_t tx_endiv5             : 1;  /**< [  3:  3](R/W) Set to enable the analog divide by 4 or 5 post scalar dividers
                                                                 in the TX divider. */
        uint64_t reserved_2            : 1;
        uint64_t tx_pdb                : 1;  /**< [  1:  1](R/W) Set to zero to power down the entire analog TX driver, disabling
                                                                 current mirrors, current DACs, and op-amps. */
        uint64_t tx_dcc_pdb            : 1;  /**< [  0:  0](R/W) Set to zero to power-down the low-swing input, CML to CMOS shifter,
                                                                 and duty cycle corrector. */
#else /* Word 0 - Little Endian */
        uint64_t tx_dcc_pdb            : 1;  /**< [  0:  0](R/W) Set to zero to power-down the low-swing input, CML to CMOS shifter,
                                                                 and duty cycle corrector. */
        uint64_t tx_pdb                : 1;  /**< [  1:  1](R/W) Set to zero to power down the entire analog TX driver, disabling
                                                                 current mirrors, current DACs, and op-amps. */
        uint64_t reserved_2            : 1;
        uint64_t tx_endiv5             : 1;  /**< [  3:  3](R/W) Set to enable the analog divide by 4 or 5 post scalar dividers
                                                                 in the TX divider. */
        uint64_t tx_cdrdiv3            : 1;  /**< [  4:  4](R/W) Set to enable the analog divide by 3 post scalar divider in the
                                                                 TX divider. If GSERN()_LANE()_CDRFSM_BCFG[CLK_SEL] is set to use the div3clk from
                                                                 the transmitter this bit needs to be enabled. */
        uint64_t tx_enctl              : 1;  /**< [  5:  5](R/W) Set to enable the analog TX controls (c*, en*). */
        uint64_t reserved_6            : 1;
        uint64_t tx_dcc_rst            : 1;  /**< [  7:  7](R/W) Set to reset the analog duty cycle corrector in the
                                                                 transmitter. */
        uint64_t tx_div_rst            : 1;  /**< [  8:  8](R/W) Set to reset the counter in the analog transmitter clock
                                                                 divider. */
        uint64_t tx_idle               : 1;  /**< [  9:  9](R/W) Set to put the transmitter into idle (weak terminate). */
        uint64_t tx_dcc_lowf           : 1;  /**< [ 10: 10](R/W) Set to assert the low-frequency control bit of the transmit duty cycle
                                                                 correcter. Should be programmed as desired before sequencing the transmitter
                                                                 reset state machine. Set to 1 for data rates below 4 Gbaud. */
        uint64_t tx_go2deep_idle       : 1;  /**< [ 11: 11](R/W) Set to sequence the transmitter into deep idle. */
        uint64_t tx_dcc_iboost         : 1;  /**< [ 12: 12](R/W) Set to assert the iboost control bit of the
                                                                 transmit duty cycle correcter. Should be programmed as desired before
                                                                 sequencing the transmitter reset state machine. Differs
                                                                 from [TX_DCC_LOWF] in the data rate range that it is set at. */
        uint64_t reserved_13_15        : 3;
        uint64_t rst_pll_rst_sm        : 1;  /**< [ 16: 16](R/W) Set to reset the full lane reset state machine (PLL, TX,
                                                                 and RX); set low to run the complete reset initialization sequence
                                                                 starting with lane PLL initialization. */
        uint64_t rst_tx_rst_sm         : 1;  /**< [ 17: 17](R/W) Set to reset the transmitter reset state machine; set low to
                                                                 run the transmitter reset initialization state machine. */
        uint64_t rst_rx_rst_sm         : 1;  /**< [ 18: 18](R/W) Set to reset the receiver reset state machine; set low to run
                                                                 the receiver reset initialization state machine. */
        uint64_t ln_reset_use_eye      : 1;  /**< [ 19: 19](R/W) Set to enable the eye (doute) data path reset and
                                                                 power-up/power-down state machine to run at cold reset when
                                                                 [RST_EYE_RST_SM] deasserts. After cold reset, assert or deassert
                                                                 [LN_RESET_USE_EYE] to run the eye data path soft power-up or
                                                                 power-down sequence. */
        uint64_t rst_eye_rst_sm        : 1;  /**< [ 20: 20](R/W) Set to reset the eye data path reset and power-up/power-down
                                                                 state machine; set low to allow the eye data path reset and soft
                                                                 power-up/power-down state machine to run (if [LN_RESET_USE_EYE] is
                                                                 asserted). */
        uint64_t rst_adpt_rst_sm       : 1;  /**< [ 21: 21](R/W) Set to one to reset the adaptation reset state machine; set to zero to allow the
                                                                 adaptation reset state machine to run. Leave set to one to run adaptation
                                                                 entirely under SW control through the GSERN()_LANE()_RX_7_BCFG[*_RST]
                                                                 controls. Write to zero at the same time or after the desired [DO_*_ADPT]
                                                                 controls are enabled to allow the reset state machine to initiate
                                                                 adaptation. Note - for pausing and restarting adaptation associated with PCIe
                                                                 rate changes and all power state transitions, the reset state machine should
                                                                 control adaptation. */
        uint64_t do_vga_adpt           : 1;  /**< [ 22: 22](R/W) Set to one to allow the adaptation reset state machine to trigger VGA adaptation
                                                                 when [RST_ADPT_RST_SM] is deasserted. */
        uint64_t do_dfe_adpt           : 1;  /**< [ 23: 23](R/W) Set to one to allow the adaptation reset state machine to trigger DFE adaptation
                                                                 when [RST_ADPT_RST_SM] is deasserted. */
        uint64_t do_ctle_adpt          : 1;  /**< [ 24: 24](R/W) Set to one to allow the adaptation reset state machine to trigger CTLE adaptation
                                                                 when [RST_ADPT_RST_SM] is deasserted. */
        uint64_t do_ctlez_adpt         : 1;  /**< [ 25: 25](R/W) Set to one to allow the adaptation reset state machine to trigger CTLEZ adaptation
                                                                 when [RST_ADPT_RST_SM] is deasserted. */
        uint64_t do_ctlelte_adpt       : 1;  /**< [ 26: 26](R/W) Set to one to allow the adaptation reset state machine to trigger CTLELTE adaptation
                                                                 when [RST_ADPT_RST_SM] is deasserted. */
        uint64_t do_afeos_adpt         : 1;  /**< [ 27: 27](R/W) Set to one to allow the adaptation reset state machine to trigger AFEOS adaptation
                                                                 when [RST_ADPT_RST_SM] is deasserted. */
        uint64_t do_blwc_adpt          : 1;  /**< [ 28: 28](R/W) Set to one to allow the adaptation reset state machine to trigger BLWC adaptation
                                                                 when [RST_ADPT_RST_SM] is deasserted. */
        uint64_t do_prevga_gn_adpt     : 1;  /**< [ 29: 29](R/W) Set to one to allow the adaptation reset state machine to trigger PREVGA_GN adaptation
                                                                 when [RST_ADPT_RST_SM] is deasserted. */
        uint64_t reserved_30_31        : 2;
        uint64_t adpt_wait             : 18; /**< [ 49: 32](R/W) Wait time for adaptation to complete. Set at least as long as the maximum of:
                                                                   * GSERN()_LANE()_RX_5_BCFG[VGA_TIMER_MAX].
                                                                   * GSERN()_LANE()_RX_5_BCFG[DFE_TIMER_MAX].
                                                                   * GSERN()_LANE()_RX_6_BCFG[CTLELTE_TIMER_MAX].
                                                                   * GSERN()_LANE()_RX_6_BCFG[CTLEZ_TIMER_MAX].
                                                                   * GSERN()_LANE()_RX_6_BCFG[CTLE_TIMER_MAX].
                                                                   * GSERN()_LANE()_RX_12_BCFG[AFEOS_TIMER_MAX].
                                                                   * GSERN()_LANE()_RX_19_BCFG[BLWC_TIMER_MAX].
                                                                   * GSERN()_LANE()_RX_23_BCFG[PREVGA_GN_TIMER_MAX].

                                                                 The adaptation state machine will move on when all enabled adaptation operations
                                                                 complete within the [ADPT_WAIT] count. If they do not complete within the wait
                                                                 time, the state machine will move on when the counter expires. Set to the
                                                                 desired value before or at the same time as setting [RST_ADPT_RST_SM] to zero. */
        uint64_t reserved_50_53        : 4;
        uint64_t adpt_trigger_wait     : 4;  /**< [ 57: 54](R/W) Wait time for after triggering adaptation before checking adaptation status. Set
                                                                 to a minimum of 3. Set to the desired value before or at the same time as
                                                                 setting [RST_ADPT_RST_SM] to zero. */
        uint64_t reserved_58_63        : 6;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rst2_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rst2_bcfg bdk_gsernx_lanex_rst2_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RST2_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RST2_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000320ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RST2_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RST2_BCFG(a,b) bdk_gsernx_lanex_rst2_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RST2_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RST2_BCFG(a,b) "GSERNX_LANEX_RST2_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RST2_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RST2_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RST2_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rst_cnt1_bcfg
 *
 * GSER Lane Reset State Machine Delay Count Register 1
 * Wait counts for the lane reset state machines. All fields must be set
 * before bringing the lane out of reset.
 */
union bdk_gsernx_lanex_rst_cnt1_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rst_cnt1_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_63           : 1;
        uint64_t cal_en_wait           : 15; /**< [ 62: 48](R/W) Wait count in service clock cycles after calibration enable before deasserting
                                                                 calibration enable to the PLL. Set this field to one less than the desired
                                                                 number of cycles of delay. The service clock for the GSER PHY is connected to
                                                                 the reference clock used by the primary chip clock PLLs. Typically service clock
                                                                 is 100 MHz. */
        uint64_t reserved_44_47        : 4;
        uint64_t pre_cal_en_wait       : 12; /**< [ 43: 32](R/W) Wait count in service clock cycles after deasserting pwdn before asserting
                                                                 calibration enable to the PLL. Set this field to one less than the desired
                                                                 number of cycles of delay. */
        uint64_t reserved_25_31        : 7;
        uint64_t pre_pll_sm_reset_wait : 9;  /**< [ 24: 16](R/W) Wait count in service clock cycles after deasserting pwdn before
                                                                 asserting calibration enable to the PLL. Set this field to one less than the
                                                                 desired number of cycles of delay. */
        uint64_t reserved_13_15        : 3;
        uint64_t pre_pwup_wait         : 13; /**< [ 12:  0](R/W) Wait count in service clock cycles after initial trigger before deasserting
                                                                 power down to the PLL. The actual delay will be three cycles more than set
                                                                 here. The common block PLL state machine will typically wait 2^12 cycles before
                                                                 triggering the lane PLL to start. This field allows for staggering startup of
                                                                 different lanes by up to about 80us. */
#else /* Word 0 - Little Endian */
        uint64_t pre_pwup_wait         : 13; /**< [ 12:  0](R/W) Wait count in service clock cycles after initial trigger before deasserting
                                                                 power down to the PLL. The actual delay will be three cycles more than set
                                                                 here. The common block PLL state machine will typically wait 2^12 cycles before
                                                                 triggering the lane PLL to start. This field allows for staggering startup of
                                                                 different lanes by up to about 80us. */
        uint64_t reserved_13_15        : 3;
        uint64_t pre_pll_sm_reset_wait : 9;  /**< [ 24: 16](R/W) Wait count in service clock cycles after deasserting pwdn before
                                                                 asserting calibration enable to the PLL. Set this field to one less than the
                                                                 desired number of cycles of delay. */
        uint64_t reserved_25_31        : 7;
        uint64_t pre_cal_en_wait       : 12; /**< [ 43: 32](R/W) Wait count in service clock cycles after deasserting pwdn before asserting
                                                                 calibration enable to the PLL. Set this field to one less than the desired
                                                                 number of cycles of delay. */
        uint64_t reserved_44_47        : 4;
        uint64_t cal_en_wait           : 15; /**< [ 62: 48](R/W) Wait count in service clock cycles after calibration enable before deasserting
                                                                 calibration enable to the PLL. Set this field to one less than the desired
                                                                 number of cycles of delay. The service clock for the GSER PHY is connected to
                                                                 the reference clock used by the primary chip clock PLLs. Typically service clock
                                                                 is 100 MHz. */
        uint64_t reserved_63           : 1;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rst_cnt1_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rst_cnt1_bcfg bdk_gsernx_lanex_rst_cnt1_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RST_CNT1_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RST_CNT1_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000330ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RST_CNT1_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RST_CNT1_BCFG(a,b) bdk_gsernx_lanex_rst_cnt1_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RST_CNT1_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RST_CNT1_BCFG(a,b) "GSERNX_LANEX_RST_CNT1_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RST_CNT1_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RST_CNT1_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RST_CNT1_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rst_cnt2_bcfg
 *
 * GSER Lane Reset State Machine Delay Count Register 2
 * Wait counts for the lane reset state machines. All fields must be set
 * before bringing the lane out of reset.
 */
union bdk_gsernx_lanex_rst_cnt2_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rst_cnt2_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_57_63        : 7;
        uint64_t rx_pre_qac_sel_wait   : 9;  /**< [ 56: 48](R/W) Wait count in service clock cycles after the deasserting reset to
                                                                 the QAC filter logic before asserting select to the q and e pipe qac
                                                                 filters. Set this field to one less than the desired number of
                                                                 cycles of delay. */
        uint64_t reserved_46_47        : 2;
        uint64_t txrx_pre_pwup_wait    : 14; /**< [ 45: 32](R/W) Wait count in service clock cycles after the lane PLL exits reset before
                                                                 deasserting power down signals to the transmitter and receiver. Set this field
                                                                 to three less than the desired number of cycles of delay. */
        uint64_t reserved_29_31        : 3;
        uint64_t pre_pdiv_reset_wait   : 13; /**< [ 28: 16](R/W) Reserved.
                                                                 Internal:
                                                                 The lane PLL no longer has a postdivider
                                                                 reset. (This was the wait count in service clock cycles after
                                                                 deasserting reset before deasserting reset to the PLL
                                                                 postdivider. Set this field to one less than the desired number of
                                                                 cycles of delay.) */
        uint64_t reserved_12_15        : 4;
        uint64_t pre_pll_reset_wait    : 12; /**< [ 11:  0](R/W) Wait count in service clock cycles after calibration enable deasserts
                                                                 before deasserting reset to the PLL. Set this field to one less
                                                                 than the desired number of cycles of delay. */
#else /* Word 0 - Little Endian */
        uint64_t pre_pll_reset_wait    : 12; /**< [ 11:  0](R/W) Wait count in service clock cycles after calibration enable deasserts
                                                                 before deasserting reset to the PLL. Set this field to one less
                                                                 than the desired number of cycles of delay. */
        uint64_t reserved_12_15        : 4;
        uint64_t pre_pdiv_reset_wait   : 13; /**< [ 28: 16](R/W) Reserved.
                                                                 Internal:
                                                                 The lane PLL no longer has a postdivider
                                                                 reset. (This was the wait count in service clock cycles after
                                                                 deasserting reset before deasserting reset to the PLL
                                                                 postdivider. Set this field to one less than the desired number of
                                                                 cycles of delay.) */
        uint64_t reserved_29_31        : 3;
        uint64_t txrx_pre_pwup_wait    : 14; /**< [ 45: 32](R/W) Wait count in service clock cycles after the lane PLL exits reset before
                                                                 deasserting power down signals to the transmitter and receiver. Set this field
                                                                 to three less than the desired number of cycles of delay. */
        uint64_t reserved_46_47        : 2;
        uint64_t rx_pre_qac_sel_wait   : 9;  /**< [ 56: 48](R/W) Wait count in service clock cycles after the deasserting reset to
                                                                 the QAC filter logic before asserting select to the q and e pipe qac
                                                                 filters. Set this field to one less than the desired number of
                                                                 cycles of delay. */
        uint64_t reserved_57_63        : 7;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rst_cnt2_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rst_cnt2_bcfg bdk_gsernx_lanex_rst_cnt2_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RST_CNT2_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RST_CNT2_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000340ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RST_CNT2_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RST_CNT2_BCFG(a,b) bdk_gsernx_lanex_rst_cnt2_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RST_CNT2_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RST_CNT2_BCFG(a,b) "GSERNX_LANEX_RST_CNT2_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RST_CNT2_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RST_CNT2_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RST_CNT2_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rst_cnt3_bcfg
 *
 * GSER Lane Reset State Machine Delay Count Register 3
 * Wait counts for the lane reset state machines. All fields must be set
 * before bringing the lane out of reset.
 */
union bdk_gsernx_lanex_rst_cnt3_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rst_cnt3_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_59_63        : 5;
        uint64_t rx_pre_run_wait       : 11; /**< [ 58: 48](R/W) Wait count in service clock cycles after deasserting reset to the
                                                                 baseline wander correction logic before indicating that the receiver
                                                                 is ready. Set this field to one less than the desired number of
                                                                 cycles of delay. */
        uint64_t reserved_41_47        : 7;
        uint64_t pre_rst_iq_wait       : 9;  /**< [ 40: 32](R/W) Wait count in service clock cycles after deasserting reset to the
                                                                 receiver clock divider before deasserting reset to the i, q, and e
                                                                 pipe interpolators. Set this field to one less than the desired
                                                                 number of cycles of delay. */
        uint64_t reserved_25_31        : 7;
        uint64_t pre_tx_div_rst_wait   : 9;  /**< [ 24: 16](R/W) Wait count in service clock cycles after deasserting reset to the duty cycle
                                                                 correctors in the transmitter before deasserting reset to the transmitter clock
                                                                 divider. Set this field to one less than the desired number of cycles of
                                                                 delay. */
        uint64_t reserved_9_15         : 7;
        uint64_t pre_en_cdrfsm_wait    : 9;  /**< [  8:  0](R/W) Wait count in service clock cycles after asserting power up to the
                                                                 custom receiver before enabling the CDR finite state machine. Set
                                                                 this field to one less than the desired number of cycles of delay. */
#else /* Word 0 - Little Endian */
        uint64_t pre_en_cdrfsm_wait    : 9;  /**< [  8:  0](R/W) Wait count in service clock cycles after asserting power up to the
                                                                 custom receiver before enabling the CDR finite state machine. Set
                                                                 this field to one less than the desired number of cycles of delay. */
        uint64_t reserved_9_15         : 7;
        uint64_t pre_tx_div_rst_wait   : 9;  /**< [ 24: 16](R/W) Wait count in service clock cycles after deasserting reset to the duty cycle
                                                                 correctors in the transmitter before deasserting reset to the transmitter clock
                                                                 divider. Set this field to one less than the desired number of cycles of
                                                                 delay. */
        uint64_t reserved_25_31        : 7;
        uint64_t pre_rst_iq_wait       : 9;  /**< [ 40: 32](R/W) Wait count in service clock cycles after deasserting reset to the
                                                                 receiver clock divider before deasserting reset to the i, q, and e
                                                                 pipe interpolators. Set this field to one less than the desired
                                                                 number of cycles of delay. */
        uint64_t reserved_41_47        : 7;
        uint64_t rx_pre_run_wait       : 11; /**< [ 58: 48](R/W) Wait count in service clock cycles after deasserting reset to the
                                                                 baseline wander correction logic before indicating that the receiver
                                                                 is ready. Set this field to one less than the desired number of
                                                                 cycles of delay. */
        uint64_t reserved_59_63        : 5;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rst_cnt3_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rst_cnt3_bcfg bdk_gsernx_lanex_rst_cnt3_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RST_CNT3_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RST_CNT3_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000350ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RST_CNT3_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RST_CNT3_BCFG(a,b) bdk_gsernx_lanex_rst_cnt3_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RST_CNT3_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RST_CNT3_BCFG(a,b) "GSERNX_LANEX_RST_CNT3_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RST_CNT3_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RST_CNT3_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RST_CNT3_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rst_cnt4_bcfg
 *
 * GSER Lane Reset State Machine Delay Count Register 4
 * Wait counts for the lane reset state machines. All fields must be set
 * before bringing the lane out of reset.
 */
union bdk_gsernx_lanex_rst_cnt4_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rst_cnt4_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_57_63        : 7;
        uint64_t svc_clk_freq          : 1;  /**< [ 56: 56](R/W) For diagnostic use only.
                                                                 Internal:
                                                                 This bit reserved for future enhancements.  The RTL to use it is not coded. Freq selection
                                                                 for service clock as used in the reset state machine. 0 = 100 MHz. 1 = 156.25 MHz. This
                                                                 scales only the wait counts not set via CSR registers. */
        uint64_t reserved_50_55        : 6;
        uint64_t blwc_reset_wait       : 18; /**< [ 49: 32](R/W) Wait count in service clock cycles after deasserting reset to the
                                                                 CDR FSM before deasserting reset to the baseline wander correction
                                                                 circuit (BLWC). The power-up document specifies this as 16 service
                                                                 clock cycles, but verbal communication says that's only correct for
                                                                 cases of small frequency offset between the lane PLL and the
                                                                 received data stream clock, i.e., it doesn't apply for SSC (except
                                                                 PCIe). Since the actual requirement is not specified, this field
                                                                 allows for the full range of the counter in the receiver reset state
                                                                 machine. */
        uint64_t reserved_20_31        : 12;
        uint64_t dfe_afe_oscal_wait    : 20; /**< [ 19:  0](R/W) Maximum wait count in service clock cycles after triggering the dfe
                                                                 and afe offset calibration sequences before deasserting
                                                                 reset_voter. Normally the receiver reset state machine will move on
                                                                 when DFE and AFE offset calibration is complete. This is a time-out
                                                                 parameter in case the offset calibration state machines do not
                                                                 complete. Set this field to one less than the desired number of
                                                                 cycles of delay. */
#else /* Word 0 - Little Endian */
        uint64_t dfe_afe_oscal_wait    : 20; /**< [ 19:  0](R/W) Maximum wait count in service clock cycles after triggering the dfe
                                                                 and afe offset calibration sequences before deasserting
                                                                 reset_voter. Normally the receiver reset state machine will move on
                                                                 when DFE and AFE offset calibration is complete. This is a time-out
                                                                 parameter in case the offset calibration state machines do not
                                                                 complete. Set this field to one less than the desired number of
                                                                 cycles of delay. */
        uint64_t reserved_20_31        : 12;
        uint64_t blwc_reset_wait       : 18; /**< [ 49: 32](R/W) Wait count in service clock cycles after deasserting reset to the
                                                                 CDR FSM before deasserting reset to the baseline wander correction
                                                                 circuit (BLWC). The power-up document specifies this as 16 service
                                                                 clock cycles, but verbal communication says that's only correct for
                                                                 cases of small frequency offset between the lane PLL and the
                                                                 received data stream clock, i.e., it doesn't apply for SSC (except
                                                                 PCIe). Since the actual requirement is not specified, this field
                                                                 allows for the full range of the counter in the receiver reset state
                                                                 machine. */
        uint64_t reserved_50_55        : 6;
        uint64_t svc_clk_freq          : 1;  /**< [ 56: 56](R/W) For diagnostic use only.
                                                                 Internal:
                                                                 This bit reserved for future enhancements.  The RTL to use it is not coded. Freq selection
                                                                 for service clock as used in the reset state machine. 0 = 100 MHz. 1 = 156.25 MHz. This
                                                                 scales only the wait counts not set via CSR registers. */
        uint64_t reserved_57_63        : 7;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rst_cnt4_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rst_cnt4_bcfg bdk_gsernx_lanex_rst_cnt4_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RST_CNT4_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RST_CNT4_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000360ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RST_CNT4_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RST_CNT4_BCFG(a,b) bdk_gsernx_lanex_rst_cnt4_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RST_CNT4_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RST_CNT4_BCFG(a,b) "GSERNX_LANEX_RST_CNT4_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RST_CNT4_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RST_CNT4_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RST_CNT4_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rst_cnt5_bcfg
 *
 * GSER Lane Reset State Machine Delay Count Register 4
 * Wait counts for the lane reset state machines. All fields must be set
 * before bringing the lane out of reset.
 */
union bdk_gsernx_lanex_rst_cnt5_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rst_cnt5_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_33_63        : 31;
        uint64_t idle_exit_wait_en     : 1;  /**< [ 32: 32](R/W) Enable use of [IDLE_EXIT_WAIT] as a limit on the wait time for the receiver
                                                                 electrical idle indicator to deassert after resetting the voter. When
                                                                 [IDLE_EXIT_WAIT_EN] is low, the state machine will wait forever for the
                                                                 electrical idle signal to deassert. Note that the reset state machine will not
                                                                 see idle deassert until after the first idle offset calibration has completed
                                                                 after exiting reset. */
        uint64_t reserved_28_31        : 4;
        uint64_t idle_exit_wait        : 28; /**< [ 27:  0](R/W) Maximum wait count in service clock cycles for the receiver electrical idle
                                                                 indicator to deassert after resetting the voter. If the receiver electrical idle
                                                                 indication remains asserted, the reset state machine will move on after this
                                                                 count expires. */
#else /* Word 0 - Little Endian */
        uint64_t idle_exit_wait        : 28; /**< [ 27:  0](R/W) Maximum wait count in service clock cycles for the receiver electrical idle
                                                                 indicator to deassert after resetting the voter. If the receiver electrical idle
                                                                 indication remains asserted, the reset state machine will move on after this
                                                                 count expires. */
        uint64_t reserved_28_31        : 4;
        uint64_t idle_exit_wait_en     : 1;  /**< [ 32: 32](R/W) Enable use of [IDLE_EXIT_WAIT] as a limit on the wait time for the receiver
                                                                 electrical idle indicator to deassert after resetting the voter. When
                                                                 [IDLE_EXIT_WAIT_EN] is low, the state machine will wait forever for the
                                                                 electrical idle signal to deassert. Note that the reset state machine will not
                                                                 see idle deassert until after the first idle offset calibration has completed
                                                                 after exiting reset. */
        uint64_t reserved_33_63        : 31;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rst_cnt5_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rst_cnt5_bcfg bdk_gsernx_lanex_rst_cnt5_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RST_CNT5_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RST_CNT5_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000370ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RST_CNT5_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RST_CNT5_BCFG(a,b) bdk_gsernx_lanex_rst_cnt5_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RST_CNT5_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RST_CNT5_BCFG(a,b) "GSERNX_LANEX_RST_CNT5_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RST_CNT5_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RST_CNT5_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RST_CNT5_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rstclkmsk_bcfg
 *
 * GSER Lane Reset State Machine Transmit Clock Alignment Register
 * Controls for transmit alignment of lanes within a link requiring aligned transmit
 * data.
 */
union bdk_gsernx_lanex_rstclkmsk_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rstclkmsk_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_44_63        : 20;
        uint64_t txdivrst_algn_qlm_mask : 4; /**< [ 43: 40](R/W) Selection control for which QLMs in this QLM's link group to align in timing the
                                                                 deassertion of reset to this lane's transmitter's clock divider.
                                                                 \<0\> = Wait for QLM 0.
                                                                 \<1\> = Wait for QLM 1.
                                                                 \<2\> = Wait for QLM 2.
                                                                 \<3\> = Wait for QLM 3.

                                                                 The bit corresponding to the current QLM is ignored. */
        uint64_t reserved_36_39        : 4;
        uint64_t txdivrst_algn_lane_mask : 4;/**< [ 35: 32](R/W) Selection control for which lanes in the current QLM to align in timing the
                                                                 deassertion of reset to this lane's transmitter's clock divider.
                                                                 \<0\> = Wait for lane 0.
                                                                 \<1\> = Wait for lane 1.
                                                                 \<2\> = Wait for lane 2.
                                                                 \<3\> = Wait for lane 3.

                                                                 The bit corresponding to the current Lane is ignored. */
        uint64_t reserved_21_31        : 11;
        uint64_t txdivrst_algn_wait_en : 1;  /**< [ 20: 20](R/W) Enable use of [TXDIVRST_ALGN_WAIT] as a time out waiting for other lanes to be
                                                                 ready to start their divided transmit clocks. With this bit cleared the lane
                                                                 will wait indefinitely. */
        uint64_t txdivrst_algn_wait    : 20; /**< [ 19:  0](R/W) Maximum wait count in service clock cycles, after this lane is ready to start
                                                                 its divided transmit clock, for other lanes in the link to be ready to start
                                                                 their divided transmit clocks. This is the maximum wait time, after which the
                                                                 state machine will move on, whether the other lanes have indicated ready or not. */
#else /* Word 0 - Little Endian */
        uint64_t txdivrst_algn_wait    : 20; /**< [ 19:  0](R/W) Maximum wait count in service clock cycles, after this lane is ready to start
                                                                 its divided transmit clock, for other lanes in the link to be ready to start
                                                                 their divided transmit clocks. This is the maximum wait time, after which the
                                                                 state machine will move on, whether the other lanes have indicated ready or not. */
        uint64_t txdivrst_algn_wait_en : 1;  /**< [ 20: 20](R/W) Enable use of [TXDIVRST_ALGN_WAIT] as a time out waiting for other lanes to be
                                                                 ready to start their divided transmit clocks. With this bit cleared the lane
                                                                 will wait indefinitely. */
        uint64_t reserved_21_31        : 11;
        uint64_t txdivrst_algn_lane_mask : 4;/**< [ 35: 32](R/W) Selection control for which lanes in the current QLM to align in timing the
                                                                 deassertion of reset to this lane's transmitter's clock divider.
                                                                 \<0\> = Wait for lane 0.
                                                                 \<1\> = Wait for lane 1.
                                                                 \<2\> = Wait for lane 2.
                                                                 \<3\> = Wait for lane 3.

                                                                 The bit corresponding to the current Lane is ignored. */
        uint64_t reserved_36_39        : 4;
        uint64_t txdivrst_algn_qlm_mask : 4; /**< [ 43: 40](R/W) Selection control for which QLMs in this QLM's link group to align in timing the
                                                                 deassertion of reset to this lane's transmitter's clock divider.
                                                                 \<0\> = Wait for QLM 0.
                                                                 \<1\> = Wait for QLM 1.
                                                                 \<2\> = Wait for QLM 2.
                                                                 \<3\> = Wait for QLM 3.

                                                                 The bit corresponding to the current QLM is ignored. */
        uint64_t reserved_44_63        : 20;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rstclkmsk_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rstclkmsk_bcfg bdk_gsernx_lanex_rstclkmsk_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RSTCLKMSK_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RSTCLKMSK_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000470ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RSTCLKMSK_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RSTCLKMSK_BCFG(a,b) bdk_gsernx_lanex_rstclkmsk_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RSTCLKMSK_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RSTCLKMSK_BCFG(a,b) "GSERNX_LANEX_RSTCLKMSK_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RSTCLKMSK_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RSTCLKMSK_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RSTCLKMSK_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_0_bcfg
 *
 * GSER Lane RX Base Configuration Register 0
 * Register controls for postcursor overrides from c2 through c9. Each
 * override setting has a corresponding enable bit which will cause the
 * calibration control logic to use the override register setting instead
 * of the calibration result.
 */
union bdk_gsernx_lanex_rx_0_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_0_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_63           : 1;
        uint64_t c9_ovrd_en            : 1;  /**< [ 62: 62](R/W) Enable use of [C9_OVRD]. */
        uint64_t c9_ovrd               : 6;  /**< [ 61: 56](R/W) 9th postcursor override value. */
        uint64_t reserved_55           : 1;
        uint64_t c8_ovrd_en            : 1;  /**< [ 54: 54](R/W) Enable use of [C8_OVRD]. */
        uint64_t c8_ovrd               : 6;  /**< [ 53: 48](R/W) 8th postcursor override value. */
        uint64_t reserved_47           : 1;
        uint64_t c7_ovrd_en            : 1;  /**< [ 46: 46](R/W) Enable use of [C7_OVRD]. */
        uint64_t c7_ovrd               : 6;  /**< [ 45: 40](R/W) 7th postcursor override value. */
        uint64_t reserved_39           : 1;
        uint64_t c6_ovrd_en            : 1;  /**< [ 38: 38](R/W) Enable use of [C6_OVRD]. */
        uint64_t c6_ovrd               : 6;  /**< [ 37: 32](R/W) 6th postcursor override value. */
        uint64_t reserved_31           : 1;
        uint64_t c5_ovrd_en            : 1;  /**< [ 30: 30](R/W) Enable use of [C5_OVRD]. */
        uint64_t c5_ovrd               : 6;  /**< [ 29: 24](R/W) 5th postcursor override value. */
        uint64_t reserved_23           : 1;
        uint64_t c4_ovrd_en            : 1;  /**< [ 22: 22](R/W) Enable use of [C4_OVRD]. */
        uint64_t c4_ovrd               : 6;  /**< [ 21: 16](R/W) 4th postcursor value override. */
        uint64_t reserved_15           : 1;
        uint64_t c3_ovrd_en            : 1;  /**< [ 14: 14](R/W) Enable use of [C3_OVRD]. */
        uint64_t c3_ovrd               : 6;  /**< [ 13:  8](R/W) 3rd postcursor override value. */
        uint64_t reserved_7            : 1;
        uint64_t c2_ovrd_en            : 1;  /**< [  6:  6](R/W) Enable use of [C2_OVRD]. */
        uint64_t c2_ovrd               : 6;  /**< [  5:  0](R/W) Second postcursor override value. */
#else /* Word 0 - Little Endian */
        uint64_t c2_ovrd               : 6;  /**< [  5:  0](R/W) Second postcursor override value. */
        uint64_t c2_ovrd_en            : 1;  /**< [  6:  6](R/W) Enable use of [C2_OVRD]. */
        uint64_t reserved_7            : 1;
        uint64_t c3_ovrd               : 6;  /**< [ 13:  8](R/W) 3rd postcursor override value. */
        uint64_t c3_ovrd_en            : 1;  /**< [ 14: 14](R/W) Enable use of [C3_OVRD]. */
        uint64_t reserved_15           : 1;
        uint64_t c4_ovrd               : 6;  /**< [ 21: 16](R/W) 4th postcursor value override. */
        uint64_t c4_ovrd_en            : 1;  /**< [ 22: 22](R/W) Enable use of [C4_OVRD]. */
        uint64_t reserved_23           : 1;
        uint64_t c5_ovrd               : 6;  /**< [ 29: 24](R/W) 5th postcursor override value. */
        uint64_t c5_ovrd_en            : 1;  /**< [ 30: 30](R/W) Enable use of [C5_OVRD]. */
        uint64_t reserved_31           : 1;
        uint64_t c6_ovrd               : 6;  /**< [ 37: 32](R/W) 6th postcursor override value. */
        uint64_t c6_ovrd_en            : 1;  /**< [ 38: 38](R/W) Enable use of [C6_OVRD]. */
        uint64_t reserved_39           : 1;
        uint64_t c7_ovrd               : 6;  /**< [ 45: 40](R/W) 7th postcursor override value. */
        uint64_t c7_ovrd_en            : 1;  /**< [ 46: 46](R/W) Enable use of [C7_OVRD]. */
        uint64_t reserved_47           : 1;
        uint64_t c8_ovrd               : 6;  /**< [ 53: 48](R/W) 8th postcursor override value. */
        uint64_t c8_ovrd_en            : 1;  /**< [ 54: 54](R/W) Enable use of [C8_OVRD]. */
        uint64_t reserved_55           : 1;
        uint64_t c9_ovrd               : 6;  /**< [ 61: 56](R/W) 9th postcursor override value. */
        uint64_t c9_ovrd_en            : 1;  /**< [ 62: 62](R/W) Enable use of [C9_OVRD]. */
        uint64_t reserved_63           : 1;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_0_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rx_0_bcfg bdk_gsernx_lanex_rx_0_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_0_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_0_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000c60ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_0_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_0_BCFG(a,b) bdk_gsernx_lanex_rx_0_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RX_0_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_0_BCFG(a,b) "GSERNX_LANEX_RX_0_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RX_0_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_0_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_0_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_0_bsts
 *
 * GSER Lane RX Base Status Register 0
 * Status registers for postcursor values (either calibration results or
 * overrides) from c2 through c9. Values in this register are only valid if
 * GSERN()_LANE()_RX_5_BSTS[DFE_ADAPT_STATUS] is deasserted (indicating DFE adaptation has
 * completed), or if the corresponding CSR override enable is asserted.
 */
union bdk_gsernx_lanex_rx_0_bsts
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_0_bsts_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_62_63        : 2;
        uint64_t c9                    : 6;  /**< [ 61: 56](RO/H) 9th postcursor value. */
        uint64_t reserved_54_55        : 2;
        uint64_t c8                    : 6;  /**< [ 53: 48](RO/H) 8th postcursor value. */
        uint64_t reserved_46_47        : 2;
        uint64_t c7                    : 6;  /**< [ 45: 40](RO/H) 7th postcursor value. */
        uint64_t reserved_38_39        : 2;
        uint64_t c6                    : 6;  /**< [ 37: 32](RO/H) 6th postcursor value. */
        uint64_t reserved_30_31        : 2;
        uint64_t c5                    : 6;  /**< [ 29: 24](RO/H) 5th postcursor value. */
        uint64_t reserved_22_23        : 2;
        uint64_t c4                    : 6;  /**< [ 21: 16](RO/H) 4th postcursor value. */
        uint64_t reserved_14_15        : 2;
        uint64_t c3                    : 6;  /**< [ 13:  8](RO/H) 3rd postcursor value. */
        uint64_t reserved_6_7          : 2;
        uint64_t c2                    : 6;  /**< [  5:  0](RO/H) 2nd postcursor value. */
#else /* Word 0 - Little Endian */
        uint64_t c2                    : 6;  /**< [  5:  0](RO/H) 2nd postcursor value. */
        uint64_t reserved_6_7          : 2;
        uint64_t c3                    : 6;  /**< [ 13:  8](RO/H) 3rd postcursor value. */
        uint64_t reserved_14_15        : 2;
        uint64_t c4                    : 6;  /**< [ 21: 16](RO/H) 4th postcursor value. */
        uint64_t reserved_22_23        : 2;
        uint64_t c5                    : 6;  /**< [ 29: 24](RO/H) 5th postcursor value. */
        uint64_t reserved_30_31        : 2;
        uint64_t c6                    : 6;  /**< [ 37: 32](RO/H) 6th postcursor value. */
        uint64_t reserved_38_39        : 2;
        uint64_t c7                    : 6;  /**< [ 45: 40](RO/H) 7th postcursor value. */
        uint64_t reserved_46_47        : 2;
        uint64_t c8                    : 6;  /**< [ 53: 48](RO/H) 8th postcursor value. */
        uint64_t reserved_54_55        : 2;
        uint64_t c9                    : 6;  /**< [ 61: 56](RO/H) 9th postcursor value. */
        uint64_t reserved_62_63        : 2;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_0_bsts_s cn; */
};
typedef union bdk_gsernx_lanex_rx_0_bsts bdk_gsernx_lanex_rx_0_bsts_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_0_BSTS(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_0_BSTS(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090001650ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_0_BSTS", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_0_BSTS(a,b) bdk_gsernx_lanex_rx_0_bsts_t
#define bustype_BDK_GSERNX_LANEX_RX_0_BSTS(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_0_BSTS(a,b) "GSERNX_LANEX_RX_0_BSTS"
#define device_bar_BDK_GSERNX_LANEX_RX_0_BSTS(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_0_BSTS(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_0_BSTS(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_10_bcfg
 *
 * GSER Lane RX Base Configuration Register 10
 * Configuration registers for LMS adaptation. Deadband increment settings for adaptation.
 */
union bdk_gsernx_lanex_rx_10_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_10_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_60_63        : 4;
        uint64_t ctlelte_deadband_inc  : 12; /**< [ 59: 48](R/W) CTLELTE adaptation deadband increment setting.
                                                                 12-bit field with 4 integer bits and 8 fraction bits (unsigned). */
        uint64_t ctlez_deadband_inc    : 12; /**< [ 47: 36](R/W) CTLEZ adaptation deadband increment setting.
                                                                 12-bit field with 4 integer bits and 8 fraction bits (unsigned). */
        uint64_t ctle_deadband_inc     : 12; /**< [ 35: 24](R/W) CTLE adaptation deadband increment setting.
                                                                 12-bit field with 4 integer bits and 8 fraction bits (unsigned). */
        uint64_t dfe_deadband_inc      : 12; /**< [ 23: 12](R/W) Coeff adaptation deadband increment setting.
                                                                 12-bit field with 4 integer bits and 8 fraction bits (unsigned). */
        uint64_t vga_deadband_inc      : 12; /**< [ 11:  0](R/W) VGA adaptation deadband increment setting.
                                                                 12-bit field with 4 integer bits and 8 fraction bits (unsigned). */
#else /* Word 0 - Little Endian */
        uint64_t vga_deadband_inc      : 12; /**< [ 11:  0](R/W) VGA adaptation deadband increment setting.
                                                                 12-bit field with 4 integer bits and 8 fraction bits (unsigned). */
        uint64_t dfe_deadband_inc      : 12; /**< [ 23: 12](R/W) Coeff adaptation deadband increment setting.
                                                                 12-bit field with 4 integer bits and 8 fraction bits (unsigned). */
        uint64_t ctle_deadband_inc     : 12; /**< [ 35: 24](R/W) CTLE adaptation deadband increment setting.
                                                                 12-bit field with 4 integer bits and 8 fraction bits (unsigned). */
        uint64_t ctlez_deadband_inc    : 12; /**< [ 47: 36](R/W) CTLEZ adaptation deadband increment setting.
                                                                 12-bit field with 4 integer bits and 8 fraction bits (unsigned). */
        uint64_t ctlelte_deadband_inc  : 12; /**< [ 59: 48](R/W) CTLELTE adaptation deadband increment setting.
                                                                 12-bit field with 4 integer bits and 8 fraction bits (unsigned). */
        uint64_t reserved_60_63        : 4;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_10_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rx_10_bcfg bdk_gsernx_lanex_rx_10_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_10_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_10_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000d00ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_10_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_10_BCFG(a,b) bdk_gsernx_lanex_rx_10_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RX_10_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_10_BCFG(a,b) "GSERNX_LANEX_RX_10_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RX_10_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_10_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_10_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_10_bsts
 *
 * GSER Lane RX Base Status Register 10
 * Status registers for BLWC LMS adaptation. Current BLWC Deadband settings for adaptation.
 */
union bdk_gsernx_lanex_rx_10_bsts
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_10_bsts_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t blwc_subrate_now      : 16; /**< [ 63: 48](RO/H) BLWC subrate_now counter value. Only valid when
                                                                 GSERN()_LANE()_RX_10_BSTS[BLWC_ADAPT_STATUS] is clear. */
        uint64_t reserved_44_47        : 4;
        uint64_t blwc_upv_count        : 16; /**< [ 43: 28](RO/H) BLWC up-vote counter value.  Only valid when
                                                                 GSERN()_LANE()_RX_10_BSTS[BLWC_ADAPT_STATUS] is clear. */
        uint64_t blwc_adapt_status     : 1;  /**< [ 27: 27](RO/H) BLWC adaptation status. When 0, training is inactive. When 1, training is active. */
        uint64_t blwc_adapt_count      : 15; /**< [ 26: 12](RO/H) BLWC adaptation timer current count value.  15-bit field, maximum value 0x7FFF.
                                                                 Only valid when GSERN()_LANE()_RX_10_BSTS[BLWC_ADAPT_STATUS] is clear. */
        uint64_t blwc_deadband_now     : 12; /**< [ 11:  0](RO/H) Current 12-bit integer value of BLWC adaptation deadband
                                                                 setting. Note that the 8 fraction bits of the accumulator are not
                                                                 reported. Only valid when GSERN()_LANE()_RX_10_BSTS[BLWC_ADAPT_STATUS] is clear. */
#else /* Word 0 - Little Endian */
        uint64_t blwc_deadband_now     : 12; /**< [ 11:  0](RO/H) Current 12-bit integer value of BLWC adaptation deadband
                                                                 setting. Note that the 8 fraction bits of the accumulator are not
                                                                 reported. Only valid when GSERN()_LANE()_RX_10_BSTS[BLWC_ADAPT_STATUS] is clear. */
        uint64_t blwc_adapt_count      : 15; /**< [ 26: 12](RO/H) BLWC adaptation timer current count value.  15-bit field, maximum value 0x7FFF.
                                                                 Only valid when GSERN()_LANE()_RX_10_BSTS[BLWC_ADAPT_STATUS] is clear. */
        uint64_t blwc_adapt_status     : 1;  /**< [ 27: 27](RO/H) BLWC adaptation status. When 0, training is inactive. When 1, training is active. */
        uint64_t blwc_upv_count        : 16; /**< [ 43: 28](RO/H) BLWC up-vote counter value.  Only valid when
                                                                 GSERN()_LANE()_RX_10_BSTS[BLWC_ADAPT_STATUS] is clear. */
        uint64_t reserved_44_47        : 4;
        uint64_t blwc_subrate_now      : 16; /**< [ 63: 48](RO/H) BLWC subrate_now counter value. Only valid when
                                                                 GSERN()_LANE()_RX_10_BSTS[BLWC_ADAPT_STATUS] is clear. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_10_bsts_s cn; */
};
typedef union bdk_gsernx_lanex_rx_10_bsts bdk_gsernx_lanex_rx_10_bsts_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_10_BSTS(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_10_BSTS(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e0900016f0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_10_BSTS", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_10_BSTS(a,b) bdk_gsernx_lanex_rx_10_bsts_t
#define bustype_BDK_GSERNX_LANEX_RX_10_BSTS(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_10_BSTS(a,b) "GSERNX_LANEX_RX_10_BSTS"
#define device_bar_BDK_GSERNX_LANEX_RX_10_BSTS(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_10_BSTS(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_10_BSTS(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_11_bcfg
 *
 * GSER Lane RX Base Configuration Register 11
 * Configuration registers for Offset Compensation.
 */
union bdk_gsernx_lanex_rx_11_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_11_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_16_63        : 48;
        uint64_t afe_oscomp_delay      : 8;  /**< [ 15:  8](R/W) Start delay for the AFE offset compensation, after DFE offset
                                                                 compensation completes. */
        uint64_t dfe_oscomp_delay      : 8;  /**< [  7:  0](R/W) Start delay for the DFE offset compensation. */
#else /* Word 0 - Little Endian */
        uint64_t dfe_oscomp_delay      : 8;  /**< [  7:  0](R/W) Start delay for the DFE offset compensation. */
        uint64_t afe_oscomp_delay      : 8;  /**< [ 15:  8](R/W) Start delay for the AFE offset compensation, after DFE offset
                                                                 compensation completes. */
        uint64_t reserved_16_63        : 48;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_11_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rx_11_bcfg bdk_gsernx_lanex_rx_11_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_11_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_11_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000d10ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_11_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_11_BCFG(a,b) bdk_gsernx_lanex_rx_11_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RX_11_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_11_BCFG(a,b) "GSERNX_LANEX_RX_11_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RX_11_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_11_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_11_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_11_bsts
 *
 * GSER Lane RX Base Status Register 11
 * Status registers for PREVGA_GN LMS adaptation. Current PREVGA_GN Deadband settings for adaptation.
 */
union bdk_gsernx_lanex_rx_11_bsts
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_11_bsts_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t prevga_gn_subrate_now : 16; /**< [ 63: 48](RO/H) PREVGA_GN subrate_now counter value. Only valid when
                                                                 GSERN()_LANE()_RX_11_BSTS[PREVGA_GN_ADAPT_STATUS] is clear. */
        uint64_t reserved_44_47        : 4;
        uint64_t prevga_gn_upv_count   : 16; /**< [ 43: 28](RO/H) PREVGA_GN up-vote counter value.  Only valid when
                                                                 GSERN()_LANE()_RX_11_BSTS[PREVGA_GN_ADAPT_STATUS] is clear. */
        uint64_t prevga_gn_adapt_status : 1; /**< [ 27: 27](RO/H) PREVGA_GN adaptation status. When 0, training is inactive. When 1, training is active. */
        uint64_t prevga_gn_adapt_count : 15; /**< [ 26: 12](RO/H) PREVGA_GN adaptation timer current count value.  15-bit field, maximum value 0x7FFF.
                                                                 Only valid when GSERN()_LANE()_RX_11_BSTS[PREVGA_GN_ADAPT_STATUS] is clear. */
        uint64_t prevga_gn_deadband_now : 12;/**< [ 11:  0](RO/H) Current 12-bit integer value of PREVGA_GN adaptation deadband
                                                                 setting. Note that the 8 fraction bits of the accumulator are not
                                                                 reported. Only valid when GSERN()_LANE()_RX_11_BSTS[PREVGA_GN_ADAPT_STATUS] is clear. */
#else /* Word 0 - Little Endian */
        uint64_t prevga_gn_deadband_now : 12;/**< [ 11:  0](RO/H) Current 12-bit integer value of PREVGA_GN adaptation deadband
                                                                 setting. Note that the 8 fraction bits of the accumulator are not
                                                                 reported. Only valid when GSERN()_LANE()_RX_11_BSTS[PREVGA_GN_ADAPT_STATUS] is clear. */
        uint64_t prevga_gn_adapt_count : 15; /**< [ 26: 12](RO/H) PREVGA_GN adaptation timer current count value.  15-bit field, maximum value 0x7FFF.
                                                                 Only valid when GSERN()_LANE()_RX_11_BSTS[PREVGA_GN_ADAPT_STATUS] is clear. */
        uint64_t prevga_gn_adapt_status : 1; /**< [ 27: 27](RO/H) PREVGA_GN adaptation status. When 0, training is inactive. When 1, training is active. */
        uint64_t prevga_gn_upv_count   : 16; /**< [ 43: 28](RO/H) PREVGA_GN up-vote counter value.  Only valid when
                                                                 GSERN()_LANE()_RX_11_BSTS[PREVGA_GN_ADAPT_STATUS] is clear. */
        uint64_t reserved_44_47        : 4;
        uint64_t prevga_gn_subrate_now : 16; /**< [ 63: 48](RO/H) PREVGA_GN subrate_now counter value. Only valid when
                                                                 GSERN()_LANE()_RX_11_BSTS[PREVGA_GN_ADAPT_STATUS] is clear. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_11_bsts_s cn; */
};
typedef union bdk_gsernx_lanex_rx_11_bsts bdk_gsernx_lanex_rx_11_bsts_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_11_BSTS(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_11_BSTS(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090001700ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_11_BSTS", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_11_BSTS(a,b) bdk_gsernx_lanex_rx_11_bsts_t
#define bustype_BDK_GSERNX_LANEX_RX_11_BSTS(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_11_BSTS(a,b) "GSERNX_LANEX_RX_11_BSTS"
#define device_bar_BDK_GSERNX_LANEX_RX_11_BSTS(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_11_BSTS(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_11_BSTS(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_12_bcfg
 *
 * GSER Lane RX Base Configuration Register 12
 * Configuration registers for AFE Offset Adaptation.
 */
union bdk_gsernx_lanex_rx_12_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_12_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_52_63        : 12;
        uint64_t afeos_leak_sgn        : 1;  /**< [ 51: 51](R/W) AFEOS leak sign. 0 = Positive (add). 1 = Negative (subtract). */
        uint64_t afeos_deadband        : 12; /**< [ 50: 39](R/W) AFE OS adaptation deadband settings.
                                                                 12-bit field to match accumulator, but typically a value less than 0x0FF is used. */
        uint64_t afeos_deadband_inc    : 12; /**< [ 38: 27](R/W) AFE OS adaptation deadband increment setting.
                                                                 12-bit field with 4 integer bits and 8 fraction bits (unsigned). */
        uint64_t afeos_leak            : 3;  /**< [ 26: 24](R/W) AFEOS adaptation leak parameter setting.
                                                                   0x0 = 1/128.
                                                                   0x1 = 1/64.
                                                                   0x2 = 1/32.
                                                                   0x3 = 1/16.
                                                                   0x4 = 1/8.
                                                                   0x5 = 1/4.
                                                                   0x6 = 1/2.
                                                                   0x7 = Disabled. */
        uint64_t reserved_19_23        : 5;
        uint64_t afeos_mu              : 3;  /**< [ 18: 16](R/W) AFEOS adaptation mu parameter setting.
                                                                   0x0 = 1/16.
                                                                   0x1 = 1/8.
                                                                   0x2 = 1/4.
                                                                   0x3 = 1/2.
                                                                   0x4 = 1.
                                                                   0x5 = 2.
                                                                   0x6 = 4.
                                                                   0x7 = 8. */
        uint64_t reserved_15           : 1;
        uint64_t afeos_timer_max       : 15; /**< [ 14:  0](R/W) AFEOS adaptation timer maximum count value.
                                                                 15-bit field, maximum value 0x7FFF. */
#else /* Word 0 - Little Endian */
        uint64_t afeos_timer_max       : 15; /**< [ 14:  0](R/W) AFEOS adaptation timer maximum count value.
                                                                 15-bit field, maximum value 0x7FFF. */
        uint64_t reserved_15           : 1;
        uint64_t afeos_mu              : 3;  /**< [ 18: 16](R/W) AFEOS adaptation mu parameter setting.
                                                                   0x0 = 1/16.
                                                                   0x1 = 1/8.
                                                                   0x2 = 1/4.
                                                                   0x3 = 1/2.
                                                                   0x4 = 1.
                                                                   0x5 = 2.
                                                                   0x6 = 4.
                                                                   0x7 = 8. */
        uint64_t reserved_19_23        : 5;
        uint64_t afeos_leak            : 3;  /**< [ 26: 24](R/W) AFEOS adaptation leak parameter setting.
                                                                   0x0 = 1/128.
                                                                   0x1 = 1/64.
                                                                   0x2 = 1/32.
                                                                   0x3 = 1/16.
                                                                   0x4 = 1/8.
                                                                   0x5 = 1/4.
                                                                   0x6 = 1/2.
                                                                   0x7 = Disabled. */
        uint64_t afeos_deadband_inc    : 12; /**< [ 38: 27](R/W) AFE OS adaptation deadband increment setting.
                                                                 12-bit field with 4 integer bits and 8 fraction bits (unsigned). */
        uint64_t afeos_deadband        : 12; /**< [ 50: 39](R/W) AFE OS adaptation deadband settings.
                                                                 12-bit field to match accumulator, but typically a value less than 0x0FF is used. */
        uint64_t afeos_leak_sgn        : 1;  /**< [ 51: 51](R/W) AFEOS leak sign. 0 = Positive (add). 1 = Negative (subtract). */
        uint64_t reserved_52_63        : 12;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_12_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rx_12_bcfg bdk_gsernx_lanex_rx_12_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_12_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_12_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000d20ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_12_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_12_BCFG(a,b) bdk_gsernx_lanex_rx_12_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RX_12_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_12_BCFG(a,b) "GSERNX_LANEX_RX_12_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RX_12_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_12_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_12_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_13_bcfg
 *
 * GSER Lane RX Base Configuration Register 13
 * Configuration registers for AFE LMS adaptation
 * Adaptation controls for Subrate parameters.
 */
union bdk_gsernx_lanex_rx_13_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_13_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_35_63        : 29;
        uint64_t afeos_subrate_scale   : 3;  /**< [ 34: 32](R/W) AFE subrate now counter scaling value for comparison against the up vote counter.
                                                                   0x0 = 1/32.
                                                                   0x1 = 1/16.
                                                                   0x2 = 3/32.
                                                                   0x3 = 1/8.
                                                                   0x4 = 3/16.
                                                                   0x5 = 1/4.
                                                                   0x6 = 3/8.
                                                                   0x7 = 1/2. */
        uint64_t afeos_subrate_init    : 16; /**< [ 31: 16](R/W) Subrate counter initial value. Sets the starting value for the LMS update interval, if
                                                                 subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t afeos_subrate_final   : 16; /**< [ 15:  0](R/W) Subrate counter final value. Sets the ending value for the LMS update interval, if subrate
                                                                 gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
#else /* Word 0 - Little Endian */
        uint64_t afeos_subrate_final   : 16; /**< [ 15:  0](R/W) Subrate counter final value. Sets the ending value for the LMS update interval, if subrate
                                                                 gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t afeos_subrate_init    : 16; /**< [ 31: 16](R/W) Subrate counter initial value. Sets the starting value for the LMS update interval, if
                                                                 subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t afeos_subrate_scale   : 3;  /**< [ 34: 32](R/W) AFE subrate now counter scaling value for comparison against the up vote counter.
                                                                   0x0 = 1/32.
                                                                   0x1 = 1/16.
                                                                   0x2 = 3/32.
                                                                   0x3 = 1/8.
                                                                   0x4 = 3/16.
                                                                   0x5 = 1/4.
                                                                   0x6 = 3/8.
                                                                   0x7 = 1/2. */
        uint64_t reserved_35_63        : 29;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_13_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rx_13_bcfg bdk_gsernx_lanex_rx_13_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_13_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_13_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000d30ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_13_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_13_BCFG(a,b) bdk_gsernx_lanex_rx_13_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RX_13_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_13_BCFG(a,b) "GSERNX_LANEX_RX_13_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RX_13_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_13_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_13_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_14_bcfg
 *
 * GSER Lane RX Base Configuration Register 14
 * This register configures LMS adaptation.
 */
union bdk_gsernx_lanex_rx_14_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_14_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_44_63        : 20;
        uint64_t c6_c15_limit_hi       : 6;  /**< [ 43: 38](R/W) C6 to C15 postcursor limit high. */
        uint64_t c6_c15_limit_lo       : 6;  /**< [ 37: 32](R/W) C6 to C15 postcursor limit low. */
        uint64_t reserved_24_31        : 8;
        uint64_t dfe_c1_deadband       : 12; /**< [ 23: 12](R/W) DFE C1 adaptation deadband settings.
                                                                 12-bit field to match accumulator, but typically a value less than 0x0FF is used. */
        uint64_t dfe_c1_deadband_inc   : 12; /**< [ 11:  0](R/W) DFE C1 adaptation deadband increment setting.
                                                                 12-bit field with 4 integer bits and 8 fraction bits (unsigned). */
#else /* Word 0 - Little Endian */
        uint64_t dfe_c1_deadband_inc   : 12; /**< [ 11:  0](R/W) DFE C1 adaptation deadband increment setting.
                                                                 12-bit field with 4 integer bits and 8 fraction bits (unsigned). */
        uint64_t dfe_c1_deadband       : 12; /**< [ 23: 12](R/W) DFE C1 adaptation deadband settings.
                                                                 12-bit field to match accumulator, but typically a value less than 0x0FF is used. */
        uint64_t reserved_24_31        : 8;
        uint64_t c6_c15_limit_lo       : 6;  /**< [ 37: 32](R/W) C6 to C15 postcursor limit low. */
        uint64_t c6_c15_limit_hi       : 6;  /**< [ 43: 38](R/W) C6 to C15 postcursor limit high. */
        uint64_t reserved_44_63        : 20;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_14_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rx_14_bcfg bdk_gsernx_lanex_rx_14_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_14_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_14_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000d40ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_14_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_14_BCFG(a,b) bdk_gsernx_lanex_rx_14_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RX_14_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_14_BCFG(a,b) "GSERNX_LANEX_RX_14_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RX_14_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_14_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_14_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_15_bcfg
 *
 * GSER Lane RX Base Configuration Register 15
 * This register configures LMS adaptation.
 */
union bdk_gsernx_lanex_rx_15_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_15_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_62_63        : 2;
        uint64_t c5_limit_hi           : 6;  /**< [ 61: 56](R/W) C5 postcursor limit high. */
        uint64_t c4_limit_hi           : 6;  /**< [ 55: 50](R/W) C4 postcursor limit high. */
        uint64_t c3_limit_hi           : 6;  /**< [ 49: 44](R/W) C3 postcursor limit high. */
        uint64_t c2_limit_hi           : 6;  /**< [ 43: 38](R/W) C2 postcursor limit high. */
        uint64_t c1_limit_hi           : 6;  /**< [ 37: 32](R/W) C1 postcursor limit high. */
        uint64_t reserved_30_31        : 2;
        uint64_t c5_limit_lo           : 6;  /**< [ 29: 24](R/W) C5 postcursor limit low. */
        uint64_t c4_limit_lo           : 6;  /**< [ 23: 18](R/W) C4 postcursor limit low. */
        uint64_t c3_limit_lo           : 6;  /**< [ 17: 12](R/W) C3 postcursor limit low. */
        uint64_t c2_limit_lo           : 6;  /**< [ 11:  6](R/W) C2 postcursor limit low. */
        uint64_t c1_limit_lo           : 6;  /**< [  5:  0](R/W) C1 postcursor limit low. */
#else /* Word 0 - Little Endian */
        uint64_t c1_limit_lo           : 6;  /**< [  5:  0](R/W) C1 postcursor limit low. */
        uint64_t c2_limit_lo           : 6;  /**< [ 11:  6](R/W) C2 postcursor limit low. */
        uint64_t c3_limit_lo           : 6;  /**< [ 17: 12](R/W) C3 postcursor limit low. */
        uint64_t c4_limit_lo           : 6;  /**< [ 23: 18](R/W) C4 postcursor limit low. */
        uint64_t c5_limit_lo           : 6;  /**< [ 29: 24](R/W) C5 postcursor limit low. */
        uint64_t reserved_30_31        : 2;
        uint64_t c1_limit_hi           : 6;  /**< [ 37: 32](R/W) C1 postcursor limit high. */
        uint64_t c2_limit_hi           : 6;  /**< [ 43: 38](R/W) C2 postcursor limit high. */
        uint64_t c3_limit_hi           : 6;  /**< [ 49: 44](R/W) C3 postcursor limit high. */
        uint64_t c4_limit_hi           : 6;  /**< [ 55: 50](R/W) C4 postcursor limit high. */
        uint64_t c5_limit_hi           : 6;  /**< [ 61: 56](R/W) C5 postcursor limit high. */
        uint64_t reserved_62_63        : 2;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_15_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rx_15_bcfg bdk_gsernx_lanex_rx_15_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_15_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_15_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000d50ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_15_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_15_BCFG(a,b) bdk_gsernx_lanex_rx_15_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RX_15_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_15_BCFG(a,b) "GSERNX_LANEX_RX_15_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RX_15_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_15_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_15_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_16_bcfg
 *
 * GSER Lane RX Base Configuration Register 16
 * Override registers for LMS adaptation. Deadband settings for adaptation.
 */
union bdk_gsernx_lanex_rx_16_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_16_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_52_63        : 12;
        uint64_t ctlez_deadband_now_ovrd_en : 1;/**< [ 51: 51](R/W) Enable use of [CTLEZ_DEADBAND_NOW_OVRD]. */
        uint64_t ctlez_deadband_now_ovrd : 12;/**< [ 50: 39](R/W) CTLEZ adaptation deadband now override. */
        uint64_t ctle_deadband_now_ovrd_en : 1;/**< [ 38: 38](R/W) Enable use of [CTLE_DEADBAND_NOW_OVRD]. */
        uint64_t ctle_deadband_now_ovrd : 12;/**< [ 37: 26](R/W) CTLE adaptation deadband now override. */
        uint64_t dfe_deadband_now_ovrd_en : 1;/**< [ 25: 25](R/W) Enable use of [DFE_DEADBAND_NOW_OVRD]. */
        uint64_t dfe_deadband_now_ovrd : 12; /**< [ 24: 13](R/W) Coeff Adaptation deadband now override. */
        uint64_t vga_deadband_now_ovrd_en : 1;/**< [ 12: 12](R/W) Enable use of [VGA_DEADBAND_NOW_OVRD]. */
        uint64_t vga_deadband_now_ovrd : 12; /**< [ 11:  0](R/W) VGA adaptation deadband now override. */
#else /* Word 0 - Little Endian */
        uint64_t vga_deadband_now_ovrd : 12; /**< [ 11:  0](R/W) VGA adaptation deadband now override. */
        uint64_t vga_deadband_now_ovrd_en : 1;/**< [ 12: 12](R/W) Enable use of [VGA_DEADBAND_NOW_OVRD]. */
        uint64_t dfe_deadband_now_ovrd : 12; /**< [ 24: 13](R/W) Coeff Adaptation deadband now override. */
        uint64_t dfe_deadband_now_ovrd_en : 1;/**< [ 25: 25](R/W) Enable use of [DFE_DEADBAND_NOW_OVRD]. */
        uint64_t ctle_deadband_now_ovrd : 12;/**< [ 37: 26](R/W) CTLE adaptation deadband now override. */
        uint64_t ctle_deadband_now_ovrd_en : 1;/**< [ 38: 38](R/W) Enable use of [CTLE_DEADBAND_NOW_OVRD]. */
        uint64_t ctlez_deadband_now_ovrd : 12;/**< [ 50: 39](R/W) CTLEZ adaptation deadband now override. */
        uint64_t ctlez_deadband_now_ovrd_en : 1;/**< [ 51: 51](R/W) Enable use of [CTLEZ_DEADBAND_NOW_OVRD]. */
        uint64_t reserved_52_63        : 12;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_16_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rx_16_bcfg bdk_gsernx_lanex_rx_16_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_16_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_16_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000d60ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_16_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_16_BCFG(a,b) bdk_gsernx_lanex_rx_16_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RX_16_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_16_BCFG(a,b) "GSERNX_LANEX_RX_16_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RX_16_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_16_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_16_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_17_bcfg
 *
 * GSER Lane RX Base Configuration Register 17
 * Override registers for LMS adaptation. Deadband settings for adaptation.
 */
union bdk_gsernx_lanex_rx_17_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_17_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_52_63        : 12;
        uint64_t blwc_deadband_now_ovrd_en : 1;/**< [ 51: 51](R/W) Enable use of [BLWC_DEADBAND_NOW_OVRD]. */
        uint64_t blwc_deadband_now_ovrd : 12;/**< [ 50: 39](R/W) BLWC adaptation deadband now override. */
        uint64_t dfe_c1_deadband_now_ovrd_en : 1;/**< [ 38: 38](R/W) Enable use of [DFE_C1_DEADBAND_NOW_OVRD]. */
        uint64_t dfe_c1_deadband_now_ovrd : 12;/**< [ 37: 26](R/W) DFE C1 Adaptation deadband now override. */
        uint64_t afeos_deadband_now_ovrd_en : 1;/**< [ 25: 25](R/W) Enable use of [AFEOS_DEADBAND_NOW_OVRD]. */
        uint64_t afeos_deadband_now_ovrd : 12;/**< [ 24: 13](R/W) AFE OS adaptation deadband now override. */
        uint64_t ctlelte_deadband_now_ovrd_en : 1;/**< [ 12: 12](R/W) Enable use of [CTLELTE_DEADBAND_NOW_OVRD]. */
        uint64_t ctlelte_deadband_now_ovrd : 12;/**< [ 11:  0](R/W) CTLELTE adaptation deadband now override. */
#else /* Word 0 - Little Endian */
        uint64_t ctlelte_deadband_now_ovrd : 12;/**< [ 11:  0](R/W) CTLELTE adaptation deadband now override. */
        uint64_t ctlelte_deadband_now_ovrd_en : 1;/**< [ 12: 12](R/W) Enable use of [CTLELTE_DEADBAND_NOW_OVRD]. */
        uint64_t afeos_deadband_now_ovrd : 12;/**< [ 24: 13](R/W) AFE OS adaptation deadband now override. */
        uint64_t afeos_deadband_now_ovrd_en : 1;/**< [ 25: 25](R/W) Enable use of [AFEOS_DEADBAND_NOW_OVRD]. */
        uint64_t dfe_c1_deadband_now_ovrd : 12;/**< [ 37: 26](R/W) DFE C1 Adaptation deadband now override. */
        uint64_t dfe_c1_deadband_now_ovrd_en : 1;/**< [ 38: 38](R/W) Enable use of [DFE_C1_DEADBAND_NOW_OVRD]. */
        uint64_t blwc_deadband_now_ovrd : 12;/**< [ 50: 39](R/W) BLWC adaptation deadband now override. */
        uint64_t blwc_deadband_now_ovrd_en : 1;/**< [ 51: 51](R/W) Enable use of [BLWC_DEADBAND_NOW_OVRD]. */
        uint64_t reserved_52_63        : 12;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_17_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rx_17_bcfg bdk_gsernx_lanex_rx_17_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_17_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_17_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000d70ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_17_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_17_BCFG(a,b) bdk_gsernx_lanex_rx_17_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RX_17_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_17_BCFG(a,b) "GSERNX_LANEX_RX_17_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RX_17_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_17_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_17_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_18_bcfg
 *
 * GSER Lane RX Base Configuration Register 18
 * Override registers for LMS adaptation. Deadband settings for adaptation.
 */
union bdk_gsernx_lanex_rx_18_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_18_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_51_63        : 13;
        uint64_t blwc_subrate_now_ovrd_en : 1;/**< [ 50: 50](R/W) Enable use of [BLWC_SUBRATE_NOW_OVRD]. */
        uint64_t afeos_subrate_now_ovrd_en : 1;/**< [ 49: 49](R/W) Enable use of [AFEOS_SUBRATE_NOW_OVRD]. */
        uint64_t subrate_now_ovrd_en   : 1;  /**< [ 48: 48](R/W) Enable use of [SUBRATE_NOW_OVRD]. */
        uint64_t blwc_subrate_now_ovrd : 16; /**< [ 47: 32](R/W) BLWC Subrate_Now counter override value. */
        uint64_t afeos_subrate_now_ovrd : 16;/**< [ 31: 16](R/W) AFEOS Subrate_Now counter override value. */
        uint64_t subrate_now_ovrd      : 16; /**< [ 15:  0](R/W) Subrate_Now counter override value. */
#else /* Word 0 - Little Endian */
        uint64_t subrate_now_ovrd      : 16; /**< [ 15:  0](R/W) Subrate_Now counter override value. */
        uint64_t afeos_subrate_now_ovrd : 16;/**< [ 31: 16](R/W) AFEOS Subrate_Now counter override value. */
        uint64_t blwc_subrate_now_ovrd : 16; /**< [ 47: 32](R/W) BLWC Subrate_Now counter override value. */
        uint64_t subrate_now_ovrd_en   : 1;  /**< [ 48: 48](R/W) Enable use of [SUBRATE_NOW_OVRD]. */
        uint64_t afeos_subrate_now_ovrd_en : 1;/**< [ 49: 49](R/W) Enable use of [AFEOS_SUBRATE_NOW_OVRD]. */
        uint64_t blwc_subrate_now_ovrd_en : 1;/**< [ 50: 50](R/W) Enable use of [BLWC_SUBRATE_NOW_OVRD]. */
        uint64_t reserved_51_63        : 13;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_18_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rx_18_bcfg bdk_gsernx_lanex_rx_18_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_18_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_18_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000d80ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_18_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_18_BCFG(a,b) bdk_gsernx_lanex_rx_18_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RX_18_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_18_BCFG(a,b) "GSERNX_LANEX_RX_18_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RX_18_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_18_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_18_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_19_bcfg
 *
 * GSER Lane RX Base Configuration Register 19
 * Configuration registers for AFE Offset Adaptation.
 */
union bdk_gsernx_lanex_rx_19_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_19_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_57_63        : 7;
        uint64_t blwc_leak_sgn         : 1;  /**< [ 56: 56](R/W) BLWC leak sign. 0 = Positive (add). 1 = Negative (subtract). */
        uint64_t blwc_updn_len         : 5;  /**< [ 55: 51](R/W) Accumulation length for BLWC drift up/down control. Range is 1 to 20. */
        uint64_t blwc_deadband         : 12; /**< [ 50: 39](R/W) BLWC adaptation deadband settings.
                                                                 12-bit field to match accumulator, but typically a value less than 0x0FF is used. */
        uint64_t blwc_deadband_inc     : 12; /**< [ 38: 27](R/W) BLWC adaptation deadband increment setting.
                                                                 12-bit field with 4 integer bits and 8 fraction bits (unsigned). */
        uint64_t blwc_leak             : 3;  /**< [ 26: 24](R/W) BLWC adaptation leak parameter setting.
                                                                   0x0 = 1/128.
                                                                   0x1 = 1/64.
                                                                   0x2 = 1/32.
                                                                   0x3 = 1/16.
                                                                   0x4 = 1/8.
                                                                   0x5 = 1/4.
                                                                   0x6 = 1/2.
                                                                   0x7 = Disabled. */
        uint64_t reserved_19_23        : 5;
        uint64_t blwc_mu               : 3;  /**< [ 18: 16](R/W) BLWC adaptation mu parameter setting.
                                                                   0x0 = 1/16.
                                                                   0x1 = 1/8.
                                                                   0x2 = 1/4.
                                                                   0x3 = 1/2.
                                                                   0x4 = 1.
                                                                   0x5 = 2.
                                                                   0x6 = 4.
                                                                   0x7 = 8. */
        uint64_t reserved_15           : 1;
        uint64_t blwc_timer_max        : 15; /**< [ 14:  0](R/W) BLWC adaptation timer maximum count value.
                                                                 15-bit field, maximum value 0x7FFF. */
#else /* Word 0 - Little Endian */
        uint64_t blwc_timer_max        : 15; /**< [ 14:  0](R/W) BLWC adaptation timer maximum count value.
                                                                 15-bit field, maximum value 0x7FFF. */
        uint64_t reserved_15           : 1;
        uint64_t blwc_mu               : 3;  /**< [ 18: 16](R/W) BLWC adaptation mu parameter setting.
                                                                   0x0 = 1/16.
                                                                   0x1 = 1/8.
                                                                   0x2 = 1/4.
                                                                   0x3 = 1/2.
                                                                   0x4 = 1.
                                                                   0x5 = 2.
                                                                   0x6 = 4.
                                                                   0x7 = 8. */
        uint64_t reserved_19_23        : 5;
        uint64_t blwc_leak             : 3;  /**< [ 26: 24](R/W) BLWC adaptation leak parameter setting.
                                                                   0x0 = 1/128.
                                                                   0x1 = 1/64.
                                                                   0x2 = 1/32.
                                                                   0x3 = 1/16.
                                                                   0x4 = 1/8.
                                                                   0x5 = 1/4.
                                                                   0x6 = 1/2.
                                                                   0x7 = Disabled. */
        uint64_t blwc_deadband_inc     : 12; /**< [ 38: 27](R/W) BLWC adaptation deadband increment setting.
                                                                 12-bit field with 4 integer bits and 8 fraction bits (unsigned). */
        uint64_t blwc_deadband         : 12; /**< [ 50: 39](R/W) BLWC adaptation deadband settings.
                                                                 12-bit field to match accumulator, but typically a value less than 0x0FF is used. */
        uint64_t blwc_updn_len         : 5;  /**< [ 55: 51](R/W) Accumulation length for BLWC drift up/down control. Range is 1 to 20. */
        uint64_t blwc_leak_sgn         : 1;  /**< [ 56: 56](R/W) BLWC leak sign. 0 = Positive (add). 1 = Negative (subtract). */
        uint64_t reserved_57_63        : 7;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_19_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rx_19_bcfg bdk_gsernx_lanex_rx_19_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_19_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_19_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000d90ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_19_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_19_BCFG(a,b) bdk_gsernx_lanex_rx_19_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RX_19_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_19_BCFG(a,b) "GSERNX_LANEX_RX_19_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RX_19_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_19_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_19_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_1_bcfg
 *
 * GSER Lane RX Base Configuration Register 1
 * Register controls for postcursor overrides from c10 through c15, and BLWC gain.
 * Each override setting has a corresponding enable bit which will cause the
 * calibration control logic to use the override register setting instead
 * of the calibration result.
 */
union bdk_gsernx_lanex_rx_1_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_1_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_57_63        : 7;
        uint64_t prevga_gn_ovrd_en     : 1;  /**< [ 56: 56](R/W) Enable use of [PREVGA_GN_OVRD]. */
        uint64_t prevga_gn_ovrd        : 3;  /**< [ 55: 53](R/W) PREVGA_GN gain value override. */
        uint64_t blwc_ovrd_en          : 1;  /**< [ 52: 52](R/W) Enable use of [BLWC_OVRD]. */
        uint64_t blwc_ovrd             : 5;  /**< [ 51: 47](R/W) BLWC gain value override. */
        uint64_t c15_ovrd_en           : 1;  /**< [ 46: 46](R/W) Enable use of [C15_OVRD]. */
        uint64_t c15_ovrd              : 6;  /**< [ 45: 40](R/W) 15th postcursor value override. */
        uint64_t reserved_39           : 1;
        uint64_t c14_ovrd_en           : 1;  /**< [ 38: 38](R/W) Enable use of [C14_OVRD]. */
        uint64_t c14_ovrd              : 6;  /**< [ 37: 32](R/W) 14th postcursor value override. */
        uint64_t reserved_31           : 1;
        uint64_t c13_ovrd_en           : 1;  /**< [ 30: 30](R/W) Enable use of [C13_OVRD]. */
        uint64_t c13_ovrd              : 6;  /**< [ 29: 24](R/W) 13th postcursor value override. */
        uint64_t reserved_23           : 1;
        uint64_t c12_ovrd_en           : 1;  /**< [ 22: 22](R/W) Enable use of [C12_OVRD]. */
        uint64_t c12_ovrd              : 6;  /**< [ 21: 16](R/W) 12th postcursor value override. */
        uint64_t reserved_15           : 1;
        uint64_t c11_ovrd_en           : 1;  /**< [ 14: 14](R/W) Enable use of [C11_OVRD]. */
        uint64_t c11_ovrd              : 6;  /**< [ 13:  8](R/W) 11th postcursor value override. */
        uint64_t reserved_7            : 1;
        uint64_t c10_ovrd_en           : 1;  /**< [  6:  6](R/W) Enable use of [C10_OVRD]. */
        uint64_t c10_ovrd              : 6;  /**< [  5:  0](R/W) 10th postcursor value override. */
#else /* Word 0 - Little Endian */
        uint64_t c10_ovrd              : 6;  /**< [  5:  0](R/W) 10th postcursor value override. */
        uint64_t c10_ovrd_en           : 1;  /**< [  6:  6](R/W) Enable use of [C10_OVRD]. */
        uint64_t reserved_7            : 1;
        uint64_t c11_ovrd              : 6;  /**< [ 13:  8](R/W) 11th postcursor value override. */
        uint64_t c11_ovrd_en           : 1;  /**< [ 14: 14](R/W) Enable use of [C11_OVRD]. */
        uint64_t reserved_15           : 1;
        uint64_t c12_ovrd              : 6;  /**< [ 21: 16](R/W) 12th postcursor value override. */
        uint64_t c12_ovrd_en           : 1;  /**< [ 22: 22](R/W) Enable use of [C12_OVRD]. */
        uint64_t reserved_23           : 1;
        uint64_t c13_ovrd              : 6;  /**< [ 29: 24](R/W) 13th postcursor value override. */
        uint64_t c13_ovrd_en           : 1;  /**< [ 30: 30](R/W) Enable use of [C13_OVRD]. */
        uint64_t reserved_31           : 1;
        uint64_t c14_ovrd              : 6;  /**< [ 37: 32](R/W) 14th postcursor value override. */
        uint64_t c14_ovrd_en           : 1;  /**< [ 38: 38](R/W) Enable use of [C14_OVRD]. */
        uint64_t reserved_39           : 1;
        uint64_t c15_ovrd              : 6;  /**< [ 45: 40](R/W) 15th postcursor value override. */
        uint64_t c15_ovrd_en           : 1;  /**< [ 46: 46](R/W) Enable use of [C15_OVRD]. */
        uint64_t blwc_ovrd             : 5;  /**< [ 51: 47](R/W) BLWC gain value override. */
        uint64_t blwc_ovrd_en          : 1;  /**< [ 52: 52](R/W) Enable use of [BLWC_OVRD]. */
        uint64_t prevga_gn_ovrd        : 3;  /**< [ 55: 53](R/W) PREVGA_GN gain value override. */
        uint64_t prevga_gn_ovrd_en     : 1;  /**< [ 56: 56](R/W) Enable use of [PREVGA_GN_OVRD]. */
        uint64_t reserved_57_63        : 7;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_1_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rx_1_bcfg bdk_gsernx_lanex_rx_1_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_1_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_1_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000c70ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_1_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_1_BCFG(a,b) bdk_gsernx_lanex_rx_1_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RX_1_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_1_BCFG(a,b) "GSERNX_LANEX_RX_1_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RX_1_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_1_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_1_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_1_bsts
 *
 * GSER Lane RX Base Status Register 1
 * Status registers for postcursor values (either calibration results or
 * overrides) from c10 through c15. Values in this register are only valid
 * if GSERN()_LANE()_RX_5_BSTS[DFE_ADAPT_STATUS] is deasserted (indicating DFE adaptation
 * has completed), or if the corresponding CSR override enable is asserted.
 */
union bdk_gsernx_lanex_rx_1_bsts
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_1_bsts_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_46_63        : 18;
        uint64_t c15                   : 6;  /**< [ 45: 40](RO/H) 15th postcursor value. */
        uint64_t reserved_38_39        : 2;
        uint64_t c14                   : 6;  /**< [ 37: 32](RO/H) 14th postcursor value. */
        uint64_t reserved_30_31        : 2;
        uint64_t c13                   : 6;  /**< [ 29: 24](RO/H) 13th postcursor value. */
        uint64_t reserved_22_23        : 2;
        uint64_t c12                   : 6;  /**< [ 21: 16](RO/H) 12th postcursor value. */
        uint64_t reserved_14_15        : 2;
        uint64_t c11                   : 6;  /**< [ 13:  8](RO/H) 11th postcursor value. */
        uint64_t reserved_6_7          : 2;
        uint64_t c10                   : 6;  /**< [  5:  0](RO/H) 10th postcursor value. */
#else /* Word 0 - Little Endian */
        uint64_t c10                   : 6;  /**< [  5:  0](RO/H) 10th postcursor value. */
        uint64_t reserved_6_7          : 2;
        uint64_t c11                   : 6;  /**< [ 13:  8](RO/H) 11th postcursor value. */
        uint64_t reserved_14_15        : 2;
        uint64_t c12                   : 6;  /**< [ 21: 16](RO/H) 12th postcursor value. */
        uint64_t reserved_22_23        : 2;
        uint64_t c13                   : 6;  /**< [ 29: 24](RO/H) 13th postcursor value. */
        uint64_t reserved_30_31        : 2;
        uint64_t c14                   : 6;  /**< [ 37: 32](RO/H) 14th postcursor value. */
        uint64_t reserved_38_39        : 2;
        uint64_t c15                   : 6;  /**< [ 45: 40](RO/H) 15th postcursor value. */
        uint64_t reserved_46_63        : 18;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_1_bsts_s cn; */
};
typedef union bdk_gsernx_lanex_rx_1_bsts bdk_gsernx_lanex_rx_1_bsts_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_1_BSTS(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_1_BSTS(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090001660ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_1_BSTS", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_1_BSTS(a,b) bdk_gsernx_lanex_rx_1_bsts_t
#define bustype_BDK_GSERNX_LANEX_RX_1_BSTS(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_1_BSTS(a,b) "GSERNX_LANEX_RX_1_BSTS"
#define device_bar_BDK_GSERNX_LANEX_RX_1_BSTS(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_1_BSTS(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_1_BSTS(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_20_bcfg
 *
 * GSER Lane RX Base Configuration Register 20
 * Configuration registers for BLWC LMS adaptation
 * Adaptation controls for Subrate parameters.
 */
union bdk_gsernx_lanex_rx_20_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_20_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_35_63        : 29;
        uint64_t blwc_subrate_scale    : 3;  /**< [ 34: 32](R/W) BLWC subrate now counter scaling value for comparison against the up vote counter.
                                                                   0x0 = 1/32.
                                                                   0x1 = 1/16.
                                                                   0x2 = 3/32.
                                                                   0x3 = 1/8.
                                                                   0x4 = 3/16.
                                                                   0x5 = 1/4.
                                                                   0x6 = 3/8.
                                                                   0x7 = 1/2. */
        uint64_t blwc_subrate_init     : 16; /**< [ 31: 16](R/W) Subrate counter initial value. Sets the initial value for the LMS update interval, if
                                                                 subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t blwc_subrate_final    : 16; /**< [ 15:  0](R/W) Subrate counter final value. Sets the ending value for the LMS update interval, if subrate
                                                                 gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled.
                                                                 Subrate counter final value. */
#else /* Word 0 - Little Endian */
        uint64_t blwc_subrate_final    : 16; /**< [ 15:  0](R/W) Subrate counter final value. Sets the ending value for the LMS update interval, if subrate
                                                                 gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled.
                                                                 Subrate counter final value. */
        uint64_t blwc_subrate_init     : 16; /**< [ 31: 16](R/W) Subrate counter initial value. Sets the initial value for the LMS update interval, if
                                                                 subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t blwc_subrate_scale    : 3;  /**< [ 34: 32](R/W) BLWC subrate now counter scaling value for comparison against the up vote counter.
                                                                   0x0 = 1/32.
                                                                   0x1 = 1/16.
                                                                   0x2 = 3/32.
                                                                   0x3 = 1/8.
                                                                   0x4 = 3/16.
                                                                   0x5 = 1/4.
                                                                   0x6 = 3/8.
                                                                   0x7 = 1/2. */
        uint64_t reserved_35_63        : 29;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_20_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rx_20_bcfg bdk_gsernx_lanex_rx_20_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_20_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_20_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000da0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_20_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_20_BCFG(a,b) bdk_gsernx_lanex_rx_20_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RX_20_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_20_BCFG(a,b) "GSERNX_LANEX_RX_20_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RX_20_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_20_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_20_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_21_bcfg
 *
 * GSER Lane RX Base Configuration Register 20
 * Configuration registers for PREVGA_GN LMS adaptation
 * Adaptation controls for Subrate parameters.
 */
union bdk_gsernx_lanex_rx_21_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_21_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_52_63        : 12;
        uint64_t prevga_gn_subrate_now_ovrd_en : 1;/**< [ 51: 51](R/W) Enable use of [PREVGA_GN_SUBRATE_NOW_OVRD]. */
        uint64_t prevga_gn_subrate_now_ovrd : 16;/**< [ 50: 35](R/W) PREVGA_GN Subrate_Now counter override value. */
        uint64_t prevga_gn_subrate_scale : 3;/**< [ 34: 32](R/W) PREVGA_GN subrate now counter scaling value for comparison against the up vote counter.
                                                                   0x0 = 1/32.
                                                                   0x1 = 1/16.
                                                                   0x2 = 3/32.
                                                                   0x3 = 1/8.
                                                                   0x4 = 3/16.
                                                                   0x5 = 1/4.
                                                                   0x6 = 3/8.
                                                                   0x7 = 1/2. */
        uint64_t prevga_gn_subrate_init : 16;/**< [ 31: 16](R/W) Subrate counter initial value. Sets the initial value for the LMS update interval, if
                                                                 subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t prevga_gn_subrate_fin : 16; /**< [ 15:  0](R/W) Subrate counter final value. Sets the ending value for the LMS update interval, if subrate
                                                                 gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FIN if subrate gearshifting is not enabled.
                                                                 Subrate counter final value. */
#else /* Word 0 - Little Endian */
        uint64_t prevga_gn_subrate_fin : 16; /**< [ 15:  0](R/W) Subrate counter final value. Sets the ending value for the LMS update interval, if subrate
                                                                 gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FIN if subrate gearshifting is not enabled.
                                                                 Subrate counter final value. */
        uint64_t prevga_gn_subrate_init : 16;/**< [ 31: 16](R/W) Subrate counter initial value. Sets the initial value for the LMS update interval, if
                                                                 subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t prevga_gn_subrate_scale : 3;/**< [ 34: 32](R/W) PREVGA_GN subrate now counter scaling value for comparison against the up vote counter.
                                                                   0x0 = 1/32.
                                                                   0x1 = 1/16.
                                                                   0x2 = 3/32.
                                                                   0x3 = 1/8.
                                                                   0x4 = 3/16.
                                                                   0x5 = 1/4.
                                                                   0x6 = 3/8.
                                                                   0x7 = 1/2. */
        uint64_t prevga_gn_subrate_now_ovrd : 16;/**< [ 50: 35](R/W) PREVGA_GN Subrate_Now counter override value. */
        uint64_t prevga_gn_subrate_now_ovrd_en : 1;/**< [ 51: 51](R/W) Enable use of [PREVGA_GN_SUBRATE_NOW_OVRD]. */
        uint64_t reserved_52_63        : 12;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_21_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rx_21_bcfg bdk_gsernx_lanex_rx_21_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_21_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_21_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000db0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_21_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_21_BCFG(a,b) bdk_gsernx_lanex_rx_21_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RX_21_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_21_BCFG(a,b) "GSERNX_LANEX_RX_21_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RX_21_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_21_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_21_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_22_bcfg
 *
 * GSER Lane RX Base Configuration Register 22
 * Override registers for LMS adaptation. Deadband settings for adaptation.
 */
union bdk_gsernx_lanex_rx_22_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_22_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_52_63        : 12;
        uint64_t prevga_gn_deadband_now_ovrd_en : 1;/**< [ 51: 51](R/W) Enable use of [PREVGA_GN_DEADBAND_NOW_OVRD]. */
        uint64_t prevga_gn_deadband_now_ovrd : 12;/**< [ 50: 39](R/W) PREVGA_GN adaptation deadband now override. */
        uint64_t reserved_0_38         : 39;
#else /* Word 0 - Little Endian */
        uint64_t reserved_0_38         : 39;
        uint64_t prevga_gn_deadband_now_ovrd : 12;/**< [ 50: 39](R/W) PREVGA_GN adaptation deadband now override. */
        uint64_t prevga_gn_deadband_now_ovrd_en : 1;/**< [ 51: 51](R/W) Enable use of [PREVGA_GN_DEADBAND_NOW_OVRD]. */
        uint64_t reserved_52_63        : 12;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_22_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rx_22_bcfg bdk_gsernx_lanex_rx_22_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_22_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_22_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000dc0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_22_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_22_BCFG(a,b) bdk_gsernx_lanex_rx_22_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RX_22_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_22_BCFG(a,b) "GSERNX_LANEX_RX_22_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RX_22_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_22_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_22_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_23_bcfg
 *
 * GSER Lane RX Base Configuration Register 23
 * Configuration registers for PREVGA_GN gain adaptation.
 */
union bdk_gsernx_lanex_rx_23_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_23_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_52_63        : 12;
        uint64_t prevga_gn_leak_sgn    : 1;  /**< [ 51: 51](R/W) PREVGA_GN leak sign. 0 = Positive (add). 1 = Negative (subtract). */
        uint64_t prevga_gn_deadband    : 12; /**< [ 50: 39](R/W) PREVGA_GN adaptation deadband settings. Typically a value less than 0x0FF is used. */
        uint64_t prevga_gn_deadband_inc : 12;/**< [ 38: 27](R/W) PREVGA_GN adaptation deadband increment setting.
                                                                 12-bit field with 4 integer bits and 8 fraction bits (unsigned). */
        uint64_t prevga_gn_leak        : 3;  /**< [ 26: 24](R/W) PREVGA_GN adaptation leak parameter setting.
                                                                   0x0 = 1/128.
                                                                   0x1 = 1/64.
                                                                   0x2 = 1/32.
                                                                   0x3 = 1/16.
                                                                   0x4 = 1/8.
                                                                   0x5 = 1/4.
                                                                   0x6 = 1/2.
                                                                   0x7 = Disabled. */
        uint64_t reserved_19_23        : 5;
        uint64_t prevga_gn_mu          : 3;  /**< [ 18: 16](R/W) PREVGA_GN adaptation mu parameter setting.
                                                                   0x0 = 1/16.
                                                                   0x1 = 1/8.
                                                                   0x2 = 1/4.
                                                                   0x3 = 1/2.
                                                                   0x4 = 1.
                                                                   0x5 = 2.
                                                                   0x6 = 4.
                                                                   0x7 = 8. */
        uint64_t reserved_15           : 1;
        uint64_t prevga_gn_timer_max   : 15; /**< [ 14:  0](R/W) PREVGA_GN adaptation timer maximum count value. */
#else /* Word 0 - Little Endian */
        uint64_t prevga_gn_timer_max   : 15; /**< [ 14:  0](R/W) PREVGA_GN adaptation timer maximum count value. */
        uint64_t reserved_15           : 1;
        uint64_t prevga_gn_mu          : 3;  /**< [ 18: 16](R/W) PREVGA_GN adaptation mu parameter setting.
                                                                   0x0 = 1/16.
                                                                   0x1 = 1/8.
                                                                   0x2 = 1/4.
                                                                   0x3 = 1/2.
                                                                   0x4 = 1.
                                                                   0x5 = 2.
                                                                   0x6 = 4.
                                                                   0x7 = 8. */
        uint64_t reserved_19_23        : 5;
        uint64_t prevga_gn_leak        : 3;  /**< [ 26: 24](R/W) PREVGA_GN adaptation leak parameter setting.
                                                                   0x0 = 1/128.
                                                                   0x1 = 1/64.
                                                                   0x2 = 1/32.
                                                                   0x3 = 1/16.
                                                                   0x4 = 1/8.
                                                                   0x5 = 1/4.
                                                                   0x6 = 1/2.
                                                                   0x7 = Disabled. */
        uint64_t prevga_gn_deadband_inc : 12;/**< [ 38: 27](R/W) PREVGA_GN adaptation deadband increment setting.
                                                                 12-bit field with 4 integer bits and 8 fraction bits (unsigned). */
        uint64_t prevga_gn_deadband    : 12; /**< [ 50: 39](R/W) PREVGA_GN adaptation deadband settings. Typically a value less than 0x0FF is used. */
        uint64_t prevga_gn_leak_sgn    : 1;  /**< [ 51: 51](R/W) PREVGA_GN leak sign. 0 = Positive (add). 1 = Negative (subtract). */
        uint64_t reserved_52_63        : 12;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_23_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rx_23_bcfg bdk_gsernx_lanex_rx_23_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_23_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_23_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000dd0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_23_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_23_BCFG(a,b) bdk_gsernx_lanex_rx_23_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RX_23_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_23_BCFG(a,b) "GSERNX_LANEX_RX_23_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RX_23_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_23_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_23_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_24_bcfg
 *
 * GSER Lane RX Base Configuration Register 24
 * Configuration registers for DFE offset compensation timer.
 */
union bdk_gsernx_lanex_rx_24_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_24_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t dfe_oscomp_timer_en   : 1;  /**< [ 63: 63](R/W) Enable for DFE offset compensation timer. When set, allows DFE offset
                                                                 compensation timer to trigger DFE offset compensation upon timer expiration. */
        uint64_t reserved_32_62        : 31;
        uint64_t dfe_oscomp_timer_max  : 32; /**< [ 31:  0](R/W) Maximum value of the DFE offset compensation Timer. When the timer reaches the
                                                                 value set by this field, the DFE offset compensation process is triggered. Also,
                                                                 when the timer reaches this value, the timer is reset to zero and allowed to
                                                                 begin counting again. */
#else /* Word 0 - Little Endian */
        uint64_t dfe_oscomp_timer_max  : 32; /**< [ 31:  0](R/W) Maximum value of the DFE offset compensation Timer. When the timer reaches the
                                                                 value set by this field, the DFE offset compensation process is triggered. Also,
                                                                 when the timer reaches this value, the timer is reset to zero and allowed to
                                                                 begin counting again. */
        uint64_t reserved_32_62        : 31;
        uint64_t dfe_oscomp_timer_en   : 1;  /**< [ 63: 63](R/W) Enable for DFE offset compensation timer. When set, allows DFE offset
                                                                 compensation timer to trigger DFE offset compensation upon timer expiration. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_24_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rx_24_bcfg bdk_gsernx_lanex_rx_24_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_24_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_24_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000de0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_24_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_24_BCFG(a,b) bdk_gsernx_lanex_rx_24_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RX_24_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_24_BCFG(a,b) "GSERNX_LANEX_RX_24_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RX_24_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_24_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_24_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_2_bcfg
 *
 * GSER Lane RX Base Configuration Register 2
 * Register controls for first postcursor overrides of even/odd paths. Each
 * override setting has a corresponding enable bit which will cause the
 * calibration control logic to use the override register setting instead
 * of the calibration result.
 */
union bdk_gsernx_lanex_rx_2_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_2_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_63           : 1;
        uint64_t c1_1e_ovrd_en         : 1;  /**< [ 62: 62](R/W) Enable use of [C1_1E_OVRD]. */
        uint64_t c1_1e_ovrd            : 6;  /**< [ 61: 56](R/W) First postcursor value on odd E path override. */
        uint64_t reserved_55           : 1;
        uint64_t c1_0e_ovrd_en         : 1;  /**< [ 54: 54](R/W) Enable use of [C1_0E_OVRD]. */
        uint64_t c1_0e_ovrd            : 6;  /**< [ 53: 48](R/W) First postcursor value on even E path override. */
        uint64_t reserved_47           : 1;
        uint64_t c1_1x_ovrd_en         : 1;  /**< [ 46: 46](R/W) Enable use of [C1_1X_OVRD]. */
        uint64_t c1_1x_ovrd            : 6;  /**< [ 45: 40](R/W) First postcursor value on odd X path override. */
        uint64_t reserved_39           : 1;
        uint64_t c1_0x_ovrd_en         : 1;  /**< [ 38: 38](R/W) Enable use of [C1_0X_OVRD]. */
        uint64_t c1_0x_ovrd            : 6;  /**< [ 37: 32](R/W) First postcursor value on even X path override. */
        uint64_t reserved_31           : 1;
        uint64_t c1_1i_ovrd_en         : 1;  /**< [ 30: 30](R/W) Enable use of [C1_1I_OVRD]. */
        uint64_t c1_1i_ovrd            : 6;  /**< [ 29: 24](R/W) First postcursor value on odd I path override. */
        uint64_t reserved_23           : 1;
        uint64_t c1_0i_ovrd_en         : 1;  /**< [ 22: 22](R/W) Enable use of [C1_0I_OVRD]. */
        uint64_t c1_0i_ovrd            : 6;  /**< [ 21: 16](R/W) First postcursor value on even I path override. */
        uint64_t reserved_15           : 1;
        uint64_t c1_1q_ovrd_en         : 1;  /**< [ 14: 14](R/W) Enable use of [C1_1Q_OVRD]. */
        uint64_t c1_1q_ovrd            : 6;  /**< [ 13:  8](R/W) First postcursor value on odd Q path override. */
        uint64_t reserved_7            : 1;
        uint64_t c1_0q_ovrd_en         : 1;  /**< [  6:  6](R/W) Enable use of [C1_0Q_OVRD]. */
        uint64_t c1_0q_ovrd            : 6;  /**< [  5:  0](R/W) First postcursor value on even Q path override. */
#else /* Word 0 - Little Endian */
        uint64_t c1_0q_ovrd            : 6;  /**< [  5:  0](R/W) First postcursor value on even Q path override. */
        uint64_t c1_0q_ovrd_en         : 1;  /**< [  6:  6](R/W) Enable use of [C1_0Q_OVRD]. */
        uint64_t reserved_7            : 1;
        uint64_t c1_1q_ovrd            : 6;  /**< [ 13:  8](R/W) First postcursor value on odd Q path override. */
        uint64_t c1_1q_ovrd_en         : 1;  /**< [ 14: 14](R/W) Enable use of [C1_1Q_OVRD]. */
        uint64_t reserved_15           : 1;
        uint64_t c1_0i_ovrd            : 6;  /**< [ 21: 16](R/W) First postcursor value on even I path override. */
        uint64_t c1_0i_ovrd_en         : 1;  /**< [ 22: 22](R/W) Enable use of [C1_0I_OVRD]. */
        uint64_t reserved_23           : 1;
        uint64_t c1_1i_ovrd            : 6;  /**< [ 29: 24](R/W) First postcursor value on odd I path override. */
        uint64_t c1_1i_ovrd_en         : 1;  /**< [ 30: 30](R/W) Enable use of [C1_1I_OVRD]. */
        uint64_t reserved_31           : 1;
        uint64_t c1_0x_ovrd            : 6;  /**< [ 37: 32](R/W) First postcursor value on even X path override. */
        uint64_t c1_0x_ovrd_en         : 1;  /**< [ 38: 38](R/W) Enable use of [C1_0X_OVRD]. */
        uint64_t reserved_39           : 1;
        uint64_t c1_1x_ovrd            : 6;  /**< [ 45: 40](R/W) First postcursor value on odd X path override. */
        uint64_t c1_1x_ovrd_en         : 1;  /**< [ 46: 46](R/W) Enable use of [C1_1X_OVRD]. */
        uint64_t reserved_47           : 1;
        uint64_t c1_0e_ovrd            : 6;  /**< [ 53: 48](R/W) First postcursor value on even E path override. */
        uint64_t c1_0e_ovrd_en         : 1;  /**< [ 54: 54](R/W) Enable use of [C1_0E_OVRD]. */
        uint64_t reserved_55           : 1;
        uint64_t c1_1e_ovrd            : 6;  /**< [ 61: 56](R/W) First postcursor value on odd E path override. */
        uint64_t c1_1e_ovrd_en         : 1;  /**< [ 62: 62](R/W) Enable use of [C1_1E_OVRD]. */
        uint64_t reserved_63           : 1;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_2_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rx_2_bcfg bdk_gsernx_lanex_rx_2_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_2_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_2_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000c80ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_2_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_2_BCFG(a,b) bdk_gsernx_lanex_rx_2_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RX_2_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_2_BCFG(a,b) "GSERNX_LANEX_RX_2_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RX_2_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_2_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_2_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_2_bsts
 *
 * GSER Lane RX Base Status Register 2
 * Status registers for first postcursor values (either calibration
 * results or overrides) of even/odd paths. Values in this register are
 * only valid if GSERN()_LANE()_RX_5_BSTS[DFE_ADAPT_STATUS] is deasserted (indicating DFE
 * adaptation has completed), or if the corresponding CSR override enable
 * is asserted.
 */
union bdk_gsernx_lanex_rx_2_bsts
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_2_bsts_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_62_63        : 2;
        uint64_t c1_1e                 : 6;  /**< [ 61: 56](RO/H) First postcursor value on odd E path. */
        uint64_t reserved_54_55        : 2;
        uint64_t c1_0e                 : 6;  /**< [ 53: 48](RO/H) First postcursor value on even E path. */
        uint64_t reserved_46_47        : 2;
        uint64_t c1_1x                 : 6;  /**< [ 45: 40](RO/H) First postcursor value on odd X path. */
        uint64_t reserved_38_39        : 2;
        uint64_t c1_0x                 : 6;  /**< [ 37: 32](RO/H) First postcursor value on even X path. */
        uint64_t reserved_30_31        : 2;
        uint64_t c1_1i                 : 6;  /**< [ 29: 24](RO/H) First postcursor value on odd I path. */
        uint64_t reserved_22_23        : 2;
        uint64_t c1_0i                 : 6;  /**< [ 21: 16](RO/H) First postcursor value on even I path. */
        uint64_t reserved_14_15        : 2;
        uint64_t c1_1q                 : 6;  /**< [ 13:  8](RO/H) First postcursor value on odd Q path. */
        uint64_t reserved_6_7          : 2;
        uint64_t c1_0q                 : 6;  /**< [  5:  0](RO/H) First postcursor value on even Q path. */
#else /* Word 0 - Little Endian */
        uint64_t c1_0q                 : 6;  /**< [  5:  0](RO/H) First postcursor value on even Q path. */
        uint64_t reserved_6_7          : 2;
        uint64_t c1_1q                 : 6;  /**< [ 13:  8](RO/H) First postcursor value on odd Q path. */
        uint64_t reserved_14_15        : 2;
        uint64_t c1_0i                 : 6;  /**< [ 21: 16](RO/H) First postcursor value on even I path. */
        uint64_t reserved_22_23        : 2;
        uint64_t c1_1i                 : 6;  /**< [ 29: 24](RO/H) First postcursor value on odd I path. */
        uint64_t reserved_30_31        : 2;
        uint64_t c1_0x                 : 6;  /**< [ 37: 32](RO/H) First postcursor value on even X path. */
        uint64_t reserved_38_39        : 2;
        uint64_t c1_1x                 : 6;  /**< [ 45: 40](RO/H) First postcursor value on odd X path. */
        uint64_t reserved_46_47        : 2;
        uint64_t c1_0e                 : 6;  /**< [ 53: 48](RO/H) First postcursor value on even E path. */
        uint64_t reserved_54_55        : 2;
        uint64_t c1_1e                 : 6;  /**< [ 61: 56](RO/H) First postcursor value on odd E path. */
        uint64_t reserved_62_63        : 2;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_2_bsts_s cn; */
};
typedef union bdk_gsernx_lanex_rx_2_bsts bdk_gsernx_lanex_rx_2_bsts_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_2_BSTS(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_2_BSTS(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090001670ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_2_BSTS", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_2_BSTS(a,b) bdk_gsernx_lanex_rx_2_bsts_t
#define bustype_BDK_GSERNX_LANEX_RX_2_BSTS(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_2_BSTS(a,b) "GSERNX_LANEX_RX_2_BSTS"
#define device_bar_BDK_GSERNX_LANEX_RX_2_BSTS(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_2_BSTS(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_2_BSTS(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_3_bcfg
 *
 * GSER Lane RX Base Configuration Register 3
 * Register controls for calibration muxes and switch enable overrides.
 * Some bit is this register are override controls (*_OVRD). Each
 * override setting has a corresponding enable which will cause the
 * calibration logic to use the override register setting instead of the
 * calibration result.
 */
union bdk_gsernx_lanex_rx_3_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_3_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_60_63        : 4;
        uint64_t cali1_odd_ovrd_en     : 1;  /**< [ 59: 59](R/W) Enable use of [CALI1_ODD_OVRD]. */
        uint64_t cali1_even_ovrd_en    : 1;  /**< [ 58: 58](R/W) Enable use of [CALI1_EVEN_OVRD]. */
        uint64_t cali0_odd_ovrd_en     : 1;  /**< [ 57: 57](R/W) Enable use of [CALI0_ODD_OVRD]. */
        uint64_t cali0_even_ovrd_en    : 1;  /**< [ 56: 56](R/W) Enable use of [CALI0_EVEN_OVRD]. */
        uint64_t cali1_odd_ovrd        : 8;  /**< [ 55: 48](R/W) Input calibration switch enable for speculation path 1
                                                                 in odd paths override. */
        uint64_t cali1_even_ovrd       : 8;  /**< [ 47: 40](R/W) Input calibration switch enable for speculation path 1
                                                                 in even paths override. */
        uint64_t cali0_odd_ovrd        : 8;  /**< [ 39: 32](R/W) Input calibration switch enable for speculation path 0
                                                                 in odd paths override. */
        uint64_t cali0_even_ovrd       : 8;  /**< [ 31: 24](R/W) Input calibration switch enable for speculation path 0
                                                                 in even paths override. */
        uint64_t reserved_20_23        : 4;
        uint64_t calsel_odd_ovrd_en    : 1;  /**< [ 19: 19](R/W) Enable use of [CALSEL_ODD_OVRD]. */
        uint64_t calsel_even_ovrd_en   : 1;  /**< [ 18: 18](R/W) Enable use of [CALSEL_EVEN_OVRD]. */
        uint64_t calo_odd_ovrd_en      : 1;  /**< [ 17: 17](R/W) Enable use of [CALO_ODD_OVRD]. */
        uint64_t calo_even_ovrd_en     : 1;  /**< [ 16: 16](R/W) Enable use of [CALO_EVEN_OVRD]. */
        uint64_t calsel_odd_ovrd       : 4;  /**< [ 15: 12](R/W) Odd calibration speculation mux override value. */
        uint64_t calsel_even_ovrd      : 4;  /**< [ 11:  8](R/W) Even calibration speculation mux override value. */
        uint64_t calo_odd_ovrd         : 4;  /**< [  7:  4](R/W) Odd Slicer output calibration mux control override value. */
        uint64_t calo_even_ovrd        : 4;  /**< [  3:  0](R/W) Even Slicer output calibration mux control override value. */
#else /* Word 0 - Little Endian */
        uint64_t calo_even_ovrd        : 4;  /**< [  3:  0](R/W) Even Slicer output calibration mux control override value. */
        uint64_t calo_odd_ovrd         : 4;  /**< [  7:  4](R/W) Odd Slicer output calibration mux control override value. */
        uint64_t calsel_even_ovrd      : 4;  /**< [ 11:  8](R/W) Even calibration speculation mux override value. */
        uint64_t calsel_odd_ovrd       : 4;  /**< [ 15: 12](R/W) Odd calibration speculation mux override value. */
        uint64_t calo_even_ovrd_en     : 1;  /**< [ 16: 16](R/W) Enable use of [CALO_EVEN_OVRD]. */
        uint64_t calo_odd_ovrd_en      : 1;  /**< [ 17: 17](R/W) Enable use of [CALO_ODD_OVRD]. */
        uint64_t calsel_even_ovrd_en   : 1;  /**< [ 18: 18](R/W) Enable use of [CALSEL_EVEN_OVRD]. */
        uint64_t calsel_odd_ovrd_en    : 1;  /**< [ 19: 19](R/W) Enable use of [CALSEL_ODD_OVRD]. */
        uint64_t reserved_20_23        : 4;
        uint64_t cali0_even_ovrd       : 8;  /**< [ 31: 24](R/W) Input calibration switch enable for speculation path 0
                                                                 in even paths override. */
        uint64_t cali0_odd_ovrd        : 8;  /**< [ 39: 32](R/W) Input calibration switch enable for speculation path 0
                                                                 in odd paths override. */
        uint64_t cali1_even_ovrd       : 8;  /**< [ 47: 40](R/W) Input calibration switch enable for speculation path 1
                                                                 in even paths override. */
        uint64_t cali1_odd_ovrd        : 8;  /**< [ 55: 48](R/W) Input calibration switch enable for speculation path 1
                                                                 in odd paths override. */
        uint64_t cali0_even_ovrd_en    : 1;  /**< [ 56: 56](R/W) Enable use of [CALI0_EVEN_OVRD]. */
        uint64_t cali0_odd_ovrd_en     : 1;  /**< [ 57: 57](R/W) Enable use of [CALI0_ODD_OVRD]. */
        uint64_t cali1_even_ovrd_en    : 1;  /**< [ 58: 58](R/W) Enable use of [CALI1_EVEN_OVRD]. */
        uint64_t cali1_odd_ovrd_en     : 1;  /**< [ 59: 59](R/W) Enable use of [CALI1_ODD_OVRD]. */
        uint64_t reserved_60_63        : 4;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_3_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rx_3_bcfg bdk_gsernx_lanex_rx_3_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_3_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_3_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000c90ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_3_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_3_BCFG(a,b) bdk_gsernx_lanex_rx_3_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RX_3_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_3_BCFG(a,b) "GSERNX_LANEX_RX_3_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RX_3_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_3_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_3_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_3_bsts
 *
 * GSER Lane RX Base Status Register 3
 * Status registers for calibration muxes and switch enables (either
 * calibration results ors). Values in this register are only valid if
 * GSERN()_LANE()_RX_5_BSTS[DFE_ADAPT_STATUS] is deasserted (indicating DFE adaptation has
 * completed), or if the corresponding CSR override enable is asserted.
 */
union bdk_gsernx_lanex_rx_3_bsts
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_3_bsts_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_56_63        : 8;
        uint64_t cali1_odd             : 8;  /**< [ 55: 48](RO/H) Input calibration switch enable for speculation path 1
                                                                 in odd paths. */
        uint64_t cali1_even            : 8;  /**< [ 47: 40](RO/H) Input calibration switch enable for speculation path 1
                                                                 in even paths. */
        uint64_t cali0_odd             : 8;  /**< [ 39: 32](RO/H) Input calibration switch enable for speculation path 0
                                                                 in odd paths. */
        uint64_t cali0_even            : 8;  /**< [ 31: 24](RO/H) Input calibration switch enable for speculation path 0
                                                                 in even paths. */
        uint64_t reserved_16_23        : 8;
        uint64_t calsel_odd            : 4;  /**< [ 15: 12](RO/H) Odd calibration speculation mux. */
        uint64_t calsel_even           : 4;  /**< [ 11:  8](RO/H) Even calibration speculation mux. */
        uint64_t calo_odd              : 4;  /**< [  7:  4](RO/H) Odd slicer output calibration mux control. */
        uint64_t calo_even             : 4;  /**< [  3:  0](RO/H) Even slicer output calibration mux control. */
#else /* Word 0 - Little Endian */
        uint64_t calo_even             : 4;  /**< [  3:  0](RO/H) Even slicer output calibration mux control. */
        uint64_t calo_odd              : 4;  /**< [  7:  4](RO/H) Odd slicer output calibration mux control. */
        uint64_t calsel_even           : 4;  /**< [ 11:  8](RO/H) Even calibration speculation mux. */
        uint64_t calsel_odd            : 4;  /**< [ 15: 12](RO/H) Odd calibration speculation mux. */
        uint64_t reserved_16_23        : 8;
        uint64_t cali0_even            : 8;  /**< [ 31: 24](RO/H) Input calibration switch enable for speculation path 0
                                                                 in even paths. */
        uint64_t cali0_odd             : 8;  /**< [ 39: 32](RO/H) Input calibration switch enable for speculation path 0
                                                                 in odd paths. */
        uint64_t cali1_even            : 8;  /**< [ 47: 40](RO/H) Input calibration switch enable for speculation path 1
                                                                 in even paths. */
        uint64_t cali1_odd             : 8;  /**< [ 55: 48](RO/H) Input calibration switch enable for speculation path 1
                                                                 in odd paths. */
        uint64_t reserved_56_63        : 8;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_3_bsts_s cn; */
};
typedef union bdk_gsernx_lanex_rx_3_bsts bdk_gsernx_lanex_rx_3_bsts_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_3_BSTS(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_3_BSTS(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090001680ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_3_BSTS", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_3_BSTS(a,b) bdk_gsernx_lanex_rx_3_bsts_t
#define bustype_BDK_GSERNX_LANEX_RX_3_BSTS(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_3_BSTS(a,b) "GSERNX_LANEX_RX_3_BSTS"
#define device_bar_BDK_GSERNX_LANEX_RX_3_BSTS(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_3_BSTS(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_3_BSTS(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_4_bcfg
 *
 * GSER Lane RX Base Configuration Register 4
 * Register controls for VGA, CTLE, and OS_AFE overrides.
 * Some bit is this register are override controls (*_OVRD). Each
 * override setting has a corresponding enable which will cause the
 * calibration logic to use the override register setting instead of the
 * calibration result.
 */
union bdk_gsernx_lanex_rx_4_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_4_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_62_63        : 2;
        uint64_t edgesel_even_ovrd_en  : 1;  /**< [ 61: 61](R/W) Enable use of [EDGESEL_EVEN_OVRD]. */
        uint64_t edgesel_even_ovrd     : 1;  /**< [ 60: 60](R/W) EDGESEL_EVEN override value. */
        uint64_t edgesel_odd_ovrd_en   : 1;  /**< [ 59: 59](R/W) Enable use of [EDGESEL_ODD_OVRD]. */
        uint64_t edgesel_odd_ovrd      : 1;  /**< [ 58: 58](R/W) EDGESEL_ODD override value. */
        uint64_t en_os_afe_ovrd_en     : 1;  /**< [ 57: 57](R/W) Enable use of [EN_OS_AFE_OVRD]. */
        uint64_t en_os_afe_ovrd        : 1;  /**< [ 56: 56](R/W) OS_AFE_EN override value. */
        uint64_t reserved_55           : 1;
        uint64_t os_afe_odd_ovrd_en    : 1;  /**< [ 54: 54](R/W) Enable use of [OS_AFE_ODD_OVRD]. */
        uint64_t os_afe_odd_ovrd       : 6;  /**< [ 53: 48](R/W) OS_AFE_ODD offset override value. */
        uint64_t reserved_47           : 1;
        uint64_t os_afe_even_ovrd_en   : 1;  /**< [ 46: 46](R/W) Enable use of [OS_AFE_EVEN_OVRD]. */
        uint64_t os_afe_even_ovrd      : 6;  /**< [ 45: 40](R/W) OS_AFE_EVEN offset override value. */
        uint64_t reserved_37_39        : 3;
        uint64_t ctle_lte_zero_ovrd_en : 1;  /**< [ 36: 36](R/W) CTLE LTE zero frequency override enable.
                                                                 By default, the override should be enabled; otherwise, CTLE_LTE_ZERO
                                                                 will be set equal to CTLE_ZERO within the RX adaptation FSM. */
        uint64_t ctle_lte_zero_ovrd    : 4;  /**< [ 35: 32](R/W) CTLE LTE zero frequency override value. */
        uint64_t reserved_29_31        : 3;
        uint64_t ctle_lte_gain_ovrd_en : 1;  /**< [ 28: 28](R/W) Enable use of [CTLE_LTE_GAIN_OVRD]. */
        uint64_t ctle_lte_gain_ovrd    : 4;  /**< [ 27: 24](R/W) CTLE LTE DC gain override value. */
        uint64_t reserved_21_23        : 3;
        uint64_t ctle_zero_ovrd_en     : 1;  /**< [ 20: 20](R/W) Enable use of [CTLE_ZERO_OVRD]. */
        uint64_t ctle_zero_ovrd        : 4;  /**< [ 19: 16](R/W) CTLE zero frequency override value. */
        uint64_t reserved_13_15        : 3;
        uint64_t ctle_gain_ovrd_en     : 1;  /**< [ 12: 12](R/W) Enable use of [CTLE_GAIN_OVRD]. */
        uint64_t ctle_gain_ovrd        : 4;  /**< [ 11:  8](R/W) CTLE DC gain override value. */
        uint64_t reserved_5_7          : 3;
        uint64_t vga_gain_ovrd_en      : 1;  /**< [  4:  4](R/W) Enable use of [VGA_GAIN_OVRD]. */
        uint64_t vga_gain_ovrd         : 4;  /**< [  3:  0](R/W) VGA DC gain override value. */
#else /* Word 0 - Little Endian */
        uint64_t vga_gain_ovrd         : 4;  /**< [  3:  0](R/W) VGA DC gain override value. */
        uint64_t vga_gain_ovrd_en      : 1;  /**< [  4:  4](R/W) Enable use of [VGA_GAIN_OVRD]. */
        uint64_t reserved_5_7          : 3;
        uint64_t ctle_gain_ovrd        : 4;  /**< [ 11:  8](R/W) CTLE DC gain override value. */
        uint64_t ctle_gain_ovrd_en     : 1;  /**< [ 12: 12](R/W) Enable use of [CTLE_GAIN_OVRD]. */
        uint64_t reserved_13_15        : 3;
        uint64_t ctle_zero_ovrd        : 4;  /**< [ 19: 16](R/W) CTLE zero frequency override value. */
        uint64_t ctle_zero_ovrd_en     : 1;  /**< [ 20: 20](R/W) Enable use of [CTLE_ZERO_OVRD]. */
        uint64_t reserved_21_23        : 3;
        uint64_t ctle_lte_gain_ovrd    : 4;  /**< [ 27: 24](R/W) CTLE LTE DC gain override value. */
        uint64_t ctle_lte_gain_ovrd_en : 1;  /**< [ 28: 28](R/W) Enable use of [CTLE_LTE_GAIN_OVRD]. */
        uint64_t reserved_29_31        : 3;
        uint64_t ctle_lte_zero_ovrd    : 4;  /**< [ 35: 32](R/W) CTLE LTE zero frequency override value. */
        uint64_t ctle_lte_zero_ovrd_en : 1;  /**< [ 36: 36](R/W) CTLE LTE zero frequency override enable.
                                                                 By default, the override should be enabled; otherwise, CTLE_LTE_ZERO
                                                                 will be set equal to CTLE_ZERO within the RX adaptation FSM. */
        uint64_t reserved_37_39        : 3;
        uint64_t os_afe_even_ovrd      : 6;  /**< [ 45: 40](R/W) OS_AFE_EVEN offset override value. */
        uint64_t os_afe_even_ovrd_en   : 1;  /**< [ 46: 46](R/W) Enable use of [OS_AFE_EVEN_OVRD]. */
        uint64_t reserved_47           : 1;
        uint64_t os_afe_odd_ovrd       : 6;  /**< [ 53: 48](R/W) OS_AFE_ODD offset override value. */
        uint64_t os_afe_odd_ovrd_en    : 1;  /**< [ 54: 54](R/W) Enable use of [OS_AFE_ODD_OVRD]. */
        uint64_t reserved_55           : 1;
        uint64_t en_os_afe_ovrd        : 1;  /**< [ 56: 56](R/W) OS_AFE_EN override value. */
        uint64_t en_os_afe_ovrd_en     : 1;  /**< [ 57: 57](R/W) Enable use of [EN_OS_AFE_OVRD]. */
        uint64_t edgesel_odd_ovrd      : 1;  /**< [ 58: 58](R/W) EDGESEL_ODD override value. */
        uint64_t edgesel_odd_ovrd_en   : 1;  /**< [ 59: 59](R/W) Enable use of [EDGESEL_ODD_OVRD]. */
        uint64_t edgesel_even_ovrd     : 1;  /**< [ 60: 60](R/W) EDGESEL_EVEN override value. */
        uint64_t edgesel_even_ovrd_en  : 1;  /**< [ 61: 61](R/W) Enable use of [EDGESEL_EVEN_OVRD]. */
        uint64_t reserved_62_63        : 2;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_4_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rx_4_bcfg bdk_gsernx_lanex_rx_4_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_4_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_4_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000ca0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_4_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_4_BCFG(a,b) bdk_gsernx_lanex_rx_4_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RX_4_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_4_BCFG(a,b) "GSERNX_LANEX_RX_4_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RX_4_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_4_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_4_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_4_bsts
 *
 * GSER Lane RX Base Status Register 4
 * Status registers for VGA, CTLE, and OS_AFE values
 * (either calibration results ors).
 */
union bdk_gsernx_lanex_rx_4_bsts
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_4_bsts_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t blwc                  : 5;  /**< [ 63: 59](RO/H) BLWC. This field is only valid if GSERN()_LANE()_RX_10_BSTS[BLWC_ADAPT_STATUS]
                                                                 is deasserted (indicating BLWC adaptation has completed), or if the
                                                                 corresponding CSR override enable is asserted. */
        uint64_t reserved_57_58        : 2;
        uint64_t en_os_afe             : 1;  /**< [ 56: 56](RO/H) AFE offset compensation enable value in-use. This field is only
                                                                 valid if GSERN()_LANE()_RX_OS_5_BSTS[AFE_OFFSET_STATUS] is asserted (indicating AFE
                                                                 offset adaptation has completed), or if the corresponding CSR
                                                                 override enable is asserted. */
        uint64_t reserved_54_55        : 2;
        uint64_t os_afe_odd            : 6;  /**< [ 53: 48](RO/H) AFE odd offset compensation value in-use. This field is only valid
                                                                 if GSERN()_LANE()_RX_OS_5_BSTS[AFE_OFFSET_STATUS] is asserted (indicating AFE offset
                                                                 adaptation has completed), or if the corresponding CSR override
                                                                 enable is asserted. */
        uint64_t reserved_46_47        : 2;
        uint64_t os_afe_even           : 6;  /**< [ 45: 40](RO/H) AFE even offset compensation value in-use. This field is only valid
                                                                 if GSERN()_LANE()_RX_OS_5_BSTS[AFE_OFFSET_STATUS] is asserted (indicating AFE offset
                                                                 adaptation has completed), or if the corresponding CSR override
                                                                 enable is asserted. */
        uint64_t reserved_36_39        : 4;
        uint64_t ctle_lte_zero         : 4;  /**< [ 35: 32](RO/H) CTLE LTE zero frequency. This field is only valid if
                                                                 GSERN()_LANE()_RX_5_BSTS[CTLEZ_ADAPT_STATUS] is deasserted (indicating VGA
                                                                 adaptation has completed), or if the corresponding CSR override
                                                                 enable is asserted. */
        uint64_t reserved_28_31        : 4;
        uint64_t ctle_lte_gain         : 4;  /**< [ 27: 24](RO/H) CTLE LTE DC gain. This field is only valid if
                                                                 GSERN()_LANE()_RX_5_BSTS[CTLE_ADAPT_STATUS] is deasserted (indicating VGA
                                                                 adaptation has completed), or if the corresponding CSR override
                                                                 enable is asserted. */
        uint64_t reserved_20_23        : 4;
        uint64_t ctle_zero             : 4;  /**< [ 19: 16](RO/H) CTLE zero frequency. This field is only valid if
                                                                 GSERN()_LANE()_RX_5_BSTS[CTLE_ADAPT_STATUS] is deasserted (indicating VGA
                                                                 adaptation has completed), or if the corresponding CSR override
                                                                 enable is asserted. */
        uint64_t reserved_12_15        : 4;
        uint64_t ctle_gain             : 4;  /**< [ 11:  8](RO/H) CTLE DC gain. This field is only valid if
                                                                 GSERN()_LANE()_RX_5_BSTS[CTLE_ADAPT_STATUS] is deasserted (indicating VGA
                                                                 adaptation has completed), or if the corresponding CSR override
                                                                 enable is asserted. */
        uint64_t reserved_7            : 1;
        uint64_t prevga_gn             : 3;  /**< [  6:  4](RO/H) Pre-VGA gain. This field is only valid if
                                                                 GSERN()_LANE()_RX_11_BSTS[PREVGA_GN_ADAPT_STATUS] is deasserted (indicating Pre-VGA
                                                                 gain adaptation has completed), or if the corresponding CSR override
                                                                 enable is asserted. */
        uint64_t vga_gain              : 4;  /**< [  3:  0](RO/H) VGA DC gain. This field is only valid if GSERN()_LANE()_RX_5_BSTS[VGA_ADAPT_STATUS]
                                                                 is deasserted (indicating VGA adaptation has completed), or if the
                                                                 corresponding CSR override enable is asserted. */
#else /* Word 0 - Little Endian */
        uint64_t vga_gain              : 4;  /**< [  3:  0](RO/H) VGA DC gain. This field is only valid if GSERN()_LANE()_RX_5_BSTS[VGA_ADAPT_STATUS]
                                                                 is deasserted (indicating VGA adaptation has completed), or if the
                                                                 corresponding CSR override enable is asserted. */
        uint64_t prevga_gn             : 3;  /**< [  6:  4](RO/H) Pre-VGA gain. This field is only valid if
                                                                 GSERN()_LANE()_RX_11_BSTS[PREVGA_GN_ADAPT_STATUS] is deasserted (indicating Pre-VGA
                                                                 gain adaptation has completed), or if the corresponding CSR override
                                                                 enable is asserted. */
        uint64_t reserved_7            : 1;
        uint64_t ctle_gain             : 4;  /**< [ 11:  8](RO/H) CTLE DC gain. This field is only valid if
                                                                 GSERN()_LANE()_RX_5_BSTS[CTLE_ADAPT_STATUS] is deasserted (indicating VGA
                                                                 adaptation has completed), or if the corresponding CSR override
                                                                 enable is asserted. */
        uint64_t reserved_12_15        : 4;
        uint64_t ctle_zero             : 4;  /**< [ 19: 16](RO/H) CTLE zero frequency. This field is only valid if
                                                                 GSERN()_LANE()_RX_5_BSTS[CTLE_ADAPT_STATUS] is deasserted (indicating VGA
                                                                 adaptation has completed), or if the corresponding CSR override
                                                                 enable is asserted. */
        uint64_t reserved_20_23        : 4;
        uint64_t ctle_lte_gain         : 4;  /**< [ 27: 24](RO/H) CTLE LTE DC gain. This field is only valid if
                                                                 GSERN()_LANE()_RX_5_BSTS[CTLE_ADAPT_STATUS] is deasserted (indicating VGA
                                                                 adaptation has completed), or if the corresponding CSR override
                                                                 enable is asserted. */
        uint64_t reserved_28_31        : 4;
        uint64_t ctle_lte_zero         : 4;  /**< [ 35: 32](RO/H) CTLE LTE zero frequency. This field is only valid if
                                                                 GSERN()_LANE()_RX_5_BSTS[CTLEZ_ADAPT_STATUS] is deasserted (indicating VGA
                                                                 adaptation has completed), or if the corresponding CSR override
                                                                 enable is asserted. */
        uint64_t reserved_36_39        : 4;
        uint64_t os_afe_even           : 6;  /**< [ 45: 40](RO/H) AFE even offset compensation value in-use. This field is only valid
                                                                 if GSERN()_LANE()_RX_OS_5_BSTS[AFE_OFFSET_STATUS] is asserted (indicating AFE offset
                                                                 adaptation has completed), or if the corresponding CSR override
                                                                 enable is asserted. */
        uint64_t reserved_46_47        : 2;
        uint64_t os_afe_odd            : 6;  /**< [ 53: 48](RO/H) AFE odd offset compensation value in-use. This field is only valid
                                                                 if GSERN()_LANE()_RX_OS_5_BSTS[AFE_OFFSET_STATUS] is asserted (indicating AFE offset
                                                                 adaptation has completed), or if the corresponding CSR override
                                                                 enable is asserted. */
        uint64_t reserved_54_55        : 2;
        uint64_t en_os_afe             : 1;  /**< [ 56: 56](RO/H) AFE offset compensation enable value in-use. This field is only
                                                                 valid if GSERN()_LANE()_RX_OS_5_BSTS[AFE_OFFSET_STATUS] is asserted (indicating AFE
                                                                 offset adaptation has completed), or if the corresponding CSR
                                                                 override enable is asserted. */
        uint64_t reserved_57_58        : 2;
        uint64_t blwc                  : 5;  /**< [ 63: 59](RO/H) BLWC. This field is only valid if GSERN()_LANE()_RX_10_BSTS[BLWC_ADAPT_STATUS]
                                                                 is deasserted (indicating BLWC adaptation has completed), or if the
                                                                 corresponding CSR override enable is asserted. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_4_bsts_s cn; */
};
typedef union bdk_gsernx_lanex_rx_4_bsts bdk_gsernx_lanex_rx_4_bsts_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_4_BSTS(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_4_BSTS(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090001690ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_4_BSTS", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_4_BSTS(a,b) bdk_gsernx_lanex_rx_4_bsts_t
#define bustype_BDK_GSERNX_LANEX_RX_4_BSTS(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_4_BSTS(a,b) "GSERNX_LANEX_RX_4_BSTS"
#define device_bar_BDK_GSERNX_LANEX_RX_4_BSTS(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_4_BSTS(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_4_BSTS(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_5_bcfg
 *
 * GSER Lane RX Base Configuration Register 5
 * Adaptation parameters for DFE coefficients.
 */
union bdk_gsernx_lanex_rx_5_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_5_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_63           : 1;
        uint64_t ctle_leak_sgn         : 1;  /**< [ 62: 62](R/W) CTLE leak sign. 0 = Positive (add). 1 = Negative (subtract). */
        uint64_t ctlez_leak_sgn        : 1;  /**< [ 61: 61](R/W) CTLE leak sign. 0 = Positive (add). 1 = Negative (subtract). */
        uint64_t dfe_c1_leak_sgn       : 1;  /**< [ 60: 60](R/W) DFE C1 leak sign. 0 = Positive (add). 1 = Negative (subtract). */
        uint64_t vga_leak_sgn          : 1;  /**< [ 59: 59](R/W) VGA leak sign. 0 = Positive (add). 1 = Negative (subtract). */
        uint64_t dfe_c1_leak           : 3;  /**< [ 58: 56](R/W) DFE C1 Gain adaptation leak parameter setting.
                                                                   0x0 = 1/128.
                                                                   0x1 = 1/64.
                                                                   0x2 = 1/32.
                                                                   0x3 = 1/16.
                                                                   0x4 = 1/8.
                                                                   0x5 = 1/4.
                                                                   0x6 = 1/2.
                                                                   0x7 = Disabled. */
        uint64_t dfe_c1_mu             : 3;  /**< [ 55: 53](R/W) DFE C1 adaptation mu parameter setting.
                                                                   0x0 = 1/16.
                                                                   0x1 = 1/8.
                                                                   0x2 = 1/4.
                                                                   0x3 = 1/2.
                                                                   0x4 = 1.
                                                                   0x5 = 2.
                                                                   0x6 = 4.
                                                                   0x7 = 8. */
        uint64_t vga_leak              : 3;  /**< [ 52: 50](R/W) VGA gain adaptation leak parameter setting.
                                                                   0x0 = 1/128.
                                                                   0x1 = 1/64.
                                                                   0x2 = 1/32.
                                                                   0x3 = 1/16.
                                                                   0x4 = 1/8.
                                                                   0x5 = 1/4.
                                                                   0x6 = 1/2.
                                                                   0x7 = Disabled. */
        uint64_t vga_mu                : 3;  /**< [ 49: 47](R/W) VGA adaptation mu parameter setting.
                                                                   0x0 = 1/16.
                                                                   0x1 = 1/8.
                                                                   0x2 = 1/4.
                                                                   0x3 = 1/2.
                                                                   0x4 = 1.
                                                                   0x5 = 2.
                                                                   0x6 = 4.
                                                                   0x7 = 8. */
        uint64_t vga_timer_max         : 15; /**< [ 46: 32](R/W) VGA adaptation timer maximum count value.
                                                                 15-bit field, maximum value 0x7FFF. */
        uint64_t reserved_22_31        : 10;
        uint64_t dfe_leak_sgn          : 1;  /**< [ 21: 21](R/W) DFE leak sign. 0 = Positive (add). 1 = Negative (subtract). */
        uint64_t dfe_leak              : 3;  /**< [ 20: 18](R/W) DFE adaptation leak parameter setting.
                                                                   0x0 = 1/128.
                                                                   0x1 = 1/64.
                                                                   0x2 = 1/32.
                                                                   0x3 = 1/16.
                                                                   0x4 = 1/8.
                                                                   0x5 = 1/4.
                                                                   0x6 = 1/2.
                                                                   0x7 = Disabled. */
        uint64_t dfe_mu                : 3;  /**< [ 17: 15](R/W) DFE adaptation mu parameter setting.
                                                                   0x0 = 1/16.
                                                                   0x1 = 1/8.
                                                                   0x2 = 1/4.
                                                                   0x3 = 1/2.
                                                                   0x4 = 1.
                                                                   0x5 = 2.
                                                                   0x6 = 4.
                                                                   0x7 = 8. */
        uint64_t dfe_timer_max         : 15; /**< [ 14:  0](R/W) DFE adaptation timer maximum count value.
                                                                 15-bit field, maximum value 0x7FFF. */
#else /* Word 0 - Little Endian */
        uint64_t dfe_timer_max         : 15; /**< [ 14:  0](R/W) DFE adaptation timer maximum count value.
                                                                 15-bit field, maximum value 0x7FFF. */
        uint64_t dfe_mu                : 3;  /**< [ 17: 15](R/W) DFE adaptation mu parameter setting.
                                                                   0x0 = 1/16.
                                                                   0x1 = 1/8.
                                                                   0x2 = 1/4.
                                                                   0x3 = 1/2.
                                                                   0x4 = 1.
                                                                   0x5 = 2.
                                                                   0x6 = 4.
                                                                   0x7 = 8. */
        uint64_t dfe_leak              : 3;  /**< [ 20: 18](R/W) DFE adaptation leak parameter setting.
                                                                   0x0 = 1/128.
                                                                   0x1 = 1/64.
                                                                   0x2 = 1/32.
                                                                   0x3 = 1/16.
                                                                   0x4 = 1/8.
                                                                   0x5 = 1/4.
                                                                   0x6 = 1/2.
                                                                   0x7 = Disabled. */
        uint64_t dfe_leak_sgn          : 1;  /**< [ 21: 21](R/W) DFE leak sign. 0 = Positive (add). 1 = Negative (subtract). */
        uint64_t reserved_22_31        : 10;
        uint64_t vga_timer_max         : 15; /**< [ 46: 32](R/W) VGA adaptation timer maximum count value.
                                                                 15-bit field, maximum value 0x7FFF. */
        uint64_t vga_mu                : 3;  /**< [ 49: 47](R/W) VGA adaptation mu parameter setting.
                                                                   0x0 = 1/16.
                                                                   0x1 = 1/8.
                                                                   0x2 = 1/4.
                                                                   0x3 = 1/2.
                                                                   0x4 = 1.
                                                                   0x5 = 2.
                                                                   0x6 = 4.
                                                                   0x7 = 8. */
        uint64_t vga_leak              : 3;  /**< [ 52: 50](R/W) VGA gain adaptation leak parameter setting.
                                                                   0x0 = 1/128.
                                                                   0x1 = 1/64.
                                                                   0x2 = 1/32.
                                                                   0x3 = 1/16.
                                                                   0x4 = 1/8.
                                                                   0x5 = 1/4.
                                                                   0x6 = 1/2.
                                                                   0x7 = Disabled. */
        uint64_t dfe_c1_mu             : 3;  /**< [ 55: 53](R/W) DFE C1 adaptation mu parameter setting.
                                                                   0x0 = 1/16.
                                                                   0x1 = 1/8.
                                                                   0x2 = 1/4.
                                                                   0x3 = 1/2.
                                                                   0x4 = 1.
                                                                   0x5 = 2.
                                                                   0x6 = 4.
                                                                   0x7 = 8. */
        uint64_t dfe_c1_leak           : 3;  /**< [ 58: 56](R/W) DFE C1 Gain adaptation leak parameter setting.
                                                                   0x0 = 1/128.
                                                                   0x1 = 1/64.
                                                                   0x2 = 1/32.
                                                                   0x3 = 1/16.
                                                                   0x4 = 1/8.
                                                                   0x5 = 1/4.
                                                                   0x6 = 1/2.
                                                                   0x7 = Disabled. */
        uint64_t vga_leak_sgn          : 1;  /**< [ 59: 59](R/W) VGA leak sign. 0 = Positive (add). 1 = Negative (subtract). */
        uint64_t dfe_c1_leak_sgn       : 1;  /**< [ 60: 60](R/W) DFE C1 leak sign. 0 = Positive (add). 1 = Negative (subtract). */
        uint64_t ctlez_leak_sgn        : 1;  /**< [ 61: 61](R/W) CTLE leak sign. 0 = Positive (add). 1 = Negative (subtract). */
        uint64_t ctle_leak_sgn         : 1;  /**< [ 62: 62](R/W) CTLE leak sign. 0 = Positive (add). 1 = Negative (subtract). */
        uint64_t reserved_63           : 1;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_5_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rx_5_bcfg bdk_gsernx_lanex_rx_5_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_5_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_5_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000cb0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_5_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_5_BCFG(a,b) bdk_gsernx_lanex_rx_5_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RX_5_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_5_BCFG(a,b) "GSERNX_LANEX_RX_5_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RX_5_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_5_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_5_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_5_bsts
 *
 * GSER Lane RX Base Status Register 5
 * Status registers for VGA, CTLE, and DFE adaptation.
 */
union bdk_gsernx_lanex_rx_5_bsts
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_5_bsts_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t ctlez_adapt_count     : 15; /**< [ 63: 49](RO/H) CTLEZ adaptation timer count value. Only valid when
                                                                 GSERN()_LANE()_RX_5_BSTS[CTLEZ_ADAPT_STATUS] is deasserted. */
        uint64_t ctlez_adapt_status    : 1;  /**< [ 48: 48](RO/H) CTLEZ adaptation status. When 0, training is inactive. When 1, training is active. */
        uint64_t ctle_adapt_count      : 15; /**< [ 47: 33](RO/H) CTLE adaptation timer count value. Only valid when
                                                                 GSERN()_LANE()_RX_5_BSTS[CTLE_ADAPT_STATUS] is deasserted. */
        uint64_t ctle_adapt_status     : 1;  /**< [ 32: 32](RO/H) CTLE adaptation status. When 0, training is inactive. When 1, training is active. */
        uint64_t dfe_adapt_count       : 15; /**< [ 31: 17](RO/H) DFE adaptation timer count value. Only valid when
                                                                 GSERN()_LANE()_RX_5_BSTS[DFE_ADAPT_STATUS] is deasserted. */
        uint64_t dfe_adapt_status      : 1;  /**< [ 16: 16](RO/H) DFE adaptation status. When 0, training is inactive. When 1, training is active. */
        uint64_t vga_adapt_count       : 15; /**< [ 15:  1](RO/H) VGA Gain adaptation timer count value. Only valid when
                                                                 GSERN()_LANE()_RX_5_BSTS[VGA_ADAPT_STATUS] is deasserted. */
        uint64_t vga_adapt_status      : 1;  /**< [  0:  0](RO/H) VGA Gain adaptation status. When 0, training is inactive. When 1, training is active. */
#else /* Word 0 - Little Endian */
        uint64_t vga_adapt_status      : 1;  /**< [  0:  0](RO/H) VGA Gain adaptation status. When 0, training is inactive. When 1, training is active. */
        uint64_t vga_adapt_count       : 15; /**< [ 15:  1](RO/H) VGA Gain adaptation timer count value. Only valid when
                                                                 GSERN()_LANE()_RX_5_BSTS[VGA_ADAPT_STATUS] is deasserted. */
        uint64_t dfe_adapt_status      : 1;  /**< [ 16: 16](RO/H) DFE adaptation status. When 0, training is inactive. When 1, training is active. */
        uint64_t dfe_adapt_count       : 15; /**< [ 31: 17](RO/H) DFE adaptation timer count value. Only valid when
                                                                 GSERN()_LANE()_RX_5_BSTS[DFE_ADAPT_STATUS] is deasserted. */
        uint64_t ctle_adapt_status     : 1;  /**< [ 32: 32](RO/H) CTLE adaptation status. When 0, training is inactive. When 1, training is active. */
        uint64_t ctle_adapt_count      : 15; /**< [ 47: 33](RO/H) CTLE adaptation timer count value. Only valid when
                                                                 GSERN()_LANE()_RX_5_BSTS[CTLE_ADAPT_STATUS] is deasserted. */
        uint64_t ctlez_adapt_status    : 1;  /**< [ 48: 48](RO/H) CTLEZ adaptation status. When 0, training is inactive. When 1, training is active. */
        uint64_t ctlez_adapt_count     : 15; /**< [ 63: 49](RO/H) CTLEZ adaptation timer count value. Only valid when
                                                                 GSERN()_LANE()_RX_5_BSTS[CTLEZ_ADAPT_STATUS] is deasserted. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_5_bsts_s cn; */
};
typedef union bdk_gsernx_lanex_rx_5_bsts bdk_gsernx_lanex_rx_5_bsts_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_5_BSTS(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_5_BSTS(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e0900016a0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_5_BSTS", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_5_BSTS(a,b) bdk_gsernx_lanex_rx_5_bsts_t
#define bustype_BDK_GSERNX_LANEX_RX_5_BSTS(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_5_BSTS(a,b) "GSERNX_LANEX_RX_5_BSTS"
#define device_bar_BDK_GSERNX_LANEX_RX_5_BSTS(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_5_BSTS(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_5_BSTS(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_6_bcfg
 *
 * GSER Lane RX Base Configuration Register 6
 * Adaptation controls for DFE CTLE and CTLEZ parameter.
 */
union bdk_gsernx_lanex_rx_6_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_6_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t ctlelte_leak_sgn      : 1;  /**< [ 63: 63](R/W) CTLELTE leak sign. 0 = Positive (add). 1 = Negative (subtract). */
        uint64_t ctlelte_leak          : 3;  /**< [ 62: 60](R/W) CTLELTE adaptation leak parameter setting.
                                                                   0x0 = 1/128.
                                                                   0x1 = 1/64.
                                                                   0x2 = 1/32.
                                                                   0x3 = 1/16.
                                                                   0x4 = 1/8.
                                                                   0x5 = 1/4.
                                                                   0x6 = 1/2.
                                                                   0x7 = Disabled. */
        uint64_t ctlelte_mu            : 3;  /**< [ 59: 57](R/W) CTLELTE adaptation mu parameter setting.
                                                                   0x0 = 1/16.
                                                                   0x1 = 1/8.
                                                                   0x2 = 1/4.
                                                                   0x3 = 1/2.
                                                                   0x4 = 1.
                                                                   0x5 = 2.
                                                                   0x6 = 4.
                                                                   0x7 = 8. */
        uint64_t ctlelte_timer_max     : 15; /**< [ 56: 42](R/W) CTLELTE adaptation timer maximum count value.
                                                                 15-bit field, maximum value 0x7FFF. */
        uint64_t ctlez_leak            : 3;  /**< [ 41: 39](R/W) CTLEZ adaptation leak parameter setting.
                                                                   0x0 = 1/128.
                                                                   0x1 = 1/64.
                                                                   0x2 = 1/32.
                                                                   0x3 = 1/16.
                                                                   0x4 = 1/8.
                                                                   0x5 = 1/4.
                                                                   0x6 = 1/2.
                                                                   0x7 = Disabled. */
        uint64_t ctlez_mu              : 3;  /**< [ 38: 36](R/W) CTLEZ adaptation mu parameter setting.
                                                                   0x0 = 1/16.
                                                                   0x1 = 1/8.
                                                                   0x2 = 1/4.
                                                                   0x3 = 1/2.
                                                                   0x4 = 1.
                                                                   0x5 = 2.
                                                                   0x6 = 4.
                                                                   0x7 = 8. */
        uint64_t ctlez_timer_max       : 15; /**< [ 35: 21](R/W) CTLEZ adaptation timer maximum count value.
                                                                 15-bit field, maximum value 0x7FFF. */
        uint64_t ctle_leak             : 3;  /**< [ 20: 18](R/W) DFE CTLE adaptation leak parameter setting.
                                                                   0x0 = 1/128.
                                                                   0x1 = 1/64.
                                                                   0x2 = 1/32.
                                                                   0x3 = 1/16.
                                                                   0x4 = 1/8.
                                                                   0x5 = 1/4.
                                                                   0x6 = 1/2.
                                                                   0x7 = Disabled. */
        uint64_t ctle_mu               : 3;  /**< [ 17: 15](R/W) DFE CTLE adaptation mu parameter setting.
                                                                   0x0 = 1/16.
                                                                   0x1 = 1/8.
                                                                   0x2 = 1/4.
                                                                   0x3 = 1/2.
                                                                   0x4 = 1.
                                                                   0x5 = 2.
                                                                   0x6 = 4.
                                                                   0x7 = 8. */
        uint64_t ctle_timer_max        : 15; /**< [ 14:  0](R/W) DFE CTLE adaptation timer maximum count value.
                                                                 15-bit field, maximum value 0x7FFF. */
#else /* Word 0 - Little Endian */
        uint64_t ctle_timer_max        : 15; /**< [ 14:  0](R/W) DFE CTLE adaptation timer maximum count value.
                                                                 15-bit field, maximum value 0x7FFF. */
        uint64_t ctle_mu               : 3;  /**< [ 17: 15](R/W) DFE CTLE adaptation mu parameter setting.
                                                                   0x0 = 1/16.
                                                                   0x1 = 1/8.
                                                                   0x2 = 1/4.
                                                                   0x3 = 1/2.
                                                                   0x4 = 1.
                                                                   0x5 = 2.
                                                                   0x6 = 4.
                                                                   0x7 = 8. */
        uint64_t ctle_leak             : 3;  /**< [ 20: 18](R/W) DFE CTLE adaptation leak parameter setting.
                                                                   0x0 = 1/128.
                                                                   0x1 = 1/64.
                                                                   0x2 = 1/32.
                                                                   0x3 = 1/16.
                                                                   0x4 = 1/8.
                                                                   0x5 = 1/4.
                                                                   0x6 = 1/2.
                                                                   0x7 = Disabled. */
        uint64_t ctlez_timer_max       : 15; /**< [ 35: 21](R/W) CTLEZ adaptation timer maximum count value.
                                                                 15-bit field, maximum value 0x7FFF. */
        uint64_t ctlez_mu              : 3;  /**< [ 38: 36](R/W) CTLEZ adaptation mu parameter setting.
                                                                   0x0 = 1/16.
                                                                   0x1 = 1/8.
                                                                   0x2 = 1/4.
                                                                   0x3 = 1/2.
                                                                   0x4 = 1.
                                                                   0x5 = 2.
                                                                   0x6 = 4.
                                                                   0x7 = 8. */
        uint64_t ctlez_leak            : 3;  /**< [ 41: 39](R/W) CTLEZ adaptation leak parameter setting.
                                                                   0x0 = 1/128.
                                                                   0x1 = 1/64.
                                                                   0x2 = 1/32.
                                                                   0x3 = 1/16.
                                                                   0x4 = 1/8.
                                                                   0x5 = 1/4.
                                                                   0x6 = 1/2.
                                                                   0x7 = Disabled. */
        uint64_t ctlelte_timer_max     : 15; /**< [ 56: 42](R/W) CTLELTE adaptation timer maximum count value.
                                                                 15-bit field, maximum value 0x7FFF. */
        uint64_t ctlelte_mu            : 3;  /**< [ 59: 57](R/W) CTLELTE adaptation mu parameter setting.
                                                                   0x0 = 1/16.
                                                                   0x1 = 1/8.
                                                                   0x2 = 1/4.
                                                                   0x3 = 1/2.
                                                                   0x4 = 1.
                                                                   0x5 = 2.
                                                                   0x6 = 4.
                                                                   0x7 = 8. */
        uint64_t ctlelte_leak          : 3;  /**< [ 62: 60](R/W) CTLELTE adaptation leak parameter setting.
                                                                   0x0 = 1/128.
                                                                   0x1 = 1/64.
                                                                   0x2 = 1/32.
                                                                   0x3 = 1/16.
                                                                   0x4 = 1/8.
                                                                   0x5 = 1/4.
                                                                   0x6 = 1/2.
                                                                   0x7 = Disabled. */
        uint64_t ctlelte_leak_sgn      : 1;  /**< [ 63: 63](R/W) CTLELTE leak sign. 0 = Positive (add). 1 = Negative (subtract). */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_6_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rx_6_bcfg bdk_gsernx_lanex_rx_6_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_6_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_6_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000cc0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_6_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_6_BCFG(a,b) bdk_gsernx_lanex_rx_6_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RX_6_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_6_BCFG(a,b) "GSERNX_LANEX_RX_6_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RX_6_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_6_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_6_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_6_bsts
 *
 * GSER Lane RX Base Status Register 6
 * Status registers for LMS adaptation.
 */
union bdk_gsernx_lanex_rx_6_bsts
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_6_bsts_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_48_63        : 16;
        uint64_t ctlelte_adapt_count   : 15; /**< [ 47: 33](RO/H) CTLELTE adaptation timer count value. Only valid when
                                                                 GSERN()_LANE()_RX_6_BSTS[CTLELTE_ADAPT_STATUS] is deasserted. */
        uint64_t ctlelte_adapt_status  : 1;  /**< [ 32: 32](RO/H) CTLELTE adaptation status. When 0, training is inactive. When 1, training is active. */
        uint64_t subrate_now           : 16; /**< [ 31: 16](RO/H) Subrate_Now counter value. Only valid when
                                                                 GSERN()_LANE()_RX_6_BSTS[CTLELTE_ADAPT_STATUS] is deasserted. */
        uint64_t upv_count             : 16; /**< [ 15:  0](RO/H) UPV (Up-Vote) counter value.  Only valid when
                                                                 GSERN()_LANE()_RX_6_BSTS[CTLELTE_ADAPT_STATUS] is deasserted. */
#else /* Word 0 - Little Endian */
        uint64_t upv_count             : 16; /**< [ 15:  0](RO/H) UPV (Up-Vote) counter value.  Only valid when
                                                                 GSERN()_LANE()_RX_6_BSTS[CTLELTE_ADAPT_STATUS] is deasserted. */
        uint64_t subrate_now           : 16; /**< [ 31: 16](RO/H) Subrate_Now counter value. Only valid when
                                                                 GSERN()_LANE()_RX_6_BSTS[CTLELTE_ADAPT_STATUS] is deasserted. */
        uint64_t ctlelte_adapt_status  : 1;  /**< [ 32: 32](RO/H) CTLELTE adaptation status. When 0, training is inactive. When 1, training is active. */
        uint64_t ctlelte_adapt_count   : 15; /**< [ 47: 33](RO/H) CTLELTE adaptation timer count value. Only valid when
                                                                 GSERN()_LANE()_RX_6_BSTS[CTLELTE_ADAPT_STATUS] is deasserted. */
        uint64_t reserved_48_63        : 16;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_6_bsts_s cn; */
};
typedef union bdk_gsernx_lanex_rx_6_bsts bdk_gsernx_lanex_rx_6_bsts_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_6_BSTS(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_6_BSTS(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e0900016b0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_6_BSTS", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_6_BSTS(a,b) bdk_gsernx_lanex_rx_6_bsts_t
#define bustype_BDK_GSERNX_LANEX_RX_6_BSTS(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_6_BSTS(a,b) "GSERNX_LANEX_RX_6_BSTS"
#define device_bar_BDK_GSERNX_LANEX_RX_6_BSTS(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_6_BSTS(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_6_BSTS(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_7_bcfg
 *
 * GSER Lane RX Base Configuration Register 7
 * Adaptation reset/mode for the DFE.
 */
union bdk_gsernx_lanex_rx_7_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_7_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_28_63        : 36;
        uint64_t gain_diff_max         : 4;  /**< [ 27: 24](R/W) Gain Difference Maximum Value. This value is used in the correlation function
                                                                 for the Pre-VGA Gain and VGA Gain adaptation.
                                                                 The gain difference maximum value is used to manage the adapation rates of these
                                                                 two parameters (Pre-VGA Gain and VGA Gain). */
        uint64_t prevga_gn_upv_rst     : 1;  /**< [ 23: 23](R/W) PREVGA_GN UPV count reset. Set to zero before running the receiver reset state
                                                                 machine to bring the receiver up using PREVGA_GN adaptation subrate gear-shifting.
                                                                 When enabled, the gear-shifting function can increment the current subrate
                                                                 when the UPV count equals the current subrate (scaled). May be set to 1 if
                                                                 gearshifting is not used. */
        uint64_t prevga_gn_subrate_rst : 1;  /**< [ 22: 22](R/W) PREVGA_GN subrate counter reset. The subrate counter controls the interval between LMS
                                                                 updates.
                                                                 When 1, the counter is reset. When 0, the counter increments to the value
                                                                 controlled by GSERN()_LANE()_RX_21_BCFG[PREVGA_GN_SUBRATE_INIT] and
                                                                 GSERN()_LANE()_RX_21_BCFG[PREVGA_GN_SUBRATE_FIN]. */
        uint64_t prevga_gn_rst         : 2;  /**< [ 21: 20](R/W) PREVGA_GN adaptation reset/mode setting.
                                                                   0x0 = Reset.
                                                                   0x1 = Run once adaptation.
                                                                   0x2 = Pause adaptation.
                                                                   0x3 = Run continuous adaptation. */
        uint64_t blwc_upv_rst          : 1;  /**< [ 19: 19](R/W) BLWC UPV count reset. Set to zero before running the receiver reset state
                                                                 machine to bring the receiver up using BLWC adaptation subrate gearshifting.
                                                                 When enabled, the gearshifting function can increment the current subrate
                                                                 when the UPV count equals the current subrate (scaled). May be set to 1 if
                                                                 gearshifting is not used. */
        uint64_t blwc_subrate_rst      : 1;  /**< [ 18: 18](R/W) BLWC subrate counter reset. The subrate counter controls the interval between LMS updates.
                                                                 When 1, the counter is reset. When 0, the counter increments to the value controlled by
                                                                 the BLWC_SUBRATE_INIT and BLWC_SUBRATE_FINAL registers. */
        uint64_t blwc_rst              : 2;  /**< [ 17: 16](R/W) BLWC adaptation reset/mode setting.
                                                                   0x0 = Reset.
                                                                   0x1 = Run once adaptation.
                                                                   0x2 = Pause adaptation.
                                                                   0x3 = Run continuous adaptation. */
        uint64_t afeos_upv_rst         : 1;  /**< [ 15: 15](R/W) AFEOS UPV count reset. Set to zero before running the receiver reset state
                                                                 machine to bring the receiver up using AFEOS adaptation subrate gearshifting.
                                                                 When enabled, the gearshifting function can increment the current subrate
                                                                 when the UPV count equals the current subrate (scaled). May be set to 1 if
                                                                 gearshifting is not used. */
        uint64_t afeos_subrate_rst     : 1;  /**< [ 14: 14](R/W) AFEOS subrate counter reset. The subrate counter controls the interval between LMS
                                                                 updates.
                                                                 When 1, the counter is reset. When 0, the counter increments to the value controlled by
                                                                 the AFEOS_SUBRATE_INIT and AFEOS_SUBRATE_FINAL registers. */
        uint64_t afeos_rst             : 2;  /**< [ 13: 12](R/W) AFE offset adaptation reset/mode setting.
                                                                   0x0 = Reset.
                                                                   0x1 = Run once adaptation.
                                                                   0x2 = Pause adaptation.
                                                                   0x3 = Run continuous adaptation. */
        uint64_t upv_rst               : 1;  /**< [ 11: 11](R/W) UPV count reset. Set to zero before running the receiver reset state
                                                                 machine to bring the receiver up using adaptation subrate gearshifting.
                                                                 When enabled, the gearshifting function can increment the current subrate
                                                                 when the UPV count equals the current subrate (scaled). May be set to 1 if
                                                                 gearshifting is not used. */
        uint64_t subrate_rst           : 1;  /**< [ 10: 10](R/W) Subrate counter reset. The subrate counter controls the interval between LMS updates.
                                                                 When 1, the counter is reset. When 0, the counter increments to the value controlled by
                                                                 the SUBRATE INIT and SUBRATE_FINAL registers. */
        uint64_t ctlelte_rst           : 2;  /**< [  9:  8](R/W) CTLELTE adaptation reset/mode setting.
                                                                   0x0 = Reset.
                                                                   0x1 = Run once adaptation.
                                                                   0x2 = Pause adaptation.
                                                                   0x3 = Run continuous adaptation. */
        uint64_t ctlez_rst             : 2;  /**< [  7:  6](R/W) CTLEZ adaptation reset/mode setting.
                                                                   0x0 = Reset.
                                                                   0x1 = Run once adaptation.
                                                                   0x2 = Pause adaptation.
                                                                   0x3 = Run continuous adaptation. */
        uint64_t vga_rst               : 2;  /**< [  5:  4](R/W) VGA Gain adaptation reset/mode setting.
                                                                   0x0 = Reset.
                                                                   0x1 = Run once adaptation.
                                                                   0x2 = Pause adaptation.
                                                                   0x3 = Run continuous adaptation. */
        uint64_t ctle_rst              : 2;  /**< [  3:  2](R/W) CTLE/CTLEZ adaptation reset/mode setting.
                                                                   0x0 = Reset.
                                                                   0x1 = Run once adaptation.
                                                                   0x2 = Pause adaptation.
                                                                   0x3 = Run continuous adaptation. */
        uint64_t dfe_rst               : 2;  /**< [  1:  0](R/W) DFE adaptation reset/mode setting.
                                                                   0x0 = Reset.
                                                                   0x1 = Run once adaptation.
                                                                   0x2 = Pause adaptation.
                                                                   0x3 = Run continuous adaptation. */
#else /* Word 0 - Little Endian */
        uint64_t dfe_rst               : 2;  /**< [  1:  0](R/W) DFE adaptation reset/mode setting.
                                                                   0x0 = Reset.
                                                                   0x1 = Run once adaptation.
                                                                   0x2 = Pause adaptation.
                                                                   0x3 = Run continuous adaptation. */
        uint64_t ctle_rst              : 2;  /**< [  3:  2](R/W) CTLE/CTLEZ adaptation reset/mode setting.
                                                                   0x0 = Reset.
                                                                   0x1 = Run once adaptation.
                                                                   0x2 = Pause adaptation.
                                                                   0x3 = Run continuous adaptation. */
        uint64_t vga_rst               : 2;  /**< [  5:  4](R/W) VGA Gain adaptation reset/mode setting.
                                                                   0x0 = Reset.
                                                                   0x1 = Run once adaptation.
                                                                   0x2 = Pause adaptation.
                                                                   0x3 = Run continuous adaptation. */
        uint64_t ctlez_rst             : 2;  /**< [  7:  6](R/W) CTLEZ adaptation reset/mode setting.
                                                                   0x0 = Reset.
                                                                   0x1 = Run once adaptation.
                                                                   0x2 = Pause adaptation.
                                                                   0x3 = Run continuous adaptation. */
        uint64_t ctlelte_rst           : 2;  /**< [  9:  8](R/W) CTLELTE adaptation reset/mode setting.
                                                                   0x0 = Reset.
                                                                   0x1 = Run once adaptation.
                                                                   0x2 = Pause adaptation.
                                                                   0x3 = Run continuous adaptation. */
        uint64_t subrate_rst           : 1;  /**< [ 10: 10](R/W) Subrate counter reset. The subrate counter controls the interval between LMS updates.
                                                                 When 1, the counter is reset. When 0, the counter increments to the value controlled by
                                                                 the SUBRATE INIT and SUBRATE_FINAL registers. */
        uint64_t upv_rst               : 1;  /**< [ 11: 11](R/W) UPV count reset. Set to zero before running the receiver reset state
                                                                 machine to bring the receiver up using adaptation subrate gearshifting.
                                                                 When enabled, the gearshifting function can increment the current subrate
                                                                 when the UPV count equals the current subrate (scaled). May be set to 1 if
                                                                 gearshifting is not used. */
        uint64_t afeos_rst             : 2;  /**< [ 13: 12](R/W) AFE offset adaptation reset/mode setting.
                                                                   0x0 = Reset.
                                                                   0x1 = Run once adaptation.
                                                                   0x2 = Pause adaptation.
                                                                   0x3 = Run continuous adaptation. */
        uint64_t afeos_subrate_rst     : 1;  /**< [ 14: 14](R/W) AFEOS subrate counter reset. The subrate counter controls the interval between LMS
                                                                 updates.
                                                                 When 1, the counter is reset. When 0, the counter increments to the value controlled by
                                                                 the AFEOS_SUBRATE_INIT and AFEOS_SUBRATE_FINAL registers. */
        uint64_t afeos_upv_rst         : 1;  /**< [ 15: 15](R/W) AFEOS UPV count reset. Set to zero before running the receiver reset state
                                                                 machine to bring the receiver up using AFEOS adaptation subrate gearshifting.
                                                                 When enabled, the gearshifting function can increment the current subrate
                                                                 when the UPV count equals the current subrate (scaled). May be set to 1 if
                                                                 gearshifting is not used. */
        uint64_t blwc_rst              : 2;  /**< [ 17: 16](R/W) BLWC adaptation reset/mode setting.
                                                                   0x0 = Reset.
                                                                   0x1 = Run once adaptation.
                                                                   0x2 = Pause adaptation.
                                                                   0x3 = Run continuous adaptation. */
        uint64_t blwc_subrate_rst      : 1;  /**< [ 18: 18](R/W) BLWC subrate counter reset. The subrate counter controls the interval between LMS updates.
                                                                 When 1, the counter is reset. When 0, the counter increments to the value controlled by
                                                                 the BLWC_SUBRATE_INIT and BLWC_SUBRATE_FINAL registers. */
        uint64_t blwc_upv_rst          : 1;  /**< [ 19: 19](R/W) BLWC UPV count reset. Set to zero before running the receiver reset state
                                                                 machine to bring the receiver up using BLWC adaptation subrate gearshifting.
                                                                 When enabled, the gearshifting function can increment the current subrate
                                                                 when the UPV count equals the current subrate (scaled). May be set to 1 if
                                                                 gearshifting is not used. */
        uint64_t prevga_gn_rst         : 2;  /**< [ 21: 20](R/W) PREVGA_GN adaptation reset/mode setting.
                                                                   0x0 = Reset.
                                                                   0x1 = Run once adaptation.
                                                                   0x2 = Pause adaptation.
                                                                   0x3 = Run continuous adaptation. */
        uint64_t prevga_gn_subrate_rst : 1;  /**< [ 22: 22](R/W) PREVGA_GN subrate counter reset. The subrate counter controls the interval between LMS
                                                                 updates.
                                                                 When 1, the counter is reset. When 0, the counter increments to the value
                                                                 controlled by GSERN()_LANE()_RX_21_BCFG[PREVGA_GN_SUBRATE_INIT] and
                                                                 GSERN()_LANE()_RX_21_BCFG[PREVGA_GN_SUBRATE_FIN]. */
        uint64_t prevga_gn_upv_rst     : 1;  /**< [ 23: 23](R/W) PREVGA_GN UPV count reset. Set to zero before running the receiver reset state
                                                                 machine to bring the receiver up using PREVGA_GN adaptation subrate gear-shifting.
                                                                 When enabled, the gear-shifting function can increment the current subrate
                                                                 when the UPV count equals the current subrate (scaled). May be set to 1 if
                                                                 gearshifting is not used. */
        uint64_t gain_diff_max         : 4;  /**< [ 27: 24](R/W) Gain Difference Maximum Value. This value is used in the correlation function
                                                                 for the Pre-VGA Gain and VGA Gain adaptation.
                                                                 The gain difference maximum value is used to manage the adapation rates of these
                                                                 two parameters (Pre-VGA Gain and VGA Gain). */
        uint64_t reserved_28_63        : 36;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_7_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rx_7_bcfg bdk_gsernx_lanex_rx_7_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_7_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_7_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000cd0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_7_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_7_BCFG(a,b) bdk_gsernx_lanex_rx_7_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RX_7_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_7_BCFG(a,b) "GSERNX_LANEX_RX_7_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RX_7_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_7_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_7_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_7_bsts
 *
 * GSER Lane RX Base Status Register 7
 * Configuration registers for LMS adaptation. Current Deadband settings for adaptation.
 */
union bdk_gsernx_lanex_rx_7_bsts
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_7_bsts_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_60_63        : 4;
        uint64_t ctlelte_deadband_now  : 12; /**< [ 59: 48](RO/H) Current 12-bit integer value of CTLELTE adaptation deadband
                                                                 setting. Note that the 8 fraction bits of the accumulator are not
                                                                 reported. Only valid when GSERN()_LANE()_RX_6_BSTS[CTLELTE_ADAPT_STATUS] is
                                                                 asserted. */
        uint64_t ctlez_deadband_now    : 12; /**< [ 47: 36](RO/H) Current 12-bit integer value of CTLEZ adaptation deadband
                                                                 setting. Note that the 8 fraction bits of the accumulator are not
                                                                 reported. Only valid when GSERN()_LANE()_RX_5_BSTS[CTLEZ_ADAPT_STATUS] is
                                                                 deasserted. */
        uint64_t ctle_deadband_now     : 12; /**< [ 35: 24](RO/H) Current 12-bit integer value of CTLE adaptation deadband
                                                                 setting. Note that the 8 fraction bits of the accumulator are not
                                                                 reported. Only valid when GSERN()_LANE()_RX_5_BSTS[CTLE_ADAPT_STATUS] is
                                                                 deasserted. */
        uint64_t dfe_deadband_now      : 12; /**< [ 23: 12](RO/H) Current 12-bit integer value of Coeff Adaptation deadband
                                                                 setting. Note that the 8 fraction bits of the accumulator are not
                                                                 reported. Only valid when GSERN()_LANE()_RX_5_BSTS[DFE_ADAPT_STATUS] is deasserted. */
        uint64_t vga_deadband_now      : 12; /**< [ 11:  0](RO/H) Current 12-bit integer value of VGA adaptation deadband
                                                                 setting. Note that the 8 fraction bits of the accumulator are not
                                                                 reported. Only valid when GSERN()_LANE()_RX_5_BSTS[VGA_ADAPT_STATUS] is deasserted. */
#else /* Word 0 - Little Endian */
        uint64_t vga_deadband_now      : 12; /**< [ 11:  0](RO/H) Current 12-bit integer value of VGA adaptation deadband
                                                                 setting. Note that the 8 fraction bits of the accumulator are not
                                                                 reported. Only valid when GSERN()_LANE()_RX_5_BSTS[VGA_ADAPT_STATUS] is deasserted. */
        uint64_t dfe_deadband_now      : 12; /**< [ 23: 12](RO/H) Current 12-bit integer value of Coeff Adaptation deadband
                                                                 setting. Note that the 8 fraction bits of the accumulator are not
                                                                 reported. Only valid when GSERN()_LANE()_RX_5_BSTS[DFE_ADAPT_STATUS] is deasserted. */
        uint64_t ctle_deadband_now     : 12; /**< [ 35: 24](RO/H) Current 12-bit integer value of CTLE adaptation deadband
                                                                 setting. Note that the 8 fraction bits of the accumulator are not
                                                                 reported. Only valid when GSERN()_LANE()_RX_5_BSTS[CTLE_ADAPT_STATUS] is
                                                                 deasserted. */
        uint64_t ctlez_deadband_now    : 12; /**< [ 47: 36](RO/H) Current 12-bit integer value of CTLEZ adaptation deadband
                                                                 setting. Note that the 8 fraction bits of the accumulator are not
                                                                 reported. Only valid when GSERN()_LANE()_RX_5_BSTS[CTLEZ_ADAPT_STATUS] is
                                                                 deasserted. */
        uint64_t ctlelte_deadband_now  : 12; /**< [ 59: 48](RO/H) Current 12-bit integer value of CTLELTE adaptation deadband
                                                                 setting. Note that the 8 fraction bits of the accumulator are not
                                                                 reported. Only valid when GSERN()_LANE()_RX_6_BSTS[CTLELTE_ADAPT_STATUS] is
                                                                 asserted. */
        uint64_t reserved_60_63        : 4;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_7_bsts_s cn; */
};
typedef union bdk_gsernx_lanex_rx_7_bsts bdk_gsernx_lanex_rx_7_bsts_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_7_BSTS(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_7_BSTS(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e0900016c0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_7_BSTS", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_7_BSTS(a,b) bdk_gsernx_lanex_rx_7_bsts_t
#define bustype_BDK_GSERNX_LANEX_RX_7_BSTS(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_7_BSTS(a,b) "GSERNX_LANEX_RX_7_BSTS"
#define device_bar_BDK_GSERNX_LANEX_RX_7_BSTS(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_7_BSTS(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_7_BSTS(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_8_bcfg
 *
 * GSER Lane RX Base Configuration Register 8
 * Configuration registers for LMS adaptation
 * Adaptation controls for Subrate parameters.
 */
union bdk_gsernx_lanex_rx_8_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_8_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_50_63        : 14;
        uint64_t dfe_edgemode_ovrd     : 1;  /**< [ 49: 49](R/W) 0 = Selects non-transition bits for DFE adaptation.
                                                                 1 = Selects transition bits for DFE adaptation.

                                                                 It applies the mode to the I, Q, and X paths.
                                                                 GSERN()_LANE()_EYE_CTL_2[CAPTURE_EDGEMODE] sets the E path. */
        uint64_t dfe_edgemode_ovrd_en  : 1;  /**< [ 48: 48](R/W) 0 = DFE state machine controls DFE edge mode select.
                                                                 Currently, the DFE FSM will time interleave between both
                                                                 edge modes (i.e. 50% non-transition, 50% transition).

                                                                 1 = [DFE_EDGEMODE_OVRD] controls DFE edge mode select. */
        uint64_t reserved_35_47        : 13;
        uint64_t subrate_scale         : 3;  /**< [ 34: 32](R/W) Subrate now counter scaling value for compare against Up Vote counter.
                                                                   0x0 = 1/32.
                                                                   0x1 = 1/16.
                                                                   0x2 = 3/32.
                                                                   0x3 = 1/8.
                                                                   0x4 = 3/16.
                                                                   0x5 = 1/4.
                                                                   0x6 = 3/8.
                                                                   0x7 = 1/2. */
        uint64_t subrate_init          : 16; /**< [ 31: 16](R/W) Subrate counter initial value. Sets the starting value for the LMS update interval, if
                                                                 subrate gearshifting is enabled.
                                                                 Set [SUBRATE_INIT] = [SUBRATE_FINAL] if subrate gearshifting is not
                                                                 enabled. */
        uint64_t subrate_final         : 16; /**< [ 15:  0](R/W) Subrate counter final value. Sets the final value for the LMS update interval, if subrate
                                                                 gearshifting is enabled.
                                                                 Set [SUBRATE_INIT] = [SUBRATE_FINAL] if subrate gearshifting is not
                                                                 enabled. */
#else /* Word 0 - Little Endian */
        uint64_t subrate_final         : 16; /**< [ 15:  0](R/W) Subrate counter final value. Sets the final value for the LMS update interval, if subrate
                                                                 gearshifting is enabled.
                                                                 Set [SUBRATE_INIT] = [SUBRATE_FINAL] if subrate gearshifting is not
                                                                 enabled. */
        uint64_t subrate_init          : 16; /**< [ 31: 16](R/W) Subrate counter initial value. Sets the starting value for the LMS update interval, if
                                                                 subrate gearshifting is enabled.
                                                                 Set [SUBRATE_INIT] = [SUBRATE_FINAL] if subrate gearshifting is not
                                                                 enabled. */
        uint64_t subrate_scale         : 3;  /**< [ 34: 32](R/W) Subrate now counter scaling value for compare against Up Vote counter.
                                                                   0x0 = 1/32.
                                                                   0x1 = 1/16.
                                                                   0x2 = 3/32.
                                                                   0x3 = 1/8.
                                                                   0x4 = 3/16.
                                                                   0x5 = 1/4.
                                                                   0x6 = 3/8.
                                                                   0x7 = 1/2. */
        uint64_t reserved_35_47        : 13;
        uint64_t dfe_edgemode_ovrd_en  : 1;  /**< [ 48: 48](R/W) 0 = DFE state machine controls DFE edge mode select.
                                                                 Currently, the DFE FSM will time interleave between both
                                                                 edge modes (i.e. 50% non-transition, 50% transition).

                                                                 1 = [DFE_EDGEMODE_OVRD] controls DFE edge mode select. */
        uint64_t dfe_edgemode_ovrd     : 1;  /**< [ 49: 49](R/W) 0 = Selects non-transition bits for DFE adaptation.
                                                                 1 = Selects transition bits for DFE adaptation.

                                                                 It applies the mode to the I, Q, and X paths.
                                                                 GSERN()_LANE()_EYE_CTL_2[CAPTURE_EDGEMODE] sets the E path. */
        uint64_t reserved_50_63        : 14;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_8_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rx_8_bcfg bdk_gsernx_lanex_rx_8_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_8_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_8_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000ce0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_8_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_8_BCFG(a,b) bdk_gsernx_lanex_rx_8_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RX_8_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_8_BCFG(a,b) "GSERNX_LANEX_RX_8_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RX_8_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_8_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_8_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_8_bsts
 *
 * GSER Lane RX Base Status Register 8
 * Status registers for AFEOS LMS adaptation. Current AFEOS Deadband settings for adaptation.
 */
union bdk_gsernx_lanex_rx_8_bsts
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_8_bsts_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t afeos_subrate_now     : 16; /**< [ 63: 48](RO/H) AFEOS subrate_now counter value. Only valid when
                                                                 GSERN()_LANE()_RX_8_BSTS[AFEOS_ADAPT_STATUS] is clear. */
        uint64_t reserved_44_47        : 4;
        uint64_t afeos_upv_count       : 16; /**< [ 43: 28](RO/H) AFE up-vote counter value.  Only valid when
                                                                 GSERN()_LANE()_RX_8_BSTS[AFEOS_ADAPT_STATUS] is clear. */
        uint64_t afeos_adapt_status    : 1;  /**< [ 27: 27](RO/H) AFEOS adaptation status. When 0, training is inactive. When 1, training is active. */
        uint64_t afeos_adapt_count     : 15; /**< [ 26: 12](RO/H) AFEOS adaptation timer current count value.  15-bit field, maximum value 0x7FFF.
                                                                 Only valid when GSERN()_LANE()_RX_8_BSTS[AFEOS_ADAPT_STATUS] is clear. */
        uint64_t afeos_deadband_now    : 12; /**< [ 11:  0](RO/H) Current 12-bit integer value of AFEOS adaptation deadband
                                                                 setting. Note that the 8 fraction bits of the accumulator are not
                                                                 reported. Only valid when GSERN()_LANE()_RX_8_BSTS[AFEOS_ADAPT_STATUS] is clear. */
#else /* Word 0 - Little Endian */
        uint64_t afeos_deadband_now    : 12; /**< [ 11:  0](RO/H) Current 12-bit integer value of AFEOS adaptation deadband
                                                                 setting. Note that the 8 fraction bits of the accumulator are not
                                                                 reported. Only valid when GSERN()_LANE()_RX_8_BSTS[AFEOS_ADAPT_STATUS] is clear. */
        uint64_t afeos_adapt_count     : 15; /**< [ 26: 12](RO/H) AFEOS adaptation timer current count value.  15-bit field, maximum value 0x7FFF.
                                                                 Only valid when GSERN()_LANE()_RX_8_BSTS[AFEOS_ADAPT_STATUS] is clear. */
        uint64_t afeos_adapt_status    : 1;  /**< [ 27: 27](RO/H) AFEOS adaptation status. When 0, training is inactive. When 1, training is active. */
        uint64_t afeos_upv_count       : 16; /**< [ 43: 28](RO/H) AFE up-vote counter value.  Only valid when
                                                                 GSERN()_LANE()_RX_8_BSTS[AFEOS_ADAPT_STATUS] is clear. */
        uint64_t reserved_44_47        : 4;
        uint64_t afeos_subrate_now     : 16; /**< [ 63: 48](RO/H) AFEOS subrate_now counter value. Only valid when
                                                                 GSERN()_LANE()_RX_8_BSTS[AFEOS_ADAPT_STATUS] is clear. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_8_bsts_s cn; */
};
typedef union bdk_gsernx_lanex_rx_8_bsts bdk_gsernx_lanex_rx_8_bsts_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_8_BSTS(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_8_BSTS(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e0900016d0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_8_BSTS", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_8_BSTS(a,b) bdk_gsernx_lanex_rx_8_bsts_t
#define bustype_BDK_GSERNX_LANEX_RX_8_BSTS(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_8_BSTS(a,b) "GSERNX_LANEX_RX_8_BSTS"
#define device_bar_BDK_GSERNX_LANEX_RX_8_BSTS(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_8_BSTS(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_8_BSTS(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_9_bcfg
 *
 * GSER Lane RX Base Configuration Register 9
 * Configuration registers for LMS adaptation. Deadband settings for adaptation.
 */
union bdk_gsernx_lanex_rx_9_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_9_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_60_63        : 4;
        uint64_t ctlelte_deadband      : 12; /**< [ 59: 48](R/W) CTLELTE adaptation deadband settings.
                                                                 12-bit field to match accumulator, but typically a value less than 0x0FF is used. */
        uint64_t ctlez_deadband        : 12; /**< [ 47: 36](R/W) CTLEZ adaptation deadband settings.
                                                                 12-bit field to match accumulator, but typically a value less than 0x0FF is used. */
        uint64_t ctle_deadband         : 12; /**< [ 35: 24](R/W) CTLE adaptation deadband settings.
                                                                 12-bit field to match accumulator, but typically a value less than 0x0FF is used. */
        uint64_t dfe_deadband          : 12; /**< [ 23: 12](R/W) Coeff adaptation deadband settings.
                                                                 12-bit field to match accumulator, but typically a value less than 0x0FF is used. */
        uint64_t vga_deadband          : 12; /**< [ 11:  0](R/W) VGA adaptation deadband settings.
                                                                 12-bit field to match accumulator, but typically a value less than 0x0FF is used. */
#else /* Word 0 - Little Endian */
        uint64_t vga_deadband          : 12; /**< [ 11:  0](R/W) VGA adaptation deadband settings.
                                                                 12-bit field to match accumulator, but typically a value less than 0x0FF is used. */
        uint64_t dfe_deadband          : 12; /**< [ 23: 12](R/W) Coeff adaptation deadband settings.
                                                                 12-bit field to match accumulator, but typically a value less than 0x0FF is used. */
        uint64_t ctle_deadband         : 12; /**< [ 35: 24](R/W) CTLE adaptation deadband settings.
                                                                 12-bit field to match accumulator, but typically a value less than 0x0FF is used. */
        uint64_t ctlez_deadband        : 12; /**< [ 47: 36](R/W) CTLEZ adaptation deadband settings.
                                                                 12-bit field to match accumulator, but typically a value less than 0x0FF is used. */
        uint64_t ctlelte_deadband      : 12; /**< [ 59: 48](R/W) CTLELTE adaptation deadband settings.
                                                                 12-bit field to match accumulator, but typically a value less than 0x0FF is used. */
        uint64_t reserved_60_63        : 4;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_9_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rx_9_bcfg bdk_gsernx_lanex_rx_9_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_9_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_9_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000cf0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_9_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_9_BCFG(a,b) bdk_gsernx_lanex_rx_9_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RX_9_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_9_BCFG(a,b) "GSERNX_LANEX_RX_9_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RX_9_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_9_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_9_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_9_bsts
 *
 * GSER Lane RX Base Status Register 9
 * Status registers for DFE LMS adaptation.
 */
union bdk_gsernx_lanex_rx_9_bsts
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_9_bsts_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_12_63        : 52;
        uint64_t dfe_c1_deadband_now   : 12; /**< [ 11:  0](RO/H) Current 12-bit integer value of Coeff adaptation deadband
                                                                 setting. Note that the 8 fraction bits of the accumulator are not
                                                                 reported. Only valid when GSERN()_LANE()_RX_5_BSTS[DFE_ADAPT_STATUS] is clear. */
#else /* Word 0 - Little Endian */
        uint64_t dfe_c1_deadband_now   : 12; /**< [ 11:  0](RO/H) Current 12-bit integer value of Coeff adaptation deadband
                                                                 setting. Note that the 8 fraction bits of the accumulator are not
                                                                 reported. Only valid when GSERN()_LANE()_RX_5_BSTS[DFE_ADAPT_STATUS] is clear. */
        uint64_t reserved_12_63        : 52;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_9_bsts_s cn; */
};
typedef union bdk_gsernx_lanex_rx_9_bsts bdk_gsernx_lanex_rx_9_bsts_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_9_BSTS(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_9_BSTS(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e0900016e0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_9_BSTS", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_9_BSTS(a,b) bdk_gsernx_lanex_rx_9_bsts_t
#define bustype_BDK_GSERNX_LANEX_RX_9_BSTS(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_9_BSTS(a,b) "GSERNX_LANEX_RX_9_BSTS"
#define device_bar_BDK_GSERNX_LANEX_RX_9_BSTS(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_9_BSTS(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_9_BSTS(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_idle_cal_cfg
 *
 * GSER Lane RX Idle Offset Dynamic ReCalibration Control Register
 * Idle dynamic recalibration FSM control register.  Used to configure the duration,
 * frequency, and modes for the dynamic recalibration of the idle offset.  Also,
 * allows for enable/disable of this feature.
 */
union bdk_gsernx_lanex_rx_idle_cal_cfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_idle_cal_cfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t idle_recal_disable    : 1;  /**< [ 63: 63](R/W) Single bit for enabling or disability the recalibration if idle offset.  (This
                                                                 bit does not affect the initial calibration of the idle offset).
                                                                   0 = Allow idle recalibration to run.
                                                                   1 = Disable dynamic recalibration of the idle offset. */
        uint64_t idle_recal_oob_mode_disable : 1;/**< [ 62: 62](R/W) Single bit for enabling or disability the dynamic recalibration OOB delay feature.
                                                                 This feature allows us to push out any idle offset recalibration when any OOB
                                                                 activity has been detected on the idle signal.
                                                                   0 = Allow idle recalibration to detect OOB transactions and delay recalibration
                                                                   1 = Disable OOB transaction detection and do NOT delay recalibration. */
        uint64_t idle_oob_adder_counter_clear : 1;/**< [ 61: 61](R/W) This bit one set to high, forces the counter counting the number of OOB caused
                                                                 dealys to 8'h00.  This is a static clear signal and has to be asserted to enable
                                                                 the counter to resume counting.  The count is in terms of the number of
                                                                 RECALIBRATION_OOB_COUNT_ADDER increments.
                                                                   0 = Allow [OOB_DELAY_ADDER_COUNT] to increment.
                                                                   1 = Forces [OOB_DELAY_ADDER_COUNT] to 0x0.

                                                                 Internal:
                                                                 FIXME no such field RECALIBRATION_OOB_COUNT_ADDER then remove above exempt attribute. */
        uint64_t reserved_40_60        : 21;
        uint64_t max_oob_adder_count   : 8;  /**< [ 39: 32](R/W) Maximum number of OOB forced pushouts of the idle recalibrations allowed.  If the
                                                                 number of pushouts matches this number, the idle offset is forced to recalibrate
                                                                 regardless of the state of the link. */
        uint64_t oob_delay_adder_count : 32; /**< [ 31:  0](R/W) Number of svc_clk ticks allowed to delay the idle recalibration.  Default is equal to
                                                                 1 second based on a 10 ns service clock cycle time. */
#else /* Word 0 - Little Endian */
        uint64_t oob_delay_adder_count : 32; /**< [ 31:  0](R/W) Number of svc_clk ticks allowed to delay the idle recalibration.  Default is equal to
                                                                 1 second based on a 10 ns service clock cycle time. */
        uint64_t max_oob_adder_count   : 8;  /**< [ 39: 32](R/W) Maximum number of OOB forced pushouts of the idle recalibrations allowed.  If the
                                                                 number of pushouts matches this number, the idle offset is forced to recalibrate
                                                                 regardless of the state of the link. */
        uint64_t reserved_40_60        : 21;
        uint64_t idle_oob_adder_counter_clear : 1;/**< [ 61: 61](R/W) This bit one set to high, forces the counter counting the number of OOB caused
                                                                 dealys to 8'h00.  This is a static clear signal and has to be asserted to enable
                                                                 the counter to resume counting.  The count is in terms of the number of
                                                                 RECALIBRATION_OOB_COUNT_ADDER increments.
                                                                   0 = Allow [OOB_DELAY_ADDER_COUNT] to increment.
                                                                   1 = Forces [OOB_DELAY_ADDER_COUNT] to 0x0.

                                                                 Internal:
                                                                 FIXME no such field RECALIBRATION_OOB_COUNT_ADDER then remove above exempt attribute. */
        uint64_t idle_recal_oob_mode_disable : 1;/**< [ 62: 62](R/W) Single bit for enabling or disability the dynamic recalibration OOB delay feature.
                                                                 This feature allows us to push out any idle offset recalibration when any OOB
                                                                 activity has been detected on the idle signal.
                                                                   0 = Allow idle recalibration to detect OOB transactions and delay recalibration
                                                                   1 = Disable OOB transaction detection and do NOT delay recalibration. */
        uint64_t idle_recal_disable    : 1;  /**< [ 63: 63](R/W) Single bit for enabling or disability the recalibration if idle offset.  (This
                                                                 bit does not affect the initial calibration of the idle offset).
                                                                   0 = Allow idle recalibration to run.
                                                                   1 = Disable dynamic recalibration of the idle offset. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_idle_cal_cfg_s cn; */
};
typedef union bdk_gsernx_lanex_rx_idle_cal_cfg bdk_gsernx_lanex_rx_idle_cal_cfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_IDLE_CAL_CFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_IDLE_CAL_CFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090001530ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_IDLE_CAL_CFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_IDLE_CAL_CFG(a,b) bdk_gsernx_lanex_rx_idle_cal_cfg_t
#define bustype_BDK_GSERNX_LANEX_RX_IDLE_CAL_CFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_IDLE_CAL_CFG(a,b) "GSERNX_LANEX_RX_IDLE_CAL_CFG"
#define device_bar_BDK_GSERNX_LANEX_RX_IDLE_CAL_CFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_IDLE_CAL_CFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_IDLE_CAL_CFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_idle_recal_cnt
 *
 * GSER Lane RX Idle Duration Count Before ReCalibration Register
 * Count used to specify the duration of time between idle offset recalibrations.
 */
union bdk_gsernx_lanex_rx_idle_recal_cnt
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_idle_recal_cnt_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_48_63        : 16;
        uint64_t idle_recal_duration_count : 48;/**< [ 47:  0](R/W) Number of svc_clk ticks to specify the delay between idle recalibration
                                                                 triggers.  Default is equal to
                                                                 1 min based on a 10ns svc_clk cycle time. */
#else /* Word 0 - Little Endian */
        uint64_t idle_recal_duration_count : 48;/**< [ 47:  0](R/W) Number of svc_clk ticks to specify the delay between idle recalibration
                                                                 triggers.  Default is equal to
                                                                 1 min based on a 10ns svc_clk cycle time. */
        uint64_t reserved_48_63        : 16;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_idle_recal_cnt_s cn; */
};
typedef union bdk_gsernx_lanex_rx_idle_recal_cnt bdk_gsernx_lanex_rx_idle_recal_cnt_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_IDLE_RECAL_CNT(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_IDLE_RECAL_CNT(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090001540ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_IDLE_RECAL_CNT", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_IDLE_RECAL_CNT(a,b) bdk_gsernx_lanex_rx_idle_recal_cnt_t
#define bustype_BDK_GSERNX_LANEX_RX_IDLE_RECAL_CNT(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_IDLE_RECAL_CNT(a,b) "GSERNX_LANEX_RX_IDLE_RECAL_CNT"
#define device_bar_BDK_GSERNX_LANEX_RX_IDLE_RECAL_CNT(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_IDLE_RECAL_CNT(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_IDLE_RECAL_CNT(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_idledet_1_bcfg
 *
 * GSER Lane RX Idle Detection Filter Control Register 1
 * Parameters controlling the digital filter of the analog receiver's raw idle
 * signal. Setting all fields to 1, i.e., N0=N1=I0=I1=L0=L1=1, results in no filtering.
 */
union bdk_gsernx_lanex_rx_idledet_1_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_idledet_1_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reset_filter          : 1;  /**< [ 63: 63](R/W) Reset for the digital filter of the analog receiver's raw idle signal. Set the
                                                                 other fields in this register as desired before releasing [RESET_FILTER]. Note
                                                                 that while the filter is in reset, the filter output will be high, indicating
                                                                 idle.
                                                                   0 = Allow filter to run.
                                                                   1 = Hold filter in reset. */
        uint64_t i1                    : 4;  /**< [ 62: 59](R/W) Ones count increment parameter. When a one in the raw idle signal from the custom
                                                                 macro is encountered, the ones count is incremented by this amount, saturating
                                                                 to a maximum of [N1]. */
        uint64_t i0                    : 4;  /**< [ 58: 55](R/W) Zeros count increment parameter. When a zero in the raw idle signal from the
                                                                 custom macro is encountered, the zeros count is incremented by this amount,
                                                                 saturating to a maximum count of [N0]. */
        uint64_t reserved_54           : 1;
        uint64_t n1                    : 27; /**< [ 53: 27](R/W) Threshold for the count of ones in the raw idle signal from the custom macro
                                                                 required to assert the idle filter output. */
        uint64_t n0                    : 27; /**< [ 26:  0](R/W) Threshold for the count of zeros in the raw idle signal from the custom macro
                                                                 required to deassert the idle filter output. */
#else /* Word 0 - Little Endian */
        uint64_t n0                    : 27; /**< [ 26:  0](R/W) Threshold for the count of zeros in the raw idle signal from the custom macro
                                                                 required to deassert the idle filter output. */
        uint64_t n1                    : 27; /**< [ 53: 27](R/W) Threshold for the count of ones in the raw idle signal from the custom macro
                                                                 required to assert the idle filter output. */
        uint64_t reserved_54           : 1;
        uint64_t i0                    : 4;  /**< [ 58: 55](R/W) Zeros count increment parameter. When a zero in the raw idle signal from the
                                                                 custom macro is encountered, the zeros count is incremented by this amount,
                                                                 saturating to a maximum count of [N0]. */
        uint64_t i1                    : 4;  /**< [ 62: 59](R/W) Ones count increment parameter. When a one in the raw idle signal from the custom
                                                                 macro is encountered, the ones count is incremented by this amount, saturating
                                                                 to a maximum of [N1]. */
        uint64_t reset_filter          : 1;  /**< [ 63: 63](R/W) Reset for the digital filter of the analog receiver's raw idle signal. Set the
                                                                 other fields in this register as desired before releasing [RESET_FILTER]. Note
                                                                 that while the filter is in reset, the filter output will be high, indicating
                                                                 idle.
                                                                   0 = Allow filter to run.
                                                                   1 = Hold filter in reset. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_idledet_1_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rx_idledet_1_bcfg bdk_gsernx_lanex_rx_idledet_1_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_IDLEDET_1_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_IDLEDET_1_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090001100ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_IDLEDET_1_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_IDLEDET_1_BCFG(a,b) bdk_gsernx_lanex_rx_idledet_1_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RX_IDLEDET_1_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_IDLEDET_1_BCFG(a,b) "GSERNX_LANEX_RX_IDLEDET_1_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RX_IDLEDET_1_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_IDLEDET_1_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_IDLEDET_1_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_idledet_2_bcfg
 *
 * GSER Lane RX Idle Detection Filter Control Register 2
 * Parameters controlling the digital filter of the analog receiver's raw idle
 * signal. Setting all fields to 1, i.e., N0=N1=I0=I1=L0=L1=1, results in no filtering.
 */
union bdk_gsernx_lanex_rx_idledet_2_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_idledet_2_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_56_63        : 8;
        uint64_t frc_en                : 1;  /**< [ 55: 55](R/W) Force enable.
                                                                 0 = Use the filter output based on the input from the analog idle detector.
                                                                 1 = Force the output of the digital idle filter to the value specified by
                                                                 [FRC_VAL]. */
        uint64_t frc_val               : 1;  /**< [ 54: 54](R/W) When [FRC_EN] is set to 1, this will be the value forced at the output of the
                                                                 digital idle filter. */
        uint64_t l1                    : 27; /**< [ 53: 27](R/W) Ones count leak parameter. When a zero in the raw idle signal from the custom
                                                                 macro is encountered, the ones count is decremented by this amount, saturating
                                                                 to a minimum count of zero. (Set L1=N1 and I1=1 for a simple run-of-N1 ones to
                                                                 assert the filter output.) The minimum setting for this field is 1. */
        uint64_t l0                    : 27; /**< [ 26:  0](R/W) Zeros count leak parameter. When a one in the raw idle signal from the custom
                                                                 macro is encountered, the zeros count is decremented by this amount, saturating
                                                                 to a minimum count of zero. (Set L0=N0 and I0=1 for a simple run-of-N0 zeros to
                                                                 deassert the filter output.) The minimum setting for this field is 1. */
#else /* Word 0 - Little Endian */
        uint64_t l0                    : 27; /**< [ 26:  0](R/W) Zeros count leak parameter. When a one in the raw idle signal from the custom
                                                                 macro is encountered, the zeros count is decremented by this amount, saturating
                                                                 to a minimum count of zero. (Set L0=N0 and I0=1 for a simple run-of-N0 zeros to
                                                                 deassert the filter output.) The minimum setting for this field is 1. */
        uint64_t l1                    : 27; /**< [ 53: 27](R/W) Ones count leak parameter. When a zero in the raw idle signal from the custom
                                                                 macro is encountered, the ones count is decremented by this amount, saturating
                                                                 to a minimum count of zero. (Set L1=N1 and I1=1 for a simple run-of-N1 ones to
                                                                 assert the filter output.) The minimum setting for this field is 1. */
        uint64_t frc_val               : 1;  /**< [ 54: 54](R/W) When [FRC_EN] is set to 1, this will be the value forced at the output of the
                                                                 digital idle filter. */
        uint64_t frc_en                : 1;  /**< [ 55: 55](R/W) Force enable.
                                                                 0 = Use the filter output based on the input from the analog idle detector.
                                                                 1 = Force the output of the digital idle filter to the value specified by
                                                                 [FRC_VAL]. */
        uint64_t reserved_56_63        : 8;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_idledet_2_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rx_idledet_2_bcfg bdk_gsernx_lanex_rx_idledet_2_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_IDLEDET_2_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_IDLEDET_2_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090001110ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_IDLEDET_2_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_IDLEDET_2_BCFG(a,b) bdk_gsernx_lanex_rx_idledet_2_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RX_IDLEDET_2_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_IDLEDET_2_BCFG(a,b) "GSERNX_LANEX_RX_IDLEDET_2_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RX_IDLEDET_2_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_IDLEDET_2_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_IDLEDET_2_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_idledet_bsts
 *
 * GSER Lane RX Base Idle Status Register
 * Status register for receiver idle detection status.
 */
union bdk_gsernx_lanex_rx_idledet_bsts
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_idledet_bsts_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_1_63         : 63;
        uint64_t idle                  : 1;  /**< [  0:  0](RO/H) One indicates that the receiver idle detection circuit has detected no input
                                                                 data stream. Valid results can be expected anytime after the custom receiver
                                                                 power-up and reset-exit sequence is complete. This is the output of the digital
                                                                 idle detection filter. */
#else /* Word 0 - Little Endian */
        uint64_t idle                  : 1;  /**< [  0:  0](RO/H) One indicates that the receiver idle detection circuit has detected no input
                                                                 data stream. Valid results can be expected anytime after the custom receiver
                                                                 power-up and reset-exit sequence is complete. This is the output of the digital
                                                                 idle detection filter. */
        uint64_t reserved_1_63         : 63;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_idledet_bsts_s cn; */
};
typedef union bdk_gsernx_lanex_rx_idledet_bsts bdk_gsernx_lanex_rx_idledet_bsts_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_IDLEDET_BSTS(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_IDLEDET_BSTS(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090001120ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_IDLEDET_BSTS", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_IDLEDET_BSTS(a,b) bdk_gsernx_lanex_rx_idledet_bsts_t
#define bustype_BDK_GSERNX_LANEX_RX_IDLEDET_BSTS(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_IDLEDET_BSTS(a,b) "GSERNX_LANEX_RX_IDLEDET_BSTS"
#define device_bar_BDK_GSERNX_LANEX_RX_IDLEDET_BSTS(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_IDLEDET_BSTS(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_IDLEDET_BSTS(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_itrim_0_bcfg
 *
 * GSER Lane Receiver Ir25 Trim Override Value Settings Register 0
 * ir25_trim override settings are in groups of 4 bits. These only take
 * effect when the corresponding enable bit(s) are set.
 */
union bdk_gsernx_lanex_rx_itrim_0_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_itrim_0_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t trim15_ovrd           : 4;  /**< [ 63: 60](R/W) Override setting for bits 87..84 of 180b ir25_trim. */
        uint64_t trim14_ovrd           : 4;  /**< [ 59: 56](R/W) Override setting for bits 83..80 of 180b ir25_trim. */
        uint64_t trim13_ovrd           : 4;  /**< [ 55: 52](R/W) Override setting for bits 79..76 of 180b ir25_trim. */
        uint64_t trim12_ovrd           : 4;  /**< [ 51: 48](R/W) Override setting for bits 75..72 of 180b ir25_trim. */
        uint64_t trim11_ovrd           : 4;  /**< [ 47: 44](R/W) Override setting for bits 71..68 of 180b ir25_trim. */
        uint64_t trim10_ovrd           : 4;  /**< [ 43: 40](R/W) Override setting for bits 67..64 of 180b ir25_trim. */
        uint64_t trim9_ovrd            : 4;  /**< [ 39: 36](R/W) Override setting for bits 63..60 of 180b ir25_trim. */
        uint64_t trim8_ovrd            : 4;  /**< [ 35: 32](R/W) Override setting for bits 59..56 of 180b ir25_trim. */
        uint64_t trim7_ovrd            : 4;  /**< [ 31: 28](R/W) Override setting for bits 55..52 of 180b ir25_trim. */
        uint64_t trim6_ovrd            : 4;  /**< [ 27: 24](R/W) Override setting for bits 51..48 of 180b ir25_trim. */
        uint64_t trim5_ovrd            : 4;  /**< [ 23: 20](R/W) Override setting for bits 47..44 of 180b ir25_trim. */
        uint64_t trim4_ovrd            : 4;  /**< [ 19: 16](R/W) Override setting for bits 43..40 of 180b ir25_trim. */
        uint64_t trim3_ovrd            : 4;  /**< [ 15: 12](R/W) Override setting for bits 39..36 of 180b ir25_trim. */
        uint64_t trim2_ovrd            : 4;  /**< [ 11:  8](R/W) Override setting for bits 35..32 of 180b ir25_trim. */
        uint64_t trim1_ovrd            : 4;  /**< [  7:  4](R/W) Override setting for bits 31..28 of 180b ir25_trim. */
        uint64_t reserved_0_3          : 4;
#else /* Word 0 - Little Endian */
        uint64_t reserved_0_3          : 4;
        uint64_t trim1_ovrd            : 4;  /**< [  7:  4](R/W) Override setting for bits 31..28 of 180b ir25_trim. */
        uint64_t trim2_ovrd            : 4;  /**< [ 11:  8](R/W) Override setting for bits 35..32 of 180b ir25_trim. */
        uint64_t trim3_ovrd            : 4;  /**< [ 15: 12](R/W) Override setting for bits 39..36 of 180b ir25_trim. */
        uint64_t trim4_ovrd            : 4;  /**< [ 19: 16](R/W) Override setting for bits 43..40 of 180b ir25_trim. */
        uint64_t trim5_ovrd            : 4;  /**< [ 23: 20](R/W) Override setting for bits 47..44 of 180b ir25_trim. */
        uint64_t trim6_ovrd            : 4;  /**< [ 27: 24](R/W) Override setting for bits 51..48 of 180b ir25_trim. */
        uint64_t trim7_ovrd            : 4;  /**< [ 31: 28](R/W) Override setting for bits 55..52 of 180b ir25_trim. */
        uint64_t trim8_ovrd            : 4;  /**< [ 35: 32](R/W) Override setting for bits 59..56 of 180b ir25_trim. */
        uint64_t trim9_ovrd            : 4;  /**< [ 39: 36](R/W) Override setting for bits 63..60 of 180b ir25_trim. */
        uint64_t trim10_ovrd           : 4;  /**< [ 43: 40](R/W) Override setting for bits 67..64 of 180b ir25_trim. */
        uint64_t trim11_ovrd           : 4;  /**< [ 47: 44](R/W) Override setting for bits 71..68 of 180b ir25_trim. */
        uint64_t trim12_ovrd           : 4;  /**< [ 51: 48](R/W) Override setting for bits 75..72 of 180b ir25_trim. */
        uint64_t trim13_ovrd           : 4;  /**< [ 55: 52](R/W) Override setting for bits 79..76 of 180b ir25_trim. */
        uint64_t trim14_ovrd           : 4;  /**< [ 59: 56](R/W) Override setting for bits 83..80 of 180b ir25_trim. */
        uint64_t trim15_ovrd           : 4;  /**< [ 63: 60](R/W) Override setting for bits 87..84 of 180b ir25_trim. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_itrim_0_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rx_itrim_0_bcfg bdk_gsernx_lanex_rx_itrim_0_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_ITRIM_0_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_ITRIM_0_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090001a80ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_ITRIM_0_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_ITRIM_0_BCFG(a,b) bdk_gsernx_lanex_rx_itrim_0_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RX_ITRIM_0_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_ITRIM_0_BCFG(a,b) "GSERNX_LANEX_RX_ITRIM_0_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RX_ITRIM_0_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_ITRIM_0_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_ITRIM_0_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_itrim_0_bsts
 *
 * GSER Lane Receiver Ir25 Trim Settings Register 0
 * These are the ir25_trim settings in use. ir25_trim settings are in groups of 4 bits.
 */
union bdk_gsernx_lanex_rx_itrim_0_bsts
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_itrim_0_bsts_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t trim15                : 4;  /**< [ 63: 60](RO/H) Setting for bits 87..84 of 180b ir25_trim. */
        uint64_t trim14                : 4;  /**< [ 59: 56](RO/H) Setting for bits 83..80 of 180b ir25_trim. */
        uint64_t trim13                : 4;  /**< [ 55: 52](RO/H) Setting for bits 79..76 of 180b ir25_trim. */
        uint64_t trim12                : 4;  /**< [ 51: 48](RO/H) Setting for bits 75..72 of 180b ir25_trim. */
        uint64_t trim11                : 4;  /**< [ 47: 44](RO/H) Setting for bits 71..68 of 180b ir25_trim. */
        uint64_t trim10                : 4;  /**< [ 43: 40](RO/H) Setting for bits 67..64 of 180b ir25_trim. */
        uint64_t trim9                 : 4;  /**< [ 39: 36](RO/H) Setting for bits 63..60 of 180b ir25_trim. */
        uint64_t trim8                 : 4;  /**< [ 35: 32](RO/H) Setting for bits 59..56 of 180b ir25_trim. */
        uint64_t trim7                 : 4;  /**< [ 31: 28](RO/H) Setting for bits 55..52 of 180b ir25_trim. */
        uint64_t trim6                 : 4;  /**< [ 27: 24](RO/H) Setting for bits 51..48 of 180b ir25_trim. */
        uint64_t trim5                 : 4;  /**< [ 23: 20](RO/H) Setting for bits 47..44 of 180b ir25_trim. */
        uint64_t trim4                 : 4;  /**< [ 19: 16](RO/H) Setting for bits 43..40 of 180b ir25_trim. */
        uint64_t trim3                 : 4;  /**< [ 15: 12](RO/H) Setting for bits 39..36 of 180b ir25_trim. */
        uint64_t trim2                 : 4;  /**< [ 11:  8](RO/H) Setting for bits 35..32 of 180b ir25_trim. */
        uint64_t trim1                 : 4;  /**< [  7:  4](RO/H) Setting for bits 31..28 of 180b ir25_trim. */
        uint64_t reserved_0_3          : 4;
#else /* Word 0 - Little Endian */
        uint64_t reserved_0_3          : 4;
        uint64_t trim1                 : 4;  /**< [  7:  4](RO/H) Setting for bits 31..28 of 180b ir25_trim. */
        uint64_t trim2                 : 4;  /**< [ 11:  8](RO/H) Setting for bits 35..32 of 180b ir25_trim. */
        uint64_t trim3                 : 4;  /**< [ 15: 12](RO/H) Setting for bits 39..36 of 180b ir25_trim. */
        uint64_t trim4                 : 4;  /**< [ 19: 16](RO/H) Setting for bits 43..40 of 180b ir25_trim. */
        uint64_t trim5                 : 4;  /**< [ 23: 20](RO/H) Setting for bits 47..44 of 180b ir25_trim. */
        uint64_t trim6                 : 4;  /**< [ 27: 24](RO/H) Setting for bits 51..48 of 180b ir25_trim. */
        uint64_t trim7                 : 4;  /**< [ 31: 28](RO/H) Setting for bits 55..52 of 180b ir25_trim. */
        uint64_t trim8                 : 4;  /**< [ 35: 32](RO/H) Setting for bits 59..56 of 180b ir25_trim. */
        uint64_t trim9                 : 4;  /**< [ 39: 36](RO/H) Setting for bits 63..60 of 180b ir25_trim. */
        uint64_t trim10                : 4;  /**< [ 43: 40](RO/H) Setting for bits 67..64 of 180b ir25_trim. */
        uint64_t trim11                : 4;  /**< [ 47: 44](RO/H) Setting for bits 71..68 of 180b ir25_trim. */
        uint64_t trim12                : 4;  /**< [ 51: 48](RO/H) Setting for bits 75..72 of 180b ir25_trim. */
        uint64_t trim13                : 4;  /**< [ 55: 52](RO/H) Setting for bits 79..76 of 180b ir25_trim. */
        uint64_t trim14                : 4;  /**< [ 59: 56](RO/H) Setting for bits 83..80 of 180b ir25_trim. */
        uint64_t trim15                : 4;  /**< [ 63: 60](RO/H) Setting for bits 87..84 of 180b ir25_trim. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_itrim_0_bsts_s cn; */
};
typedef union bdk_gsernx_lanex_rx_itrim_0_bsts bdk_gsernx_lanex_rx_itrim_0_bsts_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_ITRIM_0_BSTS(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_ITRIM_0_BSTS(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090001bd0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_ITRIM_0_BSTS", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_ITRIM_0_BSTS(a,b) bdk_gsernx_lanex_rx_itrim_0_bsts_t
#define bustype_BDK_GSERNX_LANEX_RX_ITRIM_0_BSTS(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_ITRIM_0_BSTS(a,b) "GSERNX_LANEX_RX_ITRIM_0_BSTS"
#define device_bar_BDK_GSERNX_LANEX_RX_ITRIM_0_BSTS(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_ITRIM_0_BSTS(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_ITRIM_0_BSTS(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_itrim_1_bcfg
 *
 * GSER Lane Receiver Ir25 Trim Override Value Settings Register 1
 * ir25_trim override settings are in groups of 4 bits. These only take
 * effect when the corresponding enable bit(s) are set.
 */
union bdk_gsernx_lanex_rx_itrim_1_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_itrim_1_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t trim31_ovrd           : 4;  /**< [ 63: 60](R/W) Override setting for bits 179..176 of 180b ir25_trim. */
        uint64_t trim30_ovrd           : 4;  /**< [ 59: 56](R/W) Override setting for bits 175..172 of 180b ir25_trim. */
        uint64_t trim29_ovrd           : 4;  /**< [ 55: 52](R/W) Override setting for bits 171..168 of 180b ir25_trim. */
        uint64_t trim28_ovrd           : 4;  /**< [ 51: 48](R/W) Override setting for bits 167..164 of 180b ir25_trim. */
        uint64_t trim27_ovrd           : 4;  /**< [ 47: 44](R/W) Override setting for bits 163..160 of 180b ir25_trim. */
        uint64_t trim26_ovrd           : 4;  /**< [ 43: 40](R/W) Override setting for bits 159..156 of 180b ir25_trim. */
        uint64_t trim25_ovrd           : 4;  /**< [ 39: 36](R/W) Override setting for bits 155..152 of 180b ir25_trim. */
        uint64_t trim24_ovrd           : 4;  /**< [ 35: 32](R/W) Override setting for bits 151..148 of 180b ir25_trim. */
        uint64_t trim23_ovrd           : 4;  /**< [ 31: 28](R/W) Override setting for bits 147..144 of 180b ir25_trim. */
        uint64_t trim22_ovrd           : 4;  /**< [ 27: 24](R/W) Override setting for bits 143..140 of 180b ir25_trim. */
        uint64_t trim21_ovrd           : 4;  /**< [ 23: 20](R/W) Override setting for bits 139..136 of 180b ir25_trim. */
        uint64_t trim20_ovrd           : 4;  /**< [ 19: 16](R/W) Override setting for bits 135..132 of 180b ir25_trim. */
        uint64_t trim19_ovrd           : 4;  /**< [ 15: 12](R/W) Override setting for bits 131..128 of 180b ir25_trim. */
        uint64_t trim18_ovrd           : 4;  /**< [ 11:  8](R/W) Override setting for bits 127..124 of 180b ir25_trim. */
        uint64_t trim17_ovrd           : 4;  /**< [  7:  4](R/W) Override setting for bits 123..120 of 180b ir25_trim. */
        uint64_t trim16_ovrd           : 4;  /**< [  3:  0](R/W) Override setting for bits 119..116 of 180b ir25_trim. */
#else /* Word 0 - Little Endian */
        uint64_t trim16_ovrd           : 4;  /**< [  3:  0](R/W) Override setting for bits 119..116 of 180b ir25_trim. */
        uint64_t trim17_ovrd           : 4;  /**< [  7:  4](R/W) Override setting for bits 123..120 of 180b ir25_trim. */
        uint64_t trim18_ovrd           : 4;  /**< [ 11:  8](R/W) Override setting for bits 127..124 of 180b ir25_trim. */
        uint64_t trim19_ovrd           : 4;  /**< [ 15: 12](R/W) Override setting for bits 131..128 of 180b ir25_trim. */
        uint64_t trim20_ovrd           : 4;  /**< [ 19: 16](R/W) Override setting for bits 135..132 of 180b ir25_trim. */
        uint64_t trim21_ovrd           : 4;  /**< [ 23: 20](R/W) Override setting for bits 139..136 of 180b ir25_trim. */
        uint64_t trim22_ovrd           : 4;  /**< [ 27: 24](R/W) Override setting for bits 143..140 of 180b ir25_trim. */
        uint64_t trim23_ovrd           : 4;  /**< [ 31: 28](R/W) Override setting for bits 147..144 of 180b ir25_trim. */
        uint64_t trim24_ovrd           : 4;  /**< [ 35: 32](R/W) Override setting for bits 151..148 of 180b ir25_trim. */
        uint64_t trim25_ovrd           : 4;  /**< [ 39: 36](R/W) Override setting for bits 155..152 of 180b ir25_trim. */
        uint64_t trim26_ovrd           : 4;  /**< [ 43: 40](R/W) Override setting for bits 159..156 of 180b ir25_trim. */
        uint64_t trim27_ovrd           : 4;  /**< [ 47: 44](R/W) Override setting for bits 163..160 of 180b ir25_trim. */
        uint64_t trim28_ovrd           : 4;  /**< [ 51: 48](R/W) Override setting for bits 167..164 of 180b ir25_trim. */
        uint64_t trim29_ovrd           : 4;  /**< [ 55: 52](R/W) Override setting for bits 171..168 of 180b ir25_trim. */
        uint64_t trim30_ovrd           : 4;  /**< [ 59: 56](R/W) Override setting for bits 175..172 of 180b ir25_trim. */
        uint64_t trim31_ovrd           : 4;  /**< [ 63: 60](R/W) Override setting for bits 179..176 of 180b ir25_trim. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_itrim_1_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rx_itrim_1_bcfg bdk_gsernx_lanex_rx_itrim_1_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_ITRIM_1_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_ITRIM_1_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090001a90ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_ITRIM_1_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_ITRIM_1_BCFG(a,b) bdk_gsernx_lanex_rx_itrim_1_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RX_ITRIM_1_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_ITRIM_1_BCFG(a,b) "GSERNX_LANEX_RX_ITRIM_1_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RX_ITRIM_1_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_ITRIM_1_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_ITRIM_1_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_itrim_1_bsts
 *
 * GSER Lane Receiver Ir25 Trim Settings Register 1
 * These are the ir25_trim settings in use. ir25_trim settings are in groups of 4 bits.
 */
union bdk_gsernx_lanex_rx_itrim_1_bsts
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_itrim_1_bsts_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t trim31                : 4;  /**< [ 63: 60](RO/H) Setting for bits 179..176 of 180b ir25_trim. */
        uint64_t trim30                : 4;  /**< [ 59: 56](RO/H) Setting for bits 175..172 of 180b ir25_trim. */
        uint64_t trim29                : 4;  /**< [ 55: 52](RO/H) Setting for bits 171..168 of 180b ir25_trim. */
        uint64_t trim28                : 4;  /**< [ 51: 48](RO/H) Setting for bits 167..164 of 180b ir25_trim. */
        uint64_t trim27                : 4;  /**< [ 47: 44](RO/H) Setting for bits 163..160 of 180b ir25_trim. */
        uint64_t trim26                : 4;  /**< [ 43: 40](RO/H) Setting for bits 159..156 of 180b ir25_trim. */
        uint64_t trim25                : 4;  /**< [ 39: 36](RO/H) Setting for bits 155..152 of 180b ir25_trim. */
        uint64_t trim24                : 4;  /**< [ 35: 32](RO/H) Setting for bits 151..148 of 180b ir25_trim. */
        uint64_t trim23                : 4;  /**< [ 31: 28](RO/H) Setting for bits 147..144 of 180b ir25_trim. */
        uint64_t trim22                : 4;  /**< [ 27: 24](RO/H) Setting for bits 143..140 of 180b ir25_trim. */
        uint64_t trim21                : 4;  /**< [ 23: 20](RO/H) Setting for bits 139..136 of 180b ir25_trim. */
        uint64_t trim20                : 4;  /**< [ 19: 16](RO/H) Setting for bits 135..132 of 180b ir25_trim. */
        uint64_t trim19                : 4;  /**< [ 15: 12](RO/H) Setting for bits 131..128 of 180b ir25_trim. */
        uint64_t trim18                : 4;  /**< [ 11:  8](RO/H) Setting for bits 127..124 of 180b ir25_trim. */
        uint64_t trim17                : 4;  /**< [  7:  4](RO/H) Setting for bits 123..120 of 180b ir25_trim. */
        uint64_t trim16                : 4;  /**< [  3:  0](RO/H) Setting for bits 119..116 of 180b ir25_trim. */
#else /* Word 0 - Little Endian */
        uint64_t trim16                : 4;  /**< [  3:  0](RO/H) Setting for bits 119..116 of 180b ir25_trim. */
        uint64_t trim17                : 4;  /**< [  7:  4](RO/H) Setting for bits 123..120 of 180b ir25_trim. */
        uint64_t trim18                : 4;  /**< [ 11:  8](RO/H) Setting for bits 127..124 of 180b ir25_trim. */
        uint64_t trim19                : 4;  /**< [ 15: 12](RO/H) Setting for bits 131..128 of 180b ir25_trim. */
        uint64_t trim20                : 4;  /**< [ 19: 16](RO/H) Setting for bits 135..132 of 180b ir25_trim. */
        uint64_t trim21                : 4;  /**< [ 23: 20](RO/H) Setting for bits 139..136 of 180b ir25_trim. */
        uint64_t trim22                : 4;  /**< [ 27: 24](RO/H) Setting for bits 143..140 of 180b ir25_trim. */
        uint64_t trim23                : 4;  /**< [ 31: 28](RO/H) Setting for bits 147..144 of 180b ir25_trim. */
        uint64_t trim24                : 4;  /**< [ 35: 32](RO/H) Setting for bits 151..148 of 180b ir25_trim. */
        uint64_t trim25                : 4;  /**< [ 39: 36](RO/H) Setting for bits 155..152 of 180b ir25_trim. */
        uint64_t trim26                : 4;  /**< [ 43: 40](RO/H) Setting for bits 159..156 of 180b ir25_trim. */
        uint64_t trim27                : 4;  /**< [ 47: 44](RO/H) Setting for bits 163..160 of 180b ir25_trim. */
        uint64_t trim28                : 4;  /**< [ 51: 48](RO/H) Setting for bits 167..164 of 180b ir25_trim. */
        uint64_t trim29                : 4;  /**< [ 55: 52](RO/H) Setting for bits 171..168 of 180b ir25_trim. */
        uint64_t trim30                : 4;  /**< [ 59: 56](RO/H) Setting for bits 175..172 of 180b ir25_trim. */
        uint64_t trim31                : 4;  /**< [ 63: 60](RO/H) Setting for bits 179..176 of 180b ir25_trim. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_itrim_1_bsts_s cn; */
};
typedef union bdk_gsernx_lanex_rx_itrim_1_bsts bdk_gsernx_lanex_rx_itrim_1_bsts_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_ITRIM_1_BSTS(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_ITRIM_1_BSTS(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090001be0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_ITRIM_1_BSTS", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_ITRIM_1_BSTS(a,b) bdk_gsernx_lanex_rx_itrim_1_bsts_t
#define bustype_BDK_GSERNX_LANEX_RX_ITRIM_1_BSTS(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_ITRIM_1_BSTS(a,b) "GSERNX_LANEX_RX_ITRIM_1_BSTS"
#define device_bar_BDK_GSERNX_LANEX_RX_ITRIM_1_BSTS(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_ITRIM_1_BSTS(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_ITRIM_1_BSTS(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_itrim_2_bcfg
 *
 * GSER Lane Receiver Ir25 Trim Override Value Settings Register 2
 * ir25_trim override settings are in groups of 4 bits. These only take
 * effect when the corresponding enable bit(s) are set.
 */
union bdk_gsernx_lanex_rx_itrim_2_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_itrim_2_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_56_63        : 8;
        uint64_t trim45_ovrd           : 4;  /**< [ 55: 52](R/W) Override setting for bits 27..24 of 180b ir25_trim. */
        uint64_t trim44_ovrd           : 4;  /**< [ 51: 48](R/W) Override setting for bits 115..112 of 180b ir25_trim. */
        uint64_t trim43_ovrd           : 4;  /**< [ 47: 44](R/W) Override setting for bits 23..20 of 180b ir25_trim. */
        uint64_t trim42_ovrd           : 4;  /**< [ 43: 40](R/W) Override setting for bits 111..108 of 180b ir25_trim. */
        uint64_t trim41_ovrd           : 4;  /**< [ 39: 36](R/W) Override setting for bits 19..16 of 180b ir25_trim. */
        uint64_t trim40_ovrd           : 4;  /**< [ 35: 32](R/W) Override setting for bits 107..104 of 180b ir25_trim. */
        uint64_t trim39_ovrd           : 4;  /**< [ 31: 28](R/W) Override setting for bits 15..12 of 180b ir25_trim. */
        uint64_t trim38_ovrd           : 4;  /**< [ 27: 24](R/W) Override setting for bits 103..100 of 180b ir25_trim. */
        uint64_t trim37_ovrd           : 4;  /**< [ 23: 20](R/W) Override setting for bits 11..8 of 180b ir25_trim. */
        uint64_t trim36_ovrd           : 4;  /**< [ 19: 16](R/W) Override setting for bits 99..96 of 180b ir25_trim. */
        uint64_t trim35_ovrd           : 4;  /**< [ 15: 12](R/W) Override setting for bits 7..4 of 180b ir25_trim. */
        uint64_t trim34_ovrd           : 4;  /**< [ 11:  8](R/W) Override setting for bits 95..92 of 180b ir25_trim. */
        uint64_t trim33_ovrd           : 4;  /**< [  7:  4](R/W) Override setting for bits 3..0 of 180b ir25_trim. */
        uint64_t trim32_ovrd           : 4;  /**< [  3:  0](R/W) Override setting for bits 91..88 of 180b ir25_trim. */
#else /* Word 0 - Little Endian */
        uint64_t trim32_ovrd           : 4;  /**< [  3:  0](R/W) Override setting for bits 91..88 of 180b ir25_trim. */
        uint64_t trim33_ovrd           : 4;  /**< [  7:  4](R/W) Override setting for bits 3..0 of 180b ir25_trim. */
        uint64_t trim34_ovrd           : 4;  /**< [ 11:  8](R/W) Override setting for bits 95..92 of 180b ir25_trim. */
        uint64_t trim35_ovrd           : 4;  /**< [ 15: 12](R/W) Override setting for bits 7..4 of 180b ir25_trim. */
        uint64_t trim36_ovrd           : 4;  /**< [ 19: 16](R/W) Override setting for bits 99..96 of 180b ir25_trim. */
        uint64_t trim37_ovrd           : 4;  /**< [ 23: 20](R/W) Override setting for bits 11..8 of 180b ir25_trim. */
        uint64_t trim38_ovrd           : 4;  /**< [ 27: 24](R/W) Override setting for bits 103..100 of 180b ir25_trim. */
        uint64_t trim39_ovrd           : 4;  /**< [ 31: 28](R/W) Override setting for bits 15..12 of 180b ir25_trim. */
        uint64_t trim40_ovrd           : 4;  /**< [ 35: 32](R/W) Override setting for bits 107..104 of 180b ir25_trim. */
        uint64_t trim41_ovrd           : 4;  /**< [ 39: 36](R/W) Override setting for bits 19..16 of 180b ir25_trim. */
        uint64_t trim42_ovrd           : 4;  /**< [ 43: 40](R/W) Override setting for bits 111..108 of 180b ir25_trim. */
        uint64_t trim43_ovrd           : 4;  /**< [ 47: 44](R/W) Override setting for bits 23..20 of 180b ir25_trim. */
        uint64_t trim44_ovrd           : 4;  /**< [ 51: 48](R/W) Override setting for bits 115..112 of 180b ir25_trim. */
        uint64_t trim45_ovrd           : 4;  /**< [ 55: 52](R/W) Override setting for bits 27..24 of 180b ir25_trim. */
        uint64_t reserved_56_63        : 8;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_itrim_2_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rx_itrim_2_bcfg bdk_gsernx_lanex_rx_itrim_2_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_ITRIM_2_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_ITRIM_2_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090001aa0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_ITRIM_2_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_ITRIM_2_BCFG(a,b) bdk_gsernx_lanex_rx_itrim_2_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RX_ITRIM_2_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_ITRIM_2_BCFG(a,b) "GSERNX_LANEX_RX_ITRIM_2_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RX_ITRIM_2_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_ITRIM_2_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_ITRIM_2_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_itrim_2_bsts
 *
 * GSER Lane Receiver Ir25 Trim Settings Register 2
 * These are the ir25_trim settings in use. ir25_trim settings are in groups of 4 bits.
 */
union bdk_gsernx_lanex_rx_itrim_2_bsts
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_itrim_2_bsts_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_56_63        : 8;
        uint64_t trim45                : 4;  /**< [ 55: 52](RO/H) Setting for bits 27..24 of 180b ir25_trim. */
        uint64_t trim44                : 4;  /**< [ 51: 48](RO/H) Setting for bits 115..112 of 180b ir25_trim. */
        uint64_t trim43                : 4;  /**< [ 47: 44](RO/H) Setting for bits 23..20 of 180b ir25_trim. */
        uint64_t trim42                : 4;  /**< [ 43: 40](RO/H) Setting for bits 111..108 of 180b ir25_trim. */
        uint64_t trim41                : 4;  /**< [ 39: 36](RO/H) Setting for bits 19..16 of 180b ir25_trim. */
        uint64_t trim40                : 4;  /**< [ 35: 32](RO/H) Setting for bits 107..104 of 180b ir25_trim. */
        uint64_t trim39                : 4;  /**< [ 31: 28](RO/H) Setting for bits 15..12 of 180b ir25_trim. */
        uint64_t trim38                : 4;  /**< [ 27: 24](RO/H) Setting for bits 103..100 of 180b ir25_trim. */
        uint64_t trim37                : 4;  /**< [ 23: 20](RO/H) Setting for bits 11..8 of 180b ir25_trim. */
        uint64_t trim36                : 4;  /**< [ 19: 16](RO/H) Setting for bits 99..96 of 180b ir25_trim. */
        uint64_t trim35                : 4;  /**< [ 15: 12](RO/H) Setting for bits 7..4 of 180b ir25_trim. */
        uint64_t trim34                : 4;  /**< [ 11:  8](RO/H) Setting for bits 95..92 of 180b ir25_trim. */
        uint64_t trim33                : 4;  /**< [  7:  4](RO/H) Setting for bits 3..0 of 180b ir25_trim. */
        uint64_t trim32                : 4;  /**< [  3:  0](RO/H) Setting for bits 91..88 of 180b ir25_trim. */
#else /* Word 0 - Little Endian */
        uint64_t trim32                : 4;  /**< [  3:  0](RO/H) Setting for bits 91..88 of 180b ir25_trim. */
        uint64_t trim33                : 4;  /**< [  7:  4](RO/H) Setting for bits 3..0 of 180b ir25_trim. */
        uint64_t trim34                : 4;  /**< [ 11:  8](RO/H) Setting for bits 95..92 of 180b ir25_trim. */
        uint64_t trim35                : 4;  /**< [ 15: 12](RO/H) Setting for bits 7..4 of 180b ir25_trim. */
        uint64_t trim36                : 4;  /**< [ 19: 16](RO/H) Setting for bits 99..96 of 180b ir25_trim. */
        uint64_t trim37                : 4;  /**< [ 23: 20](RO/H) Setting for bits 11..8 of 180b ir25_trim. */
        uint64_t trim38                : 4;  /**< [ 27: 24](RO/H) Setting for bits 103..100 of 180b ir25_trim. */
        uint64_t trim39                : 4;  /**< [ 31: 28](RO/H) Setting for bits 15..12 of 180b ir25_trim. */
        uint64_t trim40                : 4;  /**< [ 35: 32](RO/H) Setting for bits 107..104 of 180b ir25_trim. */
        uint64_t trim41                : 4;  /**< [ 39: 36](RO/H) Setting for bits 19..16 of 180b ir25_trim. */
        uint64_t trim42                : 4;  /**< [ 43: 40](RO/H) Setting for bits 111..108 of 180b ir25_trim. */
        uint64_t trim43                : 4;  /**< [ 47: 44](RO/H) Setting for bits 23..20 of 180b ir25_trim. */
        uint64_t trim44                : 4;  /**< [ 51: 48](RO/H) Setting for bits 115..112 of 180b ir25_trim. */
        uint64_t trim45                : 4;  /**< [ 55: 52](RO/H) Setting for bits 27..24 of 180b ir25_trim. */
        uint64_t reserved_56_63        : 8;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_itrim_2_bsts_s cn; */
};
typedef union bdk_gsernx_lanex_rx_itrim_2_bsts bdk_gsernx_lanex_rx_itrim_2_bsts_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_ITRIM_2_BSTS(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_ITRIM_2_BSTS(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090001bf0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_ITRIM_2_BSTS", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_ITRIM_2_BSTS(a,b) bdk_gsernx_lanex_rx_itrim_2_bsts_t
#define bustype_BDK_GSERNX_LANEX_RX_ITRIM_2_BSTS(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_ITRIM_2_BSTS(a,b) "GSERNX_LANEX_RX_ITRIM_2_BSTS"
#define device_bar_BDK_GSERNX_LANEX_RX_ITRIM_2_BSTS(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_ITRIM_2_BSTS(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_ITRIM_2_BSTS(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_itrim_3_bcfg
 *
 * GSER Lane Receiver Ir25 Trim Override Enables Register 0
 * Enables in this register allow the corresponding override value setting to take
 * effect.
 */
union bdk_gsernx_lanex_rx_itrim_3_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_itrim_3_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_61_63        : 3;
        uint64_t trim15_ovrd_en        : 1;  /**< [ 60: 60](R/W) Override enable for bits 87..84 of 180b ir25_trim. */
        uint64_t reserved_57_59        : 3;
        uint64_t trim14_ovrd_en        : 1;  /**< [ 56: 56](R/W) Override enable for bits 83..80 of 180b ir25_trim. */
        uint64_t reserved_53_55        : 3;
        uint64_t trim13_ovrd_en        : 1;  /**< [ 52: 52](R/W) Override enable for bits 79..76 of 180b ir25_trim. */
        uint64_t reserved_49_51        : 3;
        uint64_t trim12_ovrd_en        : 1;  /**< [ 48: 48](R/W) Override enable for bits 75..72 of 180b ir25_trim. */
        uint64_t reserved_45_47        : 3;
        uint64_t trim11_ovrd_en        : 1;  /**< [ 44: 44](R/W) Override enable for bits 71..68 of 180b ir25_trim. */
        uint64_t reserved_41_43        : 3;
        uint64_t trim10_ovrd_en        : 1;  /**< [ 40: 40](R/W) Override enable for bits 67..64 of 180b ir25_trim. */
        uint64_t reserved_37_39        : 3;
        uint64_t trim9_ovrd_en         : 1;  /**< [ 36: 36](R/W) Override enable for bits 63..60 of 180b ir25_trim. */
        uint64_t reserved_33_35        : 3;
        uint64_t trim8_ovrd_en         : 1;  /**< [ 32: 32](R/W) Override enable for bits 59..56 of 180b ir25_trim. */
        uint64_t reserved_29_31        : 3;
        uint64_t trim7_ovrd_en         : 1;  /**< [ 28: 28](R/W) Override enable for bits 55..52 of 180b ir25_trim. */
        uint64_t reserved_25_27        : 3;
        uint64_t trim6_ovrd_en         : 1;  /**< [ 24: 24](R/W) Override enable for bits 51..48 of 180b ir25_trim. */
        uint64_t reserved_21_23        : 3;
        uint64_t trim5_ovrd_en         : 1;  /**< [ 20: 20](R/W) Override enable for bits 47..44 of 180b ir25_trim. */
        uint64_t reserved_17_19        : 3;
        uint64_t trim4_ovrd_en         : 1;  /**< [ 16: 16](R/W) Override enable for bits 43..40 of 180b ir25_trim. */
        uint64_t reserved_13_15        : 3;
        uint64_t trim3_ovrd_en         : 1;  /**< [ 12: 12](R/W) Override enable for bits 39..36 of 180b ir25_trim. */
        uint64_t reserved_9_11         : 3;
        uint64_t trim2_ovrd_en         : 1;  /**< [  8:  8](R/W) Override enable for bits 35..32 of 180b ir25_trim. */
        uint64_t reserved_5_7          : 3;
        uint64_t trim1_ovrd_en         : 1;  /**< [  4:  4](R/W) Override enable for bits 31..28 of 180b ir25_trim. */
        uint64_t reserved_0_3          : 4;
#else /* Word 0 - Little Endian */
        uint64_t reserved_0_3          : 4;
        uint64_t trim1_ovrd_en         : 1;  /**< [  4:  4](R/W) Override enable for bits 31..28 of 180b ir25_trim. */
        uint64_t reserved_5_7          : 3;
        uint64_t trim2_ovrd_en         : 1;  /**< [  8:  8](R/W) Override enable for bits 35..32 of 180b ir25_trim. */
        uint64_t reserved_9_11         : 3;
        uint64_t trim3_ovrd_en         : 1;  /**< [ 12: 12](R/W) Override enable for bits 39..36 of 180b ir25_trim. */
        uint64_t reserved_13_15        : 3;
        uint64_t trim4_ovrd_en         : 1;  /**< [ 16: 16](R/W) Override enable for bits 43..40 of 180b ir25_trim. */
        uint64_t reserved_17_19        : 3;
        uint64_t trim5_ovrd_en         : 1;  /**< [ 20: 20](R/W) Override enable for bits 47..44 of 180b ir25_trim. */
        uint64_t reserved_21_23        : 3;
        uint64_t trim6_ovrd_en         : 1;  /**< [ 24: 24](R/W) Override enable for bits 51..48 of 180b ir25_trim. */
        uint64_t reserved_25_27        : 3;
        uint64_t trim7_ovrd_en         : 1;  /**< [ 28: 28](R/W) Override enable for bits 55..52 of 180b ir25_trim. */
        uint64_t reserved_29_31        : 3;
        uint64_t trim8_ovrd_en         : 1;  /**< [ 32: 32](R/W) Override enable for bits 59..56 of 180b ir25_trim. */
        uint64_t reserved_33_35        : 3;
        uint64_t trim9_ovrd_en         : 1;  /**< [ 36: 36](R/W) Override enable for bits 63..60 of 180b ir25_trim. */
        uint64_t reserved_37_39        : 3;
        uint64_t trim10_ovrd_en        : 1;  /**< [ 40: 40](R/W) Override enable for bits 67..64 of 180b ir25_trim. */
        uint64_t reserved_41_43        : 3;
        uint64_t trim11_ovrd_en        : 1;  /**< [ 44: 44](R/W) Override enable for bits 71..68 of 180b ir25_trim. */
        uint64_t reserved_45_47        : 3;
        uint64_t trim12_ovrd_en        : 1;  /**< [ 48: 48](R/W) Override enable for bits 75..72 of 180b ir25_trim. */
        uint64_t reserved_49_51        : 3;
        uint64_t trim13_ovrd_en        : 1;  /**< [ 52: 52](R/W) Override enable for bits 79..76 of 180b ir25_trim. */
        uint64_t reserved_53_55        : 3;
        uint64_t trim14_ovrd_en        : 1;  /**< [ 56: 56](R/W) Override enable for bits 83..80 of 180b ir25_trim. */
        uint64_t reserved_57_59        : 3;
        uint64_t trim15_ovrd_en        : 1;  /**< [ 60: 60](R/W) Override enable for bits 87..84 of 180b ir25_trim. */
        uint64_t reserved_61_63        : 3;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_itrim_3_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rx_itrim_3_bcfg bdk_gsernx_lanex_rx_itrim_3_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_ITRIM_3_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_ITRIM_3_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090001ab0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_ITRIM_3_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_ITRIM_3_BCFG(a,b) bdk_gsernx_lanex_rx_itrim_3_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RX_ITRIM_3_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_ITRIM_3_BCFG(a,b) "GSERNX_LANEX_RX_ITRIM_3_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RX_ITRIM_3_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_ITRIM_3_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_ITRIM_3_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_itrim_4_bcfg
 *
 * GSER Lane Receiver Ir25 Trim Override Enables Register 1
 * ir25_trim override settings are in groups of 4 bits. These only take
 * effect when the corresponding enable bit(s) are set.
 */
union bdk_gsernx_lanex_rx_itrim_4_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_itrim_4_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_61_63        : 3;
        uint64_t trim31_ovrd_en        : 1;  /**< [ 60: 60](R/W) Override enable for bits 179..176 of 180b ir25_trim. */
        uint64_t reserved_57_59        : 3;
        uint64_t trim30_ovrd_en        : 1;  /**< [ 56: 56](R/W) Override enable for bits 175..172 of 180b ir25_trim. */
        uint64_t reserved_53_55        : 3;
        uint64_t trim29_ovrd_en        : 1;  /**< [ 52: 52](R/W) Override enable for bits 171..168 of 180b ir25_trim. */
        uint64_t reserved_49_51        : 3;
        uint64_t trim28_ovrd_en        : 1;  /**< [ 48: 48](R/W) Override enable for bits 167..164 of 180b ir25_trim. */
        uint64_t reserved_45_47        : 3;
        uint64_t trim27_ovrd_en        : 1;  /**< [ 44: 44](R/W) Override enable for bits 163..160 of 180b ir25_trim. */
        uint64_t reserved_41_43        : 3;
        uint64_t trim26_ovrd_en        : 1;  /**< [ 40: 40](R/W) Override enable for bits 159..156 of 180b ir25_trim. */
        uint64_t reserved_37_39        : 3;
        uint64_t trim25_ovrd_en        : 1;  /**< [ 36: 36](R/W) Override enable for bits 155..152 of 180b ir25_trim. */
        uint64_t reserved_33_35        : 3;
        uint64_t trim24_ovrd_en        : 1;  /**< [ 32: 32](R/W) Override enable for bits 151..148 of 180b ir25_trim. */
        uint64_t reserved_29_31        : 3;
        uint64_t trim23_ovrd_en        : 1;  /**< [ 28: 28](R/W) Override enable for bits 147..144 of 180b ir25_trim. */
        uint64_t reserved_25_27        : 3;
        uint64_t trim22_ovrd_en        : 1;  /**< [ 24: 24](R/W) Override enable for bits 143..140 of 180b ir25_trim. */
        uint64_t reserved_21_23        : 3;
        uint64_t trim21_ovrd_en        : 1;  /**< [ 20: 20](R/W) Override enable for bits 139..136 of 180b ir25_trim. */
        uint64_t reserved_17_19        : 3;
        uint64_t trim20_ovrd_en        : 1;  /**< [ 16: 16](R/W) Override enable for bits 135..132 of 180b ir25_trim. */
        uint64_t reserved_13_15        : 3;
        uint64_t trim19_ovrd_en        : 1;  /**< [ 12: 12](R/W) Override enable for bits 131..128 of 180b ir25_trim. */
        uint64_t reserved_9_11         : 3;
        uint64_t trim18_ovrd_en        : 1;  /**< [  8:  8](R/W) Override enable for bits 127..124 of 180b ir25_trim. */
        uint64_t reserved_5_7          : 3;
        uint64_t trim17_ovrd_en        : 1;  /**< [  4:  4](R/W) Override enable for bits 123..120 of 180b ir25_trim. */
        uint64_t reserved_1_3          : 3;
        uint64_t trim16_ovrd_en        : 1;  /**< [  0:  0](R/W) Override enable for bits 119..116 of 180b ir25_trim. */
#else /* Word 0 - Little Endian */
        uint64_t trim16_ovrd_en        : 1;  /**< [  0:  0](R/W) Override enable for bits 119..116 of 180b ir25_trim. */
        uint64_t reserved_1_3          : 3;
        uint64_t trim17_ovrd_en        : 1;  /**< [  4:  4](R/W) Override enable for bits 123..120 of 180b ir25_trim. */
        uint64_t reserved_5_7          : 3;
        uint64_t trim18_ovrd_en        : 1;  /**< [  8:  8](R/W) Override enable for bits 127..124 of 180b ir25_trim. */
        uint64_t reserved_9_11         : 3;
        uint64_t trim19_ovrd_en        : 1;  /**< [ 12: 12](R/W) Override enable for bits 131..128 of 180b ir25_trim. */
        uint64_t reserved_13_15        : 3;
        uint64_t trim20_ovrd_en        : 1;  /**< [ 16: 16](R/W) Override enable for bits 135..132 of 180b ir25_trim. */
        uint64_t reserved_17_19        : 3;
        uint64_t trim21_ovrd_en        : 1;  /**< [ 20: 20](R/W) Override enable for bits 139..136 of 180b ir25_trim. */
        uint64_t reserved_21_23        : 3;
        uint64_t trim22_ovrd_en        : 1;  /**< [ 24: 24](R/W) Override enable for bits 143..140 of 180b ir25_trim. */
        uint64_t reserved_25_27        : 3;
        uint64_t trim23_ovrd_en        : 1;  /**< [ 28: 28](R/W) Override enable for bits 147..144 of 180b ir25_trim. */
        uint64_t reserved_29_31        : 3;
        uint64_t trim24_ovrd_en        : 1;  /**< [ 32: 32](R/W) Override enable for bits 151..148 of 180b ir25_trim. */
        uint64_t reserved_33_35        : 3;
        uint64_t trim25_ovrd_en        : 1;  /**< [ 36: 36](R/W) Override enable for bits 155..152 of 180b ir25_trim. */
        uint64_t reserved_37_39        : 3;
        uint64_t trim26_ovrd_en        : 1;  /**< [ 40: 40](R/W) Override enable for bits 159..156 of 180b ir25_trim. */
        uint64_t reserved_41_43        : 3;
        uint64_t trim27_ovrd_en        : 1;  /**< [ 44: 44](R/W) Override enable for bits 163..160 of 180b ir25_trim. */
        uint64_t reserved_45_47        : 3;
        uint64_t trim28_ovrd_en        : 1;  /**< [ 48: 48](R/W) Override enable for bits 167..164 of 180b ir25_trim. */
        uint64_t reserved_49_51        : 3;
        uint64_t trim29_ovrd_en        : 1;  /**< [ 52: 52](R/W) Override enable for bits 171..168 of 180b ir25_trim. */
        uint64_t reserved_53_55        : 3;
        uint64_t trim30_ovrd_en        : 1;  /**< [ 56: 56](R/W) Override enable for bits 175..172 of 180b ir25_trim. */
        uint64_t reserved_57_59        : 3;
        uint64_t trim31_ovrd_en        : 1;  /**< [ 60: 60](R/W) Override enable for bits 179..176 of 180b ir25_trim. */
        uint64_t reserved_61_63        : 3;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_itrim_4_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rx_itrim_4_bcfg bdk_gsernx_lanex_rx_itrim_4_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_ITRIM_4_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_ITRIM_4_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090001ac0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_ITRIM_4_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_ITRIM_4_BCFG(a,b) bdk_gsernx_lanex_rx_itrim_4_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RX_ITRIM_4_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_ITRIM_4_BCFG(a,b) "GSERNX_LANEX_RX_ITRIM_4_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RX_ITRIM_4_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_ITRIM_4_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_ITRIM_4_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_itrim_5_bcfg
 *
 * GSER Lane Receiver Ir25 Trim Override Enables Register 2
 * ir25_trim override settings are in groups of 4 bits. These only take
 * effect when the corresponding enable bit(s) are set.
 */
union bdk_gsernx_lanex_rx_itrim_5_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_itrim_5_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_53_63        : 11;
        uint64_t trim45_ovrd_en        : 1;  /**< [ 52: 52](R/W) Override enable for bits 27..24 of 180b ir25_trim. */
        uint64_t reserved_49_51        : 3;
        uint64_t trim44_ovrd_en        : 1;  /**< [ 48: 48](R/W) Override enable for bits 115..112 of 180b ir25_trim. */
        uint64_t reserved_45_47        : 3;
        uint64_t trim43_ovrd_en        : 1;  /**< [ 44: 44](R/W) Override enable for bits 23..20 of 180b ir25_trim. */
        uint64_t reserved_41_43        : 3;
        uint64_t trim42_ovrd_en        : 1;  /**< [ 40: 40](R/W) Override enable for bits 111..108 of 180b ir25_trim. */
        uint64_t reserved_37_39        : 3;
        uint64_t trim41_ovrd_en        : 1;  /**< [ 36: 36](R/W) Override enable for bits 19..16 of 180b ir25_trim. */
        uint64_t reserved_33_35        : 3;
        uint64_t trim40_ovrd_en        : 1;  /**< [ 32: 32](R/W) Override enable for bits 107..104 of 180b ir25_trim. */
        uint64_t reserved_29_31        : 3;
        uint64_t trim39_ovrd_en        : 1;  /**< [ 28: 28](R/W) Override enable for bits 15..12 of 180b ir25_trim. */
        uint64_t reserved_25_27        : 3;
        uint64_t trim38_ovrd_en        : 1;  /**< [ 24: 24](R/W) Override enable for bits 103..100 of 180b ir25_trim. */
        uint64_t reserved_21_23        : 3;
        uint64_t trim37_ovrd_en        : 1;  /**< [ 20: 20](R/W) Override enable for bits 11..8 of 180b ir25_trim. */
        uint64_t reserved_17_19        : 3;
        uint64_t trim36_ovrd_en        : 1;  /**< [ 16: 16](R/W) Override enable for bits 99..96 of 180b ir25_trim. */
        uint64_t reserved_13_15        : 3;
        uint64_t trim35_ovrd_en        : 1;  /**< [ 12: 12](R/W) Override enable for bits 7..4 of 180b ir25_trim. */
        uint64_t reserved_9_11         : 3;
        uint64_t trim34_ovrd_en        : 1;  /**< [  8:  8](R/W) Override enable for bits 95..92 of 180b ir25_trim. */
        uint64_t reserved_5_7          : 3;
        uint64_t trim33_ovrd_en        : 1;  /**< [  4:  4](R/W) Override enable for bits 3..0 of 180b ir25_trim. */
        uint64_t reserved_1_3          : 3;
        uint64_t trim32_ovrd_en        : 1;  /**< [  0:  0](R/W) Override enable for bits 91..88 of 180b ir25_trim. */
#else /* Word 0 - Little Endian */
        uint64_t trim32_ovrd_en        : 1;  /**< [  0:  0](R/W) Override enable for bits 91..88 of 180b ir25_trim. */
        uint64_t reserved_1_3          : 3;
        uint64_t trim33_ovrd_en        : 1;  /**< [  4:  4](R/W) Override enable for bits 3..0 of 180b ir25_trim. */
        uint64_t reserved_5_7          : 3;
        uint64_t trim34_ovrd_en        : 1;  /**< [  8:  8](R/W) Override enable for bits 95..92 of 180b ir25_trim. */
        uint64_t reserved_9_11         : 3;
        uint64_t trim35_ovrd_en        : 1;  /**< [ 12: 12](R/W) Override enable for bits 7..4 of 180b ir25_trim. */
        uint64_t reserved_13_15        : 3;
        uint64_t trim36_ovrd_en        : 1;  /**< [ 16: 16](R/W) Override enable for bits 99..96 of 180b ir25_trim. */
        uint64_t reserved_17_19        : 3;
        uint64_t trim37_ovrd_en        : 1;  /**< [ 20: 20](R/W) Override enable for bits 11..8 of 180b ir25_trim. */
        uint64_t reserved_21_23        : 3;
        uint64_t trim38_ovrd_en        : 1;  /**< [ 24: 24](R/W) Override enable for bits 103..100 of 180b ir25_trim. */
        uint64_t reserved_25_27        : 3;
        uint64_t trim39_ovrd_en        : 1;  /**< [ 28: 28](R/W) Override enable for bits 15..12 of 180b ir25_trim. */
        uint64_t reserved_29_31        : 3;
        uint64_t trim40_ovrd_en        : 1;  /**< [ 32: 32](R/W) Override enable for bits 107..104 of 180b ir25_trim. */
        uint64_t reserved_33_35        : 3;
        uint64_t trim41_ovrd_en        : 1;  /**< [ 36: 36](R/W) Override enable for bits 19..16 of 180b ir25_trim. */
        uint64_t reserved_37_39        : 3;
        uint64_t trim42_ovrd_en        : 1;  /**< [ 40: 40](R/W) Override enable for bits 111..108 of 180b ir25_trim. */
        uint64_t reserved_41_43        : 3;
        uint64_t trim43_ovrd_en        : 1;  /**< [ 44: 44](R/W) Override enable for bits 23..20 of 180b ir25_trim. */
        uint64_t reserved_45_47        : 3;
        uint64_t trim44_ovrd_en        : 1;  /**< [ 48: 48](R/W) Override enable for bits 115..112 of 180b ir25_trim. */
        uint64_t reserved_49_51        : 3;
        uint64_t trim45_ovrd_en        : 1;  /**< [ 52: 52](R/W) Override enable for bits 27..24 of 180b ir25_trim. */
        uint64_t reserved_53_63        : 11;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_itrim_5_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rx_itrim_5_bcfg bdk_gsernx_lanex_rx_itrim_5_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_ITRIM_5_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_ITRIM_5_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090001ad0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_ITRIM_5_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_ITRIM_5_BCFG(a,b) bdk_gsernx_lanex_rx_itrim_5_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RX_ITRIM_5_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_ITRIM_5_BCFG(a,b) "GSERNX_LANEX_RX_ITRIM_5_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RX_ITRIM_5_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_ITRIM_5_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_ITRIM_5_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_margin_dbg_cnt
 *
 * GSER Lane RX Margining Debug Control Register
 * CSR basec control of Phy initiated read/write operations to the PEM.  This is a
 * debug field that can be used to check the results of an RX Margining sequence.
 * The expecation is that the PEM FSM will initiate the transactions and the results
 * will be placed in MAC/PEM CSRs using the p2m_mesage_bus.  However, ability to
 * read/write these registers into the processor is not clear from Synopsys's MAC
 * spec.  As such, this feature was added to allow an RSL read/write of these registers.
 * Protocal is Ready & Done based.  A transaction is updated in the CSR registers and the
 * Ready bit is set high.  Once it is set high, the mbus_fsm will execute the transaction
 * and assert the Done bit when done or when results are available in
 * GSERN()_LANE()_RX_MARGIN_DBG_OBS.
 */
union bdk_gsernx_lanex_rx_margin_dbg_cnt
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_margin_dbg_cnt_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t ready                 : 1;  /**< [ 63: 63](R/W) Handshake bit to indicate there is a valid request from the RSL bus to transact
                                                                 on the mesage bus.  Setting this bit triggers the mbus_fsm to execute the
                                                                 transaction.  Once a transaction is done, this bit has to be cleared before
                                                                 another transaction is issued.
                                                                   0 = No mbus transactions are outstanding.
                                                                   1 = An mbus transaction is outstanding. */
        uint64_t write_commit          : 1;  /**< [ 62: 62](R/W) This bit will determin to the mbus transactor if the write operation is a
                                                                 commited write or an uncommited write.  When doing a read, this bit is a
                                                                 don't care.
                                                                   0 = If executing a write, this write operation is not-commited type.
                                                                   1 = If executing a write, this write operation is a commited type. */
        uint64_t read_writen           : 1;  /**< [ 61: 61](R/W) This bit indicates if we are doing a read or write operation.
                                                                   0 = Performing a write operation.
                                                                   1 = Performing a read operation. */
        uint64_t reserved_20_60        : 41;
        uint64_t address               : 12; /**< [ 19:  8](R/W) The 12-bit field of address to be send to the MAC/PEM if we are peforming either
                                                                 a read or write operation. */
        uint64_t data                  : 8;  /**< [  7:  0](R/W) The 8-bit field of Data to be send to the MAC/PEM if we are peforming a write operation. */
#else /* Word 0 - Little Endian */
        uint64_t data                  : 8;  /**< [  7:  0](R/W) The 8-bit field of Data to be send to the MAC/PEM if we are peforming a write operation. */
        uint64_t address               : 12; /**< [ 19:  8](R/W) The 12-bit field of address to be send to the MAC/PEM if we are peforming either
                                                                 a read or write operation. */
        uint64_t reserved_20_60        : 41;
        uint64_t read_writen           : 1;  /**< [ 61: 61](R/W) This bit indicates if we are doing a read or write operation.
                                                                   0 = Performing a write operation.
                                                                   1 = Performing a read operation. */
        uint64_t write_commit          : 1;  /**< [ 62: 62](R/W) This bit will determin to the mbus transactor if the write operation is a
                                                                 commited write or an uncommited write.  When doing a read, this bit is a
                                                                 don't care.
                                                                   0 = If executing a write, this write operation is not-commited type.
                                                                   1 = If executing a write, this write operation is a commited type. */
        uint64_t ready                 : 1;  /**< [ 63: 63](R/W) Handshake bit to indicate there is a valid request from the RSL bus to transact
                                                                 on the mesage bus.  Setting this bit triggers the mbus_fsm to execute the
                                                                 transaction.  Once a transaction is done, this bit has to be cleared before
                                                                 another transaction is issued.
                                                                   0 = No mbus transactions are outstanding.
                                                                   1 = An mbus transaction is outstanding. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_margin_dbg_cnt_s cn; */
};
typedef union bdk_gsernx_lanex_rx_margin_dbg_cnt bdk_gsernx_lanex_rx_margin_dbg_cnt_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_MARGIN_DBG_CNT(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_MARGIN_DBG_CNT(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090001220ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_MARGIN_DBG_CNT", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_MARGIN_DBG_CNT(a,b) bdk_gsernx_lanex_rx_margin_dbg_cnt_t
#define bustype_BDK_GSERNX_LANEX_RX_MARGIN_DBG_CNT(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_MARGIN_DBG_CNT(a,b) "GSERNX_LANEX_RX_MARGIN_DBG_CNT"
#define device_bar_BDK_GSERNX_LANEX_RX_MARGIN_DBG_CNT(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_MARGIN_DBG_CNT(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_MARGIN_DBG_CNT(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_margin_dbg_obs
 *
 * GSER Lane RX Margining Debug Result Register
 * Observes the results of an mbus_messaging transaction.  The results are expected to be
 * valid only when the Done bit is asserted.
 */
union bdk_gsernx_lanex_rx_margin_dbg_obs
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_margin_dbg_obs_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t done                  : 1;  /**< [ 63: 63](RO/H) Done bit indicating that the outstanding transaction on the mbus
                                                                 has finished and if there are results that are expected, they will
                                                                 be presented to this register.  The results are not sticky, so a copy
                                                                 needs to be moved out of this register to another location before
                                                                 de-asserting the READY bit in GSERN()_LANE()_RX_MARGIN_DBG_CNT.
                                                                 De-assertign the READY bit will force this bit low again and remove
                                                                 the data being presented to this CSR inputs. */
        uint64_t reserved_20_62        : 43;
        uint64_t address               : 12; /**< [ 19:  8](RO/H) Observed Address a read was completed against or location of the write operation being executed. */
        uint64_t data                  : 8;  /**< [  7:  0](RO/H) Observed Data read back from the MAC/PEM at the completion of the read operation */
#else /* Word 0 - Little Endian */
        uint64_t data                  : 8;  /**< [  7:  0](RO/H) Observed Data read back from the MAC/PEM at the completion of the read operation */
        uint64_t address               : 12; /**< [ 19:  8](RO/H) Observed Address a read was completed against or location of the write operation being executed. */
        uint64_t reserved_20_62        : 43;
        uint64_t done                  : 1;  /**< [ 63: 63](RO/H) Done bit indicating that the outstanding transaction on the mbus
                                                                 has finished and if there are results that are expected, they will
                                                                 be presented to this register.  The results are not sticky, so a copy
                                                                 needs to be moved out of this register to another location before
                                                                 de-asserting the READY bit in GSERN()_LANE()_RX_MARGIN_DBG_CNT.
                                                                 De-assertign the READY bit will force this bit low again and remove
                                                                 the data being presented to this CSR inputs. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_margin_dbg_obs_s cn; */
};
typedef union bdk_gsernx_lanex_rx_margin_dbg_obs bdk_gsernx_lanex_rx_margin_dbg_obs_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_MARGIN_DBG_OBS(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_MARGIN_DBG_OBS(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090001230ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_MARGIN_DBG_OBS", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_MARGIN_DBG_OBS(a,b) bdk_gsernx_lanex_rx_margin_dbg_obs_t
#define bustype_BDK_GSERNX_LANEX_RX_MARGIN_DBG_OBS(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_MARGIN_DBG_OBS(a,b) "GSERNX_LANEX_RX_MARGIN_DBG_OBS"
#define device_bar_BDK_GSERNX_LANEX_RX_MARGIN_DBG_OBS(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_MARGIN_DBG_OBS(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_MARGIN_DBG_OBS(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_margin_phy_cnt
 *
 * GSER Lane RX Margining Overrides of Phy MBUS margining bits Register
 * Can override existing values generated by the RX Margining FSM.  This feature will
 * allow the RSL interface to provide its own values to the MAC/PEM Phy CSRs for the
 * mbus interface.  This is strictly a debug method for sending the mbus CSRs in the
 * phy to the MAC/PEM in a predictable method.
 */
union bdk_gsernx_lanex_rx_margin_phy_cnt
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_margin_phy_cnt_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t override_margining_fsm : 1; /**< [ 63: 63](R/W) The bit that when asserted to 1'b1, will enable the values of this register to
                                                                 replace the values generated by the RX Margining FSM. */
        uint64_t sample_count_reset    : 1;  /**< [ 62: 62](R/W) Resets the sample count register for the RX Margining FSM. */
        uint64_t error_count_reset     : 1;  /**< [ 61: 61](R/W) Resets the error count register for the RX Margining FSM. */
        uint64_t margin_voltage_timing : 1;  /**< [ 60: 60](R/W) Sets whitch type of margining to perfomr.  1'b0 for timing 1'b1 for voltage */
        uint64_t start_margining       : 1;  /**< [ 59: 59](R/W) Enables margining FSM to operate. */
        uint64_t margin_direction      : 1;  /**< [ 58: 58](R/W) Sets the direction of the margining.
                                                                 For timing, a 1'b0 steps to the left a 1'b1 steps to the right.
                                                                 For voltage, 1'b0 steps voltage up and 1'b1 steps voltage down. */
        uint64_t margin_offset         : 7;  /**< [ 57: 51](R/W) Margining offset for the sample point. */
        uint64_t reserved_48_50        : 3;
        uint64_t sample_count_ovr      : 40; /**< [ 47:  8](R/W) Margining sample count size.  Default is 1K samples, but can be updated to any
                                                                 value with in the 40-bit length. */
        uint64_t elastic_buffer_depth  : 8;  /**< [  7:  0](R/W) Sets the margining buffer depth.  Feature is not used */
#else /* Word 0 - Little Endian */
        uint64_t elastic_buffer_depth  : 8;  /**< [  7:  0](R/W) Sets the margining buffer depth.  Feature is not used */
        uint64_t sample_count_ovr      : 40; /**< [ 47:  8](R/W) Margining sample count size.  Default is 1K samples, but can be updated to any
                                                                 value with in the 40-bit length. */
        uint64_t reserved_48_50        : 3;
        uint64_t margin_offset         : 7;  /**< [ 57: 51](R/W) Margining offset for the sample point. */
        uint64_t margin_direction      : 1;  /**< [ 58: 58](R/W) Sets the direction of the margining.
                                                                 For timing, a 1'b0 steps to the left a 1'b1 steps to the right.
                                                                 For voltage, 1'b0 steps voltage up and 1'b1 steps voltage down. */
        uint64_t start_margining       : 1;  /**< [ 59: 59](R/W) Enables margining FSM to operate. */
        uint64_t margin_voltage_timing : 1;  /**< [ 60: 60](R/W) Sets whitch type of margining to perfomr.  1'b0 for timing 1'b1 for voltage */
        uint64_t error_count_reset     : 1;  /**< [ 61: 61](R/W) Resets the error count register for the RX Margining FSM. */
        uint64_t sample_count_reset    : 1;  /**< [ 62: 62](R/W) Resets the sample count register for the RX Margining FSM. */
        uint64_t override_margining_fsm : 1; /**< [ 63: 63](R/W) The bit that when asserted to 1'b1, will enable the values of this register to
                                                                 replace the values generated by the RX Margining FSM. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_margin_phy_cnt_s cn; */
};
typedef union bdk_gsernx_lanex_rx_margin_phy_cnt bdk_gsernx_lanex_rx_margin_phy_cnt_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_MARGIN_PHY_CNT(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_MARGIN_PHY_CNT(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090001330ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_MARGIN_PHY_CNT", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_MARGIN_PHY_CNT(a,b) bdk_gsernx_lanex_rx_margin_phy_cnt_t
#define bustype_BDK_GSERNX_LANEX_RX_MARGIN_PHY_CNT(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_MARGIN_PHY_CNT(a,b) "GSERNX_LANEX_RX_MARGIN_PHY_CNT"
#define device_bar_BDK_GSERNX_LANEX_RX_MARGIN_PHY_CNT(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_MARGIN_PHY_CNT(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_MARGIN_PHY_CNT(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_margin_phy_obs
 *
 * GSER Lane RX Margining Observe of Phy MBUS margining bits Register
 * Observes the status of phy mbus CSRs.  The results are expected to be changed by the
 * margining FSM.  This is strictly an observe path to the mbus CSRs in the phy.
 */
union bdk_gsernx_lanex_rx_margin_phy_obs
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_margin_phy_obs_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t margin_nak            : 1;  /**< [ 63: 63](RO/H) Asserted when the margining setup is out of range for the margining hardware to
                                                                 perform. */
        uint64_t margin_status         : 1;  /**< [ 62: 62](RO/H) Indicates the status of the margining FSM.  If asserted, then there is an open
                                                                 Reciever Margining transaction being executed. */
        uint64_t elastic_buffer_status : 1;  /**< [ 61: 61](RO/H) Indicates the status of the elastic buffer.  This feature is not supported and
                                                                 will always return 0. */
        uint64_t reserved_15_60        : 46;
        uint64_t sample_count          : 7;  /**< [ 14:  8](RO/H) Observed Address a read was completed against or location of the write operation being executed. */
        uint64_t reserved_6_7          : 2;
        uint64_t error_count           : 6;  /**< [  5:  0](RO/H) Observed Data read back from the MAC/PEM at the completion of the read operation */
#else /* Word 0 - Little Endian */
        uint64_t error_count           : 6;  /**< [  5:  0](RO/H) Observed Data read back from the MAC/PEM at the completion of the read operation */
        uint64_t reserved_6_7          : 2;
        uint64_t sample_count          : 7;  /**< [ 14:  8](RO/H) Observed Address a read was completed against or location of the write operation being executed. */
        uint64_t reserved_15_60        : 46;
        uint64_t elastic_buffer_status : 1;  /**< [ 61: 61](RO/H) Indicates the status of the elastic buffer.  This feature is not supported and
                                                                 will always return 0. */
        uint64_t margin_status         : 1;  /**< [ 62: 62](RO/H) Indicates the status of the margining FSM.  If asserted, then there is an open
                                                                 Reciever Margining transaction being executed. */
        uint64_t margin_nak            : 1;  /**< [ 63: 63](RO/H) Asserted when the margining setup is out of range for the margining hardware to
                                                                 perform. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_margin_phy_obs_s cn; */
};
typedef union bdk_gsernx_lanex_rx_margin_phy_obs bdk_gsernx_lanex_rx_margin_phy_obs_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_MARGIN_PHY_OBS(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_MARGIN_PHY_OBS(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090001430ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_MARGIN_PHY_OBS", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_MARGIN_PHY_OBS(a,b) bdk_gsernx_lanex_rx_margin_phy_obs_t
#define bustype_BDK_GSERNX_LANEX_RX_MARGIN_PHY_OBS(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_MARGIN_PHY_OBS(a,b) "GSERNX_LANEX_RX_MARGIN_PHY_OBS"
#define device_bar_BDK_GSERNX_LANEX_RX_MARGIN_PHY_OBS(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_MARGIN_PHY_OBS(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_MARGIN_PHY_OBS(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_os_1_bcfg
 *
 * GSER Lane Receiver Offset Control Group 1 Register
 * Register controls for offset overrides from os0_0 through os3_1. Each
 * override setting has a corresponding enable bit which will cause the
 * calibration control logic to use the override register setting instead
 * of the calibration result.
 */
union bdk_gsernx_lanex_rx_os_1_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_os_1_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t os3_1_ovrd_en         : 1;  /**< [ 63: 63](R/W) Enable use of [OS3_1_OVRD]. */
        uint64_t reserved_62           : 1;
        uint64_t os3_1_ovrd            : 6;  /**< [ 61: 56](R/W) os3_1 offset compensation override bits. */
        uint64_t os3_0_ovrd_en         : 1;  /**< [ 55: 55](R/W) Enable use of [OS3_0_OVRD]. */
        uint64_t reserved_54           : 1;
        uint64_t os3_0_ovrd            : 6;  /**< [ 53: 48](R/W) os3_0 offset compensation override bits. */
        uint64_t os2_1_ovrd_en         : 1;  /**< [ 47: 47](R/W) Enable use of [OS2_1_OVRD]. */
        uint64_t reserved_46           : 1;
        uint64_t os2_1_ovrd            : 6;  /**< [ 45: 40](R/W) os2_1 offset compensation override bits. */
        uint64_t os2_0_ovrd_en         : 1;  /**< [ 39: 39](R/W) Enable use of [OS2_0_OVRD]. */
        uint64_t reserved_38           : 1;
        uint64_t os2_0_ovrd            : 6;  /**< [ 37: 32](R/W) os2_0 offset compensation override bits. */
        uint64_t os1_1_ovrd_en         : 1;  /**< [ 31: 31](R/W) Enable use of [OS1_1_OVRD]. */
        uint64_t reserved_30           : 1;
        uint64_t os1_1_ovrd            : 6;  /**< [ 29: 24](R/W) os1_1 offset compensation override bits. */
        uint64_t os1_0_ovrd_en         : 1;  /**< [ 23: 23](R/W) Enable use of [OS1_0_OVRD]. */
        uint64_t reserved_22           : 1;
        uint64_t os1_0_ovrd            : 6;  /**< [ 21: 16](R/W) os1_0 offset compensation override bits. */
        uint64_t os0_1_ovrd_en         : 1;  /**< [ 15: 15](R/W) Enable use of [OS0_1_OVRD]. */
        uint64_t reserved_14           : 1;
        uint64_t os0_1_ovrd            : 6;  /**< [ 13:  8](R/W) os0_1 offset compensation override bits. */
        uint64_t os0_0_ovrd_en         : 1;  /**< [  7:  7](R/W) Enable use of [OS0_0_OVRD]. */
        uint64_t reserved_6            : 1;
        uint64_t os0_0_ovrd            : 6;  /**< [  5:  0](R/W) os0_0 offset compensation override bits. */
#else /* Word 0 - Little Endian */
        uint64_t os0_0_ovrd            : 6;  /**< [  5:  0](R/W) os0_0 offset compensation override bits. */
        uint64_t reserved_6            : 1;
        uint64_t os0_0_ovrd_en         : 1;  /**< [  7:  7](R/W) Enable use of [OS0_0_OVRD]. */
        uint64_t os0_1_ovrd            : 6;  /**< [ 13:  8](R/W) os0_1 offset compensation override bits. */
        uint64_t reserved_14           : 1;
        uint64_t os0_1_ovrd_en         : 1;  /**< [ 15: 15](R/W) Enable use of [OS0_1_OVRD]. */
        uint64_t os1_0_ovrd            : 6;  /**< [ 21: 16](R/W) os1_0 offset compensation override bits. */
        uint64_t reserved_22           : 1;
        uint64_t os1_0_ovrd_en         : 1;  /**< [ 23: 23](R/W) Enable use of [OS1_0_OVRD]. */
        uint64_t os1_1_ovrd            : 6;  /**< [ 29: 24](R/W) os1_1 offset compensation override bits. */
        uint64_t reserved_30           : 1;
        uint64_t os1_1_ovrd_en         : 1;  /**< [ 31: 31](R/W) Enable use of [OS1_1_OVRD]. */
        uint64_t os2_0_ovrd            : 6;  /**< [ 37: 32](R/W) os2_0 offset compensation override bits. */
        uint64_t reserved_38           : 1;
        uint64_t os2_0_ovrd_en         : 1;  /**< [ 39: 39](R/W) Enable use of [OS2_0_OVRD]. */
        uint64_t os2_1_ovrd            : 6;  /**< [ 45: 40](R/W) os2_1 offset compensation override bits. */
        uint64_t reserved_46           : 1;
        uint64_t os2_1_ovrd_en         : 1;  /**< [ 47: 47](R/W) Enable use of [OS2_1_OVRD]. */
        uint64_t os3_0_ovrd            : 6;  /**< [ 53: 48](R/W) os3_0 offset compensation override bits. */
        uint64_t reserved_54           : 1;
        uint64_t os3_0_ovrd_en         : 1;  /**< [ 55: 55](R/W) Enable use of [OS3_0_OVRD]. */
        uint64_t os3_1_ovrd            : 6;  /**< [ 61: 56](R/W) os3_1 offset compensation override bits. */
        uint64_t reserved_62           : 1;
        uint64_t os3_1_ovrd_en         : 1;  /**< [ 63: 63](R/W) Enable use of [OS3_1_OVRD]. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_os_1_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rx_os_1_bcfg bdk_gsernx_lanex_rx_os_1_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_OS_1_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_OS_1_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090001800ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_OS_1_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_OS_1_BCFG(a,b) bdk_gsernx_lanex_rx_os_1_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RX_OS_1_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_OS_1_BCFG(a,b) "GSERNX_LANEX_RX_OS_1_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RX_OS_1_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_OS_1_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_OS_1_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_os_1_bsts
 *
 * GSER Lane Receiver Offset Status Group 1 Register
 * Status for offset settings actually in use (either calibration results
 * or overrides) from os0_0 through os3_1. Results in all fields of this
 * register are valid only if GSERN()_LANE()_RX_OS_5_BSTS[AFE_OFFSET_STATUS] and
 * GSERN()_LANE()_RX_OS_5_BSTS[DFE_OFFSET_STATUS] are asserted or if the corresponding
 * override enable bit is asserted.
 */
union bdk_gsernx_lanex_rx_os_1_bsts
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_os_1_bsts_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_62_63        : 2;
        uint64_t os3_1                 : 6;  /**< [ 61: 56](RO/H) os3_1 offset compensation override bits. */
        uint64_t reserved_54_55        : 2;
        uint64_t os3_0                 : 6;  /**< [ 53: 48](RO/H) os3_0 offset compensation override bits. */
        uint64_t reserved_46_47        : 2;
        uint64_t os2_1                 : 6;  /**< [ 45: 40](RO/H) os2_1 offset compensation override bits. */
        uint64_t reserved_38_39        : 2;
        uint64_t os2_0                 : 6;  /**< [ 37: 32](RO/H) os2_0 offset compensation override bits. */
        uint64_t reserved_30_31        : 2;
        uint64_t os1_1                 : 6;  /**< [ 29: 24](RO/H) os1_1 offset compensation override bits. */
        uint64_t reserved_22_23        : 2;
        uint64_t os1_0                 : 6;  /**< [ 21: 16](RO/H) os1_0 offset compensation override bits. */
        uint64_t reserved_14_15        : 2;
        uint64_t os0_1                 : 6;  /**< [ 13:  8](RO/H) os0_1 offset compensation override bits. */
        uint64_t reserved_6_7          : 2;
        uint64_t os0_0                 : 6;  /**< [  5:  0](RO/H) os0_0 offset compensation override bits. */
#else /* Word 0 - Little Endian */
        uint64_t os0_0                 : 6;  /**< [  5:  0](RO/H) os0_0 offset compensation override bits. */
        uint64_t reserved_6_7          : 2;
        uint64_t os0_1                 : 6;  /**< [ 13:  8](RO/H) os0_1 offset compensation override bits. */
        uint64_t reserved_14_15        : 2;
        uint64_t os1_0                 : 6;  /**< [ 21: 16](RO/H) os1_0 offset compensation override bits. */
        uint64_t reserved_22_23        : 2;
        uint64_t os1_1                 : 6;  /**< [ 29: 24](RO/H) os1_1 offset compensation override bits. */
        uint64_t reserved_30_31        : 2;
        uint64_t os2_0                 : 6;  /**< [ 37: 32](RO/H) os2_0 offset compensation override bits. */
        uint64_t reserved_38_39        : 2;
        uint64_t os2_1                 : 6;  /**< [ 45: 40](RO/H) os2_1 offset compensation override bits. */
        uint64_t reserved_46_47        : 2;
        uint64_t os3_0                 : 6;  /**< [ 53: 48](RO/H) os3_0 offset compensation override bits. */
        uint64_t reserved_54_55        : 2;
        uint64_t os3_1                 : 6;  /**< [ 61: 56](RO/H) os3_1 offset compensation override bits. */
        uint64_t reserved_62_63        : 2;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_os_1_bsts_s cn; */
};
typedef union bdk_gsernx_lanex_rx_os_1_bsts bdk_gsernx_lanex_rx_os_1_bsts_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_OS_1_BSTS(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_OS_1_BSTS(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090001940ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_OS_1_BSTS", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_OS_1_BSTS(a,b) bdk_gsernx_lanex_rx_os_1_bsts_t
#define bustype_BDK_GSERNX_LANEX_RX_OS_1_BSTS(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_OS_1_BSTS(a,b) "GSERNX_LANEX_RX_OS_1_BSTS"
#define device_bar_BDK_GSERNX_LANEX_RX_OS_1_BSTS(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_OS_1_BSTS(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_OS_1_BSTS(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_os_2_bcfg
 *
 * GSER Lane Receiver Offset Control Group 2 Register
 * Register controls for offset overrides from os4_0 through os7_1. Each
 * override setting has a corresponding enable bit which will cause the
 * calibration control logic to use the override register setting instead
 * of the calibration result.
 */
union bdk_gsernx_lanex_rx_os_2_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_os_2_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t os7_1_ovrd_en         : 1;  /**< [ 63: 63](R/W) Enable use of [OS7_1_OVRD]. */
        uint64_t reserved_62           : 1;
        uint64_t os7_1_ovrd            : 6;  /**< [ 61: 56](R/W) os7_1 offset compensation override bits. */
        uint64_t os7_0_ovrd_en         : 1;  /**< [ 55: 55](R/W) Enable use of [OS7_0_OVRD]. */
        uint64_t reserved_54           : 1;
        uint64_t os7_0_ovrd            : 6;  /**< [ 53: 48](R/W) os7_0 offset compensation override bits. */
        uint64_t os6_1_ovrd_en         : 1;  /**< [ 47: 47](R/W) Enable use of [OS6_1_OVRD]. */
        uint64_t reserved_46           : 1;
        uint64_t os6_1_ovrd            : 6;  /**< [ 45: 40](R/W) os6_1 offset compensation override bits. */
        uint64_t os6_0_ovrd_en         : 1;  /**< [ 39: 39](R/W) Enable use of [OS6_0_OVRD]. */
        uint64_t reserved_38           : 1;
        uint64_t os6_0_ovrd            : 6;  /**< [ 37: 32](R/W) os6_0 offset compensation override bits. */
        uint64_t os5_1_ovrd_en         : 1;  /**< [ 31: 31](R/W) Enable use of [OS5_1_OVRD]. */
        uint64_t reserved_30           : 1;
        uint64_t os5_1_ovrd            : 6;  /**< [ 29: 24](R/W) os5_1 offset compensation override bits. */
        uint64_t os5_0_ovrd_en         : 1;  /**< [ 23: 23](R/W) Enable use of [OS5_0_OVRD]. */
        uint64_t reserved_22           : 1;
        uint64_t os5_0_ovrd            : 6;  /**< [ 21: 16](R/W) os5_0 offset compensation override bits. */
        uint64_t os4_1_ovrd_en         : 1;  /**< [ 15: 15](R/W) Enable use of [OS4_1_OVRD]. */
        uint64_t reserved_14           : 1;
        uint64_t os4_1_ovrd            : 6;  /**< [ 13:  8](R/W) os4_1 offset compensation override bits. */
        uint64_t os4_0_ovrd_en         : 1;  /**< [  7:  7](R/W) Enable use of [OS4_0_OVRD]. */
        uint64_t reserved_6            : 1;
        uint64_t os4_0_ovrd            : 6;  /**< [  5:  0](R/W) os4_0 offset compensation override bits. */
#else /* Word 0 - Little Endian */
        uint64_t os4_0_ovrd            : 6;  /**< [  5:  0](R/W) os4_0 offset compensation override bits. */
        uint64_t reserved_6            : 1;
        uint64_t os4_0_ovrd_en         : 1;  /**< [  7:  7](R/W) Enable use of [OS4_0_OVRD]. */
        uint64_t os4_1_ovrd            : 6;  /**< [ 13:  8](R/W) os4_1 offset compensation override bits. */
        uint64_t reserved_14           : 1;
        uint64_t os4_1_ovrd_en         : 1;  /**< [ 15: 15](R/W) Enable use of [OS4_1_OVRD]. */
        uint64_t os5_0_ovrd            : 6;  /**< [ 21: 16](R/W) os5_0 offset compensation override bits. */
        uint64_t reserved_22           : 1;
        uint64_t os5_0_ovrd_en         : 1;  /**< [ 23: 23](R/W) Enable use of [OS5_0_OVRD]. */
        uint64_t os5_1_ovrd            : 6;  /**< [ 29: 24](R/W) os5_1 offset compensation override bits. */
        uint64_t reserved_30           : 1;
        uint64_t os5_1_ovrd_en         : 1;  /**< [ 31: 31](R/W) Enable use of [OS5_1_OVRD]. */
        uint64_t os6_0_ovrd            : 6;  /**< [ 37: 32](R/W) os6_0 offset compensation override bits. */
        uint64_t reserved_38           : 1;
        uint64_t os6_0_ovrd_en         : 1;  /**< [ 39: 39](R/W) Enable use of [OS6_0_OVRD]. */
        uint64_t os6_1_ovrd            : 6;  /**< [ 45: 40](R/W) os6_1 offset compensation override bits. */
        uint64_t reserved_46           : 1;
        uint64_t os6_1_ovrd_en         : 1;  /**< [ 47: 47](R/W) Enable use of [OS6_1_OVRD]. */
        uint64_t os7_0_ovrd            : 6;  /**< [ 53: 48](R/W) os7_0 offset compensation override bits. */
        uint64_t reserved_54           : 1;
        uint64_t os7_0_ovrd_en         : 1;  /**< [ 55: 55](R/W) Enable use of [OS7_0_OVRD]. */
        uint64_t os7_1_ovrd            : 6;  /**< [ 61: 56](R/W) os7_1 offset compensation override bits. */
        uint64_t reserved_62           : 1;
        uint64_t os7_1_ovrd_en         : 1;  /**< [ 63: 63](R/W) Enable use of [OS7_1_OVRD]. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_os_2_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rx_os_2_bcfg bdk_gsernx_lanex_rx_os_2_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_OS_2_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_OS_2_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090001810ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_OS_2_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_OS_2_BCFG(a,b) bdk_gsernx_lanex_rx_os_2_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RX_OS_2_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_OS_2_BCFG(a,b) "GSERNX_LANEX_RX_OS_2_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RX_OS_2_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_OS_2_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_OS_2_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_os_2_bsts
 *
 * GSER Lane Receiver Offset Status Group 2 Register
 * Status for offset settings actually in use (either calibration results
 * or overrides) from os4_0 through os7_1. Results in all fields of this
 * register are valid only if GSERN()_LANE()_RX_OS_5_BSTS[AFE_OFFSET_STATUS] and
 * GSERN()_LANE()_RX_OS_5_BSTS[DFE_OFFSET_STATUS] are asserted or if the corresponding
 * override enable bit is asserted.
 */
union bdk_gsernx_lanex_rx_os_2_bsts
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_os_2_bsts_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_62_63        : 2;
        uint64_t os7_1                 : 6;  /**< [ 61: 56](RO/H) os7_1 offset compensation override bits. */
        uint64_t reserved_54_55        : 2;
        uint64_t os7_0                 : 6;  /**< [ 53: 48](RO/H) os7_0 offset compensation override bits. */
        uint64_t reserved_46_47        : 2;
        uint64_t os6_1                 : 6;  /**< [ 45: 40](RO/H) os6_1 offset compensation override bits. */
        uint64_t reserved_38_39        : 2;
        uint64_t os6_0                 : 6;  /**< [ 37: 32](RO/H) os6_0 offset compensation override bits. */
        uint64_t reserved_30_31        : 2;
        uint64_t os5_1                 : 6;  /**< [ 29: 24](RO/H) os5_1 offset compensation override bits. */
        uint64_t reserved_22_23        : 2;
        uint64_t os5_0                 : 6;  /**< [ 21: 16](RO/H) os5_0 offset compensation override bits. */
        uint64_t reserved_14_15        : 2;
        uint64_t os4_1                 : 6;  /**< [ 13:  8](RO/H) os4_1 offset compensation override bits. */
        uint64_t reserved_6_7          : 2;
        uint64_t os4_0                 : 6;  /**< [  5:  0](RO/H) os4_0 offset compensation override bits. */
#else /* Word 0 - Little Endian */
        uint64_t os4_0                 : 6;  /**< [  5:  0](RO/H) os4_0 offset compensation override bits. */
        uint64_t reserved_6_7          : 2;
        uint64_t os4_1                 : 6;  /**< [ 13:  8](RO/H) os4_1 offset compensation override bits. */
        uint64_t reserved_14_15        : 2;
        uint64_t os5_0                 : 6;  /**< [ 21: 16](RO/H) os5_0 offset compensation override bits. */
        uint64_t reserved_22_23        : 2;
        uint64_t os5_1                 : 6;  /**< [ 29: 24](RO/H) os5_1 offset compensation override bits. */
        uint64_t reserved_30_31        : 2;
        uint64_t os6_0                 : 6;  /**< [ 37: 32](RO/H) os6_0 offset compensation override bits. */
        uint64_t reserved_38_39        : 2;
        uint64_t os6_1                 : 6;  /**< [ 45: 40](RO/H) os6_1 offset compensation override bits. */
        uint64_t reserved_46_47        : 2;
        uint64_t os7_0                 : 6;  /**< [ 53: 48](RO/H) os7_0 offset compensation override bits. */
        uint64_t reserved_54_55        : 2;
        uint64_t os7_1                 : 6;  /**< [ 61: 56](RO/H) os7_1 offset compensation override bits. */
        uint64_t reserved_62_63        : 2;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_os_2_bsts_s cn; */
};
typedef union bdk_gsernx_lanex_rx_os_2_bsts bdk_gsernx_lanex_rx_os_2_bsts_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_OS_2_BSTS(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_OS_2_BSTS(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090001950ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_OS_2_BSTS", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_OS_2_BSTS(a,b) bdk_gsernx_lanex_rx_os_2_bsts_t
#define bustype_BDK_GSERNX_LANEX_RX_OS_2_BSTS(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_OS_2_BSTS(a,b) "GSERNX_LANEX_RX_OS_2_BSTS"
#define device_bar_BDK_GSERNX_LANEX_RX_OS_2_BSTS(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_OS_2_BSTS(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_OS_2_BSTS(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_os_3_bcfg
 *
 * GSER Lane Receiver Offset Control Group 3 Register
 * Register controls for offset overrides from os8_0 through os11_1. Each
 * override setting has a corresponding enable bit which will cause the
 * calibration control logic to use the override register setting instead
 * of the calibration result.
 */
union bdk_gsernx_lanex_rx_os_3_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_os_3_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t os11_1_ovrd_en        : 1;  /**< [ 63: 63](R/W) Enable use of [OS11_1_OVRD]. */
        uint64_t reserved_62           : 1;
        uint64_t os11_1_ovrd           : 6;  /**< [ 61: 56](R/W) os11_1 offset compensation override bits. */
        uint64_t os11_0_ovrd_en        : 1;  /**< [ 55: 55](R/W) Enable use of [OS11_0_OVRD]. */
        uint64_t reserved_54           : 1;
        uint64_t os11_0_ovrd           : 6;  /**< [ 53: 48](R/W) os11_0 offset compensation override bits. */
        uint64_t os10_1_ovrd_en        : 1;  /**< [ 47: 47](R/W) Enable use of [OS10_1_OVRD]. */
        uint64_t reserved_46           : 1;
        uint64_t os10_1_ovrd           : 6;  /**< [ 45: 40](R/W) os10_1 offset compensation override bits. */
        uint64_t os10_0_ovrd_en        : 1;  /**< [ 39: 39](R/W) Enable use of [OS10_0_OVRD]. */
        uint64_t reserved_38           : 1;
        uint64_t os10_0_ovrd           : 6;  /**< [ 37: 32](R/W) os10_0 offset compensation override bits. */
        uint64_t os9_1_ovrd_en         : 1;  /**< [ 31: 31](R/W) Enable use of [OS9_1_OVRD]. */
        uint64_t reserved_30           : 1;
        uint64_t os9_1_ovrd            : 6;  /**< [ 29: 24](R/W) os9_1 offset compensation override bits. */
        uint64_t os9_0_ovrd_en         : 1;  /**< [ 23: 23](R/W) Enable use of [OS9_0_OVRD]. */
        uint64_t reserved_22           : 1;
        uint64_t os9_0_ovrd            : 6;  /**< [ 21: 16](R/W) os9_0 offset compensation override bits. */
        uint64_t os8_1_ovrd_en         : 1;  /**< [ 15: 15](R/W) Enable use of [OS8_1_OVRD]. */
        uint64_t reserved_14           : 1;
        uint64_t os8_1_ovrd            : 6;  /**< [ 13:  8](R/W) os8_1 offset compensation override bits. */
        uint64_t os8_0_ovrd_en         : 1;  /**< [  7:  7](R/W) Enable use of [OS8_0_OVRD]. */
        uint64_t reserved_6            : 1;
        uint64_t os8_0_ovrd            : 6;  /**< [  5:  0](R/W) os8_0 offset compensation override bits. */
#else /* Word 0 - Little Endian */
        uint64_t os8_0_ovrd            : 6;  /**< [  5:  0](R/W) os8_0 offset compensation override bits. */
        uint64_t reserved_6            : 1;
        uint64_t os8_0_ovrd_en         : 1;  /**< [  7:  7](R/W) Enable use of [OS8_0_OVRD]. */
        uint64_t os8_1_ovrd            : 6;  /**< [ 13:  8](R/W) os8_1 offset compensation override bits. */
        uint64_t reserved_14           : 1;
        uint64_t os8_1_ovrd_en         : 1;  /**< [ 15: 15](R/W) Enable use of [OS8_1_OVRD]. */
        uint64_t os9_0_ovrd            : 6;  /**< [ 21: 16](R/W) os9_0 offset compensation override bits. */
        uint64_t reserved_22           : 1;
        uint64_t os9_0_ovrd_en         : 1;  /**< [ 23: 23](R/W) Enable use of [OS9_0_OVRD]. */
        uint64_t os9_1_ovrd            : 6;  /**< [ 29: 24](R/W) os9_1 offset compensation override bits. */
        uint64_t reserved_30           : 1;
        uint64_t os9_1_ovrd_en         : 1;  /**< [ 31: 31](R/W) Enable use of [OS9_1_OVRD]. */
        uint64_t os10_0_ovrd           : 6;  /**< [ 37: 32](R/W) os10_0 offset compensation override bits. */
        uint64_t reserved_38           : 1;
        uint64_t os10_0_ovrd_en        : 1;  /**< [ 39: 39](R/W) Enable use of [OS10_0_OVRD]. */
        uint64_t os10_1_ovrd           : 6;  /**< [ 45: 40](R/W) os10_1 offset compensation override bits. */
        uint64_t reserved_46           : 1;
        uint64_t os10_1_ovrd_en        : 1;  /**< [ 47: 47](R/W) Enable use of [OS10_1_OVRD]. */
        uint64_t os11_0_ovrd           : 6;  /**< [ 53: 48](R/W) os11_0 offset compensation override bits. */
        uint64_t reserved_54           : 1;
        uint64_t os11_0_ovrd_en        : 1;  /**< [ 55: 55](R/W) Enable use of [OS11_0_OVRD]. */
        uint64_t os11_1_ovrd           : 6;  /**< [ 61: 56](R/W) os11_1 offset compensation override bits. */
        uint64_t reserved_62           : 1;
        uint64_t os11_1_ovrd_en        : 1;  /**< [ 63: 63](R/W) Enable use of [OS11_1_OVRD]. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_os_3_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rx_os_3_bcfg bdk_gsernx_lanex_rx_os_3_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_OS_3_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_OS_3_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090001820ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_OS_3_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_OS_3_BCFG(a,b) bdk_gsernx_lanex_rx_os_3_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RX_OS_3_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_OS_3_BCFG(a,b) "GSERNX_LANEX_RX_OS_3_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RX_OS_3_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_OS_3_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_OS_3_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_os_3_bsts
 *
 * GSER Lane Receiver Offset Status Group 3 Register
 * Status for offset settings actually in use (either calibration results
 * or overrides) from os8_0 through os11_1. Results in all fields of this
 * register are valid only if GSERN()_LANE()_RX_OS_5_BSTS[AFE_OFFSET_STATUS] and
 * GSERN()_LANE()_RX_OS_5_BSTS[DFE_OFFSET_STATUS] are asserted or if the corresponding
 * override enable bit is asserted.
 */
union bdk_gsernx_lanex_rx_os_3_bsts
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_os_3_bsts_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_62_63        : 2;
        uint64_t os11_1                : 6;  /**< [ 61: 56](RO/H) os11_1 offset compensation override bits. */
        uint64_t reserved_54_55        : 2;
        uint64_t os11_0                : 6;  /**< [ 53: 48](RO/H) os11_0 offset compensation override bits. */
        uint64_t reserved_46_47        : 2;
        uint64_t os10_1                : 6;  /**< [ 45: 40](RO/H) os10_1 offset compensation override bits. */
        uint64_t reserved_38_39        : 2;
        uint64_t os10_0                : 6;  /**< [ 37: 32](RO/H) os10_0 offset compensation override bits. */
        uint64_t reserved_30_31        : 2;
        uint64_t os9_1                 : 6;  /**< [ 29: 24](RO/H) os9_1 offset compensation override bits. */
        uint64_t reserved_22_23        : 2;
        uint64_t os9_0                 : 6;  /**< [ 21: 16](RO/H) os9_0 offset compensation override bits. */
        uint64_t reserved_14_15        : 2;
        uint64_t os8_1                 : 6;  /**< [ 13:  8](RO/H) os8_1 offset compensation override bits. */
        uint64_t reserved_6_7          : 2;
        uint64_t os8_0                 : 6;  /**< [  5:  0](RO/H) os8_0 offset compensation override bits. */
#else /* Word 0 - Little Endian */
        uint64_t os8_0                 : 6;  /**< [  5:  0](RO/H) os8_0 offset compensation override bits. */
        uint64_t reserved_6_7          : 2;
        uint64_t os8_1                 : 6;  /**< [ 13:  8](RO/H) os8_1 offset compensation override bits. */
        uint64_t reserved_14_15        : 2;
        uint64_t os9_0                 : 6;  /**< [ 21: 16](RO/H) os9_0 offset compensation override bits. */
        uint64_t reserved_22_23        : 2;
        uint64_t os9_1                 : 6;  /**< [ 29: 24](RO/H) os9_1 offset compensation override bits. */
        uint64_t reserved_30_31        : 2;
        uint64_t os10_0                : 6;  /**< [ 37: 32](RO/H) os10_0 offset compensation override bits. */
        uint64_t reserved_38_39        : 2;
        uint64_t os10_1                : 6;  /**< [ 45: 40](RO/H) os10_1 offset compensation override bits. */
        uint64_t reserved_46_47        : 2;
        uint64_t os11_0                : 6;  /**< [ 53: 48](RO/H) os11_0 offset compensation override bits. */
        uint64_t reserved_54_55        : 2;
        uint64_t os11_1                : 6;  /**< [ 61: 56](RO/H) os11_1 offset compensation override bits. */
        uint64_t reserved_62_63        : 2;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_os_3_bsts_s cn; */
};
typedef union bdk_gsernx_lanex_rx_os_3_bsts bdk_gsernx_lanex_rx_os_3_bsts_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_OS_3_BSTS(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_OS_3_BSTS(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090001960ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_OS_3_BSTS", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_OS_3_BSTS(a,b) bdk_gsernx_lanex_rx_os_3_bsts_t
#define bustype_BDK_GSERNX_LANEX_RX_OS_3_BSTS(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_OS_3_BSTS(a,b) "GSERNX_LANEX_RX_OS_3_BSTS"
#define device_bar_BDK_GSERNX_LANEX_RX_OS_3_BSTS(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_OS_3_BSTS(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_OS_3_BSTS(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_os_4_bcfg
 *
 * GSER Lane Receiver Offset Control Group 4 Register
 * Register controls for offset overrides from os12_0 through os15_1. Each
 * override setting has a corresponding enable bit which will cause the
 * calibration control logic to use the override register setting instead
 * of the calibration result.
 */
union bdk_gsernx_lanex_rx_os_4_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_os_4_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t os15_1_ovrd_en        : 1;  /**< [ 63: 63](R/W) Enable use of [OS15_1_OVRD]. */
        uint64_t reserved_62           : 1;
        uint64_t os15_1_ovrd           : 6;  /**< [ 61: 56](R/W) os15_1 offset compensation override bits. */
        uint64_t os15_0_ovrd_en        : 1;  /**< [ 55: 55](R/W) Enable use of [OS15_0_OVRD]. */
        uint64_t reserved_54           : 1;
        uint64_t os15_0_ovrd           : 6;  /**< [ 53: 48](R/W) os15_0 offset compensation override bits. */
        uint64_t os14_1_ovrd_en        : 1;  /**< [ 47: 47](R/W) Enable use of [OS14_1_OVRD]. */
        uint64_t reserved_46           : 1;
        uint64_t os14_1_ovrd           : 6;  /**< [ 45: 40](R/W) os10_1 offset compensation override bits. */
        uint64_t os14_0_ovrd_en        : 1;  /**< [ 39: 39](R/W) Enable use of [OS14_0_OVRD]. */
        uint64_t reserved_38           : 1;
        uint64_t os14_0_ovrd           : 6;  /**< [ 37: 32](R/W) os14_0 offset compensation override bits. */
        uint64_t os13_1_ovrd_en        : 1;  /**< [ 31: 31](R/W) Enable use of [OS13_1_OVRD]. */
        uint64_t reserved_30           : 1;
        uint64_t os13_1_ovrd           : 6;  /**< [ 29: 24](R/W) os13_1 offset compensation override bits. */
        uint64_t os13_0_ovrd_en        : 1;  /**< [ 23: 23](R/W) Enable use of [OS13_0_OVRD]. */
        uint64_t reserved_22           : 1;
        uint64_t os13_0_ovrd           : 6;  /**< [ 21: 16](R/W) os13_0 offset compensation override bits. */
        uint64_t os12_1_ovrd_en        : 1;  /**< [ 15: 15](R/W) Enable use of [OS12_1_OVRD]. */
        uint64_t reserved_14           : 1;
        uint64_t os12_1_ovrd           : 6;  /**< [ 13:  8](R/W) os12_1 offset compensation override bits. */
        uint64_t os12_0_ovrd_en        : 1;  /**< [  7:  7](R/W) Enable use of [OS12_0_OVRD]. */
        uint64_t reserved_6            : 1;
        uint64_t os12_0_ovrd           : 6;  /**< [  5:  0](R/W) os12_0 offset compensation override bits. */
#else /* Word 0 - Little Endian */
        uint64_t os12_0_ovrd           : 6;  /**< [  5:  0](R/W) os12_0 offset compensation override bits. */
        uint64_t reserved_6            : 1;
        uint64_t os12_0_ovrd_en        : 1;  /**< [  7:  7](R/W) Enable use of [OS12_0_OVRD]. */
        uint64_t os12_1_ovrd           : 6;  /**< [ 13:  8](R/W) os12_1 offset compensation override bits. */
        uint64_t reserved_14           : 1;
        uint64_t os12_1_ovrd_en        : 1;  /**< [ 15: 15](R/W) Enable use of [OS12_1_OVRD]. */
        uint64_t os13_0_ovrd           : 6;  /**< [ 21: 16](R/W) os13_0 offset compensation override bits. */
        uint64_t reserved_22           : 1;
        uint64_t os13_0_ovrd_en        : 1;  /**< [ 23: 23](R/W) Enable use of [OS13_0_OVRD]. */
        uint64_t os13_1_ovrd           : 6;  /**< [ 29: 24](R/W) os13_1 offset compensation override bits. */
        uint64_t reserved_30           : 1;
        uint64_t os13_1_ovrd_en        : 1;  /**< [ 31: 31](R/W) Enable use of [OS13_1_OVRD]. */
        uint64_t os14_0_ovrd           : 6;  /**< [ 37: 32](R/W) os14_0 offset compensation override bits. */
        uint64_t reserved_38           : 1;
        uint64_t os14_0_ovrd_en        : 1;  /**< [ 39: 39](R/W) Enable use of [OS14_0_OVRD]. */
        uint64_t os14_1_ovrd           : 6;  /**< [ 45: 40](R/W) os10_1 offset compensation override bits. */
        uint64_t reserved_46           : 1;
        uint64_t os14_1_ovrd_en        : 1;  /**< [ 47: 47](R/W) Enable use of [OS14_1_OVRD]. */
        uint64_t os15_0_ovrd           : 6;  /**< [ 53: 48](R/W) os15_0 offset compensation override bits. */
        uint64_t reserved_54           : 1;
        uint64_t os15_0_ovrd_en        : 1;  /**< [ 55: 55](R/W) Enable use of [OS15_0_OVRD]. */
        uint64_t os15_1_ovrd           : 6;  /**< [ 61: 56](R/W) os15_1 offset compensation override bits. */
        uint64_t reserved_62           : 1;
        uint64_t os15_1_ovrd_en        : 1;  /**< [ 63: 63](R/W) Enable use of [OS15_1_OVRD]. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_os_4_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rx_os_4_bcfg bdk_gsernx_lanex_rx_os_4_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_OS_4_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_OS_4_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090001830ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_OS_4_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_OS_4_BCFG(a,b) bdk_gsernx_lanex_rx_os_4_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RX_OS_4_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_OS_4_BCFG(a,b) "GSERNX_LANEX_RX_OS_4_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RX_OS_4_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_OS_4_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_OS_4_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_os_4_bsts
 *
 * GSER Lane Receiver Offset Status Group 4 Register
 * Status for offset settings actually in use (either calibration results
 * or overrides) from os12_0 through os15_1. Results in all fields of this
 * register are valid only if GSERN()_LANE()_RX_OS_5_BSTS[AFE_OFFSET_STATUS] and
 * GSERN()_LANE()_RX_OS_5_BSTS[DFE_OFFSET_STATUS] are asserted or if the corresponding
 * override enable bit is asserted.
 */
union bdk_gsernx_lanex_rx_os_4_bsts
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_os_4_bsts_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_62_63        : 2;
        uint64_t os15_1                : 6;  /**< [ 61: 56](RO/H) os15_1 offset compensation override bits. */
        uint64_t reserved_54_55        : 2;
        uint64_t os15_0                : 6;  /**< [ 53: 48](RO/H) os15_0 offset compensation override bits. */
        uint64_t reserved_46_47        : 2;
        uint64_t os14_1                : 6;  /**< [ 45: 40](RO/H) os10_1 offset compensation override bits. */
        uint64_t reserved_38_39        : 2;
        uint64_t os14_0                : 6;  /**< [ 37: 32](RO/H) os14_0 offset compensation override bits. */
        uint64_t reserved_30_31        : 2;
        uint64_t os13_1                : 6;  /**< [ 29: 24](RO/H) os13_1 offset compensation override bits. */
        uint64_t reserved_22_23        : 2;
        uint64_t os13_0                : 6;  /**< [ 21: 16](RO/H) os13_0 offset compensation override bits. */
        uint64_t reserved_14_15        : 2;
        uint64_t os12_1                : 6;  /**< [ 13:  8](RO/H) os12_1 offset compensation override bits. */
        uint64_t reserved_6_7          : 2;
        uint64_t os12_0                : 6;  /**< [  5:  0](RO/H) os12_0 offset compensation override bits. */
#else /* Word 0 - Little Endian */
        uint64_t os12_0                : 6;  /**< [  5:  0](RO/H) os12_0 offset compensation override bits. */
        uint64_t reserved_6_7          : 2;
        uint64_t os12_1                : 6;  /**< [ 13:  8](RO/H) os12_1 offset compensation override bits. */
        uint64_t reserved_14_15        : 2;
        uint64_t os13_0                : 6;  /**< [ 21: 16](RO/H) os13_0 offset compensation override bits. */
        uint64_t reserved_22_23        : 2;
        uint64_t os13_1                : 6;  /**< [ 29: 24](RO/H) os13_1 offset compensation override bits. */
        uint64_t reserved_30_31        : 2;
        uint64_t os14_0                : 6;  /**< [ 37: 32](RO/H) os14_0 offset compensation override bits. */
        uint64_t reserved_38_39        : 2;
        uint64_t os14_1                : 6;  /**< [ 45: 40](RO/H) os10_1 offset compensation override bits. */
        uint64_t reserved_46_47        : 2;
        uint64_t os15_0                : 6;  /**< [ 53: 48](RO/H) os15_0 offset compensation override bits. */
        uint64_t reserved_54_55        : 2;
        uint64_t os15_1                : 6;  /**< [ 61: 56](RO/H) os15_1 offset compensation override bits. */
        uint64_t reserved_62_63        : 2;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_os_4_bsts_s cn; */
};
typedef union bdk_gsernx_lanex_rx_os_4_bsts bdk_gsernx_lanex_rx_os_4_bsts_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_OS_4_BSTS(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_OS_4_BSTS(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090001970ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_OS_4_BSTS", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_OS_4_BSTS(a,b) bdk_gsernx_lanex_rx_os_4_bsts_t
#define bustype_BDK_GSERNX_LANEX_RX_OS_4_BSTS(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_OS_4_BSTS(a,b) "GSERNX_LANEX_RX_OS_4_BSTS"
#define device_bar_BDK_GSERNX_LANEX_RX_OS_4_BSTS(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_OS_4_BSTS(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_OS_4_BSTS(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_os_5_bcfg
 *
 * GSER Lane Receiver Offset Control Group 5 Register
 * This register controls for triggering RX offset compensation state machines.
 */
union bdk_gsernx_lanex_rx_os_5_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_os_5_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_55_63        : 9;
        uint64_t run_eye_oscal         : 1;  /**< [ 54: 54](R/W) Enables eye (doute) DFE offset compensation to run at the correct
                                                                 point in the hardware-driven reset sequence if asserted when the eye data path
                                                                 bringup sequence begins. If deasserted when the eye data path bringup sequence
                                                                 is run, this bit may be asserted later under software control prior to
                                                                 performing eye measurements. */
        uint64_t reserved_53           : 1;
        uint64_t c1_e_adjust           : 5;  /**< [ 52: 48](R/W) Adjust value magnitude for the error slice in the E path. */
        uint64_t reserved_45_47        : 3;
        uint64_t c1_i_adjust           : 5;  /**< [ 44: 40](R/W) Adjust value magnitude for the error slice in the I path. */
        uint64_t reserved_37_39        : 3;
        uint64_t c1_q_adjust           : 5;  /**< [ 36: 32](R/W) Adjust value magnitude for the error slice in the Q path. */
        uint64_t offset_comp_en        : 1;  /**< [ 31: 31](R/W) Enable AFE and DFE offset compensation to run at the
                                                                 correct point in the hardware-driven reset sequence if asserted when
                                                                 the reset sequence begins. If deasserted when the hardware-driven
                                                                 reset sequence is run, this bit should be asserted later, once,
                                                                 under software control to initiate AFE and DFE offset compensation
                                                                 in a pure software-driven bringup. This bit field affects both AFE
                                                                 and DFE offset compensation training. */
        uint64_t binsrch_margin        : 3;  /**< [ 30: 28](R/W) Binary Search Noise Margin. This value is added to the binary search difference
                                                                 count value. This bit field affects the binary search engine for IR TRIM.
                                                                   0x0 = 13'h000
                                                                   0x1 = 13'h020
                                                                   0x2 = 13'h040
                                                                   0x3 = 13'h080
                                                                   0x4 = 13'h100
                                                                   0x5 = 13'h200
                                                                   0x6 = 13'h400
                                                                   0x7 = 13'h800  (use with caution, may cause difference count overflow) */
        uint64_t binsrch_wait          : 10; /**< [ 27: 18](R/W) Number of clock cycles to wait after changing the offset code.
                                                                 It is used to allow adjustments in wait time due to changes in the service clock
                                                                 frequency.
                                                                 This bit field affects the binary seach engines for DFE/AFE offset and IR TRIM. */
        uint64_t binsrch_acclen        : 2;  /**< [ 17: 16](R/W) Number of words to include in the binary search accumulation. This bit field
                                                                 affects the binary seach engines for DFE/AFE offset and IR TRIM.
                                                                   0x0 = 16 words.
                                                                   0x1 = 32 words.
                                                                   0x2 = 64 words.
                                                                   0x3 = 128 words. */
        uint64_t settle_wait           : 4;  /**< [ 15: 12](R/W) Number of clock cycles for the DFE adaptation to wait after changing the
                                                                 adjusted C1 values before resuming accumulation. */
        uint64_t reserved_10_11        : 2;
        uint64_t ir_trim_early_iter_max : 5; /**< [  9:  5](R/W) Early IR TRIM Iteration Count Max. Controls the number of iterations
                                                                 to perform during the Early IR trim. If set to 0, no iterations are done
                                                                 and Early IR TRIM is skipped. Valid range 0 to 31. Note that
                                                                 GSERN()_LANE()_RST_CNT4_BCFG[DFE_AFE_OSCAL_WAIT] must be increased to allow for
                                                                 iterations. */
        uint64_t ir_trim_comp_en       : 1;  /**< [  4:  4](R/W) Enable IR TRIM compensation to run at the correct
                                                                 point in the hardware-driven reset sequence if asserted when the
                                                                 reset sequence begins. This bit field affects only IR trim compensation. */
        uint64_t ir_trim_trigger       : 1;  /**< [  3:  3](R/W) Writing this bit to a logic 1 when the previous value was logic 0
                                                                 will cause the IR trim compensation FSM to run. Note that this is
                                                                 a debug-only feature. */
        uint64_t idle_offset_trigger   : 1;  /**< [  2:  2](R/W) Writing this bit to a logic 1 when the previous value was logic 0
                                                                 will cause the IDLE offset compensation training FSM to run. Note
                                                                 that this is a debug-only feature. */
        uint64_t afe_offset_trigger    : 1;  /**< [  1:  1](R/W) Writing this bit to a logic 1 when the previous value was logic 0
                                                                 will cause the AFE offset compensation training FSM to run. Note
                                                                 that this is a debug-only feature and should not be performed while
                                                                 transferring data on the serial link. Note also that only one of the
                                                                 offset compensation training engines can be run at a time. To
                                                                 trigger both DFE offset compensation and AFE offset compensation,
                                                                 they must be run sequentially with the CSR write to trigger the
                                                                 second in the sequence waiting until the first has completed
                                                                 (indicated in GSERN()_LANE()_RX_OS_5_BSTS[DFE_OFFSET_STATUS] or
                                                                 GSERN()_LANE()_RX_OS_5_BSTS[AFE_OFFSET_STATUS]). */
        uint64_t dfe_offset_trigger    : 1;  /**< [  0:  0](R/W) Writing this bit to a logic 1 when the previous value was logic 0
                                                                 will cause the DFE offset compensation training FSM to run. Note
                                                                 that only one of the offset compensation training engines can be run
                                                                 at a time. To trigger both DFE offset compensation and AFE offset
                                                                 compensation, they must be run sequentially with the CSR write to
                                                                 the second in the sequence waiting until the first has completed
                                                                 (indicated in GSERN()_LANE()_RX_OS_5_BSTS[DFE_OFFSET_STATUS] or
                                                                 GSERN()_LANE()_RX_OS_5_BSTS[AFE_OFFSET_STATUS]). */
#else /* Word 0 - Little Endian */
        uint64_t dfe_offset_trigger    : 1;  /**< [  0:  0](R/W) Writing this bit to a logic 1 when the previous value was logic 0
                                                                 will cause the DFE offset compensation training FSM to run. Note
                                                                 that only one of the offset compensation training engines can be run
                                                                 at a time. To trigger both DFE offset compensation and AFE offset
                                                                 compensation, they must be run sequentially with the CSR write to
                                                                 the second in the sequence waiting until the first has completed
                                                                 (indicated in GSERN()_LANE()_RX_OS_5_BSTS[DFE_OFFSET_STATUS] or
                                                                 GSERN()_LANE()_RX_OS_5_BSTS[AFE_OFFSET_STATUS]). */
        uint64_t afe_offset_trigger    : 1;  /**< [  1:  1](R/W) Writing this bit to a logic 1 when the previous value was logic 0
                                                                 will cause the AFE offset compensation training FSM to run. Note
                                                                 that this is a debug-only feature and should not be performed while
                                                                 transferring data on the serial link. Note also that only one of the
                                                                 offset compensation training engines can be run at a time. To
                                                                 trigger both DFE offset compensation and AFE offset compensation,
                                                                 they must be run sequentially with the CSR write to trigger the
                                                                 second in the sequence waiting until the first has completed
                                                                 (indicated in GSERN()_LANE()_RX_OS_5_BSTS[DFE_OFFSET_STATUS] or
                                                                 GSERN()_LANE()_RX_OS_5_BSTS[AFE_OFFSET_STATUS]). */
        uint64_t idle_offset_trigger   : 1;  /**< [  2:  2](R/W) Writing this bit to a logic 1 when the previous value was logic 0
                                                                 will cause the IDLE offset compensation training FSM to run. Note
                                                                 that this is a debug-only feature. */
        uint64_t ir_trim_trigger       : 1;  /**< [  3:  3](R/W) Writing this bit to a logic 1 when the previous value was logic 0
                                                                 will cause the IR trim compensation FSM to run. Note that this is
                                                                 a debug-only feature. */
        uint64_t ir_trim_comp_en       : 1;  /**< [  4:  4](R/W) Enable IR TRIM compensation to run at the correct
                                                                 point in the hardware-driven reset sequence if asserted when the
                                                                 reset sequence begins. This bit field affects only IR trim compensation. */
        uint64_t ir_trim_early_iter_max : 5; /**< [  9:  5](R/W) Early IR TRIM Iteration Count Max. Controls the number of iterations
                                                                 to perform during the Early IR trim. If set to 0, no iterations are done
                                                                 and Early IR TRIM is skipped. Valid range 0 to 31. Note that
                                                                 GSERN()_LANE()_RST_CNT4_BCFG[DFE_AFE_OSCAL_WAIT] must be increased to allow for
                                                                 iterations. */
        uint64_t reserved_10_11        : 2;
        uint64_t settle_wait           : 4;  /**< [ 15: 12](R/W) Number of clock cycles for the DFE adaptation to wait after changing the
                                                                 adjusted C1 values before resuming accumulation. */
        uint64_t binsrch_acclen        : 2;  /**< [ 17: 16](R/W) Number of words to include in the binary search accumulation. This bit field
                                                                 affects the binary seach engines for DFE/AFE offset and IR TRIM.
                                                                   0x0 = 16 words.
                                                                   0x1 = 32 words.
                                                                   0x2 = 64 words.
                                                                   0x3 = 128 words. */
        uint64_t binsrch_wait          : 10; /**< [ 27: 18](R/W) Number of clock cycles to wait after changing the offset code.
                                                                 It is used to allow adjustments in wait time due to changes in the service clock
                                                                 frequency.
                                                                 This bit field affects the binary seach engines for DFE/AFE offset and IR TRIM. */
        uint64_t binsrch_margin        : 3;  /**< [ 30: 28](R/W) Binary Search Noise Margin. This value is added to the binary search difference
                                                                 count value. This bit field affects the binary search engine for IR TRIM.
                                                                   0x0 = 13'h000
                                                                   0x1 = 13'h020
                                                                   0x2 = 13'h040
                                                                   0x3 = 13'h080
                                                                   0x4 = 13'h100
                                                                   0x5 = 13'h200
                                                                   0x6 = 13'h400
                                                                   0x7 = 13'h800  (use with caution, may cause difference count overflow) */
        uint64_t offset_comp_en        : 1;  /**< [ 31: 31](R/W) Enable AFE and DFE offset compensation to run at the
                                                                 correct point in the hardware-driven reset sequence if asserted when
                                                                 the reset sequence begins. If deasserted when the hardware-driven
                                                                 reset sequence is run, this bit should be asserted later, once,
                                                                 under software control to initiate AFE and DFE offset compensation
                                                                 in a pure software-driven bringup. This bit field affects both AFE
                                                                 and DFE offset compensation training. */
        uint64_t c1_q_adjust           : 5;  /**< [ 36: 32](R/W) Adjust value magnitude for the error slice in the Q path. */
        uint64_t reserved_37_39        : 3;
        uint64_t c1_i_adjust           : 5;  /**< [ 44: 40](R/W) Adjust value magnitude for the error slice in the I path. */
        uint64_t reserved_45_47        : 3;
        uint64_t c1_e_adjust           : 5;  /**< [ 52: 48](R/W) Adjust value magnitude for the error slice in the E path. */
        uint64_t reserved_53           : 1;
        uint64_t run_eye_oscal         : 1;  /**< [ 54: 54](R/W) Enables eye (doute) DFE offset compensation to run at the correct
                                                                 point in the hardware-driven reset sequence if asserted when the eye data path
                                                                 bringup sequence begins. If deasserted when the eye data path bringup sequence
                                                                 is run, this bit may be asserted later under software control prior to
                                                                 performing eye measurements. */
        uint64_t reserved_55_63        : 9;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_os_5_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rx_os_5_bcfg bdk_gsernx_lanex_rx_os_5_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_OS_5_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_OS_5_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090001840ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_OS_5_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_OS_5_BCFG(a,b) bdk_gsernx_lanex_rx_os_5_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RX_OS_5_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_OS_5_BCFG(a,b) "GSERNX_LANEX_RX_OS_5_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RX_OS_5_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_OS_5_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_OS_5_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_os_5_bsts
 *
 * GSER Lane Receiver Offset Status Group 5 Register
 * This register controls for triggering RX offset compensation state machines.
 */
union bdk_gsernx_lanex_rx_os_5_bsts
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_os_5_bsts_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_25_63        : 39;
        uint64_t idle                  : 1;  /**< [ 24: 24](RO/H) For diagnostic use only.
                                                                 Internal:
                                                                 A copy of GSERN()_LANE()_RX_IDLEDET_BSTS[IDLE] for verification convenience. */
        uint64_t reserved_18_23        : 6;
        uint64_t idle_offset_valid     : 1;  /**< [ 17: 17](R/W1C/H) Valid indicator for the DFE Offset calibration values. This bit gets set when
                                                                 DFE offset calibration
                                                                 completes, and may be cleared by software write to 1. */
        uint64_t dfe_offsets_valid     : 1;  /**< [ 16: 16](R/W1C/H) Valid indicator for the DFE Offset calibration values. This bit gets set when
                                                                 DFE offset calibration
                                                                 completes, and may be cleared by software write to 1. */
        uint64_t idle_os               : 6;  /**< [ 15: 10](RO/H) Value for the IDLE detect offset currently in use. This field may differ from
                                                                 [IDLE_OS_CAL] if idle hysteresis is enabled. This field is only valid when the
                                                                 idle detect offset calibration is not running. */
        uint64_t idle_os_cal           : 6;  /**< [  9:  4](RO/H) Result of IDLE detect offset calibration. This field is only valid when the idle
                                                                 detect offset calibration is not running. */
        uint64_t ir_trim_status        : 1;  /**< [  3:  3](RO/H) When 1, indicates that the IR TRIM compensation FSM has completed operations.
                                                                 Cleared to 0 by hardware when the IR TRIM compensation training FSM is triggered by software
                                                                 or state machines. */
        uint64_t idle_offset_status    : 1;  /**< [  2:  2](RO/H) When 1, indicates that the IDLE offset compensation training FSM has completed operations.
                                                                 Cleared to 0 by hardware when the IDLE offset compensation training FSM is triggered by software,
                                                                 hardware timers, or state machines. */
        uint64_t afe_offset_status     : 1;  /**< [  1:  1](RO/H) When 1, indicates that the AFE offset compensation training FSM has completed operations.
                                                                 Cleared to 0 by hardware when the AFE offset compensation training FSM is triggered by software,
                                                                 hardware timers, or state machines. */
        uint64_t dfe_offset_status     : 1;  /**< [  0:  0](RO/H) When 1, indicates that the DFE offset compensation training FSM has completed operations.
                                                                 Cleared to 0 by hardware when the DFE offset compensation training FSM is triggered by software,
                                                                 hardware timers, or state machines. */
#else /* Word 0 - Little Endian */
        uint64_t dfe_offset_status     : 1;  /**< [  0:  0](RO/H) When 1, indicates that the DFE offset compensation training FSM has completed operations.
                                                                 Cleared to 0 by hardware when the DFE offset compensation training FSM is triggered by software,
                                                                 hardware timers, or state machines. */
        uint64_t afe_offset_status     : 1;  /**< [  1:  1](RO/H) When 1, indicates that the AFE offset compensation training FSM has completed operations.
                                                                 Cleared to 0 by hardware when the AFE offset compensation training FSM is triggered by software,
                                                                 hardware timers, or state machines. */
        uint64_t idle_offset_status    : 1;  /**< [  2:  2](RO/H) When 1, indicates that the IDLE offset compensation training FSM has completed operations.
                                                                 Cleared to 0 by hardware when the IDLE offset compensation training FSM is triggered by software,
                                                                 hardware timers, or state machines. */
        uint64_t ir_trim_status        : 1;  /**< [  3:  3](RO/H) When 1, indicates that the IR TRIM compensation FSM has completed operations.
                                                                 Cleared to 0 by hardware when the IR TRIM compensation training FSM is triggered by software
                                                                 or state machines. */
        uint64_t idle_os_cal           : 6;  /**< [  9:  4](RO/H) Result of IDLE detect offset calibration. This field is only valid when the idle
                                                                 detect offset calibration is not running. */
        uint64_t idle_os               : 6;  /**< [ 15: 10](RO/H) Value for the IDLE detect offset currently in use. This field may differ from
                                                                 [IDLE_OS_CAL] if idle hysteresis is enabled. This field is only valid when the
                                                                 idle detect offset calibration is not running. */
        uint64_t dfe_offsets_valid     : 1;  /**< [ 16: 16](R/W1C/H) Valid indicator for the DFE Offset calibration values. This bit gets set when
                                                                 DFE offset calibration
                                                                 completes, and may be cleared by software write to 1. */
        uint64_t idle_offset_valid     : 1;  /**< [ 17: 17](R/W1C/H) Valid indicator for the DFE Offset calibration values. This bit gets set when
                                                                 DFE offset calibration
                                                                 completes, and may be cleared by software write to 1. */
        uint64_t reserved_18_23        : 6;
        uint64_t idle                  : 1;  /**< [ 24: 24](RO/H) For diagnostic use only.
                                                                 Internal:
                                                                 A copy of GSERN()_LANE()_RX_IDLEDET_BSTS[IDLE] for verification convenience. */
        uint64_t reserved_25_63        : 39;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_os_5_bsts_s cn; */
};
typedef union bdk_gsernx_lanex_rx_os_5_bsts bdk_gsernx_lanex_rx_os_5_bsts_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_OS_5_BSTS(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_OS_5_BSTS(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090001980ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_OS_5_BSTS", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_OS_5_BSTS(a,b) bdk_gsernx_lanex_rx_os_5_bsts_t
#define bustype_BDK_GSERNX_LANEX_RX_OS_5_BSTS(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_OS_5_BSTS(a,b) "GSERNX_LANEX_RX_OS_5_BSTS"
#define device_bar_BDK_GSERNX_LANEX_RX_OS_5_BSTS(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_OS_5_BSTS(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_OS_5_BSTS(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_qac_bcfg
 *
 * GSER Lane RX Quadrature Corrector Base Configuration Register
 * Static controls for the quadrature corrector in the receiver. All fields
 * must be set prior to exiting reset.
 */
union bdk_gsernx_lanex_rx_qac_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_qac_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_42_63        : 22;
        uint64_t cdr_qac_selq          : 1;  /**< [ 41: 41](R/W) Enable use of the QAC corrector for the q-path when the reset state
                                                                 machine timing allows it. */
        uint64_t cdr_qac_sele          : 1;  /**< [ 40: 40](R/W) Enable use of the QAC corrector for the e-path when the reset state
                                                                 machine timing allows it. */
        uint64_t reserved_35_39        : 5;
        uint64_t qac_cntset_q          : 3;  /**< [ 34: 32](R/W) Programmable counter depth for QAC corrector value for the doutq
                                                                 path. The 3-bit encoding represents a integration time with 12-7 bit
                                                                 counter. The counter stops counting until it saturates or reaches
                                                                 0. If [EN_QAC_Q] is clear, this register is not used. If
                                                                 [EN_QAC_Q] is set, this correction value will be output to the
                                                                 CDR loop. Set this field prior to exiting reset. */
        uint64_t reserved_27_31        : 5;
        uint64_t qac_cntset_e          : 3;  /**< [ 26: 24](R/W) Programmable counter depth for QAC corrector value for the doute
                                                                 path. The 3-bit encoding represents a integration time with 12-7 bit
                                                                 counter. The counter stops counting until it saturates or reaches
                                                                 0. If [EN_QAC_E] is clear, this register is not used. If
                                                                 [EN_QAC_E] is set, this correction value will be output to the
                                                                 CDR loop. Set this field prior to exiting reset. */
        uint64_t reserved_22_23        : 2;
        uint64_t qac_ref_qoffs         : 6;  /**< [ 21: 16](R/W) Target value for the phase relationship between the i-path (leading)
                                                                 and the q-path (trailing). The range is zero to 180 degrees in 64
                                                                 steps, i.e., 2.8571 degrees per step. Used only when the QAC filter
                                                                 is enabled and selected. */
        uint64_t reserved_14_15        : 2;
        uint64_t qac_ref_eoffs         : 6;  /**< [ 13:  8](R/W) Target value for the phase relationship between the i-path (leading)
                                                                 and the e-path (trailing). The range is zero to 180 degrees in 64
                                                                 steps, i.e., 2.8571 degrees per step. Used only when the QAC filter
                                                                 is enabled and selected. */
        uint64_t reserved_2_7          : 6;
        uint64_t en_qac_e              : 1;  /**< [  1:  1](R/W) Enable use of QAC digital filter in the doute datapath. If the
                                                                 enable is deasserted, the filter will output the [QAC_REFSET]
                                                                 value. If its asserted, it will determine the current phase and use
                                                                 [QAC_REFSET] & [QAC_CNTSET] to output a correction value. Set prior to
                                                                 exiting reset. */
        uint64_t en_qac_q              : 1;  /**< [  0:  0](R/W) Enable use of QAC digital filter in the doutq datapath. If the
                                                                 enable is deasserted, the filter will output the [QAC_REFSET]
                                                                 value. If its asserted, it will determine the current phase and use
                                                                 [QAC_REFSET] & [QAC_CNTSET] to output a correction value. Set prior to
                                                                 exiting reset. */
#else /* Word 0 - Little Endian */
        uint64_t en_qac_q              : 1;  /**< [  0:  0](R/W) Enable use of QAC digital filter in the doutq datapath. If the
                                                                 enable is deasserted, the filter will output the [QAC_REFSET]
                                                                 value. If its asserted, it will determine the current phase and use
                                                                 [QAC_REFSET] & [QAC_CNTSET] to output a correction value. Set prior to
                                                                 exiting reset. */
        uint64_t en_qac_e              : 1;  /**< [  1:  1](R/W) Enable use of QAC digital filter in the doute datapath. If the
                                                                 enable is deasserted, the filter will output the [QAC_REFSET]
                                                                 value. If its asserted, it will determine the current phase and use
                                                                 [QAC_REFSET] & [QAC_CNTSET] to output a correction value. Set prior to
                                                                 exiting reset. */
        uint64_t reserved_2_7          : 6;
        uint64_t qac_ref_eoffs         : 6;  /**< [ 13:  8](R/W) Target value for the phase relationship between the i-path (leading)
                                                                 and the e-path (trailing). The range is zero to 180 degrees in 64
                                                                 steps, i.e., 2.8571 degrees per step. Used only when the QAC filter
                                                                 is enabled and selected. */
        uint64_t reserved_14_15        : 2;
        uint64_t qac_ref_qoffs         : 6;  /**< [ 21: 16](R/W) Target value for the phase relationship between the i-path (leading)
                                                                 and the q-path (trailing). The range is zero to 180 degrees in 64
                                                                 steps, i.e., 2.8571 degrees per step. Used only when the QAC filter
                                                                 is enabled and selected. */
        uint64_t reserved_22_23        : 2;
        uint64_t qac_cntset_e          : 3;  /**< [ 26: 24](R/W) Programmable counter depth for QAC corrector value for the doute
                                                                 path. The 3-bit encoding represents a integration time with 12-7 bit
                                                                 counter. The counter stops counting until it saturates or reaches
                                                                 0. If [EN_QAC_E] is clear, this register is not used. If
                                                                 [EN_QAC_E] is set, this correction value will be output to the
                                                                 CDR loop. Set this field prior to exiting reset. */
        uint64_t reserved_27_31        : 5;
        uint64_t qac_cntset_q          : 3;  /**< [ 34: 32](R/W) Programmable counter depth for QAC corrector value for the doutq
                                                                 path. The 3-bit encoding represents a integration time with 12-7 bit
                                                                 counter. The counter stops counting until it saturates or reaches
                                                                 0. If [EN_QAC_Q] is clear, this register is not used. If
                                                                 [EN_QAC_Q] is set, this correction value will be output to the
                                                                 CDR loop. Set this field prior to exiting reset. */
        uint64_t reserved_35_39        : 5;
        uint64_t cdr_qac_sele          : 1;  /**< [ 40: 40](R/W) Enable use of the QAC corrector for the e-path when the reset state
                                                                 machine timing allows it. */
        uint64_t cdr_qac_selq          : 1;  /**< [ 41: 41](R/W) Enable use of the QAC corrector for the q-path when the reset state
                                                                 machine timing allows it. */
        uint64_t reserved_42_63        : 22;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_qac_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rx_qac_bcfg bdk_gsernx_lanex_rx_qac_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_QAC_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_QAC_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000ee0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_QAC_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_QAC_BCFG(a,b) bdk_gsernx_lanex_rx_qac_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RX_QAC_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_QAC_BCFG(a,b) "GSERNX_LANEX_RX_QAC_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RX_QAC_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_QAC_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_QAC_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_qac_bsts
 *
 * GSER Lane RX Quadrature Corrector Base Status Register
 * Quadrature corrector outputs captured in a CSR register; results should be close to
 * GSERN()_LANE()_RX_QAC_BCFG[QAC_REF_EOFFS] and
 * GSERN()_LANE()_RX_QAC_BCFG[QAC_REF_QOFFS] when the QAC is in use and stable.
 */
union bdk_gsernx_lanex_rx_qac_bsts
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_qac_bsts_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_22_63        : 42;
        uint64_t qac_qoffs             : 6;  /**< [ 21: 16](RO/H) Quadrature filter control output for the phase relationship between
                                                                 the i-path (leading) and the q-path (trailing). The range is zero
                                                                 to 180 degrees in 64 steps, i.e., 2.8571 degrees per step. Valid only
                                                                 when the QAC filter is enabled and selected. */
        uint64_t reserved_14_15        : 2;
        uint64_t qac_eoffs             : 6;  /**< [ 13:  8](RO/H) Quadrature filter control output for the phase relationship between
                                                                 the i-path (leading) and the e-path (trailing). The range is zero
                                                                 to 180 degrees in 64 steps, i.e., 2.8571 degrees per step. Valid only
                                                                 when the QAC filter is enabled and selected. */
        uint64_t reserved_0_7          : 8;
#else /* Word 0 - Little Endian */
        uint64_t reserved_0_7          : 8;
        uint64_t qac_eoffs             : 6;  /**< [ 13:  8](RO/H) Quadrature filter control output for the phase relationship between
                                                                 the i-path (leading) and the e-path (trailing). The range is zero
                                                                 to 180 degrees in 64 steps, i.e., 2.8571 degrees per step. Valid only
                                                                 when the QAC filter is enabled and selected. */
        uint64_t reserved_14_15        : 2;
        uint64_t qac_qoffs             : 6;  /**< [ 21: 16](RO/H) Quadrature filter control output for the phase relationship between
                                                                 the i-path (leading) and the q-path (trailing). The range is zero
                                                                 to 180 degrees in 64 steps, i.e., 2.8571 degrees per step. Valid only
                                                                 when the QAC filter is enabled and selected. */
        uint64_t reserved_22_63        : 42;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_qac_bsts_s cn; */
};
typedef union bdk_gsernx_lanex_rx_qac_bsts bdk_gsernx_lanex_rx_qac_bsts_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_QAC_BSTS(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_QAC_BSTS(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000ef0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_QAC_BSTS", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_QAC_BSTS(a,b) bdk_gsernx_lanex_rx_qac_bsts_t
#define bustype_BDK_GSERNX_LANEX_RX_QAC_BSTS(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_QAC_BSTS(a,b) "GSERNX_LANEX_RX_QAC_BSTS"
#define device_bar_BDK_GSERNX_LANEX_RX_QAC_BSTS(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_QAC_BSTS(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_QAC_BSTS(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_rx_st_bcfg
 *
 * GSER Lane RX Static Base Configuration Register
 * This register controls for static RX settings that do not need FSM overrides.
 */
union bdk_gsernx_lanex_rx_st_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_rx_st_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_49_63        : 15;
        uint64_t rxcdrfsmi             : 1;  /**< [ 48: 48](R/W) Set to provide the RX interpolator with the RX CDR load I
                                                                 clock (rxcdrldi). deassert (low) to provide the interpolator with
                                                                 the RX CDR load Q clock (rxcdrldq). This bit is ignored when
                                                                 txcdrdfsm is asserted (high), which set the RX interpolator
                                                                 and CDR FSM to use the TX clock (txcdrld).

                                                                 Internal:
                                                                 (For initial testing, assert rxcdrfsmi, but if we have trouble
                                                                 meeting timing, we can deassert this signal to provide some
                                                                 additional timing margin from the last flops in the RX CDR FSM to
                                                                 the flops interpolator.) */
        uint64_t reserved_42_47        : 6;
        uint64_t rx_dcc_iboost         : 1;  /**< [ 41: 41](R/W) Set to assert the iboost control bit of the
                                                                 receiver duty cycle correcter. Should be programmed as desired before
                                                                 sequencing the receiver reset state machine. Differs
                                                                 from [RX_DCC_LOWF] in the data rate range that it is set at. */
        uint64_t rx_dcc_lowf           : 1;  /**< [ 40: 40](R/W) Set to put the RX duty-cycle corrector (DCC) into low frequency mode. Set to 1
                                                                 when operating at data rates below 4 Gbaud. */
        uint64_t reserved_35_39        : 5;
        uint64_t bstuff                : 1;  /**< [ 34: 34](R/W) Set to place custom receive pipe in bit-stuffing
                                                                 mode. Only the odd bits in the half-rate DFE outputs are passed to
                                                                 the cdrout* and dout* pipe outputs; the odd bits are duplicated to
                                                                 fill up the expected data path width. */
        uint64_t rx_idle_lowf          : 2;  /**< [ 33: 32](R/W) Control for the receiver's idle detector analog filter
                                                                 bandwidth. The two bits apply at different times.
                                                                 \<0\> = Set to 1 for low bandwidth during normal operation.
                                                                 \<1\> = Set to 1 for low bandwidth during idle offset calibration.
                                                                 The default is 1 during normal operation for large filter capacitance and low
                                                                 bandwidth, and 0 during idle offset calibration to provide faster response. */
        uint64_t idle_os_bitlen        : 2;  /**< [ 31: 30](R/W) Number of bits to accumulate for IDLE detect offset calibration, measured in
                                                                 cycles of the 100 MHz system service clock.
                                                                 0x0 = 5 cycles.
                                                                 0x1 = 30 cycles.
                                                                 0x2 = 60 cycles.
                                                                 0x3 = 250 cycles. */
        uint64_t idle_os_ovrd_en       : 1;  /**< [ 29: 29](R/W) Enable use of [IDLE_OS_OVRD]. */
        uint64_t refset                : 5;  /**< [ 28: 24](R/W) Sets the reference voltage swing for idle detection. A voltage swing
                                                                 at the input of the RX less than this amount is defined as
                                                                 idle.
                                                                   0x0  = Threshold (refp-refn) is 23 mV.
                                                                   0x1  = Threshold (refp-refn) is 27.4 mV.
                                                                   0x2  = Threshold (refp-refn) is 31.8 mV.
                                                                   0x3  = Threshold (refp-refn) is 36.2 mV.
                                                                   0x4  = Threshold (refp-refn) is 40.6 mV.
                                                                   0x5  = Threshold (refp-refn) is 45 mV.
                                                                   0x6  = Threshold (refp-refn) is 49.4 mV.
                                                                   0x7  = Threshold (refp-refn) is 53.8 mV.
                                                                   0x8  = Threshold (refp-refn) is 58.2 mV.
                                                                   0x9  = Threshold (refp-refn) is 62.6 mV.
                                                                   0xA  = Threshold (refp-refn) is 67 mV.
                                                                   0xB  = Threshold (refp-refn) is 71.4 mV.
                                                                   0xC  = Threshold (refp-refn) is 75.8 mV.
                                                                   0xD  = Threshold (refp-refn) is 80.2 mV.
                                                                   0xE  = Threshold (refp-refn) is 84.6 mV.
                                                                   0xF  = Threshold (refp-refn) is 89 mV.
                                                                   0x10 = Threshold (refp-refn) is 55 mV.
                                                                   0x11 = Threshold (refp-refn) is 62.9 mV.
                                                                   0x12 = Threshold (refp-refn) is 70.8 mV.
                                                                   0x13 = Threshold (refp-refn) is 78.7 mV.
                                                                   0x14 = Threshold (refp-refn) is 86.6 mV.
                                                                   0x15 = Threshold (refp-refn) is 94.5 mV.
                                                                   0x16 = Threshold (refp-refn) is 102.4 mV.
                                                                   0x17 = Threshold (refp-refn) is 110.3 mV.
                                                                   0x18 = Threshold (refp-refn) is 118.2 mV.
                                                                   0x19 = Threshold (refp-refn) is 126.1 mV.
                                                                   0x1A = Threshold (refp-refn) is 134 mV.
                                                                   0x1B = Threshold (refp-refn) is 141.9 mV.
                                                                   0x1C = Threshold (refp-refn) is 149.8 mV.
                                                                   0x1D = Threshold (refp-refn) is 157.7 mV.
                                                                   0x1E = Threshold (refp-refn) is 165.6 mV.
                                                                   0x1F = Threshold (refp-refn) is 173.5 mV. */
        uint64_t idle_os_ovrd          : 6;  /**< [ 23: 18](R/W) Override value for the IDLE detect offset calibration. As with the
                                                                 other offset DACs in the RX, the MSB sets the sign, and the 5 LSBs
                                                                 are binary-encoded magnitudes. */
        uint64_t en_idle_cal           : 1;  /**< [ 17: 17](R/W) Set to put the idle detector into calibration mode. */
        uint64_t rxelecidle            : 1;  /**< [ 16: 16](R/W) Set to place the CDR finite state machine into a reset state so it does not try
                                                                 to track clock or data and starts from a reset state when the CDR finite state
                                                                 machine begins or resumes operation. deassert (low) to allow the CDR FSM to run. */
        uint64_t rxcdrhold             : 1;  /**< [ 15: 15](R/W) Set to place the CDR finite state machine (FSM) into a hold state so it does not
                                                                 try to track clock or data, which would not normally be present during
                                                                 electrical idle. The CDR FSM state is preserved, provided [RXELECIDLE] is not
                                                                 asserted, so the CDR FSM resumes operation with the same settings in effect
                                                                 prior to entering the hold state. deassert (low) to allow the CDR FSM to run. */
        uint64_t rxcdrramp             : 1;  /**< [ 14: 14](R/W) For diagnostic use only.
                                                                 Internal:
                                                                 For lab characterization use only. Set to 1 to cause the CDR FSM to ramp the 1st
                                                                 order state by [INC1], independent of voter, & hold the 2nd order state. */
        uint64_t reserved_13           : 1;
        uint64_t en_sh_lb              : 1;  /**< [ 12: 12](R/W) Enable for shallow loopback mode within RX. Used when in shallow loopback
                                                                 mode to mux the CDR receive clock onto the transmit data path clock
                                                                 to ensure that the clock frequencies are matched (to prevent data overrun).
                                                                 This signal should be enabled along with GSERN()_LANE()_PLL_2_BCFG[SHLB_EN] for
                                                                 the PLL. */
        uint64_t erc                   : 4;  /**< [ 11:  8](R/W) Interpolator edge-rate control. This control is shared between all
                                                                 interpolators in the lane.  Set as follows:
                                                                   \<pre\>
                                                                   if      (data_period \>= 500ps)  erc = 4'h1;
                                                                   else if (data_period \>= 407ps)  erc = 4'h2;
                                                                   else if (data_period \>= 333ps)  erc = 4'h3;
                                                                   else if (data_period \>= 167ps)  erc = 4'h4;
                                                                   else if (data_period \>= 166ps)  erc = 4'h5;
                                                                   else if (data_period \>= 100ps)  erc = 4'h7;
                                                                   else if (data_period \>=  85ps)  erc = 4'h8;
                                                                   else if (data_period \>=  80ps)  erc = 4'h9;
                                                                   else if (data_period \>=  62ps)  erc = 4'hA;
                                                                   else if (data_period \>=  55ps)  erc = 4'hB;
                                                                   else if (data_period \>=  50ps)  erc = 4'hC;
                                                                   else if (data_period \>=  45ps)  erc = 4'hD;
                                                                   else if (data_period \>=  38ps)  erc = 4'hE;
                                                                   else                            erc = 4'hF;
                                                                   \</pre\> */
        uint64_t term                  : 2;  /**< [  7:  6](R/W) Termination voltage control. Setting to 0x1 (VDSSA) is typically appropriate for
                                                                 PCIe channels. For channels without a series board capacitor the typical setting
                                                                 would be 0x0 (floating).
                                                                 0x0 = Floating.
                                                                 0x1 = VSSA.
                                                                 0x2 = VDDA.
                                                                 0x3 = VSSA. */
        uint64_t en_rt85               : 1;  /**< [  5:  5](R/W) Enable 85 Ohm termination in the receiver. */
        uint64_t en_lb                 : 1;  /**< [  4:  4](R/W) Enable for near-end TX loopback path. */
        uint64_t en_rterm              : 1;  /**< [  3:  3](R/W) For debug use only. Set to one to enable the receiver's termination circuit
                                                                 during bringup. Setting to zero will turn off receiver termination. */
        uint64_t reserved_0_2          : 3;
#else /* Word 0 - Little Endian */
        uint64_t reserved_0_2          : 3;
        uint64_t en_rterm              : 1;  /**< [  3:  3](R/W) For debug use only. Set to one to enable the receiver's termination circuit
                                                                 during bringup. Setting to zero will turn off receiver termination. */
        uint64_t en_lb                 : 1;  /**< [  4:  4](R/W) Enable for near-end TX loopback path. */
        uint64_t en_rt85               : 1;  /**< [  5:  5](R/W) Enable 85 Ohm termination in the receiver. */
        uint64_t term                  : 2;  /**< [  7:  6](R/W) Termination voltage control. Setting to 0x1 (VDSSA) is typically appropriate for
                                                                 PCIe channels. For channels without a series board capacitor the typical setting
                                                                 would be 0x0 (floating).
                                                                 0x0 = Floating.
                                                                 0x1 = VSSA.
                                                                 0x2 = VDDA.
                                                                 0x3 = VSSA. */
        uint64_t erc                   : 4;  /**< [ 11:  8](R/W) Interpolator edge-rate control. This control is shared between all
                                                                 interpolators in the lane.  Set as follows:
                                                                   \<pre\>
                                                                   if      (data_period \>= 500ps)  erc = 4'h1;
                                                                   else if (data_period \>= 407ps)  erc = 4'h2;
                                                                   else if (data_period \>= 333ps)  erc = 4'h3;
                                                                   else if (data_period \>= 167ps)  erc = 4'h4;
                                                                   else if (data_period \>= 166ps)  erc = 4'h5;
                                                                   else if (data_period \>= 100ps)  erc = 4'h7;
                                                                   else if (data_period \>=  85ps)  erc = 4'h8;
                                                                   else if (data_period \>=  80ps)  erc = 4'h9;
                                                                   else if (data_period \>=  62ps)  erc = 4'hA;
                                                                   else if (data_period \>=  55ps)  erc = 4'hB;
                                                                   else if (data_period \>=  50ps)  erc = 4'hC;
                                                                   else if (data_period \>=  45ps)  erc = 4'hD;
                                                                   else if (data_period \>=  38ps)  erc = 4'hE;
                                                                   else                            erc = 4'hF;
                                                                   \</pre\> */
        uint64_t en_sh_lb              : 1;  /**< [ 12: 12](R/W) Enable for shallow loopback mode within RX. Used when in shallow loopback
                                                                 mode to mux the CDR receive clock onto the transmit data path clock
                                                                 to ensure that the clock frequencies are matched (to prevent data overrun).
                                                                 This signal should be enabled along with GSERN()_LANE()_PLL_2_BCFG[SHLB_EN] for
                                                                 the PLL. */
        uint64_t reserved_13           : 1;
        uint64_t rxcdrramp             : 1;  /**< [ 14: 14](R/W) For diagnostic use only.
                                                                 Internal:
                                                                 For lab characterization use only. Set to 1 to cause the CDR FSM to ramp the 1st
                                                                 order state by [INC1], independent of voter, & hold the 2nd order state. */
        uint64_t rxcdrhold             : 1;  /**< [ 15: 15](R/W) Set to place the CDR finite state machine (FSM) into a hold state so it does not
                                                                 try to track clock or data, which would not normally be present during
                                                                 electrical idle. The CDR FSM state is preserved, provided [RXELECIDLE] is not
                                                                 asserted, so the CDR FSM resumes operation with the same settings in effect
                                                                 prior to entering the hold state. deassert (low) to allow the CDR FSM to run. */
        uint64_t rxelecidle            : 1;  /**< [ 16: 16](R/W) Set to place the CDR finite state machine into a reset state so it does not try
                                                                 to track clock or data and starts from a reset state when the CDR finite state
                                                                 machine begins or resumes operation. deassert (low) to allow the CDR FSM to run. */
        uint64_t en_idle_cal           : 1;  /**< [ 17: 17](R/W) Set to put the idle detector into calibration mode. */
        uint64_t idle_os_ovrd          : 6;  /**< [ 23: 18](R/W) Override value for the IDLE detect offset calibration. As with the
                                                                 other offset DACs in the RX, the MSB sets the sign, and the 5 LSBs
                                                                 are binary-encoded magnitudes. */
        uint64_t refset                : 5;  /**< [ 28: 24](R/W) Sets the reference voltage swing for idle detection. A voltage swing
                                                                 at the input of the RX less than this amount is defined as
                                                                 idle.
                                                                   0x0  = Threshold (refp-refn) is 23 mV.
                                                                   0x1  = Threshold (refp-refn) is 27.4 mV.
                                                                   0x2  = Threshold (refp-refn) is 31.8 mV.
                                                                   0x3  = Threshold (refp-refn) is 36.2 mV.
                                                                   0x4  = Threshold (refp-refn) is 40.6 mV.
                                                                   0x5  = Threshold (refp-refn) is 45 mV.
                                                                   0x6  = Threshold (refp-refn) is 49.4 mV.
                                                                   0x7  = Threshold (refp-refn) is 53.8 mV.
                                                                   0x8  = Threshold (refp-refn) is 58.2 mV.
                                                                   0x9  = Threshold (refp-refn) is 62.6 mV.
                                                                   0xA  = Threshold (refp-refn) is 67 mV.
                                                                   0xB  = Threshold (refp-refn) is 71.4 mV.
                                                                   0xC  = Threshold (refp-refn) is 75.8 mV.
                                                                   0xD  = Threshold (refp-refn) is 80.2 mV.
                                                                   0xE  = Threshold (refp-refn) is 84.6 mV.
                                                                   0xF  = Threshold (refp-refn) is 89 mV.
                                                                   0x10 = Threshold (refp-refn) is 55 mV.
                                                                   0x11 = Threshold (refp-refn) is 62.9 mV.
                                                                   0x12 = Threshold (refp-refn) is 70.8 mV.
                                                                   0x13 = Threshold (refp-refn) is 78.7 mV.
                                                                   0x14 = Threshold (refp-refn) is 86.6 mV.
                                                                   0x15 = Threshold (refp-refn) is 94.5 mV.
                                                                   0x16 = Threshold (refp-refn) is 102.4 mV.
                                                                   0x17 = Threshold (refp-refn) is 110.3 mV.
                                                                   0x18 = Threshold (refp-refn) is 118.2 mV.
                                                                   0x19 = Threshold (refp-refn) is 126.1 mV.
                                                                   0x1A = Threshold (refp-refn) is 134 mV.
                                                                   0x1B = Threshold (refp-refn) is 141.9 mV.
                                                                   0x1C = Threshold (refp-refn) is 149.8 mV.
                                                                   0x1D = Threshold (refp-refn) is 157.7 mV.
                                                                   0x1E = Threshold (refp-refn) is 165.6 mV.
                                                                   0x1F = Threshold (refp-refn) is 173.5 mV. */
        uint64_t idle_os_ovrd_en       : 1;  /**< [ 29: 29](R/W) Enable use of [IDLE_OS_OVRD]. */
        uint64_t idle_os_bitlen        : 2;  /**< [ 31: 30](R/W) Number of bits to accumulate for IDLE detect offset calibration, measured in
                                                                 cycles of the 100 MHz system service clock.
                                                                 0x0 = 5 cycles.
                                                                 0x1 = 30 cycles.
                                                                 0x2 = 60 cycles.
                                                                 0x3 = 250 cycles. */
        uint64_t rx_idle_lowf          : 2;  /**< [ 33: 32](R/W) Control for the receiver's idle detector analog filter
                                                                 bandwidth. The two bits apply at different times.
                                                                 \<0\> = Set to 1 for low bandwidth during normal operation.
                                                                 \<1\> = Set to 1 for low bandwidth during idle offset calibration.
                                                                 The default is 1 during normal operation for large filter capacitance and low
                                                                 bandwidth, and 0 during idle offset calibration to provide faster response. */
        uint64_t bstuff                : 1;  /**< [ 34: 34](R/W) Set to place custom receive pipe in bit-stuffing
                                                                 mode. Only the odd bits in the half-rate DFE outputs are passed to
                                                                 the cdrout* and dout* pipe outputs; the odd bits are duplicated to
                                                                 fill up the expected data path width. */
        uint64_t reserved_35_39        : 5;
        uint64_t rx_dcc_lowf           : 1;  /**< [ 40: 40](R/W) Set to put the RX duty-cycle corrector (DCC) into low frequency mode. Set to 1
                                                                 when operating at data rates below 4 Gbaud. */
        uint64_t rx_dcc_iboost         : 1;  /**< [ 41: 41](R/W) Set to assert the iboost control bit of the
                                                                 receiver duty cycle correcter. Should be programmed as desired before
                                                                 sequencing the receiver reset state machine. Differs
                                                                 from [RX_DCC_LOWF] in the data rate range that it is set at. */
        uint64_t reserved_42_47        : 6;
        uint64_t rxcdrfsmi             : 1;  /**< [ 48: 48](R/W) Set to provide the RX interpolator with the RX CDR load I
                                                                 clock (rxcdrldi). deassert (low) to provide the interpolator with
                                                                 the RX CDR load Q clock (rxcdrldq). This bit is ignored when
                                                                 txcdrdfsm is asserted (high), which set the RX interpolator
                                                                 and CDR FSM to use the TX clock (txcdrld).

                                                                 Internal:
                                                                 (For initial testing, assert rxcdrfsmi, but if we have trouble
                                                                 meeting timing, we can deassert this signal to provide some
                                                                 additional timing margin from the last flops in the RX CDR FSM to
                                                                 the flops interpolator.) */
        uint64_t reserved_49_63        : 15;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_rx_st_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_rx_st_bcfg bdk_gsernx_lanex_rx_st_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_RX_ST_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_RX_ST_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000ff0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_RX_ST_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_RX_ST_BCFG(a,b) bdk_gsernx_lanex_rx_st_bcfg_t
#define bustype_BDK_GSERNX_LANEX_RX_ST_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_RX_ST_BCFG(a,b) "GSERNX_LANEX_RX_ST_BCFG"
#define device_bar_BDK_GSERNX_LANEX_RX_ST_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_RX_ST_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_RX_ST_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_sata_phy2_bcfg
 *
 * GSER Lane SATA Control 2 Register
 * Control settings for SATA PHY functionality.
 */
union bdk_gsernx_lanex_sata_phy2_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_sata_phy2_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t dev_align_count       : 16; /**< [ 63: 48](R/W) Count in service clock cycles representing the duration of ALIGNp primitives
                                                                 received at each speed from the far end Device during the rate negotiation
                                                                 process.
                                                                 Reset value is set to yield a 54.61ns duration. */
        uint64_t reserved_43_47        : 5;
        uint64_t cdr_lock_wait         : 11; /**< [ 42: 32](R/W) Maximum wait count in service clock cycles required after detecting a received
                                                                 signal or after completing a Receiver reset before the SATA aligner begins to
                                                                 scan for 8B10B symbol alignment.
                                                                 Reset value is set to 5us based on analysis of worst case SSC scenarios. */
        uint64_t do_afeos_final        : 4;  /**< [ 31: 28](R/W) Set to one to allow AFEOS adaptation to keep running continuously during the final
                                                                 phase of adaptation when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted,
                                                                 GSERN()_LANE()_SATA_PHY_BCFG[DO_AFEOS_ADPT] is set and the SATA lane is operating
                                                                 at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = SATA Gen1.
                                                                 \<1\> = SATA Gen2.
                                                                 \<2\> = SATA Gen3.
                                                                 \<3\> = Reserved. */
        uint64_t do_ctlelte_final      : 4;  /**< [ 27: 24](R/W) Set to one to allow CTLELTE adaptation to keep running continuously during the final
                                                                 phase of adaptation when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted,
                                                                 GSERN()_LANE()_SATA_PHY_BCFG[DO_CTLELTE_ADPT] is set and the SATA lane is operating
                                                                 at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = SATA Gen1.
                                                                 \<1\> = SATA Gen2.
                                                                 \<2\> = SATA Gen3.
                                                                 \<3\> = Reserved. */
        uint64_t do_ctlez_final        : 4;  /**< [ 23: 20](R/W) Set to one to allow CTLEZ adaptation to keep running continuously during the final
                                                                 phase of adaptation when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted,
                                                                 GSERN()_LANE()_SATA_PHY_BCFG[DO_CTLEZ_ADPT] is set and the SATA lane is operating
                                                                 at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = SATA Gen1.
                                                                 \<1\> = SATA Gen2.
                                                                 \<2\> = SATA Gen3.
                                                                 \<3\> = Reserved. */
        uint64_t do_ctle_final         : 4;  /**< [ 19: 16](R/W) Set to one to allow CTLE adaptation to keep running continuously during the final
                                                                 phase of adaptation when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted,
                                                                 GSERN()_LANE()_SATA_PHY_BCFG[DO_CTLE_ADPT] is set and the SATA lane is operating
                                                                 at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = SATA Gen1.
                                                                 \<1\> = SATA Gen2.
                                                                 \<2\> = SATA Gen3.
                                                                 \<3\> = Reserved. */
        uint64_t do_dfe_final          : 4;  /**< [ 15: 12](R/W) Set to one to allow DFE adaptation to keep running continuously during the final
                                                                 phase of adaptation when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted,
                                                                 GSERN()_LANE()_SATA_PHY_BCFG[DO_DFE_ADPT] is set and the SATA lane is operating
                                                                 at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = SATA Gen1.
                                                                 \<1\> = SATA Gen2.
                                                                 \<2\> = SATA Gen3.
                                                                 \<3\> = Reserved. */
        uint64_t do_vga_final          : 4;  /**< [ 11:  8](R/W) Set to one to allow VGA adaptation to keep running continuously during the final
                                                                 phase of adaptation when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted,
                                                                 GSERN()_LANE()_SATA_PHY_BCFG[DO_VGA_ADPT] is set and the SATA lane is operating
                                                                 at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = SATA Gen1.
                                                                 \<1\> = SATA Gen2.
                                                                 \<2\> = SATA Gen3.
                                                                 \<3\> = Reserved. */
        uint64_t do_blwc_final         : 4;  /**< [  7:  4](R/W) Set to one to allow BLWC adaptation to keep running continuously during the final
                                                                 phase of adaptation when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted,
                                                                 GSERN()_LANE()_SATA_PHY_BCFG[DO_BLWC_ADPT] is set and the SATA lane is operating
                                                                 at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = SATA Gen1.
                                                                 \<1\> = SATA Gen2.
                                                                 \<2\> = SATA Gen3.
                                                                 \<3\> = Reserved. */
        uint64_t do_prevga_gn_final    : 4;  /**< [  3:  0](R/W) Set to one to allow PREVGA_GN adaptation to keep running continuously during the final
                                                                 phase of adaptation when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted,
                                                                 GSERN()_LANE()_SATA_PHY_BCFG[DO_PREVGA_GN_ADPT] is set and the SATA lane is operating
                                                                 at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = SATA Gen1.
                                                                 \<1\> = SATA Gen2.
                                                                 \<2\> = SATA Gen3.
                                                                 \<3\> = Reserved. */
#else /* Word 0 - Little Endian */
        uint64_t do_prevga_gn_final    : 4;  /**< [  3:  0](R/W) Set to one to allow PREVGA_GN adaptation to keep running continuously during the final
                                                                 phase of adaptation when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted,
                                                                 GSERN()_LANE()_SATA_PHY_BCFG[DO_PREVGA_GN_ADPT] is set and the SATA lane is operating
                                                                 at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = SATA Gen1.
                                                                 \<1\> = SATA Gen2.
                                                                 \<2\> = SATA Gen3.
                                                                 \<3\> = Reserved. */
        uint64_t do_blwc_final         : 4;  /**< [  7:  4](R/W) Set to one to allow BLWC adaptation to keep running continuously during the final
                                                                 phase of adaptation when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted,
                                                                 GSERN()_LANE()_SATA_PHY_BCFG[DO_BLWC_ADPT] is set and the SATA lane is operating
                                                                 at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = SATA Gen1.
                                                                 \<1\> = SATA Gen2.
                                                                 \<2\> = SATA Gen3.
                                                                 \<3\> = Reserved. */
        uint64_t do_vga_final          : 4;  /**< [ 11:  8](R/W) Set to one to allow VGA adaptation to keep running continuously during the final
                                                                 phase of adaptation when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted,
                                                                 GSERN()_LANE()_SATA_PHY_BCFG[DO_VGA_ADPT] is set and the SATA lane is operating
                                                                 at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = SATA Gen1.
                                                                 \<1\> = SATA Gen2.
                                                                 \<2\> = SATA Gen3.
                                                                 \<3\> = Reserved. */
        uint64_t do_dfe_final          : 4;  /**< [ 15: 12](R/W) Set to one to allow DFE adaptation to keep running continuously during the final
                                                                 phase of adaptation when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted,
                                                                 GSERN()_LANE()_SATA_PHY_BCFG[DO_DFE_ADPT] is set and the SATA lane is operating
                                                                 at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = SATA Gen1.
                                                                 \<1\> = SATA Gen2.
                                                                 \<2\> = SATA Gen3.
                                                                 \<3\> = Reserved. */
        uint64_t do_ctle_final         : 4;  /**< [ 19: 16](R/W) Set to one to allow CTLE adaptation to keep running continuously during the final
                                                                 phase of adaptation when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted,
                                                                 GSERN()_LANE()_SATA_PHY_BCFG[DO_CTLE_ADPT] is set and the SATA lane is operating
                                                                 at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = SATA Gen1.
                                                                 \<1\> = SATA Gen2.
                                                                 \<2\> = SATA Gen3.
                                                                 \<3\> = Reserved. */
        uint64_t do_ctlez_final        : 4;  /**< [ 23: 20](R/W) Set to one to allow CTLEZ adaptation to keep running continuously during the final
                                                                 phase of adaptation when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted,
                                                                 GSERN()_LANE()_SATA_PHY_BCFG[DO_CTLEZ_ADPT] is set and the SATA lane is operating
                                                                 at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = SATA Gen1.
                                                                 \<1\> = SATA Gen2.
                                                                 \<2\> = SATA Gen3.
                                                                 \<3\> = Reserved. */
        uint64_t do_ctlelte_final      : 4;  /**< [ 27: 24](R/W) Set to one to allow CTLELTE adaptation to keep running continuously during the final
                                                                 phase of adaptation when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted,
                                                                 GSERN()_LANE()_SATA_PHY_BCFG[DO_CTLELTE_ADPT] is set and the SATA lane is operating
                                                                 at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = SATA Gen1.
                                                                 \<1\> = SATA Gen2.
                                                                 \<2\> = SATA Gen3.
                                                                 \<3\> = Reserved. */
        uint64_t do_afeos_final        : 4;  /**< [ 31: 28](R/W) Set to one to allow AFEOS adaptation to keep running continuously during the final
                                                                 phase of adaptation when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted,
                                                                 GSERN()_LANE()_SATA_PHY_BCFG[DO_AFEOS_ADPT] is set and the SATA lane is operating
                                                                 at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = SATA Gen1.
                                                                 \<1\> = SATA Gen2.
                                                                 \<2\> = SATA Gen3.
                                                                 \<3\> = Reserved. */
        uint64_t cdr_lock_wait         : 11; /**< [ 42: 32](R/W) Maximum wait count in service clock cycles required after detecting a received
                                                                 signal or after completing a Receiver reset before the SATA aligner begins to
                                                                 scan for 8B10B symbol alignment.
                                                                 Reset value is set to 5us based on analysis of worst case SSC scenarios. */
        uint64_t reserved_43_47        : 5;
        uint64_t dev_align_count       : 16; /**< [ 63: 48](R/W) Count in service clock cycles representing the duration of ALIGNp primitives
                                                                 received at each speed from the far end Device during the rate negotiation
                                                                 process.
                                                                 Reset value is set to yield a 54.61ns duration. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_sata_phy2_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_sata_phy2_bcfg bdk_gsernx_lanex_sata_phy2_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_SATA_PHY2_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_SATA_PHY2_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002bb0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_SATA_PHY2_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_SATA_PHY2_BCFG(a,b) bdk_gsernx_lanex_sata_phy2_bcfg_t
#define bustype_BDK_GSERNX_LANEX_SATA_PHY2_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_SATA_PHY2_BCFG(a,b) "GSERNX_LANEX_SATA_PHY2_BCFG"
#define device_bar_BDK_GSERNX_LANEX_SATA_PHY2_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_SATA_PHY2_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_SATA_PHY2_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_sata_phy_bcfg
 *
 * GSER Lane SATA Control Register
 * Control settings for SATA PHY functionality.
 */
union bdk_gsernx_lanex_sata_phy_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_sata_phy_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t do_afeos_adpt         : 4;  /**< [ 63: 60](R/W) Set to one to allow the adaptation reset state machine to trigger AFEOS adaptation
                                                                 when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted and the SATA lane is
                                                                 operating at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = SATA gen1.
                                                                 \<1\> = SATA gen2.
                                                                 \<2\> = SATA gen3.
                                                                 \<3\> = Reserved. */
        uint64_t do_ctlelte_adpt       : 4;  /**< [ 59: 56](R/W) Set to one to allow the adaptation reset state machine to trigger CTLELTE adaptation
                                                                 when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted and the SATA lane is
                                                                 operating at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = SATA gen1.
                                                                 \<1\> = SATA gen2.
                                                                 \<2\> = SATA gen3.
                                                                 \<3\> = Reserved. */
        uint64_t do_ctlez_adpt         : 4;  /**< [ 55: 52](R/W) Set to one to allow the adaptation reset state machine to trigger CTLEZ adaptation
                                                                 when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted and the SATA lane is
                                                                 operating at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = SATA gen1.
                                                                 \<1\> = SATA gen2.
                                                                 \<2\> = SATA gen3.
                                                                 \<3\> = Reserved. */
        uint64_t do_ctle_adpt          : 4;  /**< [ 51: 48](R/W) Set to one to allow the adaptation reset state machine to trigger CTLE adaptation
                                                                 when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted and the SATA lane is
                                                                 operating at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = SATA gen1.
                                                                 \<1\> = SATA gen2.
                                                                 \<2\> = SATA gen3.
                                                                 \<3\> = Reserved. */
        uint64_t do_dfe_adpt           : 4;  /**< [ 47: 44](R/W) Set to one to allow the adaptation reset state machine to trigger DFE adaptation
                                                                 when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted and the SATA lane is
                                                                 operating at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = SATA gen1.
                                                                 \<1\> = SATA gen2.
                                                                 \<2\> = SATA gen3.
                                                                 \<3\> = Reserved. */
        uint64_t do_vga_adpt           : 4;  /**< [ 43: 40](R/W) Set to one to allow the adaptation reset state machine to trigger VGA adaptation
                                                                 when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted and the SATA lane is
                                                                 operating at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = SATA gen1.
                                                                 \<1\> = SATA gen2.
                                                                 \<2\> = SATA gen3.
                                                                 \<3\> = Reserved. */
        uint64_t do_blwc_adpt          : 4;  /**< [ 39: 36](R/W) Set to one to allow the adaptation reset state machine to trigger BLWC adaptation
                                                                 when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted and the SATA lane is
                                                                 operating at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = SATA gen1.
                                                                 \<1\> = SATA gen2.
                                                                 \<2\> = SATA gen3.
                                                                 \<3\> = Reserved. */
        uint64_t do_prevga_gn_adpt     : 4;  /**< [ 35: 32](R/W) Set to one to allow the adaptation reset state machine to trigger PREVGA_GN adaptation
                                                                 when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted and the SATA lane is
                                                                 operating at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = SATA gen1.
                                                                 \<1\> = SATA gen2.
                                                                 \<2\> = SATA gen3.
                                                                 \<3\> = Reserved. */
        uint64_t sata_dp_width_sel     : 4;  /**< [ 31: 28](R/W) Cleared to select a 20 bit and set to select a 40 bit Rx and Tx Data Path Width
                                                                 in the PCS Lite Layer.
                                                                 This value must only be changed while lite layer is in reset.
                                                                 \<0\> = SATA gen1 (default 40 bits).
                                                                 \<1\> = SATA gen2 (default 20 bits).
                                                                 \<2\> = SATA gen3 (default 20 bits).
                                                                 \<3\> = Reserved. */
        uint64_t reserved_26_27        : 2;
        uint64_t inhibit_power_change  : 1;  /**< [ 25: 25](R/W) Inhibit SATA power state changes in response to pX_partial, pX_slumber and
                                                                 pX_phy_devslp inputs. */
        uint64_t frc_unalgn_rxelecidle : 1;  /**< [ 24: 24](R/W) Enables use of negated pX_sig_det to force the RX PHY into unalign state. */
        uint64_t sata_bitstuff_tx_en   : 4;  /**< [ 23: 20](R/W) Set to duplicate the first 20 bits of TX data before
                                                                 alignment & ordering for lower data rates. This could be PCS TX
                                                                 data, PRBS data, or shallow-loopback RX data depending on mode.
                                                                 This value must only be changed while lite layer is in reset.
                                                                 \<0\> = SATA gen1.
                                                                 \<1\> = SATA gen2.
                                                                 \<2\> = SATA gen3.
                                                                 \<3\> = Reserved. */
        uint64_t sata_bitstuff_rx_drop_even : 4;/**< [ 19: 16](R/W) Tells the PCS lite receive datapath to drop even bits
                                                                 in the vector of received data from the PMA when [SATA_BITSTUFF_RX_EN] is
                                                                 set:
                                                                   0 = Drop bits 1, 3, 5, 7, ...
                                                                   1 = Drop bits 0, 2, 4, 6, ...

                                                                 This bit is also used in the eye monitor to mask out the dropped
                                                                 bits when counting mismatches.
                                                                 This value must only be changed while lite layer is in reset.
                                                                 \<0\> = SATA gen1.
                                                                 \<1\> = SATA gen2.
                                                                 \<2\> = SATA gen3.
                                                                 \<3\> = Reserved. */
        uint64_t sata_bitstuff_rx_en   : 4;  /**< [ 15: 12](R/W) Set to expect duplicates on the PMA RX data and drop bits after
                                                                 alignment & ordering for PCS layer to consume. The drop ordering is
                                                                 determined by [SATA_BITSTUFF_RX_DROP_EVEN]. This value must only be changed
                                                                 while lite layer is in reset.
                                                                 \<0\> = SATA gen1.
                                                                 \<1\> = SATA gen2.
                                                                 \<2\> = SATA gen3.
                                                                 \<3\> = Reserved. */
        uint64_t rx_squelch_on_idle    : 1;  /**< [ 11: 11](R/W) Receive data squelch on idle.  When idle detection is signaled
                                                                 to the SATA control with the negation of phy_sig_det, the parallel
                                                                 receive data will be set to all 0's regardless of the output of the
                                                                 CDR. */
        uint64_t comma_thr             : 7;  /**< [ 10:  4](R/W) COMMA detection threshold. The receive aligner must see this many
                                                                 COMMA characters at the same rotation before declaring symbol
                                                                 alignment. */
        uint64_t error_thr             : 4;  /**< [  3:  0](R/W) Error threshold. The receive aligner must see this many COMMA
                                                                 characters at a different rotation than currently in use before
                                                                 declaring loss of symbol alignment. */
#else /* Word 0 - Little Endian */
        uint64_t error_thr             : 4;  /**< [  3:  0](R/W) Error threshold. The receive aligner must see this many COMMA
                                                                 characters at a different rotation than currently in use before
                                                                 declaring loss of symbol alignment. */
        uint64_t comma_thr             : 7;  /**< [ 10:  4](R/W) COMMA detection threshold. The receive aligner must see this many
                                                                 COMMA characters at the same rotation before declaring symbol
                                                                 alignment. */
        uint64_t rx_squelch_on_idle    : 1;  /**< [ 11: 11](R/W) Receive data squelch on idle.  When idle detection is signaled
                                                                 to the SATA control with the negation of phy_sig_det, the parallel
                                                                 receive data will be set to all 0's regardless of the output of the
                                                                 CDR. */
        uint64_t sata_bitstuff_rx_en   : 4;  /**< [ 15: 12](R/W) Set to expect duplicates on the PMA RX data and drop bits after
                                                                 alignment & ordering for PCS layer to consume. The drop ordering is
                                                                 determined by [SATA_BITSTUFF_RX_DROP_EVEN]. This value must only be changed
                                                                 while lite layer is in reset.
                                                                 \<0\> = SATA gen1.
                                                                 \<1\> = SATA gen2.
                                                                 \<2\> = SATA gen3.
                                                                 \<3\> = Reserved. */
        uint64_t sata_bitstuff_rx_drop_even : 4;/**< [ 19: 16](R/W) Tells the PCS lite receive datapath to drop even bits
                                                                 in the vector of received data from the PMA when [SATA_BITSTUFF_RX_EN] is
                                                                 set:
                                                                   0 = Drop bits 1, 3, 5, 7, ...
                                                                   1 = Drop bits 0, 2, 4, 6, ...

                                                                 This bit is also used in the eye monitor to mask out the dropped
                                                                 bits when counting mismatches.
                                                                 This value must only be changed while lite layer is in reset.
                                                                 \<0\> = SATA gen1.
                                                                 \<1\> = SATA gen2.
                                                                 \<2\> = SATA gen3.
                                                                 \<3\> = Reserved. */
        uint64_t sata_bitstuff_tx_en   : 4;  /**< [ 23: 20](R/W) Set to duplicate the first 20 bits of TX data before
                                                                 alignment & ordering for lower data rates. This could be PCS TX
                                                                 data, PRBS data, or shallow-loopback RX data depending on mode.
                                                                 This value must only be changed while lite layer is in reset.
                                                                 \<0\> = SATA gen1.
                                                                 \<1\> = SATA gen2.
                                                                 \<2\> = SATA gen3.
                                                                 \<3\> = Reserved. */
        uint64_t frc_unalgn_rxelecidle : 1;  /**< [ 24: 24](R/W) Enables use of negated pX_sig_det to force the RX PHY into unalign state. */
        uint64_t inhibit_power_change  : 1;  /**< [ 25: 25](R/W) Inhibit SATA power state changes in response to pX_partial, pX_slumber and
                                                                 pX_phy_devslp inputs. */
        uint64_t reserved_26_27        : 2;
        uint64_t sata_dp_width_sel     : 4;  /**< [ 31: 28](R/W) Cleared to select a 20 bit and set to select a 40 bit Rx and Tx Data Path Width
                                                                 in the PCS Lite Layer.
                                                                 This value must only be changed while lite layer is in reset.
                                                                 \<0\> = SATA gen1 (default 40 bits).
                                                                 \<1\> = SATA gen2 (default 20 bits).
                                                                 \<2\> = SATA gen3 (default 20 bits).
                                                                 \<3\> = Reserved. */
        uint64_t do_prevga_gn_adpt     : 4;  /**< [ 35: 32](R/W) Set to one to allow the adaptation reset state machine to trigger PREVGA_GN adaptation
                                                                 when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted and the SATA lane is
                                                                 operating at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = SATA gen1.
                                                                 \<1\> = SATA gen2.
                                                                 \<2\> = SATA gen3.
                                                                 \<3\> = Reserved. */
        uint64_t do_blwc_adpt          : 4;  /**< [ 39: 36](R/W) Set to one to allow the adaptation reset state machine to trigger BLWC adaptation
                                                                 when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted and the SATA lane is
                                                                 operating at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = SATA gen1.
                                                                 \<1\> = SATA gen2.
                                                                 \<2\> = SATA gen3.
                                                                 \<3\> = Reserved. */
        uint64_t do_vga_adpt           : 4;  /**< [ 43: 40](R/W) Set to one to allow the adaptation reset state machine to trigger VGA adaptation
                                                                 when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted and the SATA lane is
                                                                 operating at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = SATA gen1.
                                                                 \<1\> = SATA gen2.
                                                                 \<2\> = SATA gen3.
                                                                 \<3\> = Reserved. */
        uint64_t do_dfe_adpt           : 4;  /**< [ 47: 44](R/W) Set to one to allow the adaptation reset state machine to trigger DFE adaptation
                                                                 when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted and the SATA lane is
                                                                 operating at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = SATA gen1.
                                                                 \<1\> = SATA gen2.
                                                                 \<2\> = SATA gen3.
                                                                 \<3\> = Reserved. */
        uint64_t do_ctle_adpt          : 4;  /**< [ 51: 48](R/W) Set to one to allow the adaptation reset state machine to trigger CTLE adaptation
                                                                 when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted and the SATA lane is
                                                                 operating at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = SATA gen1.
                                                                 \<1\> = SATA gen2.
                                                                 \<2\> = SATA gen3.
                                                                 \<3\> = Reserved. */
        uint64_t do_ctlez_adpt         : 4;  /**< [ 55: 52](R/W) Set to one to allow the adaptation reset state machine to trigger CTLEZ adaptation
                                                                 when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted and the SATA lane is
                                                                 operating at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = SATA gen1.
                                                                 \<1\> = SATA gen2.
                                                                 \<2\> = SATA gen3.
                                                                 \<3\> = Reserved. */
        uint64_t do_ctlelte_adpt       : 4;  /**< [ 59: 56](R/W) Set to one to allow the adaptation reset state machine to trigger CTLELTE adaptation
                                                                 when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted and the SATA lane is
                                                                 operating at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = SATA gen1.
                                                                 \<1\> = SATA gen2.
                                                                 \<2\> = SATA gen3.
                                                                 \<3\> = Reserved. */
        uint64_t do_afeos_adpt         : 4;  /**< [ 63: 60](R/W) Set to one to allow the adaptation reset state machine to trigger AFEOS adaptation
                                                                 when GSERN()_LANE()_RST2_BCFG[RST_ADPT_RST_SM] is deasserted and the SATA lane is
                                                                 operating at the corresponding rate. The individual bits are mapped as follows:
                                                                 \<0\> = SATA gen1.
                                                                 \<1\> = SATA gen2.
                                                                 \<2\> = SATA gen3.
                                                                 \<3\> = Reserved. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_sata_phy_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_sata_phy_bcfg bdk_gsernx_lanex_sata_phy_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_SATA_PHY_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_SATA_PHY_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002b30ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_SATA_PHY_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_SATA_PHY_BCFG(a,b) bdk_gsernx_lanex_sata_phy_bcfg_t
#define bustype_BDK_GSERNX_LANEX_SATA_PHY_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_SATA_PHY_BCFG(a,b) "GSERNX_LANEX_SATA_PHY_BCFG"
#define device_bar_BDK_GSERNX_LANEX_SATA_PHY_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_SATA_PHY_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_SATA_PHY_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_sata_phy_bsts
 *
 * GSER Lane SATA PCS Status Register
 * Error Status for SATA PHY functionality.
 */
union bdk_gsernx_lanex_sata_phy_bsts
{
    uint64_t u;
    struct bdk_gsernx_lanex_sata_phy_bsts_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_1_63         : 63;
        uint64_t align_error           : 1;  /**< [  0:  0](R/W1C/H) Alignment error.
                                                                 The receive 8B10B aligner has detected an error. An error is
                                                                 declared if GSERN()_LANE()_SATA_PHY_BCFG[ERROR_THR]
                                                                 COMMA characters are detected at a 10 bit rotation that does not match
                                                                 the active rotation. The COMMAs do not have to all be at the same rotation. */
#else /* Word 0 - Little Endian */
        uint64_t align_error           : 1;  /**< [  0:  0](R/W1C/H) Alignment error.
                                                                 The receive 8B10B aligner has detected an error. An error is
                                                                 declared if GSERN()_LANE()_SATA_PHY_BCFG[ERROR_THR]
                                                                 COMMA characters are detected at a 10 bit rotation that does not match
                                                                 the active rotation. The COMMAs do not have to all be at the same rotation. */
        uint64_t reserved_1_63         : 63;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_sata_phy_bsts_s cn; */
};
typedef union bdk_gsernx_lanex_sata_phy_bsts bdk_gsernx_lanex_sata_phy_bsts_t;

static inline uint64_t BDK_GSERNX_LANEX_SATA_PHY_BSTS(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_SATA_PHY_BSTS(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002fb0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_SATA_PHY_BSTS", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_SATA_PHY_BSTS(a,b) bdk_gsernx_lanex_sata_phy_bsts_t
#define bustype_BDK_GSERNX_LANEX_SATA_PHY_BSTS(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_SATA_PHY_BSTS(a,b) "GSERNX_LANEX_SATA_PHY_BSTS"
#define device_bar_BDK_GSERNX_LANEX_SATA_PHY_BSTS(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_SATA_PHY_BSTS(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_SATA_PHY_BSTS(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_sata_rxeq1_1_bcfg
 *
 * GSER Lane SATA Gen1 RX Equalizer Control Register 1
 * Parameters controlling the custom receiver equalization during SATA gen1 operation.
 * These fields will drive the associated control signal when
 * GSERN()_LANE()_SRCMX_BCFG[TX_CTRL_SEL]
 * is set to 'SATA'.
 */
union bdk_gsernx_lanex_sata_rxeq1_1_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_sata_rxeq1_1_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_61_63        : 3;
        uint64_t sata_g1_blwc_deadband : 12; /**< [ 60: 49](R/W) BLWC adaptation deadband settings.
                                                                 12-bit field to match accumulator, but typically a value less than 0x0FF is used. */
        uint64_t sata_g1_en_qac_e      : 1;  /**< [ 48: 48](R/W) Enable use of QAC digital filter in the doute datapath. If the
                                                                 enable is deasserted, the filter will output the [QAC_REFSET]
                                                                 value. If its asserted, it will determine the current phase and use
                                                                 [QAC_REFSET] & [QAC_CNTSET] to output a correction value. Set prior to
                                                                 exiting reset. */
        uint64_t sata_g1_en_qac_q      : 1;  /**< [ 47: 47](R/W) Enable use of QAC digital filter in the doutq datapath. If the
                                                                 enable is deasserted, the filter will output the [QAC_REFSET]
                                                                 value. If its asserted, it will determine the current phase and use
                                                                 [QAC_REFSET] & [QAC_CNTSET] to output a correction value. Set prior to
                                                                 exiting reset. */
        uint64_t sata_g1_cdr_qac_selq  : 1;  /**< [ 46: 46](R/W) Enable use of the QAC corrector for the q-path when the reset state
                                                                 machine timing allows it. */
        uint64_t sata_g1_cdr_qac_sele  : 1;  /**< [ 45: 45](R/W) Enable use of the QAC corrector for the e-path when the reset state
                                                                 machine timing allows it. */
        uint64_t sata_g1_eoffs         : 7;  /**< [ 44: 38](R/W) E interp state offset. */
        uint64_t sata_g1_qoffs         : 7;  /**< [ 37: 31](R/W) Q interp state offset. */
        uint64_t sata_g1_inc2          : 6;  /**< [ 30: 25](R/W) 2nd order loop inc. */
        uint64_t sata_g1_inc1          : 6;  /**< [ 24: 19](R/W) 1st order loop inc. */
        uint64_t sata_g1_erc           : 4;  /**< [ 18: 15](R/W) Interpolator edge-rate control. This control is shared between all
                                                                 interpolators in the lane. */
        uint64_t sata_g1_rx_dcc_lowf   : 1;  /**< [ 14: 14](R/W) Set to put the RX duty-cycle corrector (DCC) into low frequency mode. Set to 1
                                                                 when operating at data rates below 4 Gbaud. */
        uint64_t sata_g1_ctle_lte_zero_ovrd_en : 1;/**< [ 13: 13](R/W) CTLE LTE zero frequency override enable.
                                                                 By default, the override should be enabled; otherwise, CTLE_LTE_ZERO
                                                                 will be set equal to CTLE_ZERO within the RX adaptation FSM. */
        uint64_t sata_g1_ctle_lte_zero_ovrd : 4;/**< [ 12:  9](R/W) CTLE LTE zero frequency override value. */
        uint64_t reserved_0_8          : 9;
#else /* Word 0 - Little Endian */
        uint64_t reserved_0_8          : 9;
        uint64_t sata_g1_ctle_lte_zero_ovrd : 4;/**< [ 12:  9](R/W) CTLE LTE zero frequency override value. */
        uint64_t sata_g1_ctle_lte_zero_ovrd_en : 1;/**< [ 13: 13](R/W) CTLE LTE zero frequency override enable.
                                                                 By default, the override should be enabled; otherwise, CTLE_LTE_ZERO
                                                                 will be set equal to CTLE_ZERO within the RX adaptation FSM. */
        uint64_t sata_g1_rx_dcc_lowf   : 1;  /**< [ 14: 14](R/W) Set to put the RX duty-cycle corrector (DCC) into low frequency mode. Set to 1
                                                                 when operating at data rates below 4 Gbaud. */
        uint64_t sata_g1_erc           : 4;  /**< [ 18: 15](R/W) Interpolator edge-rate control. This control is shared between all
                                                                 interpolators in the lane. */
        uint64_t sata_g1_inc1          : 6;  /**< [ 24: 19](R/W) 1st order loop inc. */
        uint64_t sata_g1_inc2          : 6;  /**< [ 30: 25](R/W) 2nd order loop inc. */
        uint64_t sata_g1_qoffs         : 7;  /**< [ 37: 31](R/W) Q interp state offset. */
        uint64_t sata_g1_eoffs         : 7;  /**< [ 44: 38](R/W) E interp state offset. */
        uint64_t sata_g1_cdr_qac_sele  : 1;  /**< [ 45: 45](R/W) Enable use of the QAC corrector for the e-path when the reset state
                                                                 machine timing allows it. */
        uint64_t sata_g1_cdr_qac_selq  : 1;  /**< [ 46: 46](R/W) Enable use of the QAC corrector for the q-path when the reset state
                                                                 machine timing allows it. */
        uint64_t sata_g1_en_qac_q      : 1;  /**< [ 47: 47](R/W) Enable use of QAC digital filter in the doutq datapath. If the
                                                                 enable is deasserted, the filter will output the [QAC_REFSET]
                                                                 value. If its asserted, it will determine the current phase and use
                                                                 [QAC_REFSET] & [QAC_CNTSET] to output a correction value. Set prior to
                                                                 exiting reset. */
        uint64_t sata_g1_en_qac_e      : 1;  /**< [ 48: 48](R/W) Enable use of QAC digital filter in the doute datapath. If the
                                                                 enable is deasserted, the filter will output the [QAC_REFSET]
                                                                 value. If its asserted, it will determine the current phase and use
                                                                 [QAC_REFSET] & [QAC_CNTSET] to output a correction value. Set prior to
                                                                 exiting reset. */
        uint64_t sata_g1_blwc_deadband : 12; /**< [ 60: 49](R/W) BLWC adaptation deadband settings.
                                                                 12-bit field to match accumulator, but typically a value less than 0x0FF is used. */
        uint64_t reserved_61_63        : 3;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_sata_rxeq1_1_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_sata_rxeq1_1_bcfg bdk_gsernx_lanex_sata_rxeq1_1_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_SATA_RXEQ1_1_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_SATA_RXEQ1_1_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002e00ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_SATA_RXEQ1_1_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_SATA_RXEQ1_1_BCFG(a,b) bdk_gsernx_lanex_sata_rxeq1_1_bcfg_t
#define bustype_BDK_GSERNX_LANEX_SATA_RXEQ1_1_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_SATA_RXEQ1_1_BCFG(a,b) "GSERNX_LANEX_SATA_RXEQ1_1_BCFG"
#define device_bar_BDK_GSERNX_LANEX_SATA_RXEQ1_1_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_SATA_RXEQ1_1_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_SATA_RXEQ1_1_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_sata_rxeq1_2_bcfg
 *
 * GSER Lane SATA Gen1 RX Equalizer Control Register 2
 * Parameters controlling the custom receiver equalization during SATA gen1 operation.
 * These fields will drive the associated control signal when
 * GSERN()_LANE()_SRCMX_BCFG[TX_CTRL_SEL]
 * is set to 'SATA'.
 */
union bdk_gsernx_lanex_sata_rxeq1_2_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_sata_rxeq1_2_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t sata_g1_prevga_gn_subrate_fin : 16;/**< [ 63: 48](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FIN if subrate gearshifting is not enabled. */
        uint64_t sata_g1_prevga_gn_subrate_init : 16;/**< [ 47: 32](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t sata_g1_blwc_subrate_init : 16;/**< [ 31: 16](R/W) Subrate counter initial value. Sets the initial value for the LMS update interval, if
                                                                 subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t sata_g1_blwc_subrate_final : 16;/**< [ 15:  0](R/W) Subrate counter final value. Sets the ending value for the LMS update interval, if subrate
                                                                 gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled.
                                                                 Subrate counter final value. */
#else /* Word 0 - Little Endian */
        uint64_t sata_g1_blwc_subrate_final : 16;/**< [ 15:  0](R/W) Subrate counter final value. Sets the ending value for the LMS update interval, if subrate
                                                                 gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled.
                                                                 Subrate counter final value. */
        uint64_t sata_g1_blwc_subrate_init : 16;/**< [ 31: 16](R/W) Subrate counter initial value. Sets the initial value for the LMS update interval, if
                                                                 subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t sata_g1_prevga_gn_subrate_init : 16;/**< [ 47: 32](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t sata_g1_prevga_gn_subrate_fin : 16;/**< [ 63: 48](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FIN if subrate gearshifting is not enabled. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_sata_rxeq1_2_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_sata_rxeq1_2_bcfg bdk_gsernx_lanex_sata_rxeq1_2_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_SATA_RXEQ1_2_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_SATA_RXEQ1_2_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002e10ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_SATA_RXEQ1_2_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_SATA_RXEQ1_2_BCFG(a,b) bdk_gsernx_lanex_sata_rxeq1_2_bcfg_t
#define bustype_BDK_GSERNX_LANEX_SATA_RXEQ1_2_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_SATA_RXEQ1_2_BCFG(a,b) "GSERNX_LANEX_SATA_RXEQ1_2_BCFG"
#define device_bar_BDK_GSERNX_LANEX_SATA_RXEQ1_2_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_SATA_RXEQ1_2_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_SATA_RXEQ1_2_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_sata_rxeq1_3_bcfg
 *
 * GSER Lane SATA Gen1 RX Equalizer Control Register 3
 * Parameters controlling the custom receiver equalization during SATA Gen1 operation.
 * These fields will drive the associated control signal when
 * GSERN()_LANE()_SRCMX_BCFG[TX_CTRL_SEL]
 * is set to 'SATA'.
 */
union bdk_gsernx_lanex_sata_rxeq1_3_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_sata_rxeq1_3_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t sata_g1_afeos_subrate_final : 16;/**< [ 63: 48](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t sata_g1_afeos_subrate_init : 16;/**< [ 47: 32](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t sata_g1_subrate_final : 16; /**< [ 31: 16](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t sata_g1_subrate_init  : 16; /**< [ 15:  0](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
#else /* Word 0 - Little Endian */
        uint64_t sata_g1_subrate_init  : 16; /**< [ 15:  0](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t sata_g1_subrate_final : 16; /**< [ 31: 16](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t sata_g1_afeos_subrate_init : 16;/**< [ 47: 32](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t sata_g1_afeos_subrate_final : 16;/**< [ 63: 48](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_sata_rxeq1_3_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_sata_rxeq1_3_bcfg bdk_gsernx_lanex_sata_rxeq1_3_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_SATA_RXEQ1_3_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_SATA_RXEQ1_3_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002e20ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_SATA_RXEQ1_3_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_SATA_RXEQ1_3_BCFG(a,b) bdk_gsernx_lanex_sata_rxeq1_3_bcfg_t
#define bustype_BDK_GSERNX_LANEX_SATA_RXEQ1_3_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_SATA_RXEQ1_3_BCFG(a,b) "GSERNX_LANEX_SATA_RXEQ1_3_BCFG"
#define device_bar_BDK_GSERNX_LANEX_SATA_RXEQ1_3_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_SATA_RXEQ1_3_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_SATA_RXEQ1_3_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_sata_rxeq2_1_bcfg
 *
 * GSER Lane SATA Gen2 RX Equalizer Control Register 1
 * Parameters controlling the custom receiver equalization during SATA gen2 operation.
 * These fields will drive the associated control signal when
 * GSERN()_LANE()_SRCMX_BCFG[TX_CTRL_SEL]
 * is set to 'SATA'.
 */
union bdk_gsernx_lanex_sata_rxeq2_1_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_sata_rxeq2_1_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_61_63        : 3;
        uint64_t sata_g2_blwc_deadband : 12; /**< [ 60: 49](R/W) BLWC adaptation deadband settings.
                                                                 12-bit field to match accumulator, but typically a value less than 0x0FF is used. */
        uint64_t sata_g2_en_qac_e      : 1;  /**< [ 48: 48](R/W) Enable use of QAC digital filter in the doute datapath. If the
                                                                 enable is deasserted, the filter will output the [QAC_REFSET]
                                                                 value. If its asserted, it will determine the current phase and use
                                                                 [QAC_REFSET] & [QAC_CNTSET] to output a correction value. Set prior to
                                                                 exiting reset. */
        uint64_t sata_g2_en_qac_q      : 1;  /**< [ 47: 47](R/W) Enable use of QAC digital filter in the doutq datapath. If the
                                                                 enable is deasserted, the filter will output the [QAC_REFSET]
                                                                 value. If its asserted, it will determine the current phase and use
                                                                 [QAC_REFSET] & [QAC_CNTSET] to output a correction value. Set prior to
                                                                 exiting reset. */
        uint64_t sata_g2_cdr_qac_selq  : 1;  /**< [ 46: 46](R/W) Enable use of the QAC corrector for the q-path when the reset state
                                                                 machine timing allows it. */
        uint64_t sata_g2_cdr_qac_sele  : 1;  /**< [ 45: 45](R/W) Enable use of the QAC corrector for the e-path when the reset state
                                                                 machine timing allows it. */
        uint64_t sata_g2_eoffs         : 7;  /**< [ 44: 38](R/W) E interp state offset. */
        uint64_t sata_g2_qoffs         : 7;  /**< [ 37: 31](R/W) Q interp state offset. */
        uint64_t sata_g2_inc2          : 6;  /**< [ 30: 25](R/W) 2nd order loop inc. */
        uint64_t sata_g2_inc1          : 6;  /**< [ 24: 19](R/W) 1st order loop inc. */
        uint64_t sata_g2_erc           : 4;  /**< [ 18: 15](R/W) Interpolator edge-rate control. This control is shared between all
                                                                 interpolators in the lane. */
        uint64_t sata_g2_rx_dcc_lowf   : 1;  /**< [ 14: 14](R/W) Set to put the RX duty-cycle corrector (DCC) into low frequency mode. Set to 1
                                                                 when operating at data rates below 4 Gbaud. */
        uint64_t sata_g2_ctle_lte_zero_ovrd_en : 1;/**< [ 13: 13](R/W) CTLE LTE zero frequency override enable.
                                                                 By default, the override should be enabled; otherwise, CTLE_LTE_ZERO
                                                                 will be set equal to CTLE_ZERO within the RX adaptation FSM. */
        uint64_t sata_g2_ctle_lte_zero_ovrd : 4;/**< [ 12:  9](R/W) CTLE LTE zero frequency override value. */
        uint64_t reserved_0_8          : 9;
#else /* Word 0 - Little Endian */
        uint64_t reserved_0_8          : 9;
        uint64_t sata_g2_ctle_lte_zero_ovrd : 4;/**< [ 12:  9](R/W) CTLE LTE zero frequency override value. */
        uint64_t sata_g2_ctle_lte_zero_ovrd_en : 1;/**< [ 13: 13](R/W) CTLE LTE zero frequency override enable.
                                                                 By default, the override should be enabled; otherwise, CTLE_LTE_ZERO
                                                                 will be set equal to CTLE_ZERO within the RX adaptation FSM. */
        uint64_t sata_g2_rx_dcc_lowf   : 1;  /**< [ 14: 14](R/W) Set to put the RX duty-cycle corrector (DCC) into low frequency mode. Set to 1
                                                                 when operating at data rates below 4 Gbaud. */
        uint64_t sata_g2_erc           : 4;  /**< [ 18: 15](R/W) Interpolator edge-rate control. This control is shared between all
                                                                 interpolators in the lane. */
        uint64_t sata_g2_inc1          : 6;  /**< [ 24: 19](R/W) 1st order loop inc. */
        uint64_t sata_g2_inc2          : 6;  /**< [ 30: 25](R/W) 2nd order loop inc. */
        uint64_t sata_g2_qoffs         : 7;  /**< [ 37: 31](R/W) Q interp state offset. */
        uint64_t sata_g2_eoffs         : 7;  /**< [ 44: 38](R/W) E interp state offset. */
        uint64_t sata_g2_cdr_qac_sele  : 1;  /**< [ 45: 45](R/W) Enable use of the QAC corrector for the e-path when the reset state
                                                                 machine timing allows it. */
        uint64_t sata_g2_cdr_qac_selq  : 1;  /**< [ 46: 46](R/W) Enable use of the QAC corrector for the q-path when the reset state
                                                                 machine timing allows it. */
        uint64_t sata_g2_en_qac_q      : 1;  /**< [ 47: 47](R/W) Enable use of QAC digital filter in the doutq datapath. If the
                                                                 enable is deasserted, the filter will output the [QAC_REFSET]
                                                                 value. If its asserted, it will determine the current phase and use
                                                                 [QAC_REFSET] & [QAC_CNTSET] to output a correction value. Set prior to
                                                                 exiting reset. */
        uint64_t sata_g2_en_qac_e      : 1;  /**< [ 48: 48](R/W) Enable use of QAC digital filter in the doute datapath. If the
                                                                 enable is deasserted, the filter will output the [QAC_REFSET]
                                                                 value. If its asserted, it will determine the current phase and use
                                                                 [QAC_REFSET] & [QAC_CNTSET] to output a correction value. Set prior to
                                                                 exiting reset. */
        uint64_t sata_g2_blwc_deadband : 12; /**< [ 60: 49](R/W) BLWC adaptation deadband settings.
                                                                 12-bit field to match accumulator, but typically a value less than 0x0FF is used. */
        uint64_t reserved_61_63        : 3;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_sata_rxeq2_1_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_sata_rxeq2_1_bcfg bdk_gsernx_lanex_sata_rxeq2_1_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_SATA_RXEQ2_1_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_SATA_RXEQ2_1_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002e30ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_SATA_RXEQ2_1_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_SATA_RXEQ2_1_BCFG(a,b) bdk_gsernx_lanex_sata_rxeq2_1_bcfg_t
#define bustype_BDK_GSERNX_LANEX_SATA_RXEQ2_1_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_SATA_RXEQ2_1_BCFG(a,b) "GSERNX_LANEX_SATA_RXEQ2_1_BCFG"
#define device_bar_BDK_GSERNX_LANEX_SATA_RXEQ2_1_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_SATA_RXEQ2_1_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_SATA_RXEQ2_1_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_sata_rxeq2_2_bcfg
 *
 * GSER Lane SATA Gen2 RX Equalizer Control Register 2
 * Parameters controlling the custom receiver equalization during SATA gen2 operation.
 * These fields will drive the associated control signal when
 * GSERN()_LANE()_SRCMX_BCFG[TX_CTRL_SEL]
 * is set to 'SATA'.
 */
union bdk_gsernx_lanex_sata_rxeq2_2_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_sata_rxeq2_2_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t sata_g2_prevga_gn_subrate_fin : 16;/**< [ 63: 48](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FIN if subrate gearshifting is not enabled. */
        uint64_t sata_g2_prevga_gn_subrate_init : 16;/**< [ 47: 32](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t sata_g2_blwc_subrate_init : 16;/**< [ 31: 16](R/W) Subrate counter initial value. Sets the initial value for the LMS update interval, if
                                                                 subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t sata_g2_blwc_subrate_final : 16;/**< [ 15:  0](R/W) Subrate counter final value. Sets the ending value for the LMS update interval, if subrate
                                                                 gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled.
                                                                 Subrate counter final value. */
#else /* Word 0 - Little Endian */
        uint64_t sata_g2_blwc_subrate_final : 16;/**< [ 15:  0](R/W) Subrate counter final value. Sets the ending value for the LMS update interval, if subrate
                                                                 gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled.
                                                                 Subrate counter final value. */
        uint64_t sata_g2_blwc_subrate_init : 16;/**< [ 31: 16](R/W) Subrate counter initial value. Sets the initial value for the LMS update interval, if
                                                                 subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t sata_g2_prevga_gn_subrate_init : 16;/**< [ 47: 32](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t sata_g2_prevga_gn_subrate_fin : 16;/**< [ 63: 48](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FIN if subrate gearshifting is not enabled. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_sata_rxeq2_2_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_sata_rxeq2_2_bcfg bdk_gsernx_lanex_sata_rxeq2_2_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_SATA_RXEQ2_2_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_SATA_RXEQ2_2_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002e40ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_SATA_RXEQ2_2_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_SATA_RXEQ2_2_BCFG(a,b) bdk_gsernx_lanex_sata_rxeq2_2_bcfg_t
#define bustype_BDK_GSERNX_LANEX_SATA_RXEQ2_2_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_SATA_RXEQ2_2_BCFG(a,b) "GSERNX_LANEX_SATA_RXEQ2_2_BCFG"
#define device_bar_BDK_GSERNX_LANEX_SATA_RXEQ2_2_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_SATA_RXEQ2_2_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_SATA_RXEQ2_2_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_sata_rxeq2_3_bcfg
 *
 * GSER Lane SATA Gen2 RX Equalizer Control Register 3
 * Parameters controlling the custom receiver equalization during SATA Gen2 operation.
 * These fields will drive the associated control signal when
 * GSERN()_LANE()_SRCMX_BCFG[TX_CTRL_SEL]
 * is set to 'SATA'.
 */
union bdk_gsernx_lanex_sata_rxeq2_3_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_sata_rxeq2_3_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t sata_g2_afeos_subrate_final : 16;/**< [ 63: 48](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t sata_g2_afeos_subrate_init : 16;/**< [ 47: 32](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t sata_g2_subrate_final : 16; /**< [ 31: 16](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t sata_g2_subrate_init  : 16; /**< [ 15:  0](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
#else /* Word 0 - Little Endian */
        uint64_t sata_g2_subrate_init  : 16; /**< [ 15:  0](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t sata_g2_subrate_final : 16; /**< [ 31: 16](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t sata_g2_afeos_subrate_init : 16;/**< [ 47: 32](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t sata_g2_afeos_subrate_final : 16;/**< [ 63: 48](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_sata_rxeq2_3_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_sata_rxeq2_3_bcfg bdk_gsernx_lanex_sata_rxeq2_3_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_SATA_RXEQ2_3_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_SATA_RXEQ2_3_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002e50ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_SATA_RXEQ2_3_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_SATA_RXEQ2_3_BCFG(a,b) bdk_gsernx_lanex_sata_rxeq2_3_bcfg_t
#define bustype_BDK_GSERNX_LANEX_SATA_RXEQ2_3_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_SATA_RXEQ2_3_BCFG(a,b) "GSERNX_LANEX_SATA_RXEQ2_3_BCFG"
#define device_bar_BDK_GSERNX_LANEX_SATA_RXEQ2_3_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_SATA_RXEQ2_3_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_SATA_RXEQ2_3_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_sata_rxeq3_1_bcfg
 *
 * GSER Lane SATA Gen3 RX Equalizer Control Register 1
 * Parameters controlling the custom receiver equalization during SATA gen3 operation.
 * These fields will drive the associated control signal when
 * GSERN()_LANE()_SRCMX_BCFG[TX_CTRL_SEL]
 * is set to 'SATA'.
 */
union bdk_gsernx_lanex_sata_rxeq3_1_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_sata_rxeq3_1_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_61_63        : 3;
        uint64_t sata_g3_blwc_deadband : 12; /**< [ 60: 49](R/W) BLWC adaptation deadband settings.
                                                                 12-bit field to match accumulator, but typically a value less than 0x0FF is used. */
        uint64_t sata_g3_en_qac_e      : 1;  /**< [ 48: 48](R/W) Enable use of QAC digital filter in the doute datapath. If the
                                                                 enable is deasserted, the filter will output the [QAC_REFSET]
                                                                 value. If its asserted, it will determine the current phase and use
                                                                 [QAC_REFSET] & [QAC_CNTSET] to output a correction value. Set prior to
                                                                 exiting reset. */
        uint64_t sata_g3_en_qac_q      : 1;  /**< [ 47: 47](R/W) Enable use of QAC digital filter in the doutq datapath. If the
                                                                 enable is deasserted, the filter will output the [QAC_REFSET]
                                                                 value. If its asserted, it will determine the current phase and use
                                                                 [QAC_REFSET] & [QAC_CNTSET] to output a correction value. Set prior to
                                                                 exiting reset. */
        uint64_t sata_g3_cdr_qac_selq  : 1;  /**< [ 46: 46](R/W) Enable use of the QAC corrector for the q-path when the reset state
                                                                 machine timing allows it. */
        uint64_t sata_g3_cdr_qac_sele  : 1;  /**< [ 45: 45](R/W) Enable use of the QAC corrector for the e-path when the reset state
                                                                 machine timing allows it. */
        uint64_t sata_g3_eoffs         : 7;  /**< [ 44: 38](R/W) E interp state offset. */
        uint64_t sata_g3_qoffs         : 7;  /**< [ 37: 31](R/W) Q interp state offset. */
        uint64_t sata_g3_inc2          : 6;  /**< [ 30: 25](R/W) 2nd order loop inc. */
        uint64_t sata_g3_inc1          : 6;  /**< [ 24: 19](R/W) 1st order loop inc. */
        uint64_t sata_g3_erc           : 4;  /**< [ 18: 15](R/W) Interpolator edge-rate control. This control is shared between all
                                                                 interpolators in the lane. */
        uint64_t sata_g3_rx_dcc_lowf   : 1;  /**< [ 14: 14](R/W) Set to put the RX duty-cycle corrector (DCC) into low frequency mode. Set to 1
                                                                 when operating at data rates below 4 Gbaud. */
        uint64_t sata_g3_ctle_lte_zero_ovrd_en : 1;/**< [ 13: 13](R/W) CTLE LTE zero frequency override enable.
                                                                 By default, the override should be enabled; otherwise, CTLE_LTE_ZERO
                                                                 will be set equal to CTLE_ZERO within the RX adaptation FSM. */
        uint64_t sata_g3_ctle_lte_zero_ovrd : 4;/**< [ 12:  9](R/W) CTLE LTE zero frequency override value. */
        uint64_t reserved_0_8          : 9;
#else /* Word 0 - Little Endian */
        uint64_t reserved_0_8          : 9;
        uint64_t sata_g3_ctle_lte_zero_ovrd : 4;/**< [ 12:  9](R/W) CTLE LTE zero frequency override value. */
        uint64_t sata_g3_ctle_lte_zero_ovrd_en : 1;/**< [ 13: 13](R/W) CTLE LTE zero frequency override enable.
                                                                 By default, the override should be enabled; otherwise, CTLE_LTE_ZERO
                                                                 will be set equal to CTLE_ZERO within the RX adaptation FSM. */
        uint64_t sata_g3_rx_dcc_lowf   : 1;  /**< [ 14: 14](R/W) Set to put the RX duty-cycle corrector (DCC) into low frequency mode. Set to 1
                                                                 when operating at data rates below 4 Gbaud. */
        uint64_t sata_g3_erc           : 4;  /**< [ 18: 15](R/W) Interpolator edge-rate control. This control is shared between all
                                                                 interpolators in the lane. */
        uint64_t sata_g3_inc1          : 6;  /**< [ 24: 19](R/W) 1st order loop inc. */
        uint64_t sata_g3_inc2          : 6;  /**< [ 30: 25](R/W) 2nd order loop inc. */
        uint64_t sata_g3_qoffs         : 7;  /**< [ 37: 31](R/W) Q interp state offset. */
        uint64_t sata_g3_eoffs         : 7;  /**< [ 44: 38](R/W) E interp state offset. */
        uint64_t sata_g3_cdr_qac_sele  : 1;  /**< [ 45: 45](R/W) Enable use of the QAC corrector for the e-path when the reset state
                                                                 machine timing allows it. */
        uint64_t sata_g3_cdr_qac_selq  : 1;  /**< [ 46: 46](R/W) Enable use of the QAC corrector for the q-path when the reset state
                                                                 machine timing allows it. */
        uint64_t sata_g3_en_qac_q      : 1;  /**< [ 47: 47](R/W) Enable use of QAC digital filter in the doutq datapath. If the
                                                                 enable is deasserted, the filter will output the [QAC_REFSET]
                                                                 value. If its asserted, it will determine the current phase and use
                                                                 [QAC_REFSET] & [QAC_CNTSET] to output a correction value. Set prior to
                                                                 exiting reset. */
        uint64_t sata_g3_en_qac_e      : 1;  /**< [ 48: 48](R/W) Enable use of QAC digital filter in the doute datapath. If the
                                                                 enable is deasserted, the filter will output the [QAC_REFSET]
                                                                 value. If its asserted, it will determine the current phase and use
                                                                 [QAC_REFSET] & [QAC_CNTSET] to output a correction value. Set prior to
                                                                 exiting reset. */
        uint64_t sata_g3_blwc_deadband : 12; /**< [ 60: 49](R/W) BLWC adaptation deadband settings.
                                                                 12-bit field to match accumulator, but typically a value less than 0x0FF is used. */
        uint64_t reserved_61_63        : 3;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_sata_rxeq3_1_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_sata_rxeq3_1_bcfg bdk_gsernx_lanex_sata_rxeq3_1_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_SATA_RXEQ3_1_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_SATA_RXEQ3_1_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002e60ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_SATA_RXEQ3_1_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_SATA_RXEQ3_1_BCFG(a,b) bdk_gsernx_lanex_sata_rxeq3_1_bcfg_t
#define bustype_BDK_GSERNX_LANEX_SATA_RXEQ3_1_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_SATA_RXEQ3_1_BCFG(a,b) "GSERNX_LANEX_SATA_RXEQ3_1_BCFG"
#define device_bar_BDK_GSERNX_LANEX_SATA_RXEQ3_1_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_SATA_RXEQ3_1_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_SATA_RXEQ3_1_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_sata_rxeq3_2_bcfg
 *
 * GSER Lane SATA Gen3 RX Equalizer Control Register 2
 * Parameters controlling the custom receiver equalization during SATA gen3 operation.
 * These fields will drive the associated control signal when
 * GSERN()_LANE()_SRCMX_BCFG[TX_CTRL_SEL]
 * is set to 'SATA'.
 */
union bdk_gsernx_lanex_sata_rxeq3_2_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_sata_rxeq3_2_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t sata_g3_prevga_gn_subrate_fin : 16;/**< [ 63: 48](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FIN if subrate gearshifting is not enabled. */
        uint64_t sata_g3_prevga_gn_subrate_init : 16;/**< [ 47: 32](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t sata_g3_blwc_subrate_init : 16;/**< [ 31: 16](R/W) Subrate counter initial value. Sets the initial value for the LMS update interval, if
                                                                 subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t sata_g3_blwc_subrate_final : 16;/**< [ 15:  0](R/W) Subrate counter final value. Sets the ending value for the LMS update interval, if subrate
                                                                 gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled.
                                                                 Subrate counter final value. */
#else /* Word 0 - Little Endian */
        uint64_t sata_g3_blwc_subrate_final : 16;/**< [ 15:  0](R/W) Subrate counter final value. Sets the ending value for the LMS update interval, if subrate
                                                                 gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled.
                                                                 Subrate counter final value. */
        uint64_t sata_g3_blwc_subrate_init : 16;/**< [ 31: 16](R/W) Subrate counter initial value. Sets the initial value for the LMS update interval, if
                                                                 subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t sata_g3_prevga_gn_subrate_init : 16;/**< [ 47: 32](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t sata_g3_prevga_gn_subrate_fin : 16;/**< [ 63: 48](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FIN if subrate gearshifting is not enabled. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_sata_rxeq3_2_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_sata_rxeq3_2_bcfg bdk_gsernx_lanex_sata_rxeq3_2_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_SATA_RXEQ3_2_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_SATA_RXEQ3_2_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002e70ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_SATA_RXEQ3_2_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_SATA_RXEQ3_2_BCFG(a,b) bdk_gsernx_lanex_sata_rxeq3_2_bcfg_t
#define bustype_BDK_GSERNX_LANEX_SATA_RXEQ3_2_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_SATA_RXEQ3_2_BCFG(a,b) "GSERNX_LANEX_SATA_RXEQ3_2_BCFG"
#define device_bar_BDK_GSERNX_LANEX_SATA_RXEQ3_2_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_SATA_RXEQ3_2_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_SATA_RXEQ3_2_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_sata_rxeq3_3_bcfg
 *
 * GSER Lane SATA Gen3 RX Equalizer Control Register 3
 * Parameters controlling the custom receiver equalization during SATA Gen3 operation.
 * These fields will drive the associated control signal when
 * GSERN()_LANE()_SRCMX_BCFG[TX_CTRL_SEL]
 * is set to 'SATA'.
 */
union bdk_gsernx_lanex_sata_rxeq3_3_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_sata_rxeq3_3_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t sata_g3_afeos_subrate_final : 16;/**< [ 63: 48](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t sata_g3_afeos_subrate_init : 16;/**< [ 47: 32](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t sata_g3_subrate_final : 16; /**< [ 31: 16](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t sata_g3_subrate_init  : 16; /**< [ 15:  0](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
#else /* Word 0 - Little Endian */
        uint64_t sata_g3_subrate_init  : 16; /**< [ 15:  0](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t sata_g3_subrate_final : 16; /**< [ 31: 16](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t sata_g3_afeos_subrate_init : 16;/**< [ 47: 32](R/W) Subrate counter initial value. Sets the starting value for the LMS update
                                                                 interval, if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
        uint64_t sata_g3_afeos_subrate_final : 16;/**< [ 63: 48](R/W) Subrate counter final value. Sets the final value for the LMS update interval,
                                                                 if subrate gearshifting is enabled.
                                                                 Set SUBRATE_INIT = SUBRATE_FINAL if subrate gearshifting is not enabled. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_sata_rxeq3_3_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_sata_rxeq3_3_bcfg bdk_gsernx_lanex_sata_rxeq3_3_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_SATA_RXEQ3_3_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_SATA_RXEQ3_3_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002e80ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_SATA_RXEQ3_3_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_SATA_RXEQ3_3_BCFG(a,b) bdk_gsernx_lanex_sata_rxeq3_3_bcfg_t
#define bustype_BDK_GSERNX_LANEX_SATA_RXEQ3_3_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_SATA_RXEQ3_3_BCFG(a,b) "GSERNX_LANEX_SATA_RXEQ3_3_BCFG"
#define device_bar_BDK_GSERNX_LANEX_SATA_RXEQ3_3_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_SATA_RXEQ3_3_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_SATA_RXEQ3_3_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_sata_rxidl1a_bcfg
 *
 * GSER Lane SATA Gen1 RX Idle Detection Filter Control Register 2
 * Parameters controlling the analog detection and digital filtering of the receiver's
 * idle detection logic for SATA GEN1. For the digital filtering, setting all fields to 1,
 * i.e., N0=N1=I0=I1=L0=L1=1, results in no filtering.
 */
union bdk_gsernx_lanex_sata_rxidl1a_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_sata_rxidl1a_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t rx_idle_lowf          : 2;  /**< [ 63: 62](R/W) Control for the receiver's idle detector analog filter
                                                                 bandwidth. The two bits apply at different times.
                                                                 \<0\> = Set to 1 for low bandwidth during normal operation.
                                                                 \<1\> = Set to 1 for low bandwidth during idle offset calibration.
                                                                 The default is 1 during normal operation for large filter capacitance and low
                                                                 bandwidth, and 0 during idle offset calibration to provide faster response. */
        uint64_t reserved_61           : 1;
        uint64_t refset                : 5;  /**< [ 60: 56](R/W) Sets the reference voltage swing for idle detection. A voltage swing
                                                                 at the input of the RX less than this amount is defined as idle.
                                                                 (See GSERN()_LANE()_RX_ST_BCFG[REFSET] for bit mapping.) */
        uint64_t reserved_54_55        : 2;
        uint64_t l1                    : 27; /**< [ 53: 27](R/W) Ones count leak parameter. When a zero in the raw idle signal from the custom
                                                                 macro is encountered, the ones count is decremented by this amount, saturating
                                                                 to a minimum count of zero. (Set L1=N1 and I1=1 for a simple run-of-N1 ones to
                                                                 assert the filter output.) The minimum setting for this field is 0x1. */
        uint64_t l0                    : 27; /**< [ 26:  0](R/W) Zeros count leak parameter. When a one in the raw idle signal from the custom
                                                                 macro is encountered, the zeros count is decremented by this amount, saturating
                                                                 to a minimum count of zero. (Set L0=N0 and I0=1 for a simple run-of-N0 zeros to
                                                                 deassert the filter output.) The minimum setting for this field is 0x1. */
#else /* Word 0 - Little Endian */
        uint64_t l0                    : 27; /**< [ 26:  0](R/W) Zeros count leak parameter. When a one in the raw idle signal from the custom
                                                                 macro is encountered, the zeros count is decremented by this amount, saturating
                                                                 to a minimum count of zero. (Set L0=N0 and I0=1 for a simple run-of-N0 zeros to
                                                                 deassert the filter output.) The minimum setting for this field is 0x1. */
        uint64_t l1                    : 27; /**< [ 53: 27](R/W) Ones count leak parameter. When a zero in the raw idle signal from the custom
                                                                 macro is encountered, the ones count is decremented by this amount, saturating
                                                                 to a minimum count of zero. (Set L1=N1 and I1=1 for a simple run-of-N1 ones to
                                                                 assert the filter output.) The minimum setting for this field is 0x1. */
        uint64_t reserved_54_55        : 2;
        uint64_t refset                : 5;  /**< [ 60: 56](R/W) Sets the reference voltage swing for idle detection. A voltage swing
                                                                 at the input of the RX less than this amount is defined as idle.
                                                                 (See GSERN()_LANE()_RX_ST_BCFG[REFSET] for bit mapping.) */
        uint64_t reserved_61           : 1;
        uint64_t rx_idle_lowf          : 2;  /**< [ 63: 62](R/W) Control for the receiver's idle detector analog filter
                                                                 bandwidth. The two bits apply at different times.
                                                                 \<0\> = Set to 1 for low bandwidth during normal operation.
                                                                 \<1\> = Set to 1 for low bandwidth during idle offset calibration.
                                                                 The default is 1 during normal operation for large filter capacitance and low
                                                                 bandwidth, and 0 during idle offset calibration to provide faster response. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_sata_rxidl1a_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_sata_rxidl1a_bcfg bdk_gsernx_lanex_sata_rxidl1a_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_SATA_RXIDL1A_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_SATA_RXIDL1A_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002cc0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_SATA_RXIDL1A_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_SATA_RXIDL1A_BCFG(a,b) bdk_gsernx_lanex_sata_rxidl1a_bcfg_t
#define bustype_BDK_GSERNX_LANEX_SATA_RXIDL1A_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_SATA_RXIDL1A_BCFG(a,b) "GSERNX_LANEX_SATA_RXIDL1A_BCFG"
#define device_bar_BDK_GSERNX_LANEX_SATA_RXIDL1A_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_SATA_RXIDL1A_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_SATA_RXIDL1A_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_sata_rxidl2a_bcfg
 *
 * GSER Lane SATA Gen2 RX Idle Detection Filter Control Register 2
 * Parameters controlling the analog detection and digital filtering of the receiver's
 * idle detection logic for SATA GEN2. For the digital filtering, setting all fields to 1,
 * i.e., N0=N1=I0=I1=L0=L1=1, results in no filtering.
 */
union bdk_gsernx_lanex_sata_rxidl2a_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_sata_rxidl2a_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t rx_idle_lowf          : 2;  /**< [ 63: 62](R/W) Control for the receiver's idle detector analog filter
                                                                 bandwidth. The two bits apply at different times.
                                                                 \<0\> = Set to 1 for low bandwidth during normal operation.
                                                                 \<1\> = Set to 1 for low bandwidth during idle offset calibration.
                                                                 The default is 1 during normal operation for large filter capacitance and low
                                                                 bandwidth, and 0 during idle offset calibration to provide faster response. */
        uint64_t reserved_61           : 1;
        uint64_t refset                : 5;  /**< [ 60: 56](R/W) Sets the reference voltage swing for idle detection. A voltage swing
                                                                 at the input of the RX less than this amount is defined as idle.
                                                                 (See GSERN()_LANE()_RX_ST_BCFG[REFSET] for bit mapping.) */
        uint64_t reserved_54_55        : 2;
        uint64_t l1                    : 27; /**< [ 53: 27](R/W) Ones count leak parameter. When a zero in the raw idle signal from the custom
                                                                 macro is encountered, the ones count is decremented by this amount, saturating
                                                                 to a minimum count of zero. (Set L1=N1 and I1=1 for a simple run-of-N1 ones to
                                                                 assert the filter output.) The minimum setting for this field is 0x1. */
        uint64_t l0                    : 27; /**< [ 26:  0](R/W) Zeros count leak parameter. When a one in the raw idle signal from the custom
                                                                 macro is encountered, the zeros count is decremented by this amount, saturating
                                                                 to a minimum count of zero. (Set L0=N0 and I0=1 for a simple run-of-N0 zeros to
                                                                 deassert the filter output.) The minimum setting for this field is 0x1. */
#else /* Word 0 - Little Endian */
        uint64_t l0                    : 27; /**< [ 26:  0](R/W) Zeros count leak parameter. When a one in the raw idle signal from the custom
                                                                 macro is encountered, the zeros count is decremented by this amount, saturating
                                                                 to a minimum count of zero. (Set L0=N0 and I0=1 for a simple run-of-N0 zeros to
                                                                 deassert the filter output.) The minimum setting for this field is 0x1. */
        uint64_t l1                    : 27; /**< [ 53: 27](R/W) Ones count leak parameter. When a zero in the raw idle signal from the custom
                                                                 macro is encountered, the ones count is decremented by this amount, saturating
                                                                 to a minimum count of zero. (Set L1=N1 and I1=1 for a simple run-of-N1 ones to
                                                                 assert the filter output.) The minimum setting for this field is 0x1. */
        uint64_t reserved_54_55        : 2;
        uint64_t refset                : 5;  /**< [ 60: 56](R/W) Sets the reference voltage swing for idle detection. A voltage swing
                                                                 at the input of the RX less than this amount is defined as idle.
                                                                 (See GSERN()_LANE()_RX_ST_BCFG[REFSET] for bit mapping.) */
        uint64_t reserved_61           : 1;
        uint64_t rx_idle_lowf          : 2;  /**< [ 63: 62](R/W) Control for the receiver's idle detector analog filter
                                                                 bandwidth. The two bits apply at different times.
                                                                 \<0\> = Set to 1 for low bandwidth during normal operation.
                                                                 \<1\> = Set to 1 for low bandwidth during idle offset calibration.
                                                                 The default is 1 during normal operation for large filter capacitance and low
                                                                 bandwidth, and 0 during idle offset calibration to provide faster response. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_sata_rxidl2a_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_sata_rxidl2a_bcfg bdk_gsernx_lanex_sata_rxidl2a_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_SATA_RXIDL2A_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_SATA_RXIDL2A_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002ce0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_SATA_RXIDL2A_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_SATA_RXIDL2A_BCFG(a,b) bdk_gsernx_lanex_sata_rxidl2a_bcfg_t
#define bustype_BDK_GSERNX_LANEX_SATA_RXIDL2A_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_SATA_RXIDL2A_BCFG(a,b) "GSERNX_LANEX_SATA_RXIDL2A_BCFG"
#define device_bar_BDK_GSERNX_LANEX_SATA_RXIDL2A_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_SATA_RXIDL2A_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_SATA_RXIDL2A_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_sata_rxidl3a_bcfg
 *
 * GSER Lane SATA Gen3 RX Idle Detection Filter Control Register 2
 * Parameters controlling the analog detection and digital filtering of the receiver's
 * idle detection logic for SATA GEN3. For the digital filtering, setting all fields to 1,
 * i.e., N0=N1=I0=I1=L0=L1=1, results in no filtering.
 */
union bdk_gsernx_lanex_sata_rxidl3a_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_sata_rxidl3a_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t rx_idle_lowf          : 2;  /**< [ 63: 62](R/W) Control for the receiver's idle detector analog filter
                                                                 bandwidth. The two bits apply at different times.
                                                                 \<0\> = Set to 1 for low bandwidth during normal operation.
                                                                 \<1\> = Set to 1 for low bandwidth during idle offset calibration.
                                                                 The default is 1 during normal operation for large filter capacitance and low
                                                                 bandwidth, and 0 during idle offset calibration to provide faster response. */
        uint64_t reserved_61           : 1;
        uint64_t refset                : 5;  /**< [ 60: 56](R/W) Sets the reference voltage swing for idle detection. A voltage swing
                                                                 at the input of the RX less than this amount is defined as idle.
                                                                 (See GSERN()_LANE()_RX_ST_BCFG[REFSET] for bit mapping.) */
        uint64_t reserved_54_55        : 2;
        uint64_t l1                    : 27; /**< [ 53: 27](R/W) Ones count leak parameter. When a zero in the raw idle signal from the custom
                                                                 macro is encountered, the ones count is decremented by this amount, saturating
                                                                 to a minimum count of zero. (Set L1=N1 and I1=1 for a simple run-of-N1 ones to
                                                                 assert the filter output.) The minimum setting for this field is 0x1. */
        uint64_t l0                    : 27; /**< [ 26:  0](R/W) Zeros count leak parameter. When a one in the raw idle signal from the custom
                                                                 macro is encountered, the zeros count is decremented by this amount, saturating
                                                                 to a minimum count of zero. (Set L0=N0 and I0=1 for a simple run-of-N0 zeros to
                                                                 deassert the filter output.) The minimum setting for this field is 0x1. */
#else /* Word 0 - Little Endian */
        uint64_t l0                    : 27; /**< [ 26:  0](R/W) Zeros count leak parameter. When a one in the raw idle signal from the custom
                                                                 macro is encountered, the zeros count is decremented by this amount, saturating
                                                                 to a minimum count of zero. (Set L0=N0 and I0=1 for a simple run-of-N0 zeros to
                                                                 deassert the filter output.) The minimum setting for this field is 0x1. */
        uint64_t l1                    : 27; /**< [ 53: 27](R/W) Ones count leak parameter. When a zero in the raw idle signal from the custom
                                                                 macro is encountered, the ones count is decremented by this amount, saturating
                                                                 to a minimum count of zero. (Set L1=N1 and I1=1 for a simple run-of-N1 ones to
                                                                 assert the filter output.) The minimum setting for this field is 0x1. */
        uint64_t reserved_54_55        : 2;
        uint64_t refset                : 5;  /**< [ 60: 56](R/W) Sets the reference voltage swing for idle detection. A voltage swing
                                                                 at the input of the RX less than this amount is defined as idle.
                                                                 (See GSERN()_LANE()_RX_ST_BCFG[REFSET] for bit mapping.) */
        uint64_t reserved_61           : 1;
        uint64_t rx_idle_lowf          : 2;  /**< [ 63: 62](R/W) Control for the receiver's idle detector analog filter
                                                                 bandwidth. The two bits apply at different times.
                                                                 \<0\> = Set to 1 for low bandwidth during normal operation.
                                                                 \<1\> = Set to 1 for low bandwidth during idle offset calibration.
                                                                 The default is 1 during normal operation for large filter capacitance and low
                                                                 bandwidth, and 0 during idle offset calibration to provide faster response. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_sata_rxidl3a_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_sata_rxidl3a_bcfg bdk_gsernx_lanex_sata_rxidl3a_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_SATA_RXIDL3A_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_SATA_RXIDL3A_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002d00ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_SATA_RXIDL3A_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_SATA_RXIDL3A_BCFG(a,b) bdk_gsernx_lanex_sata_rxidl3a_bcfg_t
#define bustype_BDK_GSERNX_LANEX_SATA_RXIDL3A_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_SATA_RXIDL3A_BCFG(a,b) "GSERNX_LANEX_SATA_RXIDL3A_BCFG"
#define device_bar_BDK_GSERNX_LANEX_SATA_RXIDL3A_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_SATA_RXIDL3A_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_SATA_RXIDL3A_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_sata_rxidle1_bcfg
 *
 * GSER Lane SATA Gen1 RX Idle Detection Filter Control Register
 * Parameters controlling the analog detection and digital filtering of the receiver's
 * idle detection logic for SATA GEN1. For the digital filtering, setting all fields to 1,
 * i.e., N0=N1=I0=I1=L0=L1=1, results in no filtering.
 */
union bdk_gsernx_lanex_sata_rxidle1_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_sata_rxidle1_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_63           : 1;
        uint64_t i1                    : 4;  /**< [ 62: 59](R/W) Ones count increment parameter. When a one in the raw idle signal from the custom
                                                                 macro is encountered, the ones count is incremented by this amount, saturating
                                                                 to a maximum of [N1]. */
        uint64_t i0                    : 4;  /**< [ 58: 55](R/W) Zeros count increment parameter. When a zero in the raw idle signal from the
                                                                 custom macro is encountered, the zeros count is incremented by this amount,
                                                                 saturating to a maximum count of [N0]. */
        uint64_t reserved_54           : 1;
        uint64_t n1                    : 27; /**< [ 53: 27](R/W) Threshold for the count of ones in the raw idle signal from the custom macro
                                                                 required to assert the idle filter output. */
        uint64_t n0                    : 27; /**< [ 26:  0](R/W) Threshold for the count of zeros in the raw idle signal from the custom macro
                                                                 required to deassert the idle filter output. */
#else /* Word 0 - Little Endian */
        uint64_t n0                    : 27; /**< [ 26:  0](R/W) Threshold for the count of zeros in the raw idle signal from the custom macro
                                                                 required to deassert the idle filter output. */
        uint64_t n1                    : 27; /**< [ 53: 27](R/W) Threshold for the count of ones in the raw idle signal from the custom macro
                                                                 required to assert the idle filter output. */
        uint64_t reserved_54           : 1;
        uint64_t i0                    : 4;  /**< [ 58: 55](R/W) Zeros count increment parameter. When a zero in the raw idle signal from the
                                                                 custom macro is encountered, the zeros count is incremented by this amount,
                                                                 saturating to a maximum count of [N0]. */
        uint64_t i1                    : 4;  /**< [ 62: 59](R/W) Ones count increment parameter. When a one in the raw idle signal from the custom
                                                                 macro is encountered, the ones count is incremented by this amount, saturating
                                                                 to a maximum of [N1]. */
        uint64_t reserved_63           : 1;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_sata_rxidle1_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_sata_rxidle1_bcfg bdk_gsernx_lanex_sata_rxidle1_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_SATA_RXIDLE1_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_SATA_RXIDLE1_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002cb0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_SATA_RXIDLE1_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_SATA_RXIDLE1_BCFG(a,b) bdk_gsernx_lanex_sata_rxidle1_bcfg_t
#define bustype_BDK_GSERNX_LANEX_SATA_RXIDLE1_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_SATA_RXIDLE1_BCFG(a,b) "GSERNX_LANEX_SATA_RXIDLE1_BCFG"
#define device_bar_BDK_GSERNX_LANEX_SATA_RXIDLE1_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_SATA_RXIDLE1_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_SATA_RXIDLE1_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_sata_rxidle2_bcfg
 *
 * GSER Lane SATA Gen1 RX Idle Detection Filter Control Register
 * Parameters controlling the analog detection and digital filtering of the receiver's
 * idle detection logic for SATA GEN2. For the digital filtering, setting all fields to 1,
 * i.e., N0=N1=I0=I1=L0=L1=1, results in no filtering.
 */
union bdk_gsernx_lanex_sata_rxidle2_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_sata_rxidle2_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_63           : 1;
        uint64_t i1                    : 4;  /**< [ 62: 59](R/W) Ones count increment parameter. When a one in the raw idle signal from the custom
                                                                 macro is encountered, the ones count is incremented by this amount, saturating
                                                                 to a maximum of [N1]. */
        uint64_t i0                    : 4;  /**< [ 58: 55](R/W) Zeros count increment parameter. When a zero in the raw idle signal from the
                                                                 custom macro is encountered, the zeros count is incremented by this amount,
                                                                 saturating to a maximum count of [N0]. */
        uint64_t reserved_54           : 1;
        uint64_t n1                    : 27; /**< [ 53: 27](R/W) Threshold for the count of ones in the raw idle signal from the custom macro
                                                                 required to assert the idle filter output. */
        uint64_t n0                    : 27; /**< [ 26:  0](R/W) Threshold for the count of zeros in the raw idle signal from the custom macro
                                                                 required to deassert the idle filter output. */
#else /* Word 0 - Little Endian */
        uint64_t n0                    : 27; /**< [ 26:  0](R/W) Threshold for the count of zeros in the raw idle signal from the custom macro
                                                                 required to deassert the idle filter output. */
        uint64_t n1                    : 27; /**< [ 53: 27](R/W) Threshold for the count of ones in the raw idle signal from the custom macro
                                                                 required to assert the idle filter output. */
        uint64_t reserved_54           : 1;
        uint64_t i0                    : 4;  /**< [ 58: 55](R/W) Zeros count increment parameter. When a zero in the raw idle signal from the
                                                                 custom macro is encountered, the zeros count is incremented by this amount,
                                                                 saturating to a maximum count of [N0]. */
        uint64_t i1                    : 4;  /**< [ 62: 59](R/W) Ones count increment parameter. When a one in the raw idle signal from the custom
                                                                 macro is encountered, the ones count is incremented by this amount, saturating
                                                                 to a maximum of [N1]. */
        uint64_t reserved_63           : 1;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_sata_rxidle2_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_sata_rxidle2_bcfg bdk_gsernx_lanex_sata_rxidle2_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_SATA_RXIDLE2_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_SATA_RXIDLE2_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002cd0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_SATA_RXIDLE2_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_SATA_RXIDLE2_BCFG(a,b) bdk_gsernx_lanex_sata_rxidle2_bcfg_t
#define bustype_BDK_GSERNX_LANEX_SATA_RXIDLE2_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_SATA_RXIDLE2_BCFG(a,b) "GSERNX_LANEX_SATA_RXIDLE2_BCFG"
#define device_bar_BDK_GSERNX_LANEX_SATA_RXIDLE2_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_SATA_RXIDLE2_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_SATA_RXIDLE2_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_sata_rxidle3_bcfg
 *
 * GSER Lane SATA Gen1 RX Idle Detection Filter Control Register
 * Parameters controlling the analog detection and digital filtering of the receiver's
 * idle detection logic for SATA GEN3. For the digital filtering, setting all fields to 1,
 * i.e., N0=N1=I0=I1=L0=L1=1, results in no filtering.
 */
union bdk_gsernx_lanex_sata_rxidle3_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_sata_rxidle3_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_63           : 1;
        uint64_t i1                    : 4;  /**< [ 62: 59](R/W) Ones count increment parameter. When a one in the raw idle signal from the custom
                                                                 macro is encountered, the ones count is incremented by this amount, saturating
                                                                 to a maximum of [N1]. */
        uint64_t i0                    : 4;  /**< [ 58: 55](R/W) Zeros count increment parameter. When a zero in the raw idle signal from the
                                                                 custom macro is encountered, the zeros count is incremented by this amount,
                                                                 saturating to a maximum count of [N0]. */
        uint64_t reserved_54           : 1;
        uint64_t n1                    : 27; /**< [ 53: 27](R/W) Threshold for the count of ones in the raw idle signal from the custom macro
                                                                 required to assert the idle filter output. */
        uint64_t n0                    : 27; /**< [ 26:  0](R/W) Threshold for the count of zeros in the raw idle signal from the custom macro
                                                                 required to deassert the idle filter output. */
#else /* Word 0 - Little Endian */
        uint64_t n0                    : 27; /**< [ 26:  0](R/W) Threshold for the count of zeros in the raw idle signal from the custom macro
                                                                 required to deassert the idle filter output. */
        uint64_t n1                    : 27; /**< [ 53: 27](R/W) Threshold for the count of ones in the raw idle signal from the custom macro
                                                                 required to assert the idle filter output. */
        uint64_t reserved_54           : 1;
        uint64_t i0                    : 4;  /**< [ 58: 55](R/W) Zeros count increment parameter. When a zero in the raw idle signal from the
                                                                 custom macro is encountered, the zeros count is incremented by this amount,
                                                                 saturating to a maximum count of [N0]. */
        uint64_t i1                    : 4;  /**< [ 62: 59](R/W) Ones count increment parameter. When a one in the raw idle signal from the custom
                                                                 macro is encountered, the ones count is incremented by this amount, saturating
                                                                 to a maximum of [N1]. */
        uint64_t reserved_63           : 1;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_sata_rxidle3_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_sata_rxidle3_bcfg bdk_gsernx_lanex_sata_rxidle3_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_SATA_RXIDLE3_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_SATA_RXIDLE3_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002cf0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_SATA_RXIDLE3_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_SATA_RXIDLE3_BCFG(a,b) bdk_gsernx_lanex_sata_rxidle3_bcfg_t
#define bustype_BDK_GSERNX_LANEX_SATA_RXIDLE3_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_SATA_RXIDLE3_BCFG(a,b) "GSERNX_LANEX_SATA_RXIDLE3_BCFG"
#define device_bar_BDK_GSERNX_LANEX_SATA_RXIDLE3_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_SATA_RXIDLE3_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_SATA_RXIDLE3_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_sata_txdrv1_bcfg
 *
 * GSER Lane SATA TX Drive Control Register
 * TX drive Cpre, Cpost and Cmain Coefficient values and TX bias/swing for SATA GEN1.
 */
union bdk_gsernx_lanex_sata_txdrv1_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_sata_txdrv1_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_30_63        : 34;
        uint64_t sata_g1_tx_bias       : 6;  /**< [ 29: 24](R/W) TX bias/swing selection for SATA GEN1.
                                                                 Typical values would be:
                                                                   42 = Nominal 1.0V p-p transmit amplitude.
                                                                   52 = Nominal 1.2V p-p transmit amplitude. */
        uint64_t reserved_21_23        : 3;
        uint64_t sata_g1_cpost         : 5;  /**< [ 20: 16](R/W) SATA GEN1 Cpost value.  Combined with the reset values of [SATA_G1_CMAIN] and
                                                                 [SATA_G1_CPRE] this yields 3.5 dB TX deemphasis. */
        uint64_t reserved_14_15        : 2;
        uint64_t sata_g1_cmain         : 6;  /**< [ 13:  8](R/W) SATA GEN1 Cmain value.  Combined with the reset values of [SATA_G1_CPOST] and
                                                                 [SATA_G1_CPRE] this yields 3.5 dB TX deemphasis. */
        uint64_t reserved_5_7          : 3;
        uint64_t sata_g1_cpre          : 5;  /**< [  4:  0](R/W) SATA GEN1 Cpre value.  Combined with the reset values of [SATA_G1_CPOST] and
                                                                 [SATA_G1_CMAIN] this yields 3.5 dB TX deemphasis. */
#else /* Word 0 - Little Endian */
        uint64_t sata_g1_cpre          : 5;  /**< [  4:  0](R/W) SATA GEN1 Cpre value.  Combined with the reset values of [SATA_G1_CPOST] and
                                                                 [SATA_G1_CMAIN] this yields 3.5 dB TX deemphasis. */
        uint64_t reserved_5_7          : 3;
        uint64_t sata_g1_cmain         : 6;  /**< [ 13:  8](R/W) SATA GEN1 Cmain value.  Combined with the reset values of [SATA_G1_CPOST] and
                                                                 [SATA_G1_CPRE] this yields 3.5 dB TX deemphasis. */
        uint64_t reserved_14_15        : 2;
        uint64_t sata_g1_cpost         : 5;  /**< [ 20: 16](R/W) SATA GEN1 Cpost value.  Combined with the reset values of [SATA_G1_CMAIN] and
                                                                 [SATA_G1_CPRE] this yields 3.5 dB TX deemphasis. */
        uint64_t reserved_21_23        : 3;
        uint64_t sata_g1_tx_bias       : 6;  /**< [ 29: 24](R/W) TX bias/swing selection for SATA GEN1.
                                                                 Typical values would be:
                                                                   42 = Nominal 1.0V p-p transmit amplitude.
                                                                   52 = Nominal 1.2V p-p transmit amplitude. */
        uint64_t reserved_30_63        : 34;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_sata_txdrv1_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_sata_txdrv1_bcfg bdk_gsernx_lanex_sata_txdrv1_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_SATA_TXDRV1_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_SATA_TXDRV1_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002f80ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_SATA_TXDRV1_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_SATA_TXDRV1_BCFG(a,b) bdk_gsernx_lanex_sata_txdrv1_bcfg_t
#define bustype_BDK_GSERNX_LANEX_SATA_TXDRV1_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_SATA_TXDRV1_BCFG(a,b) "GSERNX_LANEX_SATA_TXDRV1_BCFG"
#define device_bar_BDK_GSERNX_LANEX_SATA_TXDRV1_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_SATA_TXDRV1_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_SATA_TXDRV1_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_sata_txdrv2_bcfg
 *
 * GSER Lane SATA TX Drive Control Register
 * TX drive Cpre, Cpost and Cmain Coefficient values and TX bias/swing for SATA GEN2.
 */
union bdk_gsernx_lanex_sata_txdrv2_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_sata_txdrv2_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_30_63        : 34;
        uint64_t sata_g2_tx_bias       : 6;  /**< [ 29: 24](R/W) TX bias/swing selection for SATA GEN2.
                                                                 Typical values would be:
                                                                   42 = Nominal 1.0V p-p transmit amplitude.
                                                                   52 = Nominal 1.2V p-p transmit amplitude. */
        uint64_t reserved_21_23        : 3;
        uint64_t sata_g2_cpost         : 5;  /**< [ 20: 16](R/W) SATA GEN2 Cpost value.  Combined with the reset values of [SATA_G2_CMAIN] and
                                                                 [SATA_G2_CPRE] this yields 3.5 dB TX deemphasis. */
        uint64_t reserved_14_15        : 2;
        uint64_t sata_g2_cmain         : 6;  /**< [ 13:  8](R/W) SATA GEN2 Cmain value.  Combined with the reset values of [SATA_G2_CPOST] and
                                                                 [SATA_G2_CPRE] this yields 3.5 dB TX deemphasis. */
        uint64_t reserved_5_7          : 3;
        uint64_t sata_g2_cpre          : 5;  /**< [  4:  0](R/W) SATA GEN2 Cpre value.  Combined with the reset values of [SATA_G2_CPOST] and
                                                                 [SATA_G2_CMAIN] this yields 3.5 dB TX deemphasis. */
#else /* Word 0 - Little Endian */
        uint64_t sata_g2_cpre          : 5;  /**< [  4:  0](R/W) SATA GEN2 Cpre value.  Combined with the reset values of [SATA_G2_CPOST] and
                                                                 [SATA_G2_CMAIN] this yields 3.5 dB TX deemphasis. */
        uint64_t reserved_5_7          : 3;
        uint64_t sata_g2_cmain         : 6;  /**< [ 13:  8](R/W) SATA GEN2 Cmain value.  Combined with the reset values of [SATA_G2_CPOST] and
                                                                 [SATA_G2_CPRE] this yields 3.5 dB TX deemphasis. */
        uint64_t reserved_14_15        : 2;
        uint64_t sata_g2_cpost         : 5;  /**< [ 20: 16](R/W) SATA GEN2 Cpost value.  Combined with the reset values of [SATA_G2_CMAIN] and
                                                                 [SATA_G2_CPRE] this yields 3.5 dB TX deemphasis. */
        uint64_t reserved_21_23        : 3;
        uint64_t sata_g2_tx_bias       : 6;  /**< [ 29: 24](R/W) TX bias/swing selection for SATA GEN2.
                                                                 Typical values would be:
                                                                   42 = Nominal 1.0V p-p transmit amplitude.
                                                                   52 = Nominal 1.2V p-p transmit amplitude. */
        uint64_t reserved_30_63        : 34;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_sata_txdrv2_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_sata_txdrv2_bcfg bdk_gsernx_lanex_sata_txdrv2_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_SATA_TXDRV2_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_SATA_TXDRV2_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002f90ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_SATA_TXDRV2_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_SATA_TXDRV2_BCFG(a,b) bdk_gsernx_lanex_sata_txdrv2_bcfg_t
#define bustype_BDK_GSERNX_LANEX_SATA_TXDRV2_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_SATA_TXDRV2_BCFG(a,b) "GSERNX_LANEX_SATA_TXDRV2_BCFG"
#define device_bar_BDK_GSERNX_LANEX_SATA_TXDRV2_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_SATA_TXDRV2_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_SATA_TXDRV2_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_sata_txdrv3_bcfg
 *
 * GSER Lane SATA TX Drive Control Register
 * TX drive Cpre, Cpost and Cmain Coefficient values and TX bias/swing for SATA GEN3.
 */
union bdk_gsernx_lanex_sata_txdrv3_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_sata_txdrv3_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_30_63        : 34;
        uint64_t sata_g3_tx_bias       : 6;  /**< [ 29: 24](R/W) TX bias/swing selection for SATA GEN3.
                                                                 Typical values would be:
                                                                   42 = Nominal 1.0V p-p transmit amplitude.
                                                                   52 = Nominal 1.2V p-p transmit amplitude. */
        uint64_t reserved_21_23        : 3;
        uint64_t sata_g3_cpost         : 5;  /**< [ 20: 16](R/W) SATA GEN3 Cpost value.  Combined with the reset values of [SATA_G3_CMAIN] and
                                                                 [SATA_G3_CPRE] this yields 6 dB TX deemphasis. */
        uint64_t reserved_14_15        : 2;
        uint64_t sata_g3_cmain         : 6;  /**< [ 13:  8](R/W) SATA GEN3 Cmain value.  Combined with the reset values of [SATA_G3_CPOST] and
                                                                 [SATA_G3_CPRE] this yields 6 dB TX deemphasis. */
        uint64_t reserved_5_7          : 3;
        uint64_t sata_g3_cpre          : 5;  /**< [  4:  0](R/W) SATA GEN3 Cpre value.  Combined with the reset values of [SATA_G3_CPOST] and
                                                                 [SATA_G3_CMAIN] this yields 6 dB TX deemphasis. */
#else /* Word 0 - Little Endian */
        uint64_t sata_g3_cpre          : 5;  /**< [  4:  0](R/W) SATA GEN3 Cpre value.  Combined with the reset values of [SATA_G3_CPOST] and
                                                                 [SATA_G3_CMAIN] this yields 6 dB TX deemphasis. */
        uint64_t reserved_5_7          : 3;
        uint64_t sata_g3_cmain         : 6;  /**< [ 13:  8](R/W) SATA GEN3 Cmain value.  Combined with the reset values of [SATA_G3_CPOST] and
                                                                 [SATA_G3_CPRE] this yields 6 dB TX deemphasis. */
        uint64_t reserved_14_15        : 2;
        uint64_t sata_g3_cpost         : 5;  /**< [ 20: 16](R/W) SATA GEN3 Cpost value.  Combined with the reset values of [SATA_G3_CMAIN] and
                                                                 [SATA_G3_CPRE] this yields 6 dB TX deemphasis. */
        uint64_t reserved_21_23        : 3;
        uint64_t sata_g3_tx_bias       : 6;  /**< [ 29: 24](R/W) TX bias/swing selection for SATA GEN3.
                                                                 Typical values would be:
                                                                   42 = Nominal 1.0V p-p transmit amplitude.
                                                                   52 = Nominal 1.2V p-p transmit amplitude. */
        uint64_t reserved_30_63        : 34;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_sata_txdrv3_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_sata_txdrv3_bcfg bdk_gsernx_lanex_sata_txdrv3_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_SATA_TXDRV3_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_SATA_TXDRV3_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090002fa0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_SATA_TXDRV3_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_SATA_TXDRV3_BCFG(a,b) bdk_gsernx_lanex_sata_txdrv3_bcfg_t
#define bustype_BDK_GSERNX_LANEX_SATA_TXDRV3_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_SATA_TXDRV3_BCFG(a,b) "GSERNX_LANEX_SATA_TXDRV3_BCFG"
#define device_bar_BDK_GSERNX_LANEX_SATA_TXDRV3_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_SATA_TXDRV3_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_SATA_TXDRV3_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_scope_0_dat
 *
 * GSER Lane PCS Lite Scope Data Gathering Result Register 0
 */
union bdk_gsernx_lanex_scope_0_dat
{
    uint64_t u;
    struct bdk_gsernx_lanex_scope_0_dat_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_41_63        : 23;
        uint64_t cnt_done              : 1;  /**< [ 40: 40](RO/H) Indicates when the match counter has counted down from
                                                                 GSERN()_LANE()_SCOPE_CTL[CNT_LIMIT] to 0x0. The error vector will no longer
                                                                 be updated once the counter is done. To clear the flag a new
                                                                 GSERN()_LANE()_SCOPE_CTL[DOUTQ_LD] or GSERN()_LANE()_SCOPE_CTL[CNT_RST_N] toggle
                                                                 needs to happen. */
        uint64_t ref_vec               : 40; /**< [ 39:  0](RO/H) Stored doutq that will be used to compare against incoming
                                                                 doutq. Its value is changed by toggling GSERN()_LANE()_SCOPE_CTL[DOUTQ_LD]
                                                                 low then high, which will save the next doutq received in the PCS
                                                                 layer as the new reference vector, or by setting
                                                                 GSERN()_LANE()_SCOPE_CTL_2[REF_VEC_OVRRIDE] and
                                                                 GSERN()_LANE()_SCOPE_CTL_2[REF_VEC_OVRRIDE_EN].
                                                                 This field is only valid when GSERN()_LANE()_SCOPE_0_DAT[CNT_DONE] is asserted. */
#else /* Word 0 - Little Endian */
        uint64_t ref_vec               : 40; /**< [ 39:  0](RO/H) Stored doutq that will be used to compare against incoming
                                                                 doutq. Its value is changed by toggling GSERN()_LANE()_SCOPE_CTL[DOUTQ_LD]
                                                                 low then high, which will save the next doutq received in the PCS
                                                                 layer as the new reference vector, or by setting
                                                                 GSERN()_LANE()_SCOPE_CTL_2[REF_VEC_OVRRIDE] and
                                                                 GSERN()_LANE()_SCOPE_CTL_2[REF_VEC_OVRRIDE_EN].
                                                                 This field is only valid when GSERN()_LANE()_SCOPE_0_DAT[CNT_DONE] is asserted. */
        uint64_t cnt_done              : 1;  /**< [ 40: 40](RO/H) Indicates when the match counter has counted down from
                                                                 GSERN()_LANE()_SCOPE_CTL[CNT_LIMIT] to 0x0. The error vector will no longer
                                                                 be updated once the counter is done. To clear the flag a new
                                                                 GSERN()_LANE()_SCOPE_CTL[DOUTQ_LD] or GSERN()_LANE()_SCOPE_CTL[CNT_RST_N] toggle
                                                                 needs to happen. */
        uint64_t reserved_41_63        : 23;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_scope_0_dat_s cn; */
};
typedef union bdk_gsernx_lanex_scope_0_dat bdk_gsernx_lanex_scope_0_dat_t;

static inline uint64_t BDK_GSERNX_LANEX_SCOPE_0_DAT(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_SCOPE_0_DAT(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000900ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_SCOPE_0_DAT", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_SCOPE_0_DAT(a,b) bdk_gsernx_lanex_scope_0_dat_t
#define bustype_BDK_GSERNX_LANEX_SCOPE_0_DAT(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_SCOPE_0_DAT(a,b) "GSERNX_LANEX_SCOPE_0_DAT"
#define device_bar_BDK_GSERNX_LANEX_SCOPE_0_DAT(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_SCOPE_0_DAT(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_SCOPE_0_DAT(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_scope_1_dat
 *
 * GSER Lane PCS Lite Scope Data Gathering Result Register 1
 */
union bdk_gsernx_lanex_scope_1_dat
{
    uint64_t u;
    struct bdk_gsernx_lanex_scope_1_dat_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_40_63        : 24;
        uint64_t err_vec               : 40; /**< [ 39:  0](RO/H) Error vector that maintains status of mismatches between doutq &
                                                                 doute. It updates every time there is a match between doutq & the
                                                                 captured GSERN()_LANE()_SCOPE_0_DAT[REF_VEC]. To clear it a toggle to
                                                                 GSERN()_LANE()_SCOPE_CTL[DOUTQ_LD] or GSERN()_LANE()_SCOPE_CTL[CNT_EN] is
                                                                 needed. This field is only valid when GSERN()_LANE()_SCOPE_0_DAT[CNT_DONE] is
                                                                 set. */
#else /* Word 0 - Little Endian */
        uint64_t err_vec               : 40; /**< [ 39:  0](RO/H) Error vector that maintains status of mismatches between doutq &
                                                                 doute. It updates every time there is a match between doutq & the
                                                                 captured GSERN()_LANE()_SCOPE_0_DAT[REF_VEC]. To clear it a toggle to
                                                                 GSERN()_LANE()_SCOPE_CTL[DOUTQ_LD] or GSERN()_LANE()_SCOPE_CTL[CNT_EN] is
                                                                 needed. This field is only valid when GSERN()_LANE()_SCOPE_0_DAT[CNT_DONE] is
                                                                 set. */
        uint64_t reserved_40_63        : 24;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_scope_1_dat_s cn; */
};
typedef union bdk_gsernx_lanex_scope_1_dat bdk_gsernx_lanex_scope_1_dat_t;

static inline uint64_t BDK_GSERNX_LANEX_SCOPE_1_DAT(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_SCOPE_1_DAT(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000910ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_SCOPE_1_DAT", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_SCOPE_1_DAT(a,b) bdk_gsernx_lanex_scope_1_dat_t
#define bustype_BDK_GSERNX_LANEX_SCOPE_1_DAT(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_SCOPE_1_DAT(a,b) "GSERNX_LANEX_SCOPE_1_DAT"
#define device_bar_BDK_GSERNX_LANEX_SCOPE_1_DAT(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_SCOPE_1_DAT(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_SCOPE_1_DAT(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_scope_ctl
 *
 * GSER Lane PCS Lite Scope Data Gathering Control Register
 * Register controls for the PCS layer scope function. Use of this function
 * requires enabling the doute eye data path in the analog macro, i.e.,
 * GSERN()_LANE()_RST2_BCFG[LN_RESET_USE_EYE] should be asserted when the lane
 * reset state machines bring the lane out of reset.
 */
union bdk_gsernx_lanex_scope_ctl
{
    uint64_t u;
    struct bdk_gsernx_lanex_scope_ctl_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_57_63        : 7;
        uint64_t doutq_ld              : 1;  /**< [ 56: 56](R/W) Set to a doutq value for comparison against incoming
                                                                 doutq. The incoming stream should guarantee a recurring doutq
                                                                 pattern to capture valid error vector. This works only on a
                                                                 positive-edge trigger which means a new value won't be stored until
                                                                 a 0-\>1 transition happens. Assertion of GSERN()_LANE()_SCOPE_CTL[DOUTQ_LD]
                                                                 also resets the match counter, GSERN()_LANE()_SCOPE_0_DAT[CNT_DONE] and
                                                                 GSERN()_LANE()_SCOPE_1_DAT[ERR_VEC]. Deassert [DOUTQ_LD] to
                                                                 enable the match counter to count down and to enable collection of
                                                                 new data in the error vector (also requires that
                                                                 GSERN()_LANE()_SCOPE_CTL[CNT_RST_N] is clear).

                                                                 For diagnostic use only. */
        uint64_t reserved_50_55        : 6;
        uint64_t scope_en              : 1;  /**< [ 49: 49](R/W) Set to enable collection of GSERN()_LANE()_SCOPE_1_DAT[ERR_VEC]
                                                                 data. Deassertion stops collection of new mismatch bits, but does
                                                                 not reset GSERN()_LANE()_SCOPE_1_DAT[ERR_VEC]. If
                                                                 GSERN()_LANE()_SCOPE_CTL[CNT_EN] is also asserted, collection will stop
                                                                 when the GSERN()_LANE()_SCOPE_CTL[CNT_LIMIT] is reached. If not using
                                                                 GSERN()_LANE()_SCOPE_CTL[CNT_LIMIT], software can control duration of
                                                                 GSERN()_LANE()_SCOPE_1_DAT[ERR_VEC] data collection through
                                                                 [SCOPE_EN]. All scope logic is conditionally clocked with the
                                                                 condition being GSERN()_LANE()_SCOPE_CTL[SCOPE_EN], so deassert this bit
                                                                 when not used to save power.

                                                                 For diagnostic use only. */
        uint64_t cnt_rst_n             : 1;  /**< [ 48: 48](R/W) Set low to reset the match counter, the done indicator, and the error
                                                                 vector. The reset value for the counter is set by
                                                                 GSERN()_LANE()_SCOPE_CTL[CNT_LIMIT]. GSERN()_LANE()_SCOPE_0_DAT[CNT_DONE] and
                                                                 the error vector, GSERN()_LANE()_SCOPE_1_DAT[ERR_VEC], reset to all zeros. Set
                                                                 this bit high to enable the match counter to count down and to enable collection
                                                                 of new data in the error vector (also requires that
                                                                 GSERN()_LANE()_SCOPE_CTL[DOUTQ_LD] is not set high). Cycle
                                                                 GSERN()_LANE()_SCOPE_CTL[CNT_RST_N] (low then high) to clear the counter and the
                                                                 error vector, leaving GSERN()_LANE()_SCOPE_0_DAT[REF_VEC] unchanged, enabling
                                                                 collection of a new error vector under updated receiver settings using the same
                                                                 reference vector match pattern.

                                                                 For diagnostic use only. */
        uint64_t reserved_41_47        : 7;
        uint64_t cnt_en                : 1;  /**< [ 40: 40](R/W) Enable use of the match counter to limit the number of doutq to
                                                                 ref_vec matches over which the doutq to doute mismatch vector is
                                                                 accumulated. If this bit is not asserted,
                                                                 GSERN()_LANE()_SCOPE_1_DAT[ERR_VEC] accumulation is limited by
                                                                 GSERN()_LANE()_SCOPE_CTL[SCOPE_EN] and/or GSERN()_LANE()_SCOPE_CTL[CNT_RST_N].

                                                                 For diagnostic use only. */
        uint64_t cnt_limit             : 40; /**< [ 39:  0](R/W) Limit value the match counter starts decrementing
                                                                 from. It gets loaded every time a new doutq load happens or a
                                                                 counter reset happens.

                                                                 For diagnostic use only. */
#else /* Word 0 - Little Endian */
        uint64_t cnt_limit             : 40; /**< [ 39:  0](R/W) Limit value the match counter starts decrementing
                                                                 from. It gets loaded every time a new doutq load happens or a
                                                                 counter reset happens.

                                                                 For diagnostic use only. */
        uint64_t cnt_en                : 1;  /**< [ 40: 40](R/W) Enable use of the match counter to limit the number of doutq to
                                                                 ref_vec matches over which the doutq to doute mismatch vector is
                                                                 accumulated. If this bit is not asserted,
                                                                 GSERN()_LANE()_SCOPE_1_DAT[ERR_VEC] accumulation is limited by
                                                                 GSERN()_LANE()_SCOPE_CTL[SCOPE_EN] and/or GSERN()_LANE()_SCOPE_CTL[CNT_RST_N].

                                                                 For diagnostic use only. */
        uint64_t reserved_41_47        : 7;
        uint64_t cnt_rst_n             : 1;  /**< [ 48: 48](R/W) Set low to reset the match counter, the done indicator, and the error
                                                                 vector. The reset value for the counter is set by
                                                                 GSERN()_LANE()_SCOPE_CTL[CNT_LIMIT]. GSERN()_LANE()_SCOPE_0_DAT[CNT_DONE] and
                                                                 the error vector, GSERN()_LANE()_SCOPE_1_DAT[ERR_VEC], reset to all zeros. Set
                                                                 this bit high to enable the match counter to count down and to enable collection
                                                                 of new data in the error vector (also requires that
                                                                 GSERN()_LANE()_SCOPE_CTL[DOUTQ_LD] is not set high). Cycle
                                                                 GSERN()_LANE()_SCOPE_CTL[CNT_RST_N] (low then high) to clear the counter and the
                                                                 error vector, leaving GSERN()_LANE()_SCOPE_0_DAT[REF_VEC] unchanged, enabling
                                                                 collection of a new error vector under updated receiver settings using the same
                                                                 reference vector match pattern.

                                                                 For diagnostic use only. */
        uint64_t scope_en              : 1;  /**< [ 49: 49](R/W) Set to enable collection of GSERN()_LANE()_SCOPE_1_DAT[ERR_VEC]
                                                                 data. Deassertion stops collection of new mismatch bits, but does
                                                                 not reset GSERN()_LANE()_SCOPE_1_DAT[ERR_VEC]. If
                                                                 GSERN()_LANE()_SCOPE_CTL[CNT_EN] is also asserted, collection will stop
                                                                 when the GSERN()_LANE()_SCOPE_CTL[CNT_LIMIT] is reached. If not using
                                                                 GSERN()_LANE()_SCOPE_CTL[CNT_LIMIT], software can control duration of
                                                                 GSERN()_LANE()_SCOPE_1_DAT[ERR_VEC] data collection through
                                                                 [SCOPE_EN]. All scope logic is conditionally clocked with the
                                                                 condition being GSERN()_LANE()_SCOPE_CTL[SCOPE_EN], so deassert this bit
                                                                 when not used to save power.

                                                                 For diagnostic use only. */
        uint64_t reserved_50_55        : 6;
        uint64_t doutq_ld              : 1;  /**< [ 56: 56](R/W) Set to a doutq value for comparison against incoming
                                                                 doutq. The incoming stream should guarantee a recurring doutq
                                                                 pattern to capture valid error vector. This works only on a
                                                                 positive-edge trigger which means a new value won't be stored until
                                                                 a 0-\>1 transition happens. Assertion of GSERN()_LANE()_SCOPE_CTL[DOUTQ_LD]
                                                                 also resets the match counter, GSERN()_LANE()_SCOPE_0_DAT[CNT_DONE] and
                                                                 GSERN()_LANE()_SCOPE_1_DAT[ERR_VEC]. Deassert [DOUTQ_LD] to
                                                                 enable the match counter to count down and to enable collection of
                                                                 new data in the error vector (also requires that
                                                                 GSERN()_LANE()_SCOPE_CTL[CNT_RST_N] is clear).

                                                                 For diagnostic use only. */
        uint64_t reserved_57_63        : 7;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_scope_ctl_s cn; */
};
typedef union bdk_gsernx_lanex_scope_ctl bdk_gsernx_lanex_scope_ctl_t;

static inline uint64_t BDK_GSERNX_LANEX_SCOPE_CTL(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_SCOPE_CTL(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e0900008d0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_SCOPE_CTL", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_SCOPE_CTL(a,b) bdk_gsernx_lanex_scope_ctl_t
#define bustype_BDK_GSERNX_LANEX_SCOPE_CTL(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_SCOPE_CTL(a,b) "GSERNX_LANEX_SCOPE_CTL"
#define device_bar_BDK_GSERNX_LANEX_SCOPE_CTL(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_SCOPE_CTL(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_SCOPE_CTL(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_scope_ctl_2
 *
 * GSER Lane PCS Lite Scope Data Gathering Control Register 2
 * This register contains control signals to allow loading a specific reference vector
 * for use in the scope logic instead of capturing the reference vector from the input
 * data stream. For diagnostic use only.
 */
union bdk_gsernx_lanex_scope_ctl_2
{
    uint64_t u;
    struct bdk_gsernx_lanex_scope_ctl_2_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_42_63        : 22;
        uint64_t use_doute_cal         : 1;  /**< [ 41: 41](R/W) Set to select doute_cal data (receiver eye calibration path) for
                                                                 scope comparisons with doutq (receiver normal quadrature path). If
                                                                 clear, the default will be to use doute (receiver eye path) to
                                                                 compare with doutq. The bit should be programmed as desired before
                                                                 writing GSERN()_LANE()_SCOPE_CTL[SCOPE_EN] to one.

                                                                 For diagnostic use only. */
        uint64_t ref_vec_ovrride_en    : 1;  /**< [ 40: 40](R/W) Enable use of [REF_VEC_OVRRIDE] for the scope logic instead
                                                                 of capturing the reference vector from the input data stream. This
                                                                 control has priority over
                                                                 GSERN()_LANE()_SCOPE_CTL[DOUTQ_LD]. This field should be
                                                                 deasserted when the override value, [REF_VEC_OVRRIDE], is
                                                                 changed. [REF_VEC_OVRRIDE_EN] may be asserted in the same register
                                                                 write that changes [REF_VEC_OVRRIDE].

                                                                 For diagnostic use only. */
        uint64_t ref_vec_ovrride       : 40; /**< [ 39:  0](R/W) Selectable reference vector to use for comparison with doutq and doute for the
                                                                 scope logic as an alternative to capturing the reference vector from the
                                                                 incoming data stream. When used, this pattern should be recurring in the
                                                                 incoming data stream to capture valid error vector data, since errors will only
                                                                 be accumulated in the error vector when doutq matches the reference
                                                                 vector. [REF_VEC_OVRRIDE_EN] should be deasserted when [REF_VEC_OVRRIDE] is
                                                                 changed. [REF_VEC_OVRRIDE_EN] may be written to a one in the same register write
                                                                 that changes [REF_VEC_OVRRIDE]. Note that the bit pattern in [REF_VEC_OVRRIDE]
                                                                 must match the format produced by the receiver's deserializer for the data path
                                                                 width in use.

                                                                 For diagnostic use only. */
#else /* Word 0 - Little Endian */
        uint64_t ref_vec_ovrride       : 40; /**< [ 39:  0](R/W) Selectable reference vector to use for comparison with doutq and doute for the
                                                                 scope logic as an alternative to capturing the reference vector from the
                                                                 incoming data stream. When used, this pattern should be recurring in the
                                                                 incoming data stream to capture valid error vector data, since errors will only
                                                                 be accumulated in the error vector when doutq matches the reference
                                                                 vector. [REF_VEC_OVRRIDE_EN] should be deasserted when [REF_VEC_OVRRIDE] is
                                                                 changed. [REF_VEC_OVRRIDE_EN] may be written to a one in the same register write
                                                                 that changes [REF_VEC_OVRRIDE]. Note that the bit pattern in [REF_VEC_OVRRIDE]
                                                                 must match the format produced by the receiver's deserializer for the data path
                                                                 width in use.

                                                                 For diagnostic use only. */
        uint64_t ref_vec_ovrride_en    : 1;  /**< [ 40: 40](R/W) Enable use of [REF_VEC_OVRRIDE] for the scope logic instead
                                                                 of capturing the reference vector from the input data stream. This
                                                                 control has priority over
                                                                 GSERN()_LANE()_SCOPE_CTL[DOUTQ_LD]. This field should be
                                                                 deasserted when the override value, [REF_VEC_OVRRIDE], is
                                                                 changed. [REF_VEC_OVRRIDE_EN] may be asserted in the same register
                                                                 write that changes [REF_VEC_OVRRIDE].

                                                                 For diagnostic use only. */
        uint64_t use_doute_cal         : 1;  /**< [ 41: 41](R/W) Set to select doute_cal data (receiver eye calibration path) for
                                                                 scope comparisons with doutq (receiver normal quadrature path). If
                                                                 clear, the default will be to use doute (receiver eye path) to
                                                                 compare with doutq. The bit should be programmed as desired before
                                                                 writing GSERN()_LANE()_SCOPE_CTL[SCOPE_EN] to one.

                                                                 For diagnostic use only. */
        uint64_t reserved_42_63        : 22;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_scope_ctl_2_s cn; */
};
typedef union bdk_gsernx_lanex_scope_ctl_2 bdk_gsernx_lanex_scope_ctl_2_t;

static inline uint64_t BDK_GSERNX_LANEX_SCOPE_CTL_2(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_SCOPE_CTL_2(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e0900008e0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_SCOPE_CTL_2", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_SCOPE_CTL_2(a,b) bdk_gsernx_lanex_scope_ctl_2_t
#define bustype_BDK_GSERNX_LANEX_SCOPE_CTL_2(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_SCOPE_CTL_2(a,b) "GSERNX_LANEX_SCOPE_CTL_2"
#define device_bar_BDK_GSERNX_LANEX_SCOPE_CTL_2(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_SCOPE_CTL_2(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_SCOPE_CTL_2(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_scope_ctl_3
 *
 * GSER Lane PCS Lite Scope Data Gathering Control Register 3
 * The four bits in this register allow for shifting either the doutq or
 * doute_cal data by 1 or 2 UI to allow for an offset in the framing of the
 * deserialized data between these two data paths in the receiver. Software
 * will need to iterate eye or scope measurement with identical settings
 * for the quadurature and eye datapaths, adjusting the shift bits in this
 * register until no differences are accumulated. (Note that shifting both
 * doutq and doute_cal would typically not be useful, since the resulting
 * alignment would be the same as if neither were shifted.)
 */
union bdk_gsernx_lanex_scope_ctl_3
{
    uint64_t u;
    struct bdk_gsernx_lanex_scope_ctl_3_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_10_63        : 54;
        uint64_t dbl_shift_doute       : 1;  /**< [  9:  9](R/W) Assert to shift the doute_cal (receiver eye calibration path) data
                                                                 by 2 UI earlier to align with doutq for eye and scope comparison
                                                                 logic. Only data captured in the eye or scope logic is impacted by
                                                                 this setting. When asserted, the double shift control has priority
                                                                 over the (single) shift control. Program as desired before enabling eye
                                                                 data capture. */
        uint64_t shift_doute           : 1;  /**< [  8:  8](R/W) Assert to shift the doute_cal (receiver eye path) data by 1 UI
                                                                 earlier to align with doutq for eye and scope comparison logic. Only
                                                                 data captured in the eye or scope logic is impacted by this
                                                                 setting. Program as desired before enabling eye data capture. */
        uint64_t reserved_2_7          : 6;
        uint64_t dbl_shift_doutq       : 1;  /**< [  1:  1](R/W) Assert to shift the doutq (receiver normal quadrature path) data by
                                                                 2 UI earlier to align with doute_cal for eye and scope comparison
                                                                 logic. Only data captured in the eye or scope logic is impacted by
                                                                 this setting. When asserted, the double shift control has priority
                                                                 over the (single) shift control. Program as desired before enabling eye
                                                                 data capture. */
        uint64_t shift_doutq           : 1;  /**< [  0:  0](R/W) Assert to shift the doutq (receiver normal quadrature path) data by
                                                                 1 UI earlier to align with doute_cal for eye and scope comparison
                                                                 logic. Only data captured in the eye or scope logic is impacted by
                                                                 this setting. Program as desired before enabling eye data capture. */
#else /* Word 0 - Little Endian */
        uint64_t shift_doutq           : 1;  /**< [  0:  0](R/W) Assert to shift the doutq (receiver normal quadrature path) data by
                                                                 1 UI earlier to align with doute_cal for eye and scope comparison
                                                                 logic. Only data captured in the eye or scope logic is impacted by
                                                                 this setting. Program as desired before enabling eye data capture. */
        uint64_t dbl_shift_doutq       : 1;  /**< [  1:  1](R/W) Assert to shift the doutq (receiver normal quadrature path) data by
                                                                 2 UI earlier to align with doute_cal for eye and scope comparison
                                                                 logic. Only data captured in the eye or scope logic is impacted by
                                                                 this setting. When asserted, the double shift control has priority
                                                                 over the (single) shift control. Program as desired before enabling eye
                                                                 data capture. */
        uint64_t reserved_2_7          : 6;
        uint64_t shift_doute           : 1;  /**< [  8:  8](R/W) Assert to shift the doute_cal (receiver eye path) data by 1 UI
                                                                 earlier to align with doutq for eye and scope comparison logic. Only
                                                                 data captured in the eye or scope logic is impacted by this
                                                                 setting. Program as desired before enabling eye data capture. */
        uint64_t dbl_shift_doute       : 1;  /**< [  9:  9](R/W) Assert to shift the doute_cal (receiver eye calibration path) data
                                                                 by 2 UI earlier to align with doutq for eye and scope comparison
                                                                 logic. Only data captured in the eye or scope logic is impacted by
                                                                 this setting. When asserted, the double shift control has priority
                                                                 over the (single) shift control. Program as desired before enabling eye
                                                                 data capture. */
        uint64_t reserved_10_63        : 54;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_scope_ctl_3_s cn; */
};
typedef union bdk_gsernx_lanex_scope_ctl_3 bdk_gsernx_lanex_scope_ctl_3_t;

static inline uint64_t BDK_GSERNX_LANEX_SCOPE_CTL_3(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_SCOPE_CTL_3(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e0900008f0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_SCOPE_CTL_3", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_SCOPE_CTL_3(a,b) bdk_gsernx_lanex_scope_ctl_3_t
#define bustype_BDK_GSERNX_LANEX_SCOPE_CTL_3(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_SCOPE_CTL_3(a,b) "GSERNX_LANEX_SCOPE_CTL_3"
#define device_bar_BDK_GSERNX_LANEX_SCOPE_CTL_3(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_SCOPE_CTL_3(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_SCOPE_CTL_3(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_srcmx_bcfg
 *
 * GSER Lane PCS Source Mux Control Register
 */
union bdk_gsernx_lanex_srcmx_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_srcmx_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_50_63        : 14;
        uint64_t en_hldcdrfsm_on_idle  : 1;  /**< [ 49: 49](R/W) Enable holding the CSR finite state machine when the receiver idle filter
                                                                 detects idle.
                                                                 For diagnostic use only. */
        uint64_t en_pauseadpt_on_idle  : 1;  /**< [ 48: 48](R/W) Enable pausing adaptation when the receiver idle filter detects idle.
                                                                 For diagnostic use only. */
        uint64_t reserved_44_47        : 4;
        uint64_t trn_tx_cgt_on         : 1;  /**< [ 43: 43](R/W) Force the clock gate for the training transmit data path clock on.
                                                                 For diagnostic use only. */
        uint64_t trn_rx_cgt_on         : 1;  /**< [ 42: 42](R/W) Force the clock gate for the training receive data path clock on.
                                                                 For diagnostic use only. */
        uint64_t ocx_tx_cgt_on         : 1;  /**< [ 41: 41](R/W) Force on the clock gate for the OCX interface.
                                                                 For diagnostic use only. */
        uint64_t ocx_rx_cgt_on         : 1;  /**< [ 40: 40](R/W) Force on the clock gate for the OCX interface.
                                                                 For diagnostic use only. */
        uint64_t sata_tx_cgt_on        : 1;  /**< [ 39: 39](R/W) Force the clock gate for the SATA transmit data path clock on.
                                                                 For diagnostic use only. */
        uint64_t sata_rx_cgt_on        : 1;  /**< [ 38: 38](R/W) Force the clock gate for the SATA receive data path clock on.
                                                                 For diagnostic use only. */
        uint64_t pcie_tx_cgt_on        : 1;  /**< [ 37: 37](R/W) Force the clock gate for the PCIe transmit data path clock on.
                                                                 For diagnostic use only. */
        uint64_t pcie_rx_cgt_on        : 1;  /**< [ 36: 36](R/W) Force the clock gate for the PCIe receive data path clock on.
                                                                 For diagnostic use only. */
        uint64_t pat_tx_cgt_on         : 1;  /**< [ 35: 35](R/W) Force the clock gate for the pattern transmit data path clock on.
                                                                 For diagnostic use only. */
        uint64_t pat_rx_cgt_on         : 1;  /**< [ 34: 34](R/W) Force the clock gate for the pattern receive data path clock on.
                                                                 For diagnostic use only. */
        uint64_t cgx_tx_cgt_on         : 1;  /**< [ 33: 33](R/W) Force the clock gate for the CGX transmit data path clock on.
                                                                 For diagnostic use only. */
        uint64_t cgx_rx_cgt_on         : 1;  /**< [ 32: 32](R/W) Force the clock gate for the CGX receive data path clock on.
                                                                 For diagnostic use only. */
        uint64_t reserved_24_31        : 8;
        uint64_t txdivclk_mux_sel_ovrride_en : 1;/**< [ 23: 23](R/W) Mux selection override enable for lane txdivclk mux; enables use of
                                                                 [TXDIVCLK_MUX_SEL_OVRRIDE]. This must be set to 1 for all lanes in a multi-lane
                                                                 link.
                                                                 0 = Use the lane's local txdivclk.
                                                                 1 = Use [TXDIVCLK_MUX_SEL_OVRRIDE] instead of other sources for control of the
                                                                 lane txdivclk mux. */
        uint64_t reserved_19_22        : 4;
        uint64_t txdivclk_mux_sel_ovrride : 3;/**< [ 18: 16](R/W) Mux selection override control for lane txdivclk mux, when enabled by
                                                                 [TXDIVCLK_MUX_SEL_OVRRIDE_EN], the following values apply:
                                                                   0x0 = Use lane internal txdivclk (e.g. for single-lane links).
                                                                   0x1 = Use txdivclkx2 (e.g. for 2-lane links).
                                                                   0x2 = Use txdivclkx4 (e.g. for 4-lane links).
                                                                   0x3 = Use txdivclkx8 (e.g. for 8-lane links).
                                                                   0x4 = Use txdivclkx16 (e.g. for 16-lane links).
                                                                   _ else = Reserved. */
        uint64_t reserved_13_15        : 3;
        uint64_t tx_ctrl_sel           : 5;  /**< [ 12:  8](R/W) Lite layer transmit control-settings mux control:
                                                                   0x0 = no source selected; defaults to idle termination unless CSR overrides are
                                                                       enabled by setting GSERN()_LANE()_TX_DRV_BCFG[EN_TX_DRV].
                                                                   0x1 = PCIe.
                                                                   0x2 = CGX.
                                                                   0x4 = SATA.
                                                                   0x8 = OCX.
                                                                   0x10 = Pattern memory generator.
                                                                   _ else = reserved. */
        uint64_t reserved_5_7          : 3;
        uint64_t tx_data_sel           : 5;  /**< [  4:  0](R/W) Lite layer transmit data mux control:
                                                                   0x0 = No source selected, e.g., for PRBS testing.
                                                                   0x1 = PCIe.
                                                                   0x2 = CGX.
                                                                   0x4 = SATA.
                                                                   0x8 = OCX.
                                                                   0x10 = Pattern memory generator.
                                                                   _ else = reserved.  (This is a 1-hot vector.) */
#else /* Word 0 - Little Endian */
        uint64_t tx_data_sel           : 5;  /**< [  4:  0](R/W) Lite layer transmit data mux control:
                                                                   0x0 = No source selected, e.g., for PRBS testing.
                                                                   0x1 = PCIe.
                                                                   0x2 = CGX.
                                                                   0x4 = SATA.
                                                                   0x8 = OCX.
                                                                   0x10 = Pattern memory generator.
                                                                   _ else = reserved.  (This is a 1-hot vector.) */
        uint64_t reserved_5_7          : 3;
        uint64_t tx_ctrl_sel           : 5;  /**< [ 12:  8](R/W) Lite layer transmit control-settings mux control:
                                                                   0x0 = no source selected; defaults to idle termination unless CSR overrides are
                                                                       enabled by setting GSERN()_LANE()_TX_DRV_BCFG[EN_TX_DRV].
                                                                   0x1 = PCIe.
                                                                   0x2 = CGX.
                                                                   0x4 = SATA.
                                                                   0x8 = OCX.
                                                                   0x10 = Pattern memory generator.
                                                                   _ else = reserved. */
        uint64_t reserved_13_15        : 3;
        uint64_t txdivclk_mux_sel_ovrride : 3;/**< [ 18: 16](R/W) Mux selection override control for lane txdivclk mux, when enabled by
                                                                 [TXDIVCLK_MUX_SEL_OVRRIDE_EN], the following values apply:
                                                                   0x0 = Use lane internal txdivclk (e.g. for single-lane links).
                                                                   0x1 = Use txdivclkx2 (e.g. for 2-lane links).
                                                                   0x2 = Use txdivclkx4 (e.g. for 4-lane links).
                                                                   0x3 = Use txdivclkx8 (e.g. for 8-lane links).
                                                                   0x4 = Use txdivclkx16 (e.g. for 16-lane links).
                                                                   _ else = Reserved. */
        uint64_t reserved_19_22        : 4;
        uint64_t txdivclk_mux_sel_ovrride_en : 1;/**< [ 23: 23](R/W) Mux selection override enable for lane txdivclk mux; enables use of
                                                                 [TXDIVCLK_MUX_SEL_OVRRIDE]. This must be set to 1 for all lanes in a multi-lane
                                                                 link.
                                                                 0 = Use the lane's local txdivclk.
                                                                 1 = Use [TXDIVCLK_MUX_SEL_OVRRIDE] instead of other sources for control of the
                                                                 lane txdivclk mux. */
        uint64_t reserved_24_31        : 8;
        uint64_t cgx_rx_cgt_on         : 1;  /**< [ 32: 32](R/W) Force the clock gate for the CGX receive data path clock on.
                                                                 For diagnostic use only. */
        uint64_t cgx_tx_cgt_on         : 1;  /**< [ 33: 33](R/W) Force the clock gate for the CGX transmit data path clock on.
                                                                 For diagnostic use only. */
        uint64_t pat_rx_cgt_on         : 1;  /**< [ 34: 34](R/W) Force the clock gate for the pattern receive data path clock on.
                                                                 For diagnostic use only. */
        uint64_t pat_tx_cgt_on         : 1;  /**< [ 35: 35](R/W) Force the clock gate for the pattern transmit data path clock on.
                                                                 For diagnostic use only. */
        uint64_t pcie_rx_cgt_on        : 1;  /**< [ 36: 36](R/W) Force the clock gate for the PCIe receive data path clock on.
                                                                 For diagnostic use only. */
        uint64_t pcie_tx_cgt_on        : 1;  /**< [ 37: 37](R/W) Force the clock gate for the PCIe transmit data path clock on.
                                                                 For diagnostic use only. */
        uint64_t sata_rx_cgt_on        : 1;  /**< [ 38: 38](R/W) Force the clock gate for the SATA receive data path clock on.
                                                                 For diagnostic use only. */
        uint64_t sata_tx_cgt_on        : 1;  /**< [ 39: 39](R/W) Force the clock gate for the SATA transmit data path clock on.
                                                                 For diagnostic use only. */
        uint64_t ocx_rx_cgt_on         : 1;  /**< [ 40: 40](R/W) Force on the clock gate for the OCX interface.
                                                                 For diagnostic use only. */
        uint64_t ocx_tx_cgt_on         : 1;  /**< [ 41: 41](R/W) Force on the clock gate for the OCX interface.
                                                                 For diagnostic use only. */
        uint64_t trn_rx_cgt_on         : 1;  /**< [ 42: 42](R/W) Force the clock gate for the training receive data path clock on.
                                                                 For diagnostic use only. */
        uint64_t trn_tx_cgt_on         : 1;  /**< [ 43: 43](R/W) Force the clock gate for the training transmit data path clock on.
                                                                 For diagnostic use only. */
        uint64_t reserved_44_47        : 4;
        uint64_t en_pauseadpt_on_idle  : 1;  /**< [ 48: 48](R/W) Enable pausing adaptation when the receiver idle filter detects idle.
                                                                 For diagnostic use only. */
        uint64_t en_hldcdrfsm_on_idle  : 1;  /**< [ 49: 49](R/W) Enable holding the CSR finite state machine when the receiver idle filter
                                                                 detects idle.
                                                                 For diagnostic use only. */
        uint64_t reserved_50_63        : 14;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_srcmx_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_srcmx_bcfg bdk_gsernx_lanex_srcmx_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_SRCMX_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_SRCMX_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000a10ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_SRCMX_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_SRCMX_BCFG(a,b) bdk_gsernx_lanex_srcmx_bcfg_t
#define bustype_BDK_GSERNX_LANEX_SRCMX_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_SRCMX_BCFG(a,b) "GSERNX_LANEX_SRCMX_BCFG"
#define device_bar_BDK_GSERNX_LANEX_SRCMX_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_SRCMX_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_SRCMX_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_train_0_bcfg
 *
 * GSER Lane Training Base Configuration Register 0
 * This register controls settings for lane training.
 */
union bdk_gsernx_lanex_train_0_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_train_0_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t txt_post              : 5;  /**< [ 63: 59](RO/H) After TX BASE-R link training, this is the resultant POST Tap value that was
                                                                 written to the PHY.  This field has no meaning if TX BASE-R link training was
                                                                 not performed.
                                                                 For diagnostic use only. */
        uint64_t txt_main              : 6;  /**< [ 58: 53](RO/H) After TX BASE-R link training, this is the resultant MAIN Tap value that was
                                                                 written to the PHY.  This field has no meaning if TX BASE-R link training was
                                                                 not performed.
                                                                 For diagnostic use only. */
        uint64_t txt_pre               : 5;  /**< [ 52: 48](RO/H) After TX BASE-R link training, this is the resultant POST Tap value that was
                                                                 written to the PHY.  This field has no meaning if TX BASE-R link training was
                                                                 not performed.
                                                                 For diagnostic use only. */
        uint64_t txt_swm               : 1;  /**< [ 47: 47](R/W) Set when TX BASE-R link training is to be performed under software control. For diagnostic
                                                                 use only. */
        uint64_t txt_cur_post          : 5;  /**< [ 46: 42](R/W) When TX BASE-R link training is being performed under software control,
                                                                 e.g. GSERN()_LANE()_TRAIN_0_BCFG[TXT_SWM] is set, this is the (C+1) coefficient
                                                                 update to be written to the SerDes TX Equalizer.
                                                                 The coefficients are written to the TX equalizer when
                                                                 GSERN()_LANE()_TRAIN_0_BCFG[TXT_CUR_PRG] is set to a one.
                                                                 For diagnostic use only. */
        uint64_t txt_cur_main          : 6;  /**< [ 41: 36](R/W) When TX BASE-R link training is being performed under software control,
                                                                 e.g. GSERN()_LANE()_TRAIN_0_BCFG[TXT_SWM] is set, this is the (C0) coefficient
                                                                 update to be written to the SerDes TX Equalizer.
                                                                 The coefficients are written to the TX equalizer when
                                                                 GSERN()_LANE()_TRAIN_0_BCFG[TXT_CUR_PRG] is set to a one.
                                                                 For diagnostic use only. */
        uint64_t txt_cur_pre           : 5;  /**< [ 35: 31](R/W) When TX BASE-R link training is being performed under software control,
                                                                 e.g. GSERN()_LANE()_TRAIN_0_BCFG[TXT_SWM] is set, this is the (C-1) coefficient
                                                                 update to be written to the SerDes TX Equalizer.
                                                                 The coefficients are written to the TX equalizer when
                                                                 GSERN()_LANE()_TRAIN_0_BCFG[TXT_CUR_PRG] is set to a one.
                                                                 For diagnostic use only. */
        uint64_t txt_cur_prg           : 1;  /**< [ 30: 30](R/W) When TX BASE-R link training is being performed under software control,
                                                                 e.g. GSERN()_LANE()_TRAIN_0_BCFG[TXT_SWM] is set, setting [TXT_CUR_PRG] writes the TX
                                                                 equalizer
                                                                 coefficients in GSERN()_LANE()_TRAIN_0_BCFG[TXT_CUR_PRE],
                                                                 GSERN()_LANE()_TRAIN_0_BCFG[TXT_CUR_MAIN],
                                                                 and GSERN()_LANE()_TRAIN_0_BCFG[TXT_CUR_POST] registers into the GSER TX equalizer.
                                                                 For diagnostic use only. */
        uint64_t rxt_adtmout_fast      : 1;  /**< [ 29: 29](R/W) Reserved.
                                                                 Internal:
                                                                 For simulation use only. When set accelerates the link training time-out timer during
                                                                 BASE-R link training.  When set shortens the link training time-out timer to time-out
                                                                 after 164 microseconds to facilitate shorter BASE-R training simulations runs.
                                                                 For diagnostic use only. */
        uint64_t rxt_adtmout_sel       : 2;  /**< [ 28: 27](R/W) Selects the timeout value for the BASE-R link training time-out timer.
                                                                 This time-out timer value is only valid if
                                                                 GSERN()_LANE()_TRAIN_0_BCFG[RXT_ADTMOUT_DISABLE]
                                                                 is cleared to 0 and BASE-R hardware training is enabled.

                                                                 When GSERN()_LANE()_TRAIN_0_BCFG[RXT_ADTMOUT_FAST] is cleared to 0 the link training
                                                                 time-out timer value is set by [RXT_ADTMOUT_SEL] to the values shown.
                                                                 0x0 = 83.89  milliseconds.
                                                                 0x1 = 167.77 milliseconds.
                                                                 0x2 = 335.54 milliseconds.
                                                                 0x3 = 419.43 milliseconds.

                                                                 When GSERN()_LANE()_TRAIN_0_BCFG[RXT_ADTMOUT_FAST] is set to 1 the link training
                                                                 time-out timer value is set by [RXT_ADTMOUT_SEL] to the values shown.
                                                                 0x0 = 81.92  microseconds.
                                                                 0x1 = 163.84 microseconds.
                                                                 0x2 = 327.68 microseconds.
                                                                 0x3 = 655.36 microseconds. */
        uint64_t rxt_adtmout_disable   : 1;  /**< [ 26: 26](R/W) For BASE-R links one of the terminating condition for link training receiver adaptation
                                                                 is a programmable time-out timer.  When the receiver adaptation time-out timer
                                                                 expires the link training process is concluded and the link is considered good and
                                                                 the receiver ready status report bit is set in the local device.
                                                                 Note that when BASE-R link training is performed under software control,
                                                                 (GSERN()_LANE()_TRAIN_0_BCFG[RXT_SWM] is set), the receiver adaptation time-out timer is
                                                                 disabled and not used.

                                                                 Set this bit to a one to disable the link training receiver adaptation time-out
                                                                 timer during BASE-R link training under hardware control.  For diagnostic use only. */
        uint64_t rxt_eer               : 1;  /**< [ 25: 25](WO/H) When RX BASE-R link training is being performed under software control,
                                                                 (GSERN()_LANE()_TRAIN_0_BCFG[RXT_SWM] is set), writing this bit initiates an equalization
                                                                 request to the SerDes receiver equalizer. Reading this bit always returns a zero. */
        uint64_t rxt_esv               : 1;  /**< [ 24: 24](RO/H) When performing an equalization request ([RXT_EER]), this bit, when set, indicates that
                                                                 the
                                                                 equalization status (RXT_ESM) is valid. When issuing a [RXT_EER] request, it is expected
                                                                 that [RXT_ESV] will get written to zero so that a valid RXT_ESM can be determined. */
        uint64_t rxt_tx_post_dir       : 2;  /**< [ 23: 22](RO/H) RX recommended TXPOST direction change.

                                                                 Recommended direction change outputs from the PHY for the link partner transmitter
                                                                 coefficients.
                                                                 0x0 = Hold.
                                                                 0x1 = Increment.
                                                                 0x2 = Decrement.
                                                                 0x3 = Hold. */
        uint64_t rxt_tx_main_dir       : 2;  /**< [ 21: 20](RO/H) RX recommended TXMAIN direction change.

                                                                 Recommended direction change outputs from the PHY for the link partner transmitter
                                                                 coefficients.
                                                                 0x0 = Hold.
                                                                 0x1 = Increment.
                                                                 0x2 = Decrement.
                                                                 0x3 = Hold. */
        uint64_t rxt_tx_pre_dir        : 2;  /**< [ 19: 18](RO/H) RX recommended TXPRE direction change.

                                                                 Recommended direction change outputs from the PHY for the link partner transmitter
                                                                 coefficients.
                                                                 0x0 = Hold.
                                                                 0x1 = Increment.
                                                                 0x2 = Decrement.
                                                                 0x3 = Hold. */
        uint64_t trn_short             : 1;  /**< [ 17: 17](R/W) Train short. Executes an abbreviated BASE-R training session.
                                                                 For diagnostic use only. */
        uint64_t ld_receiver_rdy       : 1;  /**< [ 16: 16](RO/H) At the completion of BASE-R training the local device sets receiver ready.  This bit
                                                                 reflects the state of the local device receiver ready status.  For Debug use only.
                                                                 This bit is only valid during BASE-R link training and at the conclusion of link
                                                                 training. */
        uint64_t frz_cdr_en            : 1;  /**< [ 15: 15](R/W) Freeze CDR enable. In CGX mode when set to a one enables the CGX MAC to
                                                                 Freeze the receiver CDR during BASE-R autonegotiation (AN) and KR training
                                                                 to prevent the RX CDR from locking onto the differential manchester encoded
                                                                 AN and KR training frames.  CGX asserts the rx cdr coast signal to the GSER
                                                                 block to freeze the RX CDR.  Clearing [FRZ_CDR_EN] prevents CGS from freezing
                                                                 the RX CDR.
                                                                 For diagnostic use only. */
        uint64_t trn_ovrd_en           : 1;  /**< [ 14: 14](R/W) BASE-R Training Override Enable.  Setting [TRN_OVRD_EN] will enable BASE-R training logic
                                                                 for both CGX and OCX.  This is a CSR override for the BASE-R training enable signals from
                                                                 the CGX and OCX blocks.  Either GSERN()_LANE()_TRAIN_0_BCFG[CFG_CGX] or
                                                                 GSERN()_LANE()_TRAIN_0_BCFG[CFG_OCX] must be set to 1 before [TRN_OVRD_EN] is set to 1.  Also
                                                                 GSERN()_LANE()_SRCMX_BCFG[TX_CTRL_SEL] must be programmed to select CGX or OCX mode
                                                                 before [TRN_OVRD_EN] is set to 1.
                                                                 For diagnostic use only. */
        uint64_t reserved_8_13         : 6;
        uint64_t cfg_ocx               : 1;  /**< [  7:  7](R/W) Configure BASE-R training logic for OCX mode.   When [CFG_OCX] is set the
                                                                 Coefficient Update (CU) and Status Report (SR) messaging is reconfigured for
                                                                 the OCX controller.  The CU and SR messages must be sent and received in the
                                                                 txdivclk and rxdivclk domains for the OCX controller.

                                                                 When [CFG_OCX] is set, the GSERN()_LANE()_TRAIN_0_BCFG[CFG_CGX] field must be
                                                                 cleared to zero. */
        uint64_t rxt_adjmain           : 1;  /**< [  6:  6](R/W) For all link training, this bit determines how the main tap is adjusted at the start
                                                                 of link training.  When set the main tap of link partner transmitter peak-to-peak level
                                                                 is adjusted to optimize the AGC of the local device receiver.  This is intended to prevent
                                                                 receiver saturation on short or low loss links.

                                                                 To perform main tap optimization of the link partner transmitter set this bit prior to
                                                                 enabling link training. */
        uint64_t rxt_initialize        : 1;  /**< [  5:  5](R/W) For all link training, this bit determines how to configure the initialize bit in the
                                                                 coefficient update message that is sent to the far end transmitter of RX training. When
                                                                 set, a request is made that the coefficients be set to its INITIALIZE state. To perform an
                                                                 initialize prior to link training, set this bit prior to performing link training. Note
                                                                 that it is illegal to set both the preset and initialize bits at the same time. */
        uint64_t rxt_preset            : 1;  /**< [  4:  4](R/W) For all link training, this bit determines how to configure the preset bit in the
                                                                 coefficient update message that is sent to the far end transmitter. When set, a one time
                                                                 request is made that the coefficients be set to a state where equalization is turned off.

                                                                 To perform a preset, set this bit prior to link training. Link training needs to be
                                                                 disabled to complete the request and get the rxtrain state machine back to idle. Note that
                                                                 it is illegal to set both the preset and initialize bits at the same time. For diagnostic
                                                                 use only. */
        uint64_t rxt_swm               : 1;  /**< [  3:  3](R/W) Set when RX BASE-R link training is to be performed under software control.

                                                                 See GSERN()_LANE()_TRAIN_0_BCFG[RXT_EER]. */
        uint64_t cgx_quad              : 1;  /**< [  2:  2](R/W) When set, indicates the QLM is in CGX quad aggregation mode. [CGX_QUAD] must only be
                                                                 set when GSERN()_LANE()_SRCMX_BCFG[TX_DATA_SEL]=CGX is set and
                                                                 GSERN()_LANE()_SRCMX_BCFG[TX_CTRL_SEL]=CGX is set and [CGX_DUAL] is clear.

                                                                 When [CGX_QUAD] is set, GSER bundles all four lanes for one BCX controller.
                                                                 [CGX_QUAD] must only be set for the XAUI/DXAUI, XLAUI, and CAUI protocols. */
        uint64_t cgx_dual              : 1;  /**< [  1:  1](R/W) When set, indicates the QLM is in CGX dual aggregation mode. [CGX_DUAL] must only be
                                                                 set when GSERN()_LANE()_SRCMX_BCFG[TX_DATA_SEL]=CGX is set and
                                                                 GSERN()_LANE()_SRCMX_BCFG[TX_CTRL_SEL]=CGX is set and [CGX_QUAD] is clear.

                                                                 When [CGX_DUAL] is set, GSER bundles lanes 0 and 1 for one CGX controller and bundles
                                                                 lanes 2 and 3 for another CGX controller. [CGX_DUAL] must only be set for the RXAUI
                                                                 protocol. */
        uint64_t cfg_cgx               : 1;  /**< [  0:  0](R/W) When set, indicates the BASE-R training logic is in CGX mode.  Enables SCLK to the CGX TX
                                                                 and RX
                                                                 data path and the BASE-R TX/RX Training blocks. [CFG_CGX] must be set to one when
                                                                 either GSERN()_LANE()_TRAIN_0_BCFG[CGX_DUAL] or GSERN()_LANE()_TRAIN_0_BCFG[CGX_QUAD]
                                                                 is set.

                                                                 When [CFG_CGX] is set, the GSERN()_LANE()_TRAIN_0_BCFG[CFG_OCX] field must be
                                                                 cleared to zero. */
#else /* Word 0 - Little Endian */
        uint64_t cfg_cgx               : 1;  /**< [  0:  0](R/W) When set, indicates the BASE-R training logic is in CGX mode.  Enables SCLK to the CGX TX
                                                                 and RX
                                                                 data path and the BASE-R TX/RX Training blocks. [CFG_CGX] must be set to one when
                                                                 either GSERN()_LANE()_TRAIN_0_BCFG[CGX_DUAL] or GSERN()_LANE()_TRAIN_0_BCFG[CGX_QUAD]
                                                                 is set.

                                                                 When [CFG_CGX] is set, the GSERN()_LANE()_TRAIN_0_BCFG[CFG_OCX] field must be
                                                                 cleared to zero. */
        uint64_t cgx_dual              : 1;  /**< [  1:  1](R/W) When set, indicates the QLM is in CGX dual aggregation mode. [CGX_DUAL] must only be
                                                                 set when GSERN()_LANE()_SRCMX_BCFG[TX_DATA_SEL]=CGX is set and
                                                                 GSERN()_LANE()_SRCMX_BCFG[TX_CTRL_SEL]=CGX is set and [CGX_QUAD] is clear.

                                                                 When [CGX_DUAL] is set, GSER bundles lanes 0 and 1 for one CGX controller and bundles
                                                                 lanes 2 and 3 for another CGX controller. [CGX_DUAL] must only be set for the RXAUI
                                                                 protocol. */
        uint64_t cgx_quad              : 1;  /**< [  2:  2](R/W) When set, indicates the QLM is in CGX quad aggregation mode. [CGX_QUAD] must only be
                                                                 set when GSERN()_LANE()_SRCMX_BCFG[TX_DATA_SEL]=CGX is set and
                                                                 GSERN()_LANE()_SRCMX_BCFG[TX_CTRL_SEL]=CGX is set and [CGX_DUAL] is clear.

                                                                 When [CGX_QUAD] is set, GSER bundles all four lanes for one BCX controller.
                                                                 [CGX_QUAD] must only be set for the XAUI/DXAUI, XLAUI, and CAUI protocols. */
        uint64_t rxt_swm               : 1;  /**< [  3:  3](R/W) Set when RX BASE-R link training is to be performed under software control.

                                                                 See GSERN()_LANE()_TRAIN_0_BCFG[RXT_EER]. */
        uint64_t rxt_preset            : 1;  /**< [  4:  4](R/W) For all link training, this bit determines how to configure the preset bit in the
                                                                 coefficient update message that is sent to the far end transmitter. When set, a one time
                                                                 request is made that the coefficients be set to a state where equalization is turned off.

                                                                 To perform a preset, set this bit prior to link training. Link training needs to be
                                                                 disabled to complete the request and get the rxtrain state machine back to idle. Note that
                                                                 it is illegal to set both the preset and initialize bits at the same time. For diagnostic
                                                                 use only. */
        uint64_t rxt_initialize        : 1;  /**< [  5:  5](R/W) For all link training, this bit determines how to configure the initialize bit in the
                                                                 coefficient update message that is sent to the far end transmitter of RX training. When
                                                                 set, a request is made that the coefficients be set to its INITIALIZE state. To perform an
                                                                 initialize prior to link training, set this bit prior to performing link training. Note
                                                                 that it is illegal to set both the preset and initialize bits at the same time. */
        uint64_t rxt_adjmain           : 1;  /**< [  6:  6](R/W) For all link training, this bit determines how the main tap is adjusted at the start
                                                                 of link training.  When set the main tap of link partner transmitter peak-to-peak level
                                                                 is adjusted to optimize the AGC of the local device receiver.  This is intended to prevent
                                                                 receiver saturation on short or low loss links.

                                                                 To perform main tap optimization of the link partner transmitter set this bit prior to
                                                                 enabling link training. */
        uint64_t cfg_ocx               : 1;  /**< [  7:  7](R/W) Configure BASE-R training logic for OCX mode.   When [CFG_OCX] is set the
                                                                 Coefficient Update (CU) and Status Report (SR) messaging is reconfigured for
                                                                 the OCX controller.  The CU and SR messages must be sent and received in the
                                                                 txdivclk and rxdivclk domains for the OCX controller.

                                                                 When [CFG_OCX] is set, the GSERN()_LANE()_TRAIN_0_BCFG[CFG_CGX] field must be
                                                                 cleared to zero. */
        uint64_t reserved_8_13         : 6;
        uint64_t trn_ovrd_en           : 1;  /**< [ 14: 14](R/W) BASE-R Training Override Enable.  Setting [TRN_OVRD_EN] will enable BASE-R training logic
                                                                 for both CGX and OCX.  This is a CSR override for the BASE-R training enable signals from
                                                                 the CGX and OCX blocks.  Either GSERN()_LANE()_TRAIN_0_BCFG[CFG_CGX] or
                                                                 GSERN()_LANE()_TRAIN_0_BCFG[CFG_OCX] must be set to 1 before [TRN_OVRD_EN] is set to 1.  Also
                                                                 GSERN()_LANE()_SRCMX_BCFG[TX_CTRL_SEL] must be programmed to select CGX or OCX mode
                                                                 before [TRN_OVRD_EN] is set to 1.
                                                                 For diagnostic use only. */
        uint64_t frz_cdr_en            : 1;  /**< [ 15: 15](R/W) Freeze CDR enable. In CGX mode when set to a one enables the CGX MAC to
                                                                 Freeze the receiver CDR during BASE-R autonegotiation (AN) and KR training
                                                                 to prevent the RX CDR from locking onto the differential manchester encoded
                                                                 AN and KR training frames.  CGX asserts the rx cdr coast signal to the GSER
                                                                 block to freeze the RX CDR.  Clearing [FRZ_CDR_EN] prevents CGS from freezing
                                                                 the RX CDR.
                                                                 For diagnostic use only. */
        uint64_t ld_receiver_rdy       : 1;  /**< [ 16: 16](RO/H) At the completion of BASE-R training the local device sets receiver ready.  This bit
                                                                 reflects the state of the local device receiver ready status.  For Debug use only.
                                                                 This bit is only valid during BASE-R link training and at the conclusion of link
                                                                 training. */
        uint64_t trn_short             : 1;  /**< [ 17: 17](R/W) Train short. Executes an abbreviated BASE-R training session.
                                                                 For diagnostic use only. */
        uint64_t rxt_tx_pre_dir        : 2;  /**< [ 19: 18](RO/H) RX recommended TXPRE direction change.

                                                                 Recommended direction change outputs from the PHY for the link partner transmitter
                                                                 coefficients.
                                                                 0x0 = Hold.
                                                                 0x1 = Increment.
                                                                 0x2 = Decrement.
                                                                 0x3 = Hold. */
        uint64_t rxt_tx_main_dir       : 2;  /**< [ 21: 20](RO/H) RX recommended TXMAIN direction change.

                                                                 Recommended direction change outputs from the PHY for the link partner transmitter
                                                                 coefficients.
                                                                 0x0 = Hold.
                                                                 0x1 = Increment.
                                                                 0x2 = Decrement.
                                                                 0x3 = Hold. */
        uint64_t rxt_tx_post_dir       : 2;  /**< [ 23: 22](RO/H) RX recommended TXPOST direction change.

                                                                 Recommended direction change outputs from the PHY for the link partner transmitter
                                                                 coefficients.
                                                                 0x0 = Hold.
                                                                 0x1 = Increment.
                                                                 0x2 = Decrement.
                                                                 0x3 = Hold. */
        uint64_t rxt_esv               : 1;  /**< [ 24: 24](RO/H) When performing an equalization request ([RXT_EER]), this bit, when set, indicates that
                                                                 the
                                                                 equalization status (RXT_ESM) is valid. When issuing a [RXT_EER] request, it is expected
                                                                 that [RXT_ESV] will get written to zero so that a valid RXT_ESM can be determined. */
        uint64_t rxt_eer               : 1;  /**< [ 25: 25](WO/H) When RX BASE-R link training is being performed under software control,
                                                                 (GSERN()_LANE()_TRAIN_0_BCFG[RXT_SWM] is set), writing this bit initiates an equalization
                                                                 request to the SerDes receiver equalizer. Reading this bit always returns a zero. */
        uint64_t rxt_adtmout_disable   : 1;  /**< [ 26: 26](R/W) For BASE-R links one of the terminating condition for link training receiver adaptation
                                                                 is a programmable time-out timer.  When the receiver adaptation time-out timer
                                                                 expires the link training process is concluded and the link is considered good and
                                                                 the receiver ready status report bit is set in the local device.
                                                                 Note that when BASE-R link training is performed under software control,
                                                                 (GSERN()_LANE()_TRAIN_0_BCFG[RXT_SWM] is set), the receiver adaptation time-out timer is
                                                                 disabled and not used.

                                                                 Set this bit to a one to disable the link training receiver adaptation time-out
                                                                 timer during BASE-R link training under hardware control.  For diagnostic use only. */
        uint64_t rxt_adtmout_sel       : 2;  /**< [ 28: 27](R/W) Selects the timeout value for the BASE-R link training time-out timer.
                                                                 This time-out timer value is only valid if
                                                                 GSERN()_LANE()_TRAIN_0_BCFG[RXT_ADTMOUT_DISABLE]
                                                                 is cleared to 0 and BASE-R hardware training is enabled.

                                                                 When GSERN()_LANE()_TRAIN_0_BCFG[RXT_ADTMOUT_FAST] is cleared to 0 the link training
                                                                 time-out timer value is set by [RXT_ADTMOUT_SEL] to the values shown.
                                                                 0x0 = 83.89  milliseconds.
                                                                 0x1 = 167.77 milliseconds.
                                                                 0x2 = 335.54 milliseconds.
                                                                 0x3 = 419.43 milliseconds.

                                                                 When GSERN()_LANE()_TRAIN_0_BCFG[RXT_ADTMOUT_FAST] is set to 1 the link training
                                                                 time-out timer value is set by [RXT_ADTMOUT_SEL] to the values shown.
                                                                 0x0 = 81.92  microseconds.
                                                                 0x1 = 163.84 microseconds.
                                                                 0x2 = 327.68 microseconds.
                                                                 0x3 = 655.36 microseconds. */
        uint64_t rxt_adtmout_fast      : 1;  /**< [ 29: 29](R/W) Reserved.
                                                                 Internal:
                                                                 For simulation use only. When set accelerates the link training time-out timer during
                                                                 BASE-R link training.  When set shortens the link training time-out timer to time-out
                                                                 after 164 microseconds to facilitate shorter BASE-R training simulations runs.
                                                                 For diagnostic use only. */
        uint64_t txt_cur_prg           : 1;  /**< [ 30: 30](R/W) When TX BASE-R link training is being performed under software control,
                                                                 e.g. GSERN()_LANE()_TRAIN_0_BCFG[TXT_SWM] is set, setting [TXT_CUR_PRG] writes the TX
                                                                 equalizer
                                                                 coefficients in GSERN()_LANE()_TRAIN_0_BCFG[TXT_CUR_PRE],
                                                                 GSERN()_LANE()_TRAIN_0_BCFG[TXT_CUR_MAIN],
                                                                 and GSERN()_LANE()_TRAIN_0_BCFG[TXT_CUR_POST] registers into the GSER TX equalizer.
                                                                 For diagnostic use only. */
        uint64_t txt_cur_pre           : 5;  /**< [ 35: 31](R/W) When TX BASE-R link training is being performed under software control,
                                                                 e.g. GSERN()_LANE()_TRAIN_0_BCFG[TXT_SWM] is set, this is the (C-1) coefficient
                                                                 update to be written to the SerDes TX Equalizer.
                                                                 The coefficients are written to the TX equalizer when
                                                                 GSERN()_LANE()_TRAIN_0_BCFG[TXT_CUR_PRG] is set to a one.
                                                                 For diagnostic use only. */
        uint64_t txt_cur_main          : 6;  /**< [ 41: 36](R/W) When TX BASE-R link training is being performed under software control,
                                                                 e.g. GSERN()_LANE()_TRAIN_0_BCFG[TXT_SWM] is set, this is the (C0) coefficient
                                                                 update to be written to the SerDes TX Equalizer.
                                                                 The coefficients are written to the TX equalizer when
                                                                 GSERN()_LANE()_TRAIN_0_BCFG[TXT_CUR_PRG] is set to a one.
                                                                 For diagnostic use only. */
        uint64_t txt_cur_post          : 5;  /**< [ 46: 42](R/W) When TX BASE-R link training is being performed under software control,
                                                                 e.g. GSERN()_LANE()_TRAIN_0_BCFG[TXT_SWM] is set, this is the (C+1) coefficient
                                                                 update to be written to the SerDes TX Equalizer.
                                                                 The coefficients are written to the TX equalizer when
                                                                 GSERN()_LANE()_TRAIN_0_BCFG[TXT_CUR_PRG] is set to a one.
                                                                 For diagnostic use only. */
        uint64_t txt_swm               : 1;  /**< [ 47: 47](R/W) Set when TX BASE-R link training is to be performed under software control. For diagnostic
                                                                 use only. */
        uint64_t txt_pre               : 5;  /**< [ 52: 48](RO/H) After TX BASE-R link training, this is the resultant POST Tap value that was
                                                                 written to the PHY.  This field has no meaning if TX BASE-R link training was
                                                                 not performed.
                                                                 For diagnostic use only. */
        uint64_t txt_main              : 6;  /**< [ 58: 53](RO/H) After TX BASE-R link training, this is the resultant MAIN Tap value that was
                                                                 written to the PHY.  This field has no meaning if TX BASE-R link training was
                                                                 not performed.
                                                                 For diagnostic use only. */
        uint64_t txt_post              : 5;  /**< [ 63: 59](RO/H) After TX BASE-R link training, this is the resultant POST Tap value that was
                                                                 written to the PHY.  This field has no meaning if TX BASE-R link training was
                                                                 not performed.
                                                                 For diagnostic use only. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_train_0_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_train_0_bcfg bdk_gsernx_lanex_train_0_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_TRAIN_0_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_TRAIN_0_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e0900031b0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_TRAIN_0_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_TRAIN_0_BCFG(a,b) bdk_gsernx_lanex_train_0_bcfg_t
#define bustype_BDK_GSERNX_LANEX_TRAIN_0_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_TRAIN_0_BCFG(a,b) "GSERNX_LANEX_TRAIN_0_BCFG"
#define device_bar_BDK_GSERNX_LANEX_TRAIN_0_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_TRAIN_0_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_TRAIN_0_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_train_10_bcfg
 *
 * GSER Lane Training Base Configuration Register 10
 * This register controls settings for lane training.
 */
union bdk_gsernx_lanex_train_10_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_train_10_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_59_63        : 5;
        uint64_t l_c1_e_adj_sgn        : 1;  /**< [ 58: 58](R/W) Sets the lower C1 E sampler adjustment voltage offset sign.
                                                                 0 = The offset sign is positive
                                                                 positioning the lower C1_E sampler below the eye C1_Q sampler.
                                                                 1 = The offset sign is negative
                                                                 positioning the lower C1_E sampler above the eye C1_Q sampler.

                                                                 Used in conjunction with
                                                                 GSERN()_LANE()_TRAIN_4_BCFG[C1_E_ADJ_STEP] during KR training.
                                                                 For diagnostic use only. */
        uint64_t u_c1_e_adj_sgn        : 1;  /**< [ 57: 57](R/W) Sets the upper C1 E sampler adjustment voltage offset sign.
                                                                 0 = The offset sign is positive
                                                                 positioning the upper C1_E sampler above the eye C1_Q sampler.
                                                                 1 = The offset sign is negative
                                                                 positioning the upper C1_E sampler below the eye C1_Q sampler.

                                                                 Used in conjunction with
                                                                 GSERN()_LANE()_TRAIN_10_BCFG[U_C1_E_ADJ_STEP] for BASE-R training.
                                                                 For diagnostic use only. */
        uint64_t u_c1_e_adj_step       : 5;  /**< [ 56: 52](R/W) Sets the C1 E sampler voltage level during eye monitor sampling when
                                                                 GSERN()_LANE()_TRAIN_10_BCFG[FOM_TYPE] is set to one for BASE-R training.
                                                                 Typically [U_C1_E_ADJ_STEP] is set to 0x3 to position the eye monitor
                                                                 error sampler at ~15mv above the C1 Q sampler voltage level when
                                                                 computing the FOM using the two step process, e.g. [FOM_TYPE] set to one,
                                                                 with the error slicer level positioned above and below the data slicer
                                                                 level.  The error slicer level and positon relative to the data slicer
                                                                 is controlled by [U_C1_E_ADJ_STEP] and
                                                                 GSERN()_LANE()_TRAIN_10_BCFG[U_C1_E_ADJ_SGN] for BASE-R training.
                                                                 Steps are in units of 5.08 mV per step.
                                                                 For diagnostic use only. */
        uint64_t l_c1_e_adj_step       : 5;  /**< [ 51: 47](R/W) Sets the C1 E sampler voltage level during eye monitor sampling when
                                                                 GSERN()_LANE()_TRAIN_10_BCFG[FOM_TYPE] is set to one for BASE-R training.
                                                                 Typically [U_C1_E_ADJ_STEP] is set to 0x3 to position the eye monitor
                                                                 error sampler at ~15mv below the C1 Q sampler voltage level when
                                                                 computing the FOM using the two step process, e.g. [FOM_TYPE] set to one,
                                                                 with the error slicer level positioned above and below the data slicer
                                                                 level.  The error slicer level and positon relative to the data slicer
                                                                 is controlled by [U_C1_E_ADJ_STEP] and
                                                                 GSERN()_LANE()_TRAIN_10_BCFG[L_C1_E_ADJ_SGN] for BASE-R training.
                                                                 Steps are in units of 5.08 mV per step.
                                                                 For diagnostic use only. */
        uint64_t fom_type              : 1;  /**< [ 46: 46](R/W) BASE-R and PCIE training selects the Figure of Merit (FOM) measurement type. For
                                                                 diagnostic use only.
                                                                 0 = The raw FOM is measured by setting the eye monitor
                                                                 error slicer below the data slicer nominal level and counting the errors
                                                                 for each of the transition ones, non trasition ones, transition zeros, and
                                                                 non transition zeros then summing the four error counts, convert to ones
                                                                 complement, then normalize to a 12-bit unsigned integer.
                                                                 1 = The raw FOM calculation follows the steps above however the
                                                                 eye monitor error measurements is a two step process with the error slicer
                                                                 first set both below the nominal data slicer level and then on the second
                                                                 measurement pass set above the data slicer nominal level.

                                                                 Internal:
                                                                 The first FOM method can detect a saturated receiver and stop training
                                                                 if the eye is sufficiently open.
                                                                 The second FOM method returns a lower value for overequalized eyes and
                                                                 is useful for driving the training to a more optimal equalization
                                                                 setting on longer links. */
        uint64_t trn_fom_thrs_en       : 1;  /**< [ 45: 45](R/W) BASE-R training when set to 1 enables the FOM threshold value in
                                                                 GSERN()_LANE()_TRAIN_10_BCFG[EXIT_FOM_THRS_VAL] for training convergence
                                                                 detection.  When the measured FOM exceeds the value in
                                                                 GSERN()_LANE()_TRAIN_10_BCFG[EXIT_FOM_THRS_VAL] and
                                                                 GSERN()_LANE()_TRAIN_10_BCFG[TRN_FOM_THRS_EN] is set to 0x1, training
                                                                 will terminate depending on the settings of the training termination
                                                                 condition values set in
                                                                 GSERN()_LANE()_TRAIN_4_BCFG[TERM_FOM_THRS_AND] and
                                                                 GSERN()_LANE()_TRAIN_4_BCFG[TERM_FOM_THRS_OR].

                                                                 When BASE-R training converges due the FOM threshold being met or
                                                                 exceeded GSERN()_LANE()_TRAIN_3_BCFG[EXIT_FOM_THRS] will be set to 1
                                                                 if GSERN()_LANE()_TRAIN_10_BCFG[TRN_FOM_THRS_EN] is set to 1.
                                                                 For diagnostic use only. */
        uint64_t exit_fom_thrs_val     : 12; /**< [ 44: 33](R/W) BASE-R training sets the FOM threshold value used for training convergence
                                                                 detection.  When the measured FOM exceeds the value in [EXIT_FOM_THRS_VAL]
                                                                 and GSERN()_LANE()_TRAIN_10_BCFG[TRN_FOM_THRS_EN] is set to 0x1, training
                                                                 will terminate depending on the settings of the training termination
                                                                 condition values set in
                                                                 GSERN()_LANE()_TRAIN_4_BCFG[TERM_FOM_THRS_AND] and
                                                                 GSERN()_LANE()_TRAIN_4_BCFG[TERM_FOM_THRS_OR].

                                                                 Refer to the description for GSERN()_LANE()_TRAIN_10_BCFG[TRN_FOM_THRS_EN]
                                                                 and GSERN()_LANE()_TRAIN_3_BCFG[EXIT_FOM_THRS].
                                                                 For diagnostic use only. */
        uint64_t ttrk_array_clr        : 1;  /**< [ 32: 32](R/W) KR training Local Device Tx Equalizer tracking array clear signal. Used to
                                                                 clear the tracking array after KR training has completed.
                                                                 For diagnostic use only. */
        uint64_t ttrk_array_rd         : 1;  /**< [ 31: 31](R/W) KR training Local Device Tx Equalizer tracking array index Read signal. Used to
                                                                 readback tap values from the tracking array after KR training has completed.
                                                                 For diagnostic use only. */
        uint64_t ttrk_array_addr       : 7;  /**< [ 30: 24](R/W) KR training Local Device Tx Equalizer tracking array index. Used to
                                                                 readback tap values from the tracking array after KR training has completed.
                                                                 For diagnostic use only.

                                                                 Internal:
                                                                 During KR training the local device transmitter tap values (C0,C+1,C-1)
                                                                 are stored in the tap tracking array.  The array holds up to 128 locations.
                                                                 After KR training completes the array can be read back to determine the
                                                                 training progression of the transmitter taps.  This is helpful in debugging
                                                                 KR training convergence problems of the local device transmitter. */
        uint64_t ttrk_moves            : 8;  /**< [ 23: 16](RO/H) KR training Local Device Tx Equalizer number of tap adjustments during KR training.
                                                                 For diagnostic use only. */
        uint64_t ttrk_pre              : 5;  /**< [ 15: 11](RO/H) KR training Local Device Tx Equalizer Pre (C-1) value from the tap tracking array.
                                                                 For diagnostic use only. */
        uint64_t ttrk_main             : 6;  /**< [ 10:  5](RO/H) KR training Local Device Tx Equalizer Main (C0) value from the tap tracking array.
                                                                 For diagnostic use only. */
        uint64_t ttrk_post             : 5;  /**< [  4:  0](RO/H) KR training Local Device Tx Equalizer Post (C+1) value from the tap tracking array.
                                                                 For diagnostic use only. */
#else /* Word 0 - Little Endian */
        uint64_t ttrk_post             : 5;  /**< [  4:  0](RO/H) KR training Local Device Tx Equalizer Post (C+1) value from the tap tracking array.
                                                                 For diagnostic use only. */
        uint64_t ttrk_main             : 6;  /**< [ 10:  5](RO/H) KR training Local Device Tx Equalizer Main (C0) value from the tap tracking array.
                                                                 For diagnostic use only. */
        uint64_t ttrk_pre              : 5;  /**< [ 15: 11](RO/H) KR training Local Device Tx Equalizer Pre (C-1) value from the tap tracking array.
                                                                 For diagnostic use only. */
        uint64_t ttrk_moves            : 8;  /**< [ 23: 16](RO/H) KR training Local Device Tx Equalizer number of tap adjustments during KR training.
                                                                 For diagnostic use only. */
        uint64_t ttrk_array_addr       : 7;  /**< [ 30: 24](R/W) KR training Local Device Tx Equalizer tracking array index. Used to
                                                                 readback tap values from the tracking array after KR training has completed.
                                                                 For diagnostic use only.

                                                                 Internal:
                                                                 During KR training the local device transmitter tap values (C0,C+1,C-1)
                                                                 are stored in the tap tracking array.  The array holds up to 128 locations.
                                                                 After KR training completes the array can be read back to determine the
                                                                 training progression of the transmitter taps.  This is helpful in debugging
                                                                 KR training convergence problems of the local device transmitter. */
        uint64_t ttrk_array_rd         : 1;  /**< [ 31: 31](R/W) KR training Local Device Tx Equalizer tracking array index Read signal. Used to
                                                                 readback tap values from the tracking array after KR training has completed.
                                                                 For diagnostic use only. */
        uint64_t ttrk_array_clr        : 1;  /**< [ 32: 32](R/W) KR training Local Device Tx Equalizer tracking array clear signal. Used to
                                                                 clear the tracking array after KR training has completed.
                                                                 For diagnostic use only. */
        uint64_t exit_fom_thrs_val     : 12; /**< [ 44: 33](R/W) BASE-R training sets the FOM threshold value used for training convergence
                                                                 detection.  When the measured FOM exceeds the value in [EXIT_FOM_THRS_VAL]
                                                                 and GSERN()_LANE()_TRAIN_10_BCFG[TRN_FOM_THRS_EN] is set to 0x1, training
                                                                 will terminate depending on the settings of the training termination
                                                                 condition values set in
                                                                 GSERN()_LANE()_TRAIN_4_BCFG[TERM_FOM_THRS_AND] and
                                                                 GSERN()_LANE()_TRAIN_4_BCFG[TERM_FOM_THRS_OR].

                                                                 Refer to the description for GSERN()_LANE()_TRAIN_10_BCFG[TRN_FOM_THRS_EN]
                                                                 and GSERN()_LANE()_TRAIN_3_BCFG[EXIT_FOM_THRS].
                                                                 For diagnostic use only. */
        uint64_t trn_fom_thrs_en       : 1;  /**< [ 45: 45](R/W) BASE-R training when set to 1 enables the FOM threshold value in
                                                                 GSERN()_LANE()_TRAIN_10_BCFG[EXIT_FOM_THRS_VAL] for training convergence
                                                                 detection.  When the measured FOM exceeds the value in
                                                                 GSERN()_LANE()_TRAIN_10_BCFG[EXIT_FOM_THRS_VAL] and
                                                                 GSERN()_LANE()_TRAIN_10_BCFG[TRN_FOM_THRS_EN] is set to 0x1, training
                                                                 will terminate depending on the settings of the training termination
                                                                 condition values set in
                                                                 GSERN()_LANE()_TRAIN_4_BCFG[TERM_FOM_THRS_AND] and
                                                                 GSERN()_LANE()_TRAIN_4_BCFG[TERM_FOM_THRS_OR].

                                                                 When BASE-R training converges due the FOM threshold being met or
                                                                 exceeded GSERN()_LANE()_TRAIN_3_BCFG[EXIT_FOM_THRS] will be set to 1
                                                                 if GSERN()_LANE()_TRAIN_10_BCFG[TRN_FOM_THRS_EN] is set to 1.
                                                                 For diagnostic use only. */
        uint64_t fom_type              : 1;  /**< [ 46: 46](R/W) BASE-R and PCIE training selects the Figure of Merit (FOM) measurement type. For
                                                                 diagnostic use only.
                                                                 0 = The raw FOM is measured by setting the eye monitor
                                                                 error slicer below the data slicer nominal level and counting the errors
                                                                 for each of the transition ones, non trasition ones, transition zeros, and
                                                                 non transition zeros then summing the four error counts, convert to ones
                                                                 complement, then normalize to a 12-bit unsigned integer.
                                                                 1 = The raw FOM calculation follows the steps above however the
                                                                 eye monitor error measurements is a two step process with the error slicer
                                                                 first set both below the nominal data slicer level and then on the second
                                                                 measurement pass set above the data slicer nominal level.

                                                                 Internal:
                                                                 The first FOM method can detect a saturated receiver and stop training
                                                                 if the eye is sufficiently open.
                                                                 The second FOM method returns a lower value for overequalized eyes and
                                                                 is useful for driving the training to a more optimal equalization
                                                                 setting on longer links. */
        uint64_t l_c1_e_adj_step       : 5;  /**< [ 51: 47](R/W) Sets the C1 E sampler voltage level during eye monitor sampling when
                                                                 GSERN()_LANE()_TRAIN_10_BCFG[FOM_TYPE] is set to one for BASE-R training.
                                                                 Typically [U_C1_E_ADJ_STEP] is set to 0x3 to position the eye monitor
                                                                 error sampler at ~15mv below the C1 Q sampler voltage level when
                                                                 computing the FOM using the two step process, e.g. [FOM_TYPE] set to one,
                                                                 with the error slicer level positioned above and below the data slicer
                                                                 level.  The error slicer level and positon relative to the data slicer
                                                                 is controlled by [U_C1_E_ADJ_STEP] and
                                                                 GSERN()_LANE()_TRAIN_10_BCFG[L_C1_E_ADJ_SGN] for BASE-R training.
                                                                 Steps are in units of 5.08 mV per step.
                                                                 For diagnostic use only. */
        uint64_t u_c1_e_adj_step       : 5;  /**< [ 56: 52](R/W) Sets the C1 E sampler voltage level during eye monitor sampling when
                                                                 GSERN()_LANE()_TRAIN_10_BCFG[FOM_TYPE] is set to one for BASE-R training.
                                                                 Typically [U_C1_E_ADJ_STEP] is set to 0x3 to position the eye monitor
                                                                 error sampler at ~15mv above the C1 Q sampler voltage level when
                                                                 computing the FOM using the two step process, e.g. [FOM_TYPE] set to one,
                                                                 with the error slicer level positioned above and below the data slicer
                                                                 level.  The error slicer level and positon relative to the data slicer
                                                                 is controlled by [U_C1_E_ADJ_STEP] and
                                                                 GSERN()_LANE()_TRAIN_10_BCFG[U_C1_E_ADJ_SGN] for BASE-R training.
                                                                 Steps are in units of 5.08 mV per step.
                                                                 For diagnostic use only. */
        uint64_t u_c1_e_adj_sgn        : 1;  /**< [ 57: 57](R/W) Sets the upper C1 E sampler adjustment voltage offset sign.
                                                                 0 = The offset sign is positive
                                                                 positioning the upper C1_E sampler above the eye C1_Q sampler.
                                                                 1 = The offset sign is negative
                                                                 positioning the upper C1_E sampler below the eye C1_Q sampler.

                                                                 Used in conjunction with
                                                                 GSERN()_LANE()_TRAIN_10_BCFG[U_C1_E_ADJ_STEP] for BASE-R training.
                                                                 For diagnostic use only. */
        uint64_t l_c1_e_adj_sgn        : 1;  /**< [ 58: 58](R/W) Sets the lower C1 E sampler adjustment voltage offset sign.
                                                                 0 = The offset sign is positive
                                                                 positioning the lower C1_E sampler below the eye C1_Q sampler.
                                                                 1 = The offset sign is negative
                                                                 positioning the lower C1_E sampler above the eye C1_Q sampler.

                                                                 Used in conjunction with
                                                                 GSERN()_LANE()_TRAIN_4_BCFG[C1_E_ADJ_STEP] during KR training.
                                                                 For diagnostic use only. */
        uint64_t reserved_59_63        : 5;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_train_10_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_train_10_bcfg bdk_gsernx_lanex_train_10_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_TRAIN_10_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_TRAIN_10_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090003250ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_TRAIN_10_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_TRAIN_10_BCFG(a,b) bdk_gsernx_lanex_train_10_bcfg_t
#define bustype_BDK_GSERNX_LANEX_TRAIN_10_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_TRAIN_10_BCFG(a,b) "GSERNX_LANEX_TRAIN_10_BCFG"
#define device_bar_BDK_GSERNX_LANEX_TRAIN_10_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_TRAIN_10_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_TRAIN_10_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_train_1_bcfg
 *
 * GSER Lane Training Base Configuration Register 1
 * This register controls settings for lane training.
 */
union bdk_gsernx_lanex_train_1_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_train_1_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t rxt_fom               : 12; /**< [ 63: 52](RO/H) Figure of merit. An 11-bit output from the PHY indicating the quality of the
                                                                 received data eye. A higher value indicates better link equalization, with 0x0
                                                                 indicating worst equalization setting and 4095 indicating the best equalization
                                                                 setting. */
        uint64_t train_tx_rule         : 8;  /**< [ 51: 44](R/W) BASE-R training TX taps coefficient rule.  Sets the upper limit of the permissible
                                                                 range of the combined TX equalizer c(0), c(+1), and c(-1) taps so that the TX equalizer
                                                                 operates within range specified in the 10GBASE-KR standard.
                                                                 The TX coefficient rule requires (pre + post + main) \<= [TRAIN_TX_RULE].

                                                                 The allowable range for [TRAIN_TX_RULE] is (24 decimal \<= [TRAIN_TX_RULE] \<= 48
                                                                 decimal).
                                                                 For 10GBASE-KR it is recommended to program [TRAIN_TX_RULE] to 0x30  (48 decimal).

                                                                 c(-1) pre TX tap range is programmed by GSERN()_LANE()_TRAIN_2_BCFG[PRE_MAX_LIMIT] and
                                                                 GSERN()_LANE()_TRAIN_2_BCFG[PRE_MIN_LIMIT].

                                                                 c(0) main TX tap range is programmed by GSERN()_LANE()_TRAIN_2_BCFG[MAIN_MAX_LIMIT] and
                                                                 GSERN()_LANE()_TRAIN_2_BCFG[MAIN_MIN_LIMIT].

                                                                 c(+1) post TX tap range is programmed by GSERN()_LANE()_TRAIN_2_BCFG[POST_MAX_LIMIT] and
                                                                 GSERN()_LANE()_TRAIN_2_BCFG[POST_MIN_LIMIT]. */
        uint64_t trn_rx_nxt_st         : 6;  /**< [ 43: 38](RO/H) BASE-R training single step next state for the receive training state machine.
                                                                 In single step mode this field holds the value of the next state of the receive
                                                                 training state machine when the GSERN()_LANE()_TRAIN_1_BCFG[TRN_RX_SS_SP] bit is
                                                                 set to a one.
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_EN] must be set to a one to enable single
                                                                 step mode and the GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_ST] must be set to a one
                                                                 to force the receive training state machine to the STOP state.

                                                                 Used in conjunction with
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_EN],
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_ST].

                                                                 For diagnostic use only. */
        uint64_t trn_ovrd_st           : 6;  /**< [ 37: 32](R/W) BASE-R training single step override state for the receive training
                                                                 state machine.  In single step mode allows for forcing the receive training
                                                                 state machine to a specific state when exiting the STOP state.
                                                                 Refer to the description for GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_OVRD].

                                                                 Used in conjunction with
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_EN],
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_ST],
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_OVRD],
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_RX_SS_SP].

                                                                 For diagnostic use only. */
        uint64_t trn_ss_ovrd           : 1;  /**< [ 31: 31](R/W) BASE-R training single step state override control for the receive training
                                                                 state machine.
                                                                 When single step mode is enabled by setting GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_EN]
                                                                 to 1 and the receive state machine is forced to the STOP state by setting
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_ST] to a 1. When the receive state machine enters
                                                                 the STOP state, indicated by the stop flag GSERN()_LANE()_TRAIN_1_BCFG[TRN_RX_SS_SP]
                                                                 set to one, the next state of the receive state machine, prior to entering the STOP
                                                                 state is indicated by the value in the GSERN()_LANE()_TRAIN_1_BCFG[TRN_RX_NXT_ST]
                                                                 field.  The next state of the receive state machine can be overridden, that is forced
                                                                 to another state other than the next state by setting
                                                                 the desired next state in the GSERN()_LANE()_TRAIN_1_BCFG[TRN_OVRD_ST] field and then
                                                                 clearing the GSERN()_LANE()_TRAIN_1_BCFG[TRN_RX_SS_SP] to zero.  The receive state
                                                                 machine will exit the STOP state and proceed to state indicated in [TRN_OVRD_ST]
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_OVRD_ST] field.

                                                                 Used in conjunction with
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_EN],
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_ST],
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_OVRD_ST],
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_RX_SS_SP].

                                                                 For diagnostic use only. */
        uint64_t reserved_30           : 1;
        uint64_t trn_rx_ss_sp          : 1;  /**< [ 29: 29](RO/H) BASE-R training single step stop flag for the receiver training state machine.
                                                                 When single step mode is enabled by setting GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_EN]
                                                                 to 1 the receive state machine is forced to the STOP state by setting
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_ST] to a 1. When the receive state machine enters
                                                                 the STOP state, the [TRN_RX_SS_SP] flag will be set. Subsequently, writing
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_ST] to zero will cause the receive state machine
                                                                 to exit the STOP state and jump to the state indicated in the
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_RX_NXT_ST] field.

                                                                 Used in conjunction with
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_EN],
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_ST],
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_RX_NXT_ST],
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_OVRD_ST],
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_RX_SS_SP].

                                                                 For diagnostic use only. */
        uint64_t trn_ss_st             : 1;  /**< [ 28: 28](WO/H) BASE-R training single-step start single-step stop.
                                                                 Refer to the description for GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_EN].

                                                                 Used in conjunction with
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_EN],
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_RX_SS_SP].
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_RX_NXT_ST],
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_OVRD_ST],

                                                                 For diagnostic use only. */
        uint64_t trn_ss_en             : 1;  /**< [ 27: 27](R/W) BASE-R training single step mode enable. When set to a 1 enables single stepping
                                                                 the BASE-R link training receive state machines.

                                                                 When single step mode is enabled by setting GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_EN]
                                                                 to 1 the receive state machine is forced to the STOP state by setting
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_ST] to a 1. When the receive state machine enters
                                                                 the STOP state, the [TRN_RX_SS_SP] flag will be set. Subsequently, writing
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_ST] to 0 then writing
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_ST] to 1 will cause the receive state machine
                                                                 to exit the STOP state and jump to the state indicated in the
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_RX_NXT_ST] field. Alternatively, the receive
                                                                 state machine can be forced to a different state by writing the state value
                                                                 to the GSERN()_LANE()_TRAIN_1_BCFG[TRN_OVRD_ST] field then set the
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_OVRD] to 1 and then writing
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_ST] to 0 then writing
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_ST] to 1 to force the receive state machine to the
                                                                 override state and then return to the STOP state.

                                                                 Used in conjunction with
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_ST],
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_RX_NXT_ST],
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_OVRD_ST],
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_OVRD],
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_RX_SS_SP].

                                                                 For diagnostic use only. */
        uint64_t rx_train_fsm          : 6;  /**< [ 26: 21](RO/H) Value of the BASE-R hardware receiver link training state machine state during
                                                                 link training single step mode. The values in this field are only valid when
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_EN] is set.
                                                                 For diagnostic use only. */
        uint64_t tx_train_fsm          : 5;  /**< [ 20: 16](RO/H) Value of the BASE-R hardware transmitter link training state machine state.
                                                                 For diagnostic use only. */
        uint64_t txt_post_init         : 5;  /**< [ 15: 11](R/W) During TX BASE-R link training, the TX posttap value that is used
                                                                 when the initialize coefficients update is received. It is also the TX posttap
                                                                 value used when the BASE-R link training begins.
                                                                 For diagnostic use only. */
        uint64_t txt_main_init         : 6;  /**< [ 10:  5](R/W) During TX BASE-R link training, the TX swing-tap value that is used
                                                                 when the initialize coefficients update is received. It is also the TX swing-tap
                                                                 value used when the BASE-R link training begins.
                                                                 For diagnostic use only. */
        uint64_t txt_pre_init          : 5;  /**< [  4:  0](R/W) During TX BASE-R link training, the TX pretap value that is used
                                                                 when the initialize coefficients update is received. It is also the TX pretap
                                                                 value used when the BASE-R link training begins.
                                                                 For diagnostic use only. */
#else /* Word 0 - Little Endian */
        uint64_t txt_pre_init          : 5;  /**< [  4:  0](R/W) During TX BASE-R link training, the TX pretap value that is used
                                                                 when the initialize coefficients update is received. It is also the TX pretap
                                                                 value used when the BASE-R link training begins.
                                                                 For diagnostic use only. */
        uint64_t txt_main_init         : 6;  /**< [ 10:  5](R/W) During TX BASE-R link training, the TX swing-tap value that is used
                                                                 when the initialize coefficients update is received. It is also the TX swing-tap
                                                                 value used when the BASE-R link training begins.
                                                                 For diagnostic use only. */
        uint64_t txt_post_init         : 5;  /**< [ 15: 11](R/W) During TX BASE-R link training, the TX posttap value that is used
                                                                 when the initialize coefficients update is received. It is also the TX posttap
                                                                 value used when the BASE-R link training begins.
                                                                 For diagnostic use only. */
        uint64_t tx_train_fsm          : 5;  /**< [ 20: 16](RO/H) Value of the BASE-R hardware transmitter link training state machine state.
                                                                 For diagnostic use only. */
        uint64_t rx_train_fsm          : 6;  /**< [ 26: 21](RO/H) Value of the BASE-R hardware receiver link training state machine state during
                                                                 link training single step mode. The values in this field are only valid when
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_EN] is set.
                                                                 For diagnostic use only. */
        uint64_t trn_ss_en             : 1;  /**< [ 27: 27](R/W) BASE-R training single step mode enable. When set to a 1 enables single stepping
                                                                 the BASE-R link training receive state machines.

                                                                 When single step mode is enabled by setting GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_EN]
                                                                 to 1 the receive state machine is forced to the STOP state by setting
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_ST] to a 1. When the receive state machine enters
                                                                 the STOP state, the [TRN_RX_SS_SP] flag will be set. Subsequently, writing
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_ST] to 0 then writing
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_ST] to 1 will cause the receive state machine
                                                                 to exit the STOP state and jump to the state indicated in the
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_RX_NXT_ST] field. Alternatively, the receive
                                                                 state machine can be forced to a different state by writing the state value
                                                                 to the GSERN()_LANE()_TRAIN_1_BCFG[TRN_OVRD_ST] field then set the
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_OVRD] to 1 and then writing
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_ST] to 0 then writing
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_ST] to 1 to force the receive state machine to the
                                                                 override state and then return to the STOP state.

                                                                 Used in conjunction with
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_ST],
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_RX_NXT_ST],
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_OVRD_ST],
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_OVRD],
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_RX_SS_SP].

                                                                 For diagnostic use only. */
        uint64_t trn_ss_st             : 1;  /**< [ 28: 28](WO/H) BASE-R training single-step start single-step stop.
                                                                 Refer to the description for GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_EN].

                                                                 Used in conjunction with
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_EN],
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_RX_SS_SP].
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_RX_NXT_ST],
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_OVRD_ST],

                                                                 For diagnostic use only. */
        uint64_t trn_rx_ss_sp          : 1;  /**< [ 29: 29](RO/H) BASE-R training single step stop flag for the receiver training state machine.
                                                                 When single step mode is enabled by setting GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_EN]
                                                                 to 1 the receive state machine is forced to the STOP state by setting
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_ST] to a 1. When the receive state machine enters
                                                                 the STOP state, the [TRN_RX_SS_SP] flag will be set. Subsequently, writing
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_ST] to zero will cause the receive state machine
                                                                 to exit the STOP state and jump to the state indicated in the
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_RX_NXT_ST] field.

                                                                 Used in conjunction with
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_EN],
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_ST],
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_RX_NXT_ST],
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_OVRD_ST],
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_RX_SS_SP].

                                                                 For diagnostic use only. */
        uint64_t reserved_30           : 1;
        uint64_t trn_ss_ovrd           : 1;  /**< [ 31: 31](R/W) BASE-R training single step state override control for the receive training
                                                                 state machine.
                                                                 When single step mode is enabled by setting GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_EN]
                                                                 to 1 and the receive state machine is forced to the STOP state by setting
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_ST] to a 1. When the receive state machine enters
                                                                 the STOP state, indicated by the stop flag GSERN()_LANE()_TRAIN_1_BCFG[TRN_RX_SS_SP]
                                                                 set to one, the next state of the receive state machine, prior to entering the STOP
                                                                 state is indicated by the value in the GSERN()_LANE()_TRAIN_1_BCFG[TRN_RX_NXT_ST]
                                                                 field.  The next state of the receive state machine can be overridden, that is forced
                                                                 to another state other than the next state by setting
                                                                 the desired next state in the GSERN()_LANE()_TRAIN_1_BCFG[TRN_OVRD_ST] field and then
                                                                 clearing the GSERN()_LANE()_TRAIN_1_BCFG[TRN_RX_SS_SP] to zero.  The receive state
                                                                 machine will exit the STOP state and proceed to state indicated in [TRN_OVRD_ST]
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_OVRD_ST] field.

                                                                 Used in conjunction with
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_EN],
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_ST],
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_OVRD_ST],
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_RX_SS_SP].

                                                                 For diagnostic use only. */
        uint64_t trn_ovrd_st           : 6;  /**< [ 37: 32](R/W) BASE-R training single step override state for the receive training
                                                                 state machine.  In single step mode allows for forcing the receive training
                                                                 state machine to a specific state when exiting the STOP state.
                                                                 Refer to the description for GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_OVRD].

                                                                 Used in conjunction with
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_EN],
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_ST],
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_OVRD],
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_RX_SS_SP].

                                                                 For diagnostic use only. */
        uint64_t trn_rx_nxt_st         : 6;  /**< [ 43: 38](RO/H) BASE-R training single step next state for the receive training state machine.
                                                                 In single step mode this field holds the value of the next state of the receive
                                                                 training state machine when the GSERN()_LANE()_TRAIN_1_BCFG[TRN_RX_SS_SP] bit is
                                                                 set to a one.
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_EN] must be set to a one to enable single
                                                                 step mode and the GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_ST] must be set to a one
                                                                 to force the receive training state machine to the STOP state.

                                                                 Used in conjunction with
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_EN],
                                                                 GSERN()_LANE()_TRAIN_1_BCFG[TRN_SS_ST].

                                                                 For diagnostic use only. */
        uint64_t train_tx_rule         : 8;  /**< [ 51: 44](R/W) BASE-R training TX taps coefficient rule.  Sets the upper limit of the permissible
                                                                 range of the combined TX equalizer c(0), c(+1), and c(-1) taps so that the TX equalizer
                                                                 operates within range specified in the 10GBASE-KR standard.
                                                                 The TX coefficient rule requires (pre + post + main) \<= [TRAIN_TX_RULE].

                                                                 The allowable range for [TRAIN_TX_RULE] is (24 decimal \<= [TRAIN_TX_RULE] \<= 48
                                                                 decimal).
                                                                 For 10GBASE-KR it is recommended to program [TRAIN_TX_RULE] to 0x30  (48 decimal).

                                                                 c(-1) pre TX tap range is programmed by GSERN()_LANE()_TRAIN_2_BCFG[PRE_MAX_LIMIT] and
                                                                 GSERN()_LANE()_TRAIN_2_BCFG[PRE_MIN_LIMIT].

                                                                 c(0) main TX tap range is programmed by GSERN()_LANE()_TRAIN_2_BCFG[MAIN_MAX_LIMIT] and
                                                                 GSERN()_LANE()_TRAIN_2_BCFG[MAIN_MIN_LIMIT].

                                                                 c(+1) post TX tap range is programmed by GSERN()_LANE()_TRAIN_2_BCFG[POST_MAX_LIMIT] and
                                                                 GSERN()_LANE()_TRAIN_2_BCFG[POST_MIN_LIMIT]. */
        uint64_t rxt_fom               : 12; /**< [ 63: 52](RO/H) Figure of merit. An 11-bit output from the PHY indicating the quality of the
                                                                 received data eye. A higher value indicates better link equalization, with 0x0
                                                                 indicating worst equalization setting and 4095 indicating the best equalization
                                                                 setting. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_train_1_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_train_1_bcfg bdk_gsernx_lanex_train_1_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_TRAIN_1_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_TRAIN_1_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e0900031c0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_TRAIN_1_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_TRAIN_1_BCFG(a,b) bdk_gsernx_lanex_train_1_bcfg_t
#define bustype_BDK_GSERNX_LANEX_TRAIN_1_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_TRAIN_1_BCFG(a,b) "GSERNX_LANEX_TRAIN_1_BCFG"
#define device_bar_BDK_GSERNX_LANEX_TRAIN_1_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_TRAIN_1_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_TRAIN_1_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_train_2_bcfg
 *
 * GSER Lane Training Base Configuration Register 2
 * This register controls settings for lane training.
 */
union bdk_gsernx_lanex_train_2_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_train_2_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t trn_sat_mv_lmt        : 4;  /**< [ 63: 60](R/W) BASE-R training saturated move limit threshold.
                                                                 See GSERN()_LANE()_TRAIN_2_BCFG[TRN_SAT_MV_LMT_EN].
                                                                 For diagnostic use only. */
        uint64_t trn_sat_mv_lmt_en     : 1;  /**< [ 59: 59](R/W) BASE-R training saturated move limit threshold enable. During BASE-R training
                                                                 if a consecutive number of saturated tap moves specified by
                                                                 GSERN()_LANE()_TRAIN_2_BCFG[TRN_SAT_MV_LMT] is met or exceeded training will conclude.
                                                                 This is to prevent cases where the FOM can no longer be improved and the
                                                                 link partner TX taps are at their minimum or maximum limits and the algorithm
                                                                 is attempting to repeatedly move the Tx taps beyond their min/max limits.
                                                                 If the threshold limit is met or exceeded and [TRN_SAT_MV_LMT_EN] is set to 1
                                                                 training will terminate and the GSERN()_LANE()_TRAIN_3_BCFG[EXIT_SAT_MV_LMT]
                                                                 flag will set.
                                                                 For diagnostic use only. */
        uint64_t trn_cfg_use_eye_en    : 1;  /**< [ 58: 58](R/W) BASE-R and PCIe training when [TRN_CFG_USE_EYE_EN] is set the training state machine
                                                                 will control the eye monitor block while training is active the power down the
                                                                 eye monitor at the conclusion of link training.
                                                                 For diagnostic use only. */
        uint64_t trn_rrrpt_en          : 1;  /**< [ 57: 57](R/W) BASE-R training when [TRN_RRRPT_EN] is set the training state machine
                                                                 will repeatedly send Receiver Ready messages to the CGX/OCX MAC every
                                                                 128 services clocks when training completes. For diagnostic use only. */
        uint64_t trn_preset_en         : 1;  /**< [ 56: 56](R/W) BASE-R training when [TRN_PRESET_EN] is set to one preset the link
                                                                 partner TX equalizer when training starts.  When [TRN_PRESET_EN]
                                                                 is cleared to zero the link partner TX equalizer will start in the
                                                                 INITIALIZE state.  For BASE-R training it is recommended to
                                                                 start link training with [TRN_PRESET_EN] set to one. */
        uint64_t trn_main_en           : 2;  /**< [ 55: 54](R/W) BASE-R training decrements the link partner (LP) TX equalizer main (C0) tap
                                                                 at the start of link training after the PRESET coefficient update has been
                                                                 issued to the link partner.  Used in conjunction with [TRN_MAIN_VAL].

                                                                     0x0 = Disabled, do not decrement LP main C0 tap following PRESET.
                                                                     0x1 = Decrement LP main C0 tap following PRESET until vga_gain\<3:0\>
                                                                           is less than or equal to the value in [TRN_MAIN_VAL].
                                                                     0x2 = Decrement LP main C0 tap following PRESET by the number of
                                                                           steps in the [TRN_MAIN_VAL].
                                                                     0x3 = Increment LP main C0 tap at the start of training (PRESET disabled)
                                                                           by the number of steps in [TRN_MAIN_VAL]. */
        uint64_t trn_main_val          : 6;  /**< [ 53: 48](R/W) BASE-R training decrements the link partner (LP) TX equalizer main (C0) tap
                                                                 at the start of link training after the PRESET coefficient update has been
                                                                 issued to the link partner.  Used in conjunction with [TRN_MAIN_EN].
                                                                 See [TRN_MAIN_EN]. */
        uint64_t max_tap_moves         : 8;  /**< [ 47: 40](R/W) BASE-R training sets the maximum number of link partner TX Equalizer Tap moves
                                                                 allowed. Exceeding the [MAX_TAP_MOVES] forces training to terminate and local
                                                                 device ready signaled if TRAIN_DONE_MASK[MAX_MOVES] is set.

                                                                 Internal:
                                                                 FIXME no such register TRAIN_DONE_MASK[MAX_MOVES], then remove above exempt attribute. */
        uint64_t min_tap_moves         : 8;  /**< [ 39: 32](R/W) BASE-R training sets the minimum number of link partner TX Equalizer Tap moves
                                                                 before training completion (local device ready) is permitted. */
        uint64_t main_max_limit        : 6;  /**< [ 31: 26](R/W) BASE-R training sets the maximum limit of the local device transmitter main (C0) tap
                                                                 value during KR training.  Successive coefficient update message tap increments
                                                                 will increase the main tap value until it reaches the value in this field. At
                                                                 that point the local device TX training state machine will return a status report
                                                                 of maximum for the main (C0) tap value.
                                                                 The allowable range for the main (C0) tap is 0x18 to 0x30. */
        uint64_t post_max_limit        : 5;  /**< [ 25: 21](R/W) BASE-R training sets the maximum limit of the local device transmitter post (C+1) tap
                                                                 value during KR training.  Successive coefficient update message tap increments
                                                                 will increase the post tap value until it reaches the value in this field. At
                                                                 that point the local device TX training state machine will return a status report
                                                                 of maximum for the post (C+1) tap value.
                                                                 The allowable range for the post (C+1) tap is 0 to 0xC. */
        uint64_t pre_max_limit         : 5;  /**< [ 20: 16](R/W) BASE-R training sets the maximum limit of the local device transmitter pre (C-1) tap
                                                                 value during KR training.  Successive coefficient update message tap increments
                                                                 will increase the pre tap value until it reaches the value in this field. At
                                                                 that point the local device TX training state machine will return a status report
                                                                 of maximum for the pre (C-1) tap value.
                                                                 The allowable range for the pre (C-1) tap is 0 to 0x10. */
        uint64_t main_min_limit        : 6;  /**< [ 15: 10](R/W) BASE-R training sets the minimum limit of the local device transmitter main (C0) tap
                                                                 value during KR training.  Successive coefficient update message tap decrements
                                                                 will decrease the main tap value until it reaches the value in this field. At
                                                                 that point the local device TX training state machine will return a status report
                                                                 of minimum for the main (C0) tap value.
                                                                 The allowable range for the main (C0) tap is 0x18 to 0x30. */
        uint64_t post_min_limit        : 5;  /**< [  9:  5](R/W) BASE-R training sets the minimum limit of the local device transmitter post (C+1) tap
                                                                 value during KR training.  Successive coefficient update message tap decrements
                                                                 will decrease the post tap value until it reaches the value in this field. At
                                                                 that point the local device TX training state machine will return a status report
                                                                 of minimum for the post (C+1) tap value.
                                                                 The allowable range for the post (C+1) tap is 0 to 0x10. */
        uint64_t pre_min_limit         : 5;  /**< [  4:  0](R/W) BASE-R training sets the minimum limit of the local device transmitter pre (C-1) tap
                                                                 value during KR training.  Successive coefficient update message tap decrements
                                                                 will decrease the pre tap value until it reaches the value in this field. At
                                                                 that point the local device TX training state machine will return a status report
                                                                 of minimum for the pre (C-1) tap value.
                                                                 The allowable range for the min (C-1) tap is 0 to 0x10. */
#else /* Word 0 - Little Endian */
        uint64_t pre_min_limit         : 5;  /**< [  4:  0](R/W) BASE-R training sets the minimum limit of the local device transmitter pre (C-1) tap
                                                                 value during KR training.  Successive coefficient update message tap decrements
                                                                 will decrease the pre tap value until it reaches the value in this field. At
                                                                 that point the local device TX training state machine will return a status report
                                                                 of minimum for the pre (C-1) tap value.
                                                                 The allowable range for the min (C-1) tap is 0 to 0x10. */
        uint64_t post_min_limit        : 5;  /**< [  9:  5](R/W) BASE-R training sets the minimum limit of the local device transmitter post (C+1) tap
                                                                 value during KR training.  Successive coefficient update message tap decrements
                                                                 will decrease the post tap value until it reaches the value in this field. At
                                                                 that point the local device TX training state machine will return a status report
                                                                 of minimum for the post (C+1) tap value.
                                                                 The allowable range for the post (C+1) tap is 0 to 0x10. */
        uint64_t main_min_limit        : 6;  /**< [ 15: 10](R/W) BASE-R training sets the minimum limit of the local device transmitter main (C0) tap
                                                                 value during KR training.  Successive coefficient update message tap decrements
                                                                 will decrease the main tap value until it reaches the value in this field. At
                                                                 that point the local device TX training state machine will return a status report
                                                                 of minimum for the main (C0) tap value.
                                                                 The allowable range for the main (C0) tap is 0x18 to 0x30. */
        uint64_t pre_max_limit         : 5;  /**< [ 20: 16](R/W) BASE-R training sets the maximum limit of the local device transmitter pre (C-1) tap
                                                                 value during KR training.  Successive coefficient update message tap increments
                                                                 will increase the pre tap value until it reaches the value in this field. At
                                                                 that point the local device TX training state machine will return a status report
                                                                 of maximum for the pre (C-1) tap value.
                                                                 The allowable range for the pre (C-1) tap is 0 to 0x10. */
        uint64_t post_max_limit        : 5;  /**< [ 25: 21](R/W) BASE-R training sets the maximum limit of the local device transmitter post (C+1) tap
                                                                 value during KR training.  Successive coefficient update message tap increments
                                                                 will increase the post tap value until it reaches the value in this field. At
                                                                 that point the local device TX training state machine will return a status report
                                                                 of maximum for the post (C+1) tap value.
                                                                 The allowable range for the post (C+1) tap is 0 to 0xC. */
        uint64_t main_max_limit        : 6;  /**< [ 31: 26](R/W) BASE-R training sets the maximum limit of the local device transmitter main (C0) tap
                                                                 value during KR training.  Successive coefficient update message tap increments
                                                                 will increase the main tap value until it reaches the value in this field. At
                                                                 that point the local device TX training state machine will return a status report
                                                                 of maximum for the main (C0) tap value.
                                                                 The allowable range for the main (C0) tap is 0x18 to 0x30. */
        uint64_t min_tap_moves         : 8;  /**< [ 39: 32](R/W) BASE-R training sets the minimum number of link partner TX Equalizer Tap moves
                                                                 before training completion (local device ready) is permitted. */
        uint64_t max_tap_moves         : 8;  /**< [ 47: 40](R/W) BASE-R training sets the maximum number of link partner TX Equalizer Tap moves
                                                                 allowed. Exceeding the [MAX_TAP_MOVES] forces training to terminate and local
                                                                 device ready signaled if TRAIN_DONE_MASK[MAX_MOVES] is set.

                                                                 Internal:
                                                                 FIXME no such register TRAIN_DONE_MASK[MAX_MOVES], then remove above exempt attribute. */
        uint64_t trn_main_val          : 6;  /**< [ 53: 48](R/W) BASE-R training decrements the link partner (LP) TX equalizer main (C0) tap
                                                                 at the start of link training after the PRESET coefficient update has been
                                                                 issued to the link partner.  Used in conjunction with [TRN_MAIN_EN].
                                                                 See [TRN_MAIN_EN]. */
        uint64_t trn_main_en           : 2;  /**< [ 55: 54](R/W) BASE-R training decrements the link partner (LP) TX equalizer main (C0) tap
                                                                 at the start of link training after the PRESET coefficient update has been
                                                                 issued to the link partner.  Used in conjunction with [TRN_MAIN_VAL].

                                                                     0x0 = Disabled, do not decrement LP main C0 tap following PRESET.
                                                                     0x1 = Decrement LP main C0 tap following PRESET until vga_gain\<3:0\>
                                                                           is less than or equal to the value in [TRN_MAIN_VAL].
                                                                     0x2 = Decrement LP main C0 tap following PRESET by the number of
                                                                           steps in the [TRN_MAIN_VAL].
                                                                     0x3 = Increment LP main C0 tap at the start of training (PRESET disabled)
                                                                           by the number of steps in [TRN_MAIN_VAL]. */
        uint64_t trn_preset_en         : 1;  /**< [ 56: 56](R/W) BASE-R training when [TRN_PRESET_EN] is set to one preset the link
                                                                 partner TX equalizer when training starts.  When [TRN_PRESET_EN]
                                                                 is cleared to zero the link partner TX equalizer will start in the
                                                                 INITIALIZE state.  For BASE-R training it is recommended to
                                                                 start link training with [TRN_PRESET_EN] set to one. */
        uint64_t trn_rrrpt_en          : 1;  /**< [ 57: 57](R/W) BASE-R training when [TRN_RRRPT_EN] is set the training state machine
                                                                 will repeatedly send Receiver Ready messages to the CGX/OCX MAC every
                                                                 128 services clocks when training completes. For diagnostic use only. */
        uint64_t trn_cfg_use_eye_en    : 1;  /**< [ 58: 58](R/W) BASE-R and PCIe training when [TRN_CFG_USE_EYE_EN] is set the training state machine
                                                                 will control the eye monitor block while training is active the power down the
                                                                 eye monitor at the conclusion of link training.
                                                                 For diagnostic use only. */
        uint64_t trn_sat_mv_lmt_en     : 1;  /**< [ 59: 59](R/W) BASE-R training saturated move limit threshold enable. During BASE-R training
                                                                 if a consecutive number of saturated tap moves specified by
                                                                 GSERN()_LANE()_TRAIN_2_BCFG[TRN_SAT_MV_LMT] is met or exceeded training will conclude.
                                                                 This is to prevent cases where the FOM can no longer be improved and the
                                                                 link partner TX taps are at their minimum or maximum limits and the algorithm
                                                                 is attempting to repeatedly move the Tx taps beyond their min/max limits.
                                                                 If the threshold limit is met or exceeded and [TRN_SAT_MV_LMT_EN] is set to 1
                                                                 training will terminate and the GSERN()_LANE()_TRAIN_3_BCFG[EXIT_SAT_MV_LMT]
                                                                 flag will set.
                                                                 For diagnostic use only. */
        uint64_t trn_sat_mv_lmt        : 4;  /**< [ 63: 60](R/W) BASE-R training saturated move limit threshold.
                                                                 See GSERN()_LANE()_TRAIN_2_BCFG[TRN_SAT_MV_LMT_EN].
                                                                 For diagnostic use only. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_train_2_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_train_2_bcfg bdk_gsernx_lanex_train_2_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_TRAIN_2_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_TRAIN_2_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e0900031d0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_TRAIN_2_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_TRAIN_2_BCFG(a,b) bdk_gsernx_lanex_train_2_bcfg_t
#define bustype_BDK_GSERNX_LANEX_TRAIN_2_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_TRAIN_2_BCFG(a,b) "GSERNX_LANEX_TRAIN_2_BCFG"
#define device_bar_BDK_GSERNX_LANEX_TRAIN_2_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_TRAIN_2_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_TRAIN_2_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_train_3_bcfg
 *
 * GSER Lane Training Base Configuration Register 3
 * This register controls settings for lane training.
 */
union bdk_gsernx_lanex_train_3_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_train_3_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t exit_fom_thrs         : 1;  /**< [ 63: 63](RO/H) BASE-R training exit condition flag indicates the measured FOM
                                                                 was equal to or exceeded the FOM threshold value specified in
                                                                 GSERN()_LANE()_TRAIN_10_BCFG[EXIT_FOM_THRS_VAL] when
                                                                 GSERN()_LANE()_TRAIN_10_BCFG[TRN_FOM_THRS_EN] is set to 1.

                                                                 Used in conjustion with
                                                                 GSERN()_LANE()_TRAIN_4_BCFG[TERM_FOM_THRS_AND] and
                                                                 GSERN()_LANE()_TRAIN_4_BCFG[TERM_FOM_THRS_OR] to
                                                                 specify the BASE-R training convergence exit criteria. */
        uint64_t train_tx_min_rule     : 8;  /**< [ 62: 55](R/W) BASE-R training TX taps minimum coefficient rule.  Sets the lower limit of the permissible
                                                                 range of the TX equalizer c(0), c(+1), and c(-1) taps so that the TX equalizer
                                                                 operates within range specified in the IEEE 802.3-2012 Clause 72 10GBASE-KR
                                                                 and IEEE 802.3bj-2014 Clause 93 100GBASE-KR4.
                                                                 The TX coefficient minimum rule requires (main - pre - post) \>= [TRAIN_TX_MIN_RULE].

                                                                 The allowable range for [TRAIN_TX_MIN_RULE] is
                                                                 (6 decimal \<= [TRAIN_TX_MIN_RULE] \<= 16 decimal).
                                                                 For 10GBASE-KR, 40GBASE-KR4 and 100GBASE-KR4 it is recommended to
                                                                 program [TRAIN_TX_MIN_RULE] to 0x6.

                                                                 c(-1) pre TX tap range is programmed by GSERN()_LANE()_TRAIN_2_BCFG[PRE_MAX_LIMIT] and
                                                                 GSERN()_LANE()_TRAIN_2_BCFG[PRE_MIN_LIMIT].

                                                                 c(0) main TX tap range is programmed by GSERN()_LANE()_TRAIN_2_BCFG[MAIN_MAX_LIMIT] and
                                                                 GSERN()_LANE()_TRAIN_2_BCFG[MAIN_MIN_LIMIT].

                                                                 c(+1) post TX tap range is programmed by GSERN()_LANE()_TRAIN_2_BCFG[POST_MAX_LIMIT] and
                                                                 GSERN()_LANE()_TRAIN_2_BCFG[POST_MIN_LIMIT]. */
        uint64_t exit_sat_mv_lmt       : 1;  /**< [ 54: 54](RO/H) BASE-R training saturated move limit threshold exit flag.
                                                                 See GSERN()_LANE()_TRAIN_2_BCFG[TRN_SAT_MV_LMT_EN].
                                                                 For diagnostic use only. */
        uint64_t exit_prbs11_ok        : 1;  /**< [ 53: 53](RO/H) Training exit condition PRBS11 in the BASE-R KR training frame is
                                                                 error free.
                                                                 When BASE-R training is concluded, indicated by
                                                                 GSERN()_LANE()_TRAIN_0_BCFG[LD_RECEIVER_RDY] set to one
                                                                 [EXIT_PRBS11_OK] will be set if the training was terminated
                                                                 because the PRBS11 pattern extracted by the CGX or OCX MAC
                                                                 indicates that the PRBS11 pattern is error free.

                                                                 This bit will report the PRBS11 status when BASE-R training
                                                                 completes even if GSERN()_LANE()_TRAIN_3_BCFG[LD_TRAIN_DONE\<21\>
                                                                 or LD_TRAIN_DONE\<26\>] are not set.
                                                                 GSERN()_LANE()_TRAIN_4_BCFG[EN_PRBS11_CHK] must be enabled
                                                                 for the [EXIT_PRBS11_OK] status to be reported.

                                                                 This bit will be cleared if BASE-R training is re-enabled.
                                                                 For diagnostic use only.

                                                                 Internal:
                                                                 FIXME what does LD_TRAIN_DONE refer to, then remove above exempt attribute. */
        uint64_t exit_delta_ffom       : 1;  /**< [ 52: 52](RO/H) Training exit condition due to delta filtered FOM.
                                                                 When BASE-R training is concluded, indicated by
                                                                 GSERN()_LANE()_TRAIN_0_BCFG[LD_RECEIVER_RDY] set to one the
                                                                 [EXIT_DELTA_FFOM] bit will be set if the training was terminated
                                                                 because the Delta Filtered FOM is within the high and low limits set by
                                                                 GSERN()_LANE()_TRAIN_5_BCFG[FDLTFOM_HI_LMT] and
                                                                 GSERN()_LANE()_TRAIN_5_BCFG[FDLTFOM_LO_LMT], and
                                                                 GSERN()_LANE()_TRAIN_6_BCFG[DFFOM_EXIT_EN]=1, and
                                                                 the number of consecutive tap move iterations in which
                                                                 the Delta Filtered FOM is within the high/low limits
                                                                 exceeded the count in
                                                                 GSERN()_LANE()_TRAIN_6_BCFG[DELTA_FFOM_CCNT]

                                                                 This bit will be cleared if BASE-R training is re-enabled.
                                                                 For diagnostic use only. */
        uint64_t exit_rep_pattern      : 1;  /**< [ 51: 51](RO/H) Training exit condition repeating TAP moves pattern detected.
                                                                 When BASE-R training is concluded, indicated by
                                                                 GSERN()_LANE()_TRAIN_0_BCFG[LD_RECEIVER_RDY] set to one
                                                                 [EXIT_REP_PATTERN] will be set if the training was terminated
                                                                 because the training state machine discovered a repeating tap
                                                                 move pattern.  The GSERN()_LANE()_TRAIN_5_BCFG[PAT_EXIT_CNT] must
                                                                 be set to a non-zero value and GSERN()_LANE()_TRAIN_5_BCFG[PAT_MATCH_EN]
                                                                 must be set to a one to enable the repeating tap move pattern
                                                                 matching logic which looks for repeating tap moves to signal
                                                                 training convergence.

                                                                 This bit will be cleared if BASE-R training is re-enabled.
                                                                 For diagnostic use only. */
        uint64_t exit_tmt_timer        : 1;  /**< [ 50: 50](RO/H) Training timeout timer expired.
                                                                 When BASE-R training is concluded, indicated by
                                                                 GSERN()_LANE()_TRAIN_0_BCFG[LD_RECEIVER_RDY] set to one
                                                                 [EXIT_MAX_TAP_MOVES] will be set if the training was terminated
                                                                 because the training state machine KR training time-out timer expired.
                                                                 GSERN()_LANE()_TRAIN_0_BCFG[RXT_ADTMOUT_SEL] and
                                                                 GSERN()_LANE()_TRAIN_0_BCFG[RXT_ADTMOUT_FAST] select the
                                                                 timeout time in milliseconds/microseconds and
                                                                 GSERN()_LANE()_TRAIN_0_BCFG[RXT_ADTMOUT_DISABLE] enables
                                                                 the timeout timer when cleared to zero.

                                                                 This bit will be cleared if BASE-R training is re-enabled.
                                                                 For diagnostic use only. */
        uint64_t exit_min_tap_moves    : 1;  /**< [ 49: 49](RO/H) Training exit condition exceeded minimum number of tap moves.
                                                                 When BASE-R training is concluded, indicated by
                                                                 GSERN()_LANE()_TRAIN_0_BCFG[LD_RECEIVER_RDY] set to one
                                                                 [EXIT_MIN_TAP_MOVES] will be set if the training was terminated
                                                                 because the training state machine exceeded the minimum number of
                                                                 tap moves specified in
                                                                 GSERN()_LANE()_TRAIN_2_BCFG[MIN_TAP_MOVES].

                                                                 This bit will be cleared if BASE-R training is re-enabled.
                                                                 For diagnostic use only. */
        uint64_t exit_max_tap_moves    : 1;  /**< [ 48: 48](RO/H) Training exit condition exceeded maximum number of tap moves.
                                                                 When BASE-R training is concluded, indicated by
                                                                 GSERN()_LANE()_TRAIN_0_BCFG[LD_RECEIVER_RDY] set to one
                                                                 [EXIT_MAX_TAP_MOVES] will be set if the training was terminated
                                                                 because the training state machine exceeded the maximum number of
                                                                 tap moves specified in
                                                                 GSERN()_LANE()_TRAIN_2_BCFG[MAX_TAP_MOVES].

                                                                 This bit will be cleared if BASE-R training is re-enabled.
                                                                 For diagnostic use only. */
        uint64_t exit_dffom            : 13; /**< [ 47: 35](RO/H) Training exit location delta filtered FOM value. Holds the delta filtered FOM
                                                                 value at the completion of BASE-R training. Number represented in offset binary
                                                                 notation. For diagnostic use only. */
        uint64_t trn_ntap_mvs          : 8;  /**< [ 34: 27](RO/H) BASE-R training holds the number of link partner tap moves made during
                                                                 link training. */
        uint64_t term_prbs11_and       : 1;  /**< [ 26: 26](R/W) BASE-R training KR training PRBS11 pattern check extracted from the
                                                                 KR training frame is error free. Termination AND condition.
                                                                 Part of the BASE-R training termination condition register.
                                                                 See the full description of the training termination conditions
                                                                 register in GSERN()_LANE()_TRAIN_3_BCFG[TERM_MAX_MVS_OR].

                                                                 PRBS11 pattern check extracted from the KR training
                                                                 frame is error free.
                                                                 GSERN()_LANE()_TRAIN_4_BCFG[EN_PRBS11_CHK] must be enabled to
                                                                 enable PRBS11 pattern error checking. */
        uint64_t term_dffom_and        : 1;  /**< [ 25: 25](R/W) BASE-R training KR training Delta Filtered FOM is within the high
                                                                 and low limits. Termination AND condition.
                                                                 Part of the BASE-R training termination condition register.
                                                                 See the full description of the training termination conditions
                                                                 register in GSERN()_LANE()_TRAIN_3_BCFG[TERM_MAX_MVS_OR].

                                                                 Delta filtered FOM is within the high and low
                                                                 limits set by
                                                                 GSERN()_LANE()_TRAIN_5_BCFG[FDLTFOM_HI_LMT] and
                                                                 GSERN()_LANE()_TRAIN_5_BCFG[FDLTFOM_LO_LMT], and
                                                                 GSERN()_LANE()_TRAIN_6_BCFG[DFFOM_EXIT_EN]=1, and
                                                                 the number of consecutive tap move iterations in which
                                                                 the Delta Filtered FOM is within the high/low limits
                                                                 exceeds the count in
                                                                 GSERN()_LANE()_TRAIN_6_BCFG[DELTA_FFOM_CCNT] */
        uint64_t term_rep_pat_and      : 1;  /**< [ 24: 24](R/W) BASE-R training KR training taps move repeating pattern detected.
                                                                 Termination AND condition.
                                                                 Part of the BASE-R training termination condition register.
                                                                 See the full description of the training termination conditions
                                                                 register in GSERN()_LANE()_TRAIN_3_BCFG[TERM_MAX_MVS_OR].

                                                                 GSERN()_LANE()_TRAIN_5_BCFG[PAT_EXIT_CNT] must be set to
                                                                 a non-zero value and GSERN()_LANE()_TRAIN_5_BCFG[PAT_MATCH_EN]
                                                                 must be set to a one to enable the repeating tap move pattern
                                                                 matching logic which looks for repeating tap moves to signal
                                                                 training convergence. */
        uint64_t term_tmt_tmr_and      : 1;  /**< [ 23: 23](R/W) BASE-R training KR training time-out timer expired. Termination
                                                                 AND condition.
                                                                 Part of the BASE-R training termination condition register.
                                                                 See the full description of the training termination conditions
                                                                 register in GSERN()_LANE()_TRAIN_3_BCFG[TERM_MAX_MVS_OR].

                                                                 GSERN()_LANE()_TRAIN_0_BCFG[RXT_ADTMOUT_SEL] and
                                                                 GSERN()_LANE()_TRAIN_0_BCFG[RXT_ADTMOUT_FAST] select the
                                                                 timeout time in milliseconds/microseconds and
                                                                 GSERN()_LANE()_TRAIN_0_BCFG[RXT_ADTMOUT_DISABLE] enables
                                                                 the timeout timer when cleared to zero. */
        uint64_t term_min_mvs_and      : 1;  /**< [ 22: 22](R/W) BASE-R training termination exceeded minimum number of tap moves.
                                                                 Termination AND condition.  See description below.
                                                                 Part of the BASE-R training termination condition register.
                                                                 See the full description of the training termination conditions
                                                                 register in GSERN()_LANE()_TRAIN_3_BCFG[TERM_MAX_MVS_OR].

                                                                 Exceeded minimum tap moves iterations.
                                                                 GSERN()_LANE()_TRAIN_2_BCFG[MIN_TAP_MOVES] sets the minimum
                                                                 number of tap moves. */
        uint64_t term_prbs11_or        : 1;  /**< [ 21: 21](R/W) BASE-R training KR training PRBS11 pattern check extracted from the
                                                                 KR training frame is error free. Termination OR condition.
                                                                 Part of the BASE-R training termination condition register.
                                                                 See the full description of the training termination conditions
                                                                 register in GSERN()_LANE()_TRAIN_3_BCFG[TERM_MAX_MVS_OR].

                                                                 PRBS11 pattern check extracted from the KR training
                                                                 frame is error free.
                                                                 GSERN()_LANE()_TRAIN_4_BCFG[EN_PRBS11_CHK] must be enabled to
                                                                 enable PRBS11 pattern error checking. */
        uint64_t term_dffom_or         : 1;  /**< [ 20: 20](R/W) BASE-R training KR training Delta Filtered FOM is within the high
                                                                 and low limits. Termination OR condition.
                                                                 Part of the BASE-R training termination condition register.
                                                                 See the full description of the training termination conditions
                                                                 register in GSERN()_LANE()_TRAIN_3_BCFG[TERM_MAX_MVS_OR].

                                                                 Delta filtered FOM is within the high and low
                                                                 limits set by
                                                                 GSERN()_LANE()_TRAIN_5_BCFG[FDLTFOM_HI_LMT] and
                                                                 GSERN()_LANE()_TRAIN_5_BCFG[FDLTFOM_LO_LMT], and
                                                                 GSERN()_LANE()_TRAIN_6_BCFG[DFFOM_EXIT_EN]=1, and
                                                                 the number of consecutive tap move iterations in which
                                                                 the Delta Filtered FOM is within the high/low limits
                                                                 exceeds the count in
                                                                 GSERN()_LANE()_TRAIN_6_BCFG[DELTA_FFOM_CCNT] */
        uint64_t term_rep_pat_or       : 1;  /**< [ 19: 19](R/W) BASE-R training KR training taps move repeating pattern detected.
                                                                 Termination OR condition.
                                                                 Part of the BASE-R training termination condition register.
                                                                 See the full description of the training termination conditions
                                                                 register in GSERN()_LANE()_TRAIN_3_BCFG[TERM_MAX_MVS_OR].

                                                                 GSERN()_LANE()_TRAIN_5_BCFG[PAT_EXIT_CNT] must be set to
                                                                 a non-zero value and GSERN()_LANE()_TRAIN_5_BCFG[PAT_MATCH_EN]
                                                                 must be set to a one to enable the repeating tap move pattern
                                                                 matching logic which looks for repeating tap moves to signal
                                                                 training convergence. */
        uint64_t term_tmt_tmr_or       : 1;  /**< [ 18: 18](R/W) BASE-R training KR training time-out timer expired. Termination
                                                                 OR condition.
                                                                 Part of the BASE-R training termination condition register.
                                                                 See the full description of the training termination conditions
                                                                 register in GSERN()_LANE()_TRAIN_3_BCFG[TERM_MAX_MVS_OR].

                                                                 GSERN()_LANE()_TRAIN_0_BCFG[RXT_ADTMOUT_SEL] and
                                                                 GSERN()_LANE()_TRAIN_0_BCFG[RXT_ADTMOUT_FAST] select the
                                                                 timeout time in milliseconds/microseconds and
                                                                 GSERN()_LANE()_TRAIN_0_BCFG[RXT_ADTMOUT_DISABLE] enables
                                                                 the timeout timer when cleared to zero. */
        uint64_t term_max_mvs_or       : 1;  /**< [ 17: 17](R/W) BASE-R training termination exceeded maximum number of tap moves.
                                                                 Termination OR condition.  See description below.

                                                                 BASE-R training termination condition register fields. Selects the conditions
                                                                 used to terminate local device KR link training. Setting the associated
                                                                 bit will enable the training termination condition.  An AND-OR
                                                                 tree is used to allow setting conditions that must occur together
                                                                 (AND function) or any single condition (OR function) will trigger the
                                                                 BASE-R training termination.  AND and OR conditions can be combined.

                                                                 \<page\>
                                                                 OR CONDITIONS.  Any condition that is true and has a set condition bit will
                                                                 trigger training termination.  Conditions with bits that are not set
                                                                 (cleared to zero) are not used to trigger training termination.

                                                                   [TERM_MAX_MVS_OR] = Exceeded maximum tap moves iterations.
                                                                        GSERN()_LANE()_TRAIN_2_BCFG[MAX_TAP_MOVES] sets the maximum
                                                                        number of tap moves.

                                                                   [TERM_TMT_TMR_OR] = KR training time-out timer expired.
                                                                        See description in GSERN()_LANE()_TRAIN_3_BCFG[TERM_TMT_TMR_OR].

                                                                   [TERM_REP_PAT_OR] =Taps move repeating pattern detected.
                                                                        See description in GSERN()_LANE()_TRAIN_3_BCFG[TERM_REP_PAT_OR].

                                                                   [TERM_DFFOM_OR] = Delta Filtered FOM is within the high and low
                                                                        limits.
                                                                        See description in GSERN()_LANE()_TRAIN_3_BCFG[TERM_DFFOM_OR].

                                                                   [TERM_PRBS11_OR] = PRBS11 pattern check extracted from the KR training
                                                                        frame is error free.
                                                                        See description in GSERN()_LANE()_TRAIN_3_BCFG[TERM_PRBS11_OR].

                                                                   GSERN()_LANE()_TRAIN_4_BCFG[TERM_FOM_THRS_OR] =
                                                                        Measured FOM equal or exceeds the FOM threshold
                                                                        in GSERN()_LANE()_TRAIN_10_BCFG[EXIT_FOM_THRS_VAL] during KR
                                                                        training.  GSERN()_LANE()_TRAIN_10_BCFG[TRN_FOM_THRS_EN] must also
                                                                        be set to 1.
                                                                        See description in GSERN()_LANE()_TRAIN_4_BCFG[TERM_FOM_THRS_OR].

                                                                 \<page\>
                                                                 AND CONDITIONS.  The conditions associated with bits that are set must
                                                                 all be true to trigger training termination.  Conditions with bits that
                                                                 are not set (cleared to zero) are not used to trigger training termination.

                                                                   [TERM_MIN_MVS_AND] = Exceeded minimum tap moves iterations.
                                                                        GSERN()_LANE()_TRAIN_2_BCFG[MIN_TAP_MOVES] sets the minimum
                                                                        number of tap moves.

                                                                   [TERM_TMT_TMR_AND] = KR training time-out timer expired.
                                                                        See description in GSERN()_LANE()_TRAIN_3_BCFG[TERM_TMT_TMR_AND].

                                                                   [TERM_REP_PAT_AND] = Taps move repeating pattern detected.
                                                                        See description in GSERN()_LANE()_TRAIN_3_BCFG[TERM_REP_PAT_AND].

                                                                   [TERM_DFFOM_AND] = Delta Filtered FOM is within the high and low
                                                                        limits.
                                                                        See description in GSERN()_LANE()_TRAIN_3_BCFG[TERM_DFFOM_AND].

                                                                   [TERM_PRBS11_AND] = PRBS11 pattern check extracted from the KR training
                                                                        frame is error free.
                                                                        See description in GSERN()_LANE()_TRAIN_3_BCFG[TERM_PRBS11_AND].

                                                                   GSERN()_LANE()_TRAIN_4_BCFG[TERM_FOM_THRS_AND] =
                                                                        Measured FOM equal or exceeds the FOM threshold
                                                                        in GSERN()_LANE()_TRAIN_10_BCFG[EXIT_FOM_THRS_VAL] during KR
                                                                        training.  GSERN()_LANE()_TRAIN_10_BCFG[TRN_FOM_THRS_EN] must also
                                                                        be set to 1.
                                                                        See description in GSERN()_LANE()_TRAIN_4_BCFG[TERM_FOM_THRS_AND]. */
        uint64_t inv_tx_post_dir       : 1;  /**< [ 16: 16](R/W) BASE-R training when set reverses the direction of the post tap (C+1)
                                                                 direction hint in the local transmitter received from the link partner. */
        uint64_t inv_tx_main_dir       : 1;  /**< [ 15: 15](R/W) BASE-R training when set reverses the direction of the main tap (C0)
                                                                 direction hint in the local transmitter received from the link partner. */
        uint64_t inv_tx_pre_dir        : 1;  /**< [ 14: 14](R/W) BASE-R training when set reverses the direction of the pre tap (C-1)
                                                                 direction hint in the local transmitter received from the link partner. */
        uint64_t trn_post_en           : 2;  /**< [ 13: 12](R/W) BASE-R training decrements the link partner (LP) TX equalizer post (C+1) tap
                                                                 at the start of link training after the PRESET coefficient update has been
                                                                 issued to the link partner.  Used in conjunction with [TRN_POST_VAL].

                                                                     0x0 = Disabled, do not decrement LP post C+1 tap following PRESET.
                                                                     0x1 = Reserved, do not use.
                                                                     0x2 = Decrement LP post C+1 tap following PRESET by the number of
                                                                           steps in the [TRN_POST_VAL].
                                                                     0x3 = Increment LP post C+1 tap at the start of training (PRESET disabled)
                                                                           by the number of steps in [TRN_POST_VAL]. */
        uint64_t trn_post_val          : 5;  /**< [ 11:  7](R/W) BASE-R training decrements the link partner (LP) TX equalizer post (C+1) tap
                                                                 at the start of link training after the PRESET coefficient update has been
                                                                 issued to the link partner.  See [TRN_POST_EN]. */
        uint64_t trn_pre_en            : 2;  /**< [  6:  5](R/W) BASE-R training decrements the link partner (LP) TX equalizer pre (C-1) tap
                                                                 at the start of link training after the PRESET coefficient update has been
                                                                 issued to the link partner.  Used in conjunction with [TRN_PRE_VAL].

                                                                     0x0 = Disabled, do not decrement LP pre C-1 tap following PRESET.
                                                                     0x1 = Reserved, do not use.
                                                                     0x2 = Decrement LP pre C-1 tap following PRESET by the number of
                                                                           steps in the [TRN_PRE_VAL].
                                                                     0x3 = Increment LP pre C-1 tap at the start of training (PRESET disabled)
                                                                           by the number of steps in [TRN_PRE_VAL]. */
        uint64_t trn_pre_val           : 5;  /**< [  4:  0](R/W) BASE-R training decrements the link partner (LP) TX equalizer pre (C-1) tap
                                                                 at the start of link training after the PRESET coefficient update has been
                                                                 issued to the link partner.  Used in conjunction with [TRN_PRE_EN].
                                                                 See [TRN_PRE_EN]. */
#else /* Word 0 - Little Endian */
        uint64_t trn_pre_val           : 5;  /**< [  4:  0](R/W) BASE-R training decrements the link partner (LP) TX equalizer pre (C-1) tap
                                                                 at the start of link training after the PRESET coefficient update has been
                                                                 issued to the link partner.  Used in conjunction with [TRN_PRE_EN].
                                                                 See [TRN_PRE_EN]. */
        uint64_t trn_pre_en            : 2;  /**< [  6:  5](R/W) BASE-R training decrements the link partner (LP) TX equalizer pre (C-1) tap
                                                                 at the start of link training after the PRESET coefficient update has been
                                                                 issued to the link partner.  Used in conjunction with [TRN_PRE_VAL].

                                                                     0x0 = Disabled, do not decrement LP pre C-1 tap following PRESET.
                                                                     0x1 = Reserved, do not use.
                                                                     0x2 = Decrement LP pre C-1 tap following PRESET by the number of
                                                                           steps in the [TRN_PRE_VAL].
                                                                     0x3 = Increment LP pre C-1 tap at the start of training (PRESET disabled)
                                                                           by the number of steps in [TRN_PRE_VAL]. */
        uint64_t trn_post_val          : 5;  /**< [ 11:  7](R/W) BASE-R training decrements the link partner (LP) TX equalizer post (C+1) tap
                                                                 at the start of link training after the PRESET coefficient update has been
                                                                 issued to the link partner.  See [TRN_POST_EN]. */
        uint64_t trn_post_en           : 2;  /**< [ 13: 12](R/W) BASE-R training decrements the link partner (LP) TX equalizer post (C+1) tap
                                                                 at the start of link training after the PRESET coefficient update has been
                                                                 issued to the link partner.  Used in conjunction with [TRN_POST_VAL].

                                                                     0x0 = Disabled, do not decrement LP post C+1 tap following PRESET.
                                                                     0x1 = Reserved, do not use.
                                                                     0x2 = Decrement LP post C+1 tap following PRESET by the number of
                                                                           steps in the [TRN_POST_VAL].
                                                                     0x3 = Increment LP post C+1 tap at the start of training (PRESET disabled)
                                                                           by the number of steps in [TRN_POST_VAL]. */
        uint64_t inv_tx_pre_dir        : 1;  /**< [ 14: 14](R/W) BASE-R training when set reverses the direction of the pre tap (C-1)
                                                                 direction hint in the local transmitter received from the link partner. */
        uint64_t inv_tx_main_dir       : 1;  /**< [ 15: 15](R/W) BASE-R training when set reverses the direction of the main tap (C0)
                                                                 direction hint in the local transmitter received from the link partner. */
        uint64_t inv_tx_post_dir       : 1;  /**< [ 16: 16](R/W) BASE-R training when set reverses the direction of the post tap (C+1)
                                                                 direction hint in the local transmitter received from the link partner. */
        uint64_t term_max_mvs_or       : 1;  /**< [ 17: 17](R/W) BASE-R training termination exceeded maximum number of tap moves.
                                                                 Termination OR condition.  See description below.

                                                                 BASE-R training termination condition register fields. Selects the conditions
                                                                 used to terminate local device KR link training. Setting the associated
                                                                 bit will enable the training termination condition.  An AND-OR
                                                                 tree is used to allow setting conditions that must occur together
                                                                 (AND function) or any single condition (OR function) will trigger the
                                                                 BASE-R training termination.  AND and OR conditions can be combined.

                                                                 \<page\>
                                                                 OR CONDITIONS.  Any condition that is true and has a set condition bit will
                                                                 trigger training termination.  Conditions with bits that are not set
                                                                 (cleared to zero) are not used to trigger training termination.

                                                                   [TERM_MAX_MVS_OR] = Exceeded maximum tap moves iterations.
                                                                        GSERN()_LANE()_TRAIN_2_BCFG[MAX_TAP_MOVES] sets the maximum
                                                                        number of tap moves.

                                                                   [TERM_TMT_TMR_OR] = KR training time-out timer expired.
                                                                        See description in GSERN()_LANE()_TRAIN_3_BCFG[TERM_TMT_TMR_OR].

                                                                   [TERM_REP_PAT_OR] =Taps move repeating pattern detected.
                                                                        See description in GSERN()_LANE()_TRAIN_3_BCFG[TERM_REP_PAT_OR].

                                                                   [TERM_DFFOM_OR] = Delta Filtered FOM is within the high and low
                                                                        limits.
                                                                        See description in GSERN()_LANE()_TRAIN_3_BCFG[TERM_DFFOM_OR].

                                                                   [TERM_PRBS11_OR] = PRBS11 pattern check extracted from the KR training
                                                                        frame is error free.
                                                                        See description in GSERN()_LANE()_TRAIN_3_BCFG[TERM_PRBS11_OR].

                                                                   GSERN()_LANE()_TRAIN_4_BCFG[TERM_FOM_THRS_OR] =
                                                                        Measured FOM equal or exceeds the FOM threshold
                                                                        in GSERN()_LANE()_TRAIN_10_BCFG[EXIT_FOM_THRS_VAL] during KR
                                                                        training.  GSERN()_LANE()_TRAIN_10_BCFG[TRN_FOM_THRS_EN] must also
                                                                        be set to 1.
                                                                        See description in GSERN()_LANE()_TRAIN_4_BCFG[TERM_FOM_THRS_OR].

                                                                 \<page\>
                                                                 AND CONDITIONS.  The conditions associated with bits that are set must
                                                                 all be true to trigger training termination.  Conditions with bits that
                                                                 are not set (cleared to zero) are not used to trigger training termination.

                                                                   [TERM_MIN_MVS_AND] = Exceeded minimum tap moves iterations.
                                                                        GSERN()_LANE()_TRAIN_2_BCFG[MIN_TAP_MOVES] sets the minimum
                                                                        number of tap moves.

                                                                   [TERM_TMT_TMR_AND] = KR training time-out timer expired.
                                                                        See description in GSERN()_LANE()_TRAIN_3_BCFG[TERM_TMT_TMR_AND].

                                                                   [TERM_REP_PAT_AND] = Taps move repeating pattern detected.
                                                                        See description in GSERN()_LANE()_TRAIN_3_BCFG[TERM_REP_PAT_AND].

                                                                   [TERM_DFFOM_AND] = Delta Filtered FOM is within the high and low
                                                                        limits.
                                                                        See description in GSERN()_LANE()_TRAIN_3_BCFG[TERM_DFFOM_AND].

                                                                   [TERM_PRBS11_AND] = PRBS11 pattern check extracted from the KR training
                                                                        frame is error free.
                                                                        See description in GSERN()_LANE()_TRAIN_3_BCFG[TERM_PRBS11_AND].

                                                                   GSERN()_LANE()_TRAIN_4_BCFG[TERM_FOM_THRS_AND] =
                                                                        Measured FOM equal or exceeds the FOM threshold
                                                                        in GSERN()_LANE()_TRAIN_10_BCFG[EXIT_FOM_THRS_VAL] during KR
                                                                        training.  GSERN()_LANE()_TRAIN_10_BCFG[TRN_FOM_THRS_EN] must also
                                                                        be set to 1.
                                                                        See description in GSERN()_LANE()_TRAIN_4_BCFG[TERM_FOM_THRS_AND]. */
        uint64_t term_tmt_tmr_or       : 1;  /**< [ 18: 18](R/W) BASE-R training KR training time-out timer expired. Termination
                                                                 OR condition.
                                                                 Part of the BASE-R training termination condition register.
                                                                 See the full description of the training termination conditions
                                                                 register in GSERN()_LANE()_TRAIN_3_BCFG[TERM_MAX_MVS_OR].

                                                                 GSERN()_LANE()_TRAIN_0_BCFG[RXT_ADTMOUT_SEL] and
                                                                 GSERN()_LANE()_TRAIN_0_BCFG[RXT_ADTMOUT_FAST] select the
                                                                 timeout time in milliseconds/microseconds and
                                                                 GSERN()_LANE()_TRAIN_0_BCFG[RXT_ADTMOUT_DISABLE] enables
                                                                 the timeout timer when cleared to zero. */
        uint64_t term_rep_pat_or       : 1;  /**< [ 19: 19](R/W) BASE-R training KR training taps move repeating pattern detected.
                                                                 Termination OR condition.
                                                                 Part of the BASE-R training termination condition register.
                                                                 See the full description of the training termination conditions
                                                                 register in GSERN()_LANE()_TRAIN_3_BCFG[TERM_MAX_MVS_OR].

                                                                 GSERN()_LANE()_TRAIN_5_BCFG[PAT_EXIT_CNT] must be set to
                                                                 a non-zero value and GSERN()_LANE()_TRAIN_5_BCFG[PAT_MATCH_EN]
                                                                 must be set to a one to enable the repeating tap move pattern
                                                                 matching logic which looks for repeating tap moves to signal
                                                                 training convergence. */
        uint64_t term_dffom_or         : 1;  /**< [ 20: 20](R/W) BASE-R training KR training Delta Filtered FOM is within the high
                                                                 and low limits. Termination OR condition.
                                                                 Part of the BASE-R training termination condition register.
                                                                 See the full description of the training termination conditions
                                                                 register in GSERN()_LANE()_TRAIN_3_BCFG[TERM_MAX_MVS_OR].

                                                                 Delta filtered FOM is within the high and low
                                                                 limits set by
                                                                 GSERN()_LANE()_TRAIN_5_BCFG[FDLTFOM_HI_LMT] and
                                                                 GSERN()_LANE()_TRAIN_5_BCFG[FDLTFOM_LO_LMT], and
                                                                 GSERN()_LANE()_TRAIN_6_BCFG[DFFOM_EXIT_EN]=1, and
                                                                 the number of consecutive tap move iterations in which
                                                                 the Delta Filtered FOM is within the high/low limits
                                                                 exceeds the count in
                                                                 GSERN()_LANE()_TRAIN_6_BCFG[DELTA_FFOM_CCNT] */
        uint64_t term_prbs11_or        : 1;  /**< [ 21: 21](R/W) BASE-R training KR training PRBS11 pattern check extracted from the
                                                                 KR training frame is error free. Termination OR condition.
                                                                 Part of the BASE-R training termination condition register.
                                                                 See the full description of the training termination conditions
                                                                 register in GSERN()_LANE()_TRAIN_3_BCFG[TERM_MAX_MVS_OR].

                                                                 PRBS11 pattern check extracted from the KR training
                                                                 frame is error free.
                                                                 GSERN()_LANE()_TRAIN_4_BCFG[EN_PRBS11_CHK] must be enabled to
                                                                 enable PRBS11 pattern error checking. */
        uint64_t term_min_mvs_and      : 1;  /**< [ 22: 22](R/W) BASE-R training termination exceeded minimum number of tap moves.
                                                                 Termination AND condition.  See description below.
                                                                 Part of the BASE-R training termination condition register.
                                                                 See the full description of the training termination conditions
                                                                 register in GSERN()_LANE()_TRAIN_3_BCFG[TERM_MAX_MVS_OR].

                                                                 Exceeded minimum tap moves iterations.
                                                                 GSERN()_LANE()_TRAIN_2_BCFG[MIN_TAP_MOVES] sets the minimum
                                                                 number of tap moves. */
        uint64_t term_tmt_tmr_and      : 1;  /**< [ 23: 23](R/W) BASE-R training KR training time-out timer expired. Termination
                                                                 AND condition.
                                                                 Part of the BASE-R training termination condition register.
                                                                 See the full description of the training termination conditions
                                                                 register in GSERN()_LANE()_TRAIN_3_BCFG[TERM_MAX_MVS_OR].

                                                                 GSERN()_LANE()_TRAIN_0_BCFG[RXT_ADTMOUT_SEL] and
                                                                 GSERN()_LANE()_TRAIN_0_BCFG[RXT_ADTMOUT_FAST] select the
                                                                 timeout time in milliseconds/microseconds and
                                                                 GSERN()_LANE()_TRAIN_0_BCFG[RXT_ADTMOUT_DISABLE] enables
                                                                 the timeout timer when cleared to zero. */
        uint64_t term_rep_pat_and      : 1;  /**< [ 24: 24](R/W) BASE-R training KR training taps move repeating pattern detected.
                                                                 Termination AND condition.
                                                                 Part of the BASE-R training termination condition register.
                                                                 See the full description of the training termination conditions
                                                                 register in GSERN()_LANE()_TRAIN_3_BCFG[TERM_MAX_MVS_OR].

                                                                 GSERN()_LANE()_TRAIN_5_BCFG[PAT_EXIT_CNT] must be set to
                                                                 a non-zero value and GSERN()_LANE()_TRAIN_5_BCFG[PAT_MATCH_EN]
                                                                 must be set to a one to enable the repeating tap move pattern
                                                                 matching logic which looks for repeating tap moves to signal
                                                                 training convergence. */
        uint64_t term_dffom_and        : 1;  /**< [ 25: 25](R/W) BASE-R training KR training Delta Filtered FOM is within the high
                                                                 and low limits. Termination AND condition.
                                                                 Part of the BASE-R training termination condition register.
                                                                 See the full description of the training termination conditions
                                                                 register in GSERN()_LANE()_TRAIN_3_BCFG[TERM_MAX_MVS_OR].

                                                                 Delta filtered FOM is within the high and low
                                                                 limits set by
                                                                 GSERN()_LANE()_TRAIN_5_BCFG[FDLTFOM_HI_LMT] and
                                                                 GSERN()_LANE()_TRAIN_5_BCFG[FDLTFOM_LO_LMT], and
                                                                 GSERN()_LANE()_TRAIN_6_BCFG[DFFOM_EXIT_EN]=1, and
                                                                 the number of consecutive tap move iterations in which
                                                                 the Delta Filtered FOM is within the high/low limits
                                                                 exceeds the count in
                                                                 GSERN()_LANE()_TRAIN_6_BCFG[DELTA_FFOM_CCNT] */
        uint64_t term_prbs11_and       : 1;  /**< [ 26: 26](R/W) BASE-R training KR training PRBS11 pattern check extracted from the
                                                                 KR training frame is error free. Termination AND condition.
                                                                 Part of the BASE-R training termination condition register.
                                                                 See the full description of the training termination conditions
                                                                 register in GSERN()_LANE()_TRAIN_3_BCFG[TERM_MAX_MVS_OR].

                                                                 PRBS11 pattern check extracted from the KR training
                                                                 frame is error free.
                                                                 GSERN()_LANE()_TRAIN_4_BCFG[EN_PRBS11_CHK] must be enabled to
                                                                 enable PRBS11 pattern error checking. */
        uint64_t trn_ntap_mvs          : 8;  /**< [ 34: 27](RO/H) BASE-R training holds the number of link partner tap moves made during
                                                                 link training. */
        uint64_t exit_dffom            : 13; /**< [ 47: 35](RO/H) Training exit location delta filtered FOM value. Holds the delta filtered FOM
                                                                 value at the completion of BASE-R training. Number represented in offset binary
                                                                 notation. For diagnostic use only. */
        uint64_t exit_max_tap_moves    : 1;  /**< [ 48: 48](RO/H) Training exit condition exceeded maximum number of tap moves.
                                                                 When BASE-R training is concluded, indicated by
                                                                 GSERN()_LANE()_TRAIN_0_BCFG[LD_RECEIVER_RDY] set to one
                                                                 [EXIT_MAX_TAP_MOVES] will be set if the training was terminated
                                                                 because the training state machine exceeded the maximum number of
                                                                 tap moves specified in
                                                                 GSERN()_LANE()_TRAIN_2_BCFG[MAX_TAP_MOVES].

                                                                 This bit will be cleared if BASE-R training is re-enabled.
                                                                 For diagnostic use only. */
        uint64_t exit_min_tap_moves    : 1;  /**< [ 49: 49](RO/H) Training exit condition exceeded minimum number of tap moves.
                                                                 When BASE-R training is concluded, indicated by
                                                                 GSERN()_LANE()_TRAIN_0_BCFG[LD_RECEIVER_RDY] set to one
                                                                 [EXIT_MIN_TAP_MOVES] will be set if the training was terminated
                                                                 because the training state machine exceeded the minimum number of
                                                                 tap moves specified in
                                                                 GSERN()_LANE()_TRAIN_2_BCFG[MIN_TAP_MOVES].

                                                                 This bit will be cleared if BASE-R training is re-enabled.
                                                                 For diagnostic use only. */
        uint64_t exit_tmt_timer        : 1;  /**< [ 50: 50](RO/H) Training timeout timer expired.
                                                                 When BASE-R training is concluded, indicated by
                                                                 GSERN()_LANE()_TRAIN_0_BCFG[LD_RECEIVER_RDY] set to one
                                                                 [EXIT_MAX_TAP_MOVES] will be set if the training was terminated
                                                                 because the training state machine KR training time-out timer expired.
                                                                 GSERN()_LANE()_TRAIN_0_BCFG[RXT_ADTMOUT_SEL] and
                                                                 GSERN()_LANE()_TRAIN_0_BCFG[RXT_ADTMOUT_FAST] select the
                                                                 timeout time in milliseconds/microseconds and
                                                                 GSERN()_LANE()_TRAIN_0_BCFG[RXT_ADTMOUT_DISABLE] enables
                                                                 the timeout timer when cleared to zero.

                                                                 This bit will be cleared if BASE-R training is re-enabled.
                                                                 For diagnostic use only. */
        uint64_t exit_rep_pattern      : 1;  /**< [ 51: 51](RO/H) Training exit condition repeating TAP moves pattern detected.
                                                                 When BASE-R training is concluded, indicated by
                                                                 GSERN()_LANE()_TRAIN_0_BCFG[LD_RECEIVER_RDY] set to one
                                                                 [EXIT_REP_PATTERN] will be set if the training was terminated
                                                                 because the training state machine discovered a repeating tap
                                                                 move pattern.  The GSERN()_LANE()_TRAIN_5_BCFG[PAT_EXIT_CNT] must
                                                                 be set to a non-zero value and GSERN()_LANE()_TRAIN_5_BCFG[PAT_MATCH_EN]
                                                                 must be set to a one to enable the repeating tap move pattern
                                                                 matching logic which looks for repeating tap moves to signal
                                                                 training convergence.

                                                                 This bit will be cleared if BASE-R training is re-enabled.
                                                                 For diagnostic use only. */
        uint64_t exit_delta_ffom       : 1;  /**< [ 52: 52](RO/H) Training exit condition due to delta filtered FOM.
                                                                 When BASE-R training is concluded, indicated by
                                                                 GSERN()_LANE()_TRAIN_0_BCFG[LD_RECEIVER_RDY] set to one the
                                                                 [EXIT_DELTA_FFOM] bit will be set if the training was terminated
                                                                 because the Delta Filtered FOM is within the high and low limits set by
                                                                 GSERN()_LANE()_TRAIN_5_BCFG[FDLTFOM_HI_LMT] and
                                                                 GSERN()_LANE()_TRAIN_5_BCFG[FDLTFOM_LO_LMT], and
                                                                 GSERN()_LANE()_TRAIN_6_BCFG[DFFOM_EXIT_EN]=1, and
                                                                 the number of consecutive tap move iterations in which
                                                                 the Delta Filtered FOM is within the high/low limits
                                                                 exceeded the count in
                                                                 GSERN()_LANE()_TRAIN_6_BCFG[DELTA_FFOM_CCNT]

                                                                 This bit will be cleared if BASE-R training is re-enabled.
                                                                 For diagnostic use only. */
        uint64_t exit_prbs11_ok        : 1;  /**< [ 53: 53](RO/H) Training exit condition PRBS11 in the BASE-R KR training frame is
                                                                 error free.
                                                                 When BASE-R training is concluded, indicated by
                                                                 GSERN()_LANE()_TRAIN_0_BCFG[LD_RECEIVER_RDY] set to one
                                                                 [EXIT_PRBS11_OK] will be set if the training was terminated
                                                                 because the PRBS11 pattern extracted by the CGX or OCX MAC
                                                                 indicates that the PRBS11 pattern is error free.

                                                                 This bit will report the PRBS11 status when BASE-R training
                                                                 completes even if GSERN()_LANE()_TRAIN_3_BCFG[LD_TRAIN_DONE\<21\>
                                                                 or LD_TRAIN_DONE\<26\>] are not set.
                                                                 GSERN()_LANE()_TRAIN_4_BCFG[EN_PRBS11_CHK] must be enabled
                                                                 for the [EXIT_PRBS11_OK] status to be reported.

                                                                 This bit will be cleared if BASE-R training is re-enabled.
                                                                 For diagnostic use only.

                                                                 Internal:
                                                                 FIXME what does LD_TRAIN_DONE refer to, then remove above exempt attribute. */
        uint64_t exit_sat_mv_lmt       : 1;  /**< [ 54: 54](RO/H) BASE-R training saturated move limit threshold exit flag.
                                                                 See GSERN()_LANE()_TRAIN_2_BCFG[TRN_SAT_MV_LMT_EN].
                                                                 For diagnostic use only. */
        uint64_t train_tx_min_rule     : 8;  /**< [ 62: 55](R/W) BASE-R training TX taps minimum coefficient rule.  Sets the lower limit of the permissible
                                                                 range of the TX equalizer c(0), c(+1), and c(-1) taps so that the TX equalizer
                                                                 operates within range specified in the IEEE 802.3-2012 Clause 72 10GBASE-KR
                                                                 and IEEE 802.3bj-2014 Clause 93 100GBASE-KR4.
                                                                 The TX coefficient minimum rule requires (main - pre - post) \>= [TRAIN_TX_MIN_RULE].

                                                                 The allowable range for [TRAIN_TX_MIN_RULE] is
                                                                 (6 decimal \<= [TRAIN_TX_MIN_RULE] \<= 16 decimal).
                                                                 For 10GBASE-KR, 40GBASE-KR4 and 100GBASE-KR4 it is recommended to
                                                                 program [TRAIN_TX_MIN_RULE] to 0x6.

                                                                 c(-1) pre TX tap range is programmed by GSERN()_LANE()_TRAIN_2_BCFG[PRE_MAX_LIMIT] and
                                                                 GSERN()_LANE()_TRAIN_2_BCFG[PRE_MIN_LIMIT].

                                                                 c(0) main TX tap range is programmed by GSERN()_LANE()_TRAIN_2_BCFG[MAIN_MAX_LIMIT] and
                                                                 GSERN()_LANE()_TRAIN_2_BCFG[MAIN_MIN_LIMIT].

                                                                 c(+1) post TX tap range is programmed by GSERN()_LANE()_TRAIN_2_BCFG[POST_MAX_LIMIT] and
                                                                 GSERN()_LANE()_TRAIN_2_BCFG[POST_MIN_LIMIT]. */
        uint64_t exit_fom_thrs         : 1;  /**< [ 63: 63](RO/H) BASE-R training exit condition flag indicates the measured FOM
                                                                 was equal to or exceeded the FOM threshold value specified in
                                                                 GSERN()_LANE()_TRAIN_10_BCFG[EXIT_FOM_THRS_VAL] when
                                                                 GSERN()_LANE()_TRAIN_10_BCFG[TRN_FOM_THRS_EN] is set to 1.

                                                                 Used in conjustion with
                                                                 GSERN()_LANE()_TRAIN_4_BCFG[TERM_FOM_THRS_AND] and
                                                                 GSERN()_LANE()_TRAIN_4_BCFG[TERM_FOM_THRS_OR] to
                                                                 specify the BASE-R training convergence exit criteria. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_train_3_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_train_3_bcfg bdk_gsernx_lanex_train_3_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_TRAIN_3_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_TRAIN_3_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e0900031e0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_TRAIN_3_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_TRAIN_3_BCFG(a,b) bdk_gsernx_lanex_train_3_bcfg_t
#define bustype_BDK_GSERNX_LANEX_TRAIN_3_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_TRAIN_3_BCFG(a,b) "GSERNX_LANEX_TRAIN_3_BCFG"
#define device_bar_BDK_GSERNX_LANEX_TRAIN_3_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_TRAIN_3_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_TRAIN_3_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_train_4_bcfg
 *
 * GSER Lane Training Base Configuration Register 4
 * This register controls settings for lane training.
 */
union bdk_gsernx_lanex_train_4_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_train_4_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t term_fom_thrs_and     : 1;  /**< [ 63: 63](R/W) BASE-R training termination condition measured FOM equal or
                                                                 exceeds the FOM threshold set in
                                                                 GSERN()_LANE()_TRAIN_10_BCFG[EXIT_FOM_THRS_VAL].
                                                                 Termination AND condition.
                                                                 Part of the BASE-R training termination condition register.
                                                                 See the full description of the training termination conditions
                                                                 register in GSERN()_LANE()_TRAIN_3_BCFG[TERM_MAX_MVS_OR].

                                                                 Exceeded FOM threshold.
                                                                 GSERN()_LANE()_TRAIN_10_BCFG[TRN_FOM_THRS_VAL] sets the FOM
                                                                 threshold.

                                                                 Refer to the description for
                                                                 GSERN()_LANE()_TRAIN_10_BCFG[TRN_FOM_THRS_EN] and
                                                                 GSERN()_LANE()_TRAIN_10_BCFG[EXIT_FOM_THRS_VAL] and
                                                                 GSERN()_LANE()_TRAIN_3_BCFG[EXIT_FOM_THRS].

                                                                 Internal:
                                                                 FIXME no such field GSERN()_LANE()_TRAIN_10_BCFG[TRN_FOM_THRS_VAL], then remove
                                                                 above exempt attribute. */
        uint64_t term_fom_thrs_or      : 1;  /**< [ 62: 62](R/W) BASE-R training termination condition measured FOM equal or
                                                                 exceeds the FOM threshold set in
                                                                 GSERN()_LANE()_TRAIN_10_BCFG[EXIT_FOM_THRS_VAL].
                                                                 Termination OR condition.
                                                                 Part of the BASE-R training termination condition register.
                                                                 See the full description of the training termination conditions
                                                                 register in GSERN()_LANE()_TRAIN_3_BCFG[TERM_MAX_MVS_OR].

                                                                 Exceeded FOM threshold.
                                                                 GSERN()_LANE()_TRAIN_10_BCFG[TRN_FOM_THRS_VAL] sets the FOM
                                                                 threshold.

                                                                 Refer to the description for
                                                                 GSERN()_LANE()_TRAIN_10_BCFG[TRN_FOM_THRS_EN] and
                                                                 GSERN()_LANE()_TRAIN_10_BCFG[EXIT_FOM_THRS_VAL] and
                                                                 GSERN()_LANE()_TRAIN_3_BCFG[EXIT_FOM_THRS].

                                                                 Internal:
                                                                 FIXME no such field GSERN()_LANE()_TRAIN_10_BCFG[TRN_FOM_THRS_VAL]. */
        uint64_t en_prbs11_chk         : 1;  /**< [ 61: 61](R/W) BASE-R training enables the check for PRBS11 checking for training
                                                                 convergence.
                                                                 0 = Disables PRBS11 checking.
                                                                 1 = Enables PRBS11 checking.

                                                                 The CGX/OCX MAC extracts the PRBS11 pattern from the KR training frame
                                                                 and checks the PRBS11 pattern for errors.  The CGX/MAC signals to the
                                                                 KR training frame if the PRBS11 pattern sampled from the KR training
                                                                 frame is error free or contains errors.

                                                                 When [EN_PRBS11_CHK] is set the KR training state machine will
                                                                 sample the PRBS11 status signal from the MAC and if the PRBS11 is
                                                                 error free will use this to signal training convergence and signal
                                                                 receiver ready if this condition is enabled in the
                                                                 GSERN()_LANE()_TRAIN_3_BCFG[LD_TRAIN_DONE\<21\> or LD_TRAIN_DONE\<26\>]
                                                                 training termination condition fields.

                                                                 Internal:
                                                                 FIXME what does LD_TRAIN_DONE refer to? */
        uint64_t en_rev_moves          : 1;  /**< [ 60: 60](R/W) BASE-R training controls the receiver adaptation algorithm to reverse previous
                                                                 tap moves that resulted in a decrease in the receiver figure of merit
                                                                 (FOM).
                                                                 0 = Prevents the adaptation algorithm state machine from
                                                                 reversing previous tap moves that resulted in a lower FOM.
                                                                 1 = Enables the adaptation algorithm state machine
                                                                 to reverse a previous tap move that resulted in a lower FOM value.

                                                                 The receiver adaptation algorithm will not reverse previous tap moves until the
                                                                 number of tap moves exceeds the minimum number of tap moves specified in
                                                                 GSERN()_LANE()_TRAIN_2_BCFG[MIN_TAP_MOVES]. [EN_REV_MOVES] is normally enabled to
                                                                 improve the adaptation convergence time. */
        uint64_t tx_tap_stepsize       : 1;  /**< [ 59: 59](R/W) BASE-R training controls the transmitter Pre/Main/Post step size when a Coefficient Update
                                                                 increment or decrement request is received.  When [TX_TAP_STEPSIZE] is zero the
                                                                 transmitter Pre/Main/Post step size is set to +/- 1.  When [TX_TAP_STEPSIZE] is set to one
                                                                 the
                                                                 transmitter Pre/Main/Post step size is set to +/- 2. */
        uint64_t train_rst             : 1;  /**< [ 58: 58](R/W) Set to force the training engine into reset. Set low to enable link
                                                                 training. */
        uint64_t train_ovrrd_en        : 1;  /**< [ 57: 57](R/W) Training engine eye monitor FOM request override enable.
                                                                 If not programmed to PCIe, CGX, or OCX mode via GSERN()_LANE()_SRCMX_BCFG[TX_CTRL_SEL]
                                                                 then program [TRAIN_OVRRD_EN] to 1 before using
                                                                 GSERN()_LANE()_TRAIN_4_BCFG[EQ_EVAL_OVRRD_REQ] and
                                                                 GSERN()_LANE()_TRAIN_4_BCFG[EQ_EVAL_OVRRD_EN] to request an RX equalizer
                                                                 evaluation to measure the RX equalizer Figure of Merit (FOM).  The 8-bit FOM is
                                                                 returned in GSERN()_LANE()_TRAIN_5_BCFG[FOM] and the raw 12-bit FOM
                                                                 is returned in GSERN()_LANE()_TRAIN_5_BCFG[RAW_FOM].
                                                                 For diagnostic use only. */
        uint64_t rxt_rev_dir           : 1;  /**< [ 56: 56](R/W) When set, reverses the direction of the
                                                                 GSERN()_LANE()_TRAIN_0_BCFG[RXT_TX_POST_DIR],
                                                                 GSERN()_LANE()_TRAIN_0_BCFG[RXT_TX_MAIN_DIR], and
                                                                 GSERN()_LANE()_TRAIN_0_BCFG[RXT_TX_PRE_DIR]
                                                                 link partner TX tap direction hints. For diagnostic use only. */
        uint64_t adapt_axis            : 3;  /**< [ 55: 53](R/W) Sets the number or adaptation axes to use during receiver adaptation.
                                                                 Typically set to 0x7 to enable all three adaptation axes.  One-hot encoded.

                                                                 Set to 0x1 to only enable axis 1 and disable axis 2 and axis 3.
                                                                 Set to 0x3 to enable axis 1 and axis 2 but disable axis 3.
                                                                 Set to 0x7 to enable axis 1, 2 and 3. (default.)
                                                                 For diagnostic use only. */
        uint64_t c1_e_adj_step         : 5;  /**< [ 52: 48](R/W) Reserved.
                                                                 Internal:
                                                                 Functionality moved to GSERN()_LANE()_TRAIN_10_BCFG.L_C1_E_ADJ_STEP */
        uint64_t eq_eval_ovrrd_req     : 1;  /**< [ 47: 47](R/W) When set issues a receiver equalization evaluation request when
                                                                 GSERN()_LANE()_TRAIN_4_BCFG[EQ_EVAL_OVRRD_EN] is set.
                                                                 For diagnostic use only. */
        uint64_t eq_eval_ovrrd_en      : 1;  /**< [ 46: 46](R/W) When set the RX equalization evaluation request is controlled by
                                                                 GSERN()_LANE()_TRAIN_4_BCFG[EQ_EVAL_OVRRD_REQ].
                                                                 For diagnostic use only. */
        uint64_t err_cnt_div_ovrrd_val : 4;  /**< [ 45: 42](R/W) Error counter divider override value. See table below.
                                                                 Divider is active when the [ERR_CNT_DIV_OVRRD_EN] is set.
                                                                 For diagnostic use only.

                                                                    0x0 = No divider.
                                                                    0x1 = DIV 2.
                                                                    0x2 = DIV 4.
                                                                    0x3 = DIV 8.
                                                                    0x4 = DIV 16.
                                                                    0x5 = DIV 32.
                                                                    0x6 = DIV 64.
                                                                    0x7 = DIV 128.
                                                                    0x8 = DIV 256.
                                                                    0x9 = DIV 512.
                                                                    0xA = DIV 1024.
                                                                    0xB = DIV 2048.
                                                                    0xC = DIV 4096.
                                                                    0xD = DIV 8192.
                                                                    0xE = DIV 16384.
                                                                    0xF = DIV 32768. */
        uint64_t err_cnt_div_ovrrd_en  : 1;  /**< [ 41: 41](R/W) Error counter divider override enable.
                                                                 For diagnostic use only. */
        uint64_t eye_cnt_ovrrd_en      : 1;  /**< [ 40: 40](R/W) Eye Cycle Count Override Enable. When set the number of eye monitor
                                                                 cycles to sample and count during the BASE-R training
                                                                 figure of merit (FOM) calculation
                                                                 is controlled by GSERN()_LANE()_TRAIN_4_BCFG[EYE_CNT_OVRRD_VAL].
                                                                 For diagnostic use only. */
        uint64_t eye_cnt_ovrrd_val     : 40; /**< [ 39:  0](R/W) Sets the number of eye monitor cycles to sample/count during the BASE-R training
                                                                 figure of merit (FOM) calculation when
                                                                 GSERN()_LANE()_TRAIN_4_BCFG[EYE_CNT_OVRRD_EN]=1.
                                                                 For diagnostic use only. */
#else /* Word 0 - Little Endian */
        uint64_t eye_cnt_ovrrd_val     : 40; /**< [ 39:  0](R/W) Sets the number of eye monitor cycles to sample/count during the BASE-R training
                                                                 figure of merit (FOM) calculation when
                                                                 GSERN()_LANE()_TRAIN_4_BCFG[EYE_CNT_OVRRD_EN]=1.
                                                                 For diagnostic use only. */
        uint64_t eye_cnt_ovrrd_en      : 1;  /**< [ 40: 40](R/W) Eye Cycle Count Override Enable. When set the number of eye monitor
                                                                 cycles to sample and count during the BASE-R training
                                                                 figure of merit (FOM) calculation
                                                                 is controlled by GSERN()_LANE()_TRAIN_4_BCFG[EYE_CNT_OVRRD_VAL].
                                                                 For diagnostic use only. */
        uint64_t err_cnt_div_ovrrd_en  : 1;  /**< [ 41: 41](R/W) Error counter divider override enable.
                                                                 For diagnostic use only. */
        uint64_t err_cnt_div_ovrrd_val : 4;  /**< [ 45: 42](R/W) Error counter divider override value. See table below.
                                                                 Divider is active when the [ERR_CNT_DIV_OVRRD_EN] is set.
                                                                 For diagnostic use only.

                                                                    0x0 = No divider.
                                                                    0x1 = DIV 2.
                                                                    0x2 = DIV 4.
                                                                    0x3 = DIV 8.
                                                                    0x4 = DIV 16.
                                                                    0x5 = DIV 32.
                                                                    0x6 = DIV 64.
                                                                    0x7 = DIV 128.
                                                                    0x8 = DIV 256.
                                                                    0x9 = DIV 512.
                                                                    0xA = DIV 1024.
                                                                    0xB = DIV 2048.
                                                                    0xC = DIV 4096.
                                                                    0xD = DIV 8192.
                                                                    0xE = DIV 16384.
                                                                    0xF = DIV 32768. */
        uint64_t eq_eval_ovrrd_en      : 1;  /**< [ 46: 46](R/W) When set the RX equalization evaluation request is controlled by
                                                                 GSERN()_LANE()_TRAIN_4_BCFG[EQ_EVAL_OVRRD_REQ].
                                                                 For diagnostic use only. */
        uint64_t eq_eval_ovrrd_req     : 1;  /**< [ 47: 47](R/W) When set issues a receiver equalization evaluation request when
                                                                 GSERN()_LANE()_TRAIN_4_BCFG[EQ_EVAL_OVRRD_EN] is set.
                                                                 For diagnostic use only. */
        uint64_t c1_e_adj_step         : 5;  /**< [ 52: 48](R/W) Reserved.
                                                                 Internal:
                                                                 Functionality moved to GSERN()_LANE()_TRAIN_10_BCFG.L_C1_E_ADJ_STEP */
        uint64_t adapt_axis            : 3;  /**< [ 55: 53](R/W) Sets the number or adaptation axes to use during receiver adaptation.
                                                                 Typically set to 0x7 to enable all three adaptation axes.  One-hot encoded.

                                                                 Set to 0x1 to only enable axis 1 and disable axis 2 and axis 3.
                                                                 Set to 0x3 to enable axis 1 and axis 2 but disable axis 3.
                                                                 Set to 0x7 to enable axis 1, 2 and 3. (default.)
                                                                 For diagnostic use only. */
        uint64_t rxt_rev_dir           : 1;  /**< [ 56: 56](R/W) When set, reverses the direction of the
                                                                 GSERN()_LANE()_TRAIN_0_BCFG[RXT_TX_POST_DIR],
                                                                 GSERN()_LANE()_TRAIN_0_BCFG[RXT_TX_MAIN_DIR], and
                                                                 GSERN()_LANE()_TRAIN_0_BCFG[RXT_TX_PRE_DIR]
                                                                 link partner TX tap direction hints. For diagnostic use only. */
        uint64_t train_ovrrd_en        : 1;  /**< [ 57: 57](R/W) Training engine eye monitor FOM request override enable.
                                                                 If not programmed to PCIe, CGX, or OCX mode via GSERN()_LANE()_SRCMX_BCFG[TX_CTRL_SEL]
                                                                 then program [TRAIN_OVRRD_EN] to 1 before using
                                                                 GSERN()_LANE()_TRAIN_4_BCFG[EQ_EVAL_OVRRD_REQ] and
                                                                 GSERN()_LANE()_TRAIN_4_BCFG[EQ_EVAL_OVRRD_EN] to request an RX equalizer
                                                                 evaluation to measure the RX equalizer Figure of Merit (FOM).  The 8-bit FOM is
                                                                 returned in GSERN()_LANE()_TRAIN_5_BCFG[FOM] and the raw 12-bit FOM
                                                                 is returned in GSERN()_LANE()_TRAIN_5_BCFG[RAW_FOM].
                                                                 For diagnostic use only. */
        uint64_t train_rst             : 1;  /**< [ 58: 58](R/W) Set to force the training engine into reset. Set low to enable link
                                                                 training. */
        uint64_t tx_tap_stepsize       : 1;  /**< [ 59: 59](R/W) BASE-R training controls the transmitter Pre/Main/Post step size when a Coefficient Update
                                                                 increment or decrement request is received.  When [TX_TAP_STEPSIZE] is zero the
                                                                 transmitter Pre/Main/Post step size is set to +/- 1.  When [TX_TAP_STEPSIZE] is set to one
                                                                 the
                                                                 transmitter Pre/Main/Post step size is set to +/- 2. */
        uint64_t en_rev_moves          : 1;  /**< [ 60: 60](R/W) BASE-R training controls the receiver adaptation algorithm to reverse previous
                                                                 tap moves that resulted in a decrease in the receiver figure of merit
                                                                 (FOM).
                                                                 0 = Prevents the adaptation algorithm state machine from
                                                                 reversing previous tap moves that resulted in a lower FOM.
                                                                 1 = Enables the adaptation algorithm state machine
                                                                 to reverse a previous tap move that resulted in a lower FOM value.

                                                                 The receiver adaptation algorithm will not reverse previous tap moves until the
                                                                 number of tap moves exceeds the minimum number of tap moves specified in
                                                                 GSERN()_LANE()_TRAIN_2_BCFG[MIN_TAP_MOVES]. [EN_REV_MOVES] is normally enabled to
                                                                 improve the adaptation convergence time. */
        uint64_t en_prbs11_chk         : 1;  /**< [ 61: 61](R/W) BASE-R training enables the check for PRBS11 checking for training
                                                                 convergence.
                                                                 0 = Disables PRBS11 checking.
                                                                 1 = Enables PRBS11 checking.

                                                                 The CGX/OCX MAC extracts the PRBS11 pattern from the KR training frame
                                                                 and checks the PRBS11 pattern for errors.  The CGX/MAC signals to the
                                                                 KR training frame if the PRBS11 pattern sampled from the KR training
                                                                 frame is error free or contains errors.

                                                                 When [EN_PRBS11_CHK] is set the KR training state machine will
                                                                 sample the PRBS11 status signal from the MAC and if the PRBS11 is
                                                                 error free will use this to signal training convergence and signal
                                                                 receiver ready if this condition is enabled in the
                                                                 GSERN()_LANE()_TRAIN_3_BCFG[LD_TRAIN_DONE\<21\> or LD_TRAIN_DONE\<26\>]
                                                                 training termination condition fields.

                                                                 Internal:
                                                                 FIXME what does LD_TRAIN_DONE refer to? */
        uint64_t term_fom_thrs_or      : 1;  /**< [ 62: 62](R/W) BASE-R training termination condition measured FOM equal or
                                                                 exceeds the FOM threshold set in
                                                                 GSERN()_LANE()_TRAIN_10_BCFG[EXIT_FOM_THRS_VAL].
                                                                 Termination OR condition.
                                                                 Part of the BASE-R training termination condition register.
                                                                 See the full description of the training termination conditions
                                                                 register in GSERN()_LANE()_TRAIN_3_BCFG[TERM_MAX_MVS_OR].

                                                                 Exceeded FOM threshold.
                                                                 GSERN()_LANE()_TRAIN_10_BCFG[TRN_FOM_THRS_VAL] sets the FOM
                                                                 threshold.

                                                                 Refer to the description for
                                                                 GSERN()_LANE()_TRAIN_10_BCFG[TRN_FOM_THRS_EN] and
                                                                 GSERN()_LANE()_TRAIN_10_BCFG[EXIT_FOM_THRS_VAL] and
                                                                 GSERN()_LANE()_TRAIN_3_BCFG[EXIT_FOM_THRS].

                                                                 Internal:
                                                                 FIXME no such field GSERN()_LANE()_TRAIN_10_BCFG[TRN_FOM_THRS_VAL]. */
        uint64_t term_fom_thrs_and     : 1;  /**< [ 63: 63](R/W) BASE-R training termination condition measured FOM equal or
                                                                 exceeds the FOM threshold set in
                                                                 GSERN()_LANE()_TRAIN_10_BCFG[EXIT_FOM_THRS_VAL].
                                                                 Termination AND condition.
                                                                 Part of the BASE-R training termination condition register.
                                                                 See the full description of the training termination conditions
                                                                 register in GSERN()_LANE()_TRAIN_3_BCFG[TERM_MAX_MVS_OR].

                                                                 Exceeded FOM threshold.
                                                                 GSERN()_LANE()_TRAIN_10_BCFG[TRN_FOM_THRS_VAL] sets the FOM
                                                                 threshold.

                                                                 Refer to the description for
                                                                 GSERN()_LANE()_TRAIN_10_BCFG[TRN_FOM_THRS_EN] and
                                                                 GSERN()_LANE()_TRAIN_10_BCFG[EXIT_FOM_THRS_VAL] and
                                                                 GSERN()_LANE()_TRAIN_3_BCFG[EXIT_FOM_THRS].

                                                                 Internal:
                                                                 FIXME no such field GSERN()_LANE()_TRAIN_10_BCFG[TRN_FOM_THRS_VAL], then remove
                                                                 above exempt attribute. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_train_4_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_train_4_bcfg bdk_gsernx_lanex_train_4_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_TRAIN_4_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_TRAIN_4_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e0900031f0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_TRAIN_4_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_TRAIN_4_BCFG(a,b) bdk_gsernx_lanex_train_4_bcfg_t
#define bustype_BDK_GSERNX_LANEX_TRAIN_4_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_TRAIN_4_BCFG(a,b) "GSERNX_LANEX_TRAIN_4_BCFG"
#define device_bar_BDK_GSERNX_LANEX_TRAIN_4_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_TRAIN_4_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_TRAIN_4_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_train_5_bcfg
 *
 * GSER Lane Training Base Configuration Register 5
 * This register controls settings for lane training.
 */
union bdk_gsernx_lanex_train_5_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_train_5_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t pat_exit_cnt          : 4;  /**< [ 63: 60](R/W) BASE-R training controls the receiver adaptation algorithm training convergence
                                                                 pattern matching logic.  As BASE-R training progresses the Pre/Main/Post tap
                                                                 direction change coefficient updates to the link partner start to dither around the
                                                                 optimal tap values.  The pattern matching logic looks for repeating patterns of
                                                                 the tap dithering around the optimal value and is used as one metric to determine
                                                                 that BASE-R training has converged and local device can signal receiver ready.

                                                                 The [PAT_EXIT_CNT] variable sets the maximum length of the repeating pattern to search
                                                                 for in the pattern matching array.  The pattern matching array has twelve elements
                                                                 therefore the maximum value of [PAT_EXIT_CNT] is 0xC.  A value of 0x6 has been
                                                                 found to be optimal for recognizing training tap convergence.

                                                                 The GSERN()_LANE()_TRAIN_5_BCFG[PAT_EXIT_CNT] field is used in conjunction with the
                                                                 GSERN()_LANE()_TRAIN_5_BCFG[PAT_MATCH_EN] field to control the training convergence
                                                                 pattern matching logic during BASE-R training. */
        uint64_t pat_match_en          : 1;  /**< [ 59: 59](R/W) BASE-R training controls the receiver adaptation algorithm when [PAT_MATCH_EN] is set to
                                                                 one
                                                                 the training convergence pattern matching logic is enabled.  The training pattern matching
                                                                 logic tracks the link partner transmitter tap moves and sets a flag when the pattern
                                                                 is found to be repeating in the taps moves tracking array.  This is used to help
                                                                 converge training adaptation.  When [PAT_MATCH_EN] is cleared to zero the pattern matching
                                                                 logic is disabled and not used to detect training convergence.

                                                                 The GSERN()_LANE()_TRAIN_5_BCFG[PAT_MATCH_EN] field is used in conjunction with the
                                                                 GSERN()_LANE()_TRAIN_5_BCFG[PAT_EXIT_CNT] field to control the training convergence
                                                                 pattern matching logic during BASE-R training. */
        uint64_t fdltfom_hi_lmt        : 8;  /**< [ 58: 51](R/W) BASE-R training sets the Delta Filtered FOM upper limit for training convergence.
                                                                 Value is a signed twos complement value. */
        uint64_t fdltfom_lo_lmt        : 8;  /**< [ 50: 43](R/W) BASE-R training sets the Delta Filtered FOM lower limit for training convergence.
                                                                 Value is a signed twos complement value. */
        uint64_t inv_post_dir          : 1;  /**< [ 42: 42](R/W) BASE-R training when set reverses the direction of the post tap (C+1)
                                                                 direction hint from the local device. */
        uint64_t inv_main_dir          : 1;  /**< [ 41: 41](R/W) BASE-R training when set reverses the direction of the main tap (C0)
                                                                 direction hint from the local device. */
        uint64_t inv_pre_dir           : 1;  /**< [ 40: 40](R/W) BASE-R training when set reverses the direction of the pre tap (C-1)
                                                                 direction hint from the local device. */
        uint64_t use_ffom              : 1;  /**< [ 39: 39](R/W) Use filtered figure of merit for BASE-R transmitter adaptation logic.
                                                                 For diagnostic use only.
                                                                 0 = The BASE-R transmitter adaptation logic use the unfiltered raw figure
                                                                 of merit FOM for BASE-R Inc/Dec direction hint computation.
                                                                 1 = The BASE-R transmitter adaptation logic use the
                                                                 filtered FOM for Inc/Dec direction hint computation. */
        uint64_t dfom_tc               : 3;  /**< [ 38: 36](R/W) Delta filtered figure of merit (DFOM) filter time constant. The DFOM is filtered
                                                                 by a cumulative moving average (CMA) filter.  [DFOM_TC] sets the time constant
                                                                 of the CMA filter.
                                                                 Selectable time constant options are in the range 0 to 7 which sets the divider value
                                                                 used to scale the summed DFOM input term and the filtered DFOM feedback term. This
                                                                 provides
                                                                 a smoothed delta filtered figure of merit for use by the BASE-R transmitter adaptation
                                                                 logic.

                                                                 For diagnostic use only.

                                                                   0x0 = No scaling.
                                                                   0x1 = Divide by 2.
                                                                   0x2 = Divide by 4.
                                                                   0x3 = Divide by 8.
                                                                   0x4 = Divide by 16.
                                                                   0x5 = Divide by 32.
                                                                   0x6 = Divide by 64.
                                                                   0x7 = Divide by 128. */
        uint64_t ffom_tc               : 3;  /**< [ 35: 33](R/W) Filtered figure of merit (FFOM) filter time constant. The raw figure of merit (raw FOM)
                                                                 is filtered by a cumulative moving average (CMA) filter.  [FFOM_TC] sets the time
                                                                 constant of the CMA filter.
                                                                 Selectable time constant options are in the range 0 to 7 which sets the divider value
                                                                 used to scale the raw FOM input term and the filtered FOM feedback term. This provides
                                                                 a smoothed filtered figure of merit for use by the BASE-R transmitter adaptation logic.

                                                                   0x0 = No scaling.
                                                                   0x1 = Divide by 2.
                                                                   0x2 = Divide by 4.
                                                                   0x3 = Divide by 8.
                                                                   0x4 = Divide by 16.
                                                                   0x5 = Divide by 32.
                                                                   0x6 = Divide by 64.
                                                                   0x7 = Divide by 128.

                                                                 For diagnostic use only. */
        uint64_t eq_eval_ack           : 1;  /**< [ 32: 32](RO/H) When set indicates a receiver equalization evaluation acknowledgment. Set in
                                                                 response to request when GSERN()_LANE()_TRAIN_4_BCFG[EQ_EVAL_OVRRD_EN] is set
                                                                 and GSERN()_LANE()_TRAIN_4_BCFG[EQ_EVAL_OVRRD_REQ] is set.

                                                                 When [EQ_EVAL_ACK] is set, clear GSERN()_LANE()_TRAIN_4_BCFG[EQ_EVAL_OVRRD_REQ]
                                                                 which will in turn clear [EQ_EVAL_ACK] before issue another RX equalization
                                                                 evaluation request via GSERN()_LANE()_TRAIN_4_BCFG[EQ_EVAL_OVRRD_REQ].

                                                                 For diagnostic use only. */
        uint64_t filtered_fom          : 12; /**< [ 31: 20](RO/H) Filtered figure of merit (FOM) from the receiver adaptation logic.
                                                                 For diagnostic use only. */
        uint64_t raw_fom               : 12; /**< [ 19:  8](RO/H) Raw figure of merit (FOM) from the receiver adaptation logic.
                                                                 For diagnostic use only. */
        uint64_t fom                   : 8;  /**< [  7:  0](RO/H) Figure of merit (FOM) for PCIe and CGX logic used for link partner TX equalizer
                                                                 adaptation. For diagnostic use only. */
#else /* Word 0 - Little Endian */
        uint64_t fom                   : 8;  /**< [  7:  0](RO/H) Figure of merit (FOM) for PCIe and CGX logic used for link partner TX equalizer
                                                                 adaptation. For diagnostic use only. */
        uint64_t raw_fom               : 12; /**< [ 19:  8](RO/H) Raw figure of merit (FOM) from the receiver adaptation logic.
                                                                 For diagnostic use only. */
        uint64_t filtered_fom          : 12; /**< [ 31: 20](RO/H) Filtered figure of merit (FOM) from the receiver adaptation logic.
                                                                 For diagnostic use only. */
        uint64_t eq_eval_ack           : 1;  /**< [ 32: 32](RO/H) When set indicates a receiver equalization evaluation acknowledgment. Set in
                                                                 response to request when GSERN()_LANE()_TRAIN_4_BCFG[EQ_EVAL_OVRRD_EN] is set
                                                                 and GSERN()_LANE()_TRAIN_4_BCFG[EQ_EVAL_OVRRD_REQ] is set.

                                                                 When [EQ_EVAL_ACK] is set, clear GSERN()_LANE()_TRAIN_4_BCFG[EQ_EVAL_OVRRD_REQ]
                                                                 which will in turn clear [EQ_EVAL_ACK] before issue another RX equalization
                                                                 evaluation request via GSERN()_LANE()_TRAIN_4_BCFG[EQ_EVAL_OVRRD_REQ].

                                                                 For diagnostic use only. */
        uint64_t ffom_tc               : 3;  /**< [ 35: 33](R/W) Filtered figure of merit (FFOM) filter time constant. The raw figure of merit (raw FOM)
                                                                 is filtered by a cumulative moving average (CMA) filter.  [FFOM_TC] sets the time
                                                                 constant of the CMA filter.
                                                                 Selectable time constant options are in the range 0 to 7 which sets the divider value
                                                                 used to scale the raw FOM input term and the filtered FOM feedback term. This provides
                                                                 a smoothed filtered figure of merit for use by the BASE-R transmitter adaptation logic.

                                                                   0x0 = No scaling.
                                                                   0x1 = Divide by 2.
                                                                   0x2 = Divide by 4.
                                                                   0x3 = Divide by 8.
                                                                   0x4 = Divide by 16.
                                                                   0x5 = Divide by 32.
                                                                   0x6 = Divide by 64.
                                                                   0x7 = Divide by 128.

                                                                 For diagnostic use only. */
        uint64_t dfom_tc               : 3;  /**< [ 38: 36](R/W) Delta filtered figure of merit (DFOM) filter time constant. The DFOM is filtered
                                                                 by a cumulative moving average (CMA) filter.  [DFOM_TC] sets the time constant
                                                                 of the CMA filter.
                                                                 Selectable time constant options are in the range 0 to 7 which sets the divider value
                                                                 used to scale the summed DFOM input term and the filtered DFOM feedback term. This
                                                                 provides
                                                                 a smoothed delta filtered figure of merit for use by the BASE-R transmitter adaptation
                                                                 logic.

                                                                 For diagnostic use only.

                                                                   0x0 = No scaling.
                                                                   0x1 = Divide by 2.
                                                                   0x2 = Divide by 4.
                                                                   0x3 = Divide by 8.
                                                                   0x4 = Divide by 16.
                                                                   0x5 = Divide by 32.
                                                                   0x6 = Divide by 64.
                                                                   0x7 = Divide by 128. */
        uint64_t use_ffom              : 1;  /**< [ 39: 39](R/W) Use filtered figure of merit for BASE-R transmitter adaptation logic.
                                                                 For diagnostic use only.
                                                                 0 = The BASE-R transmitter adaptation logic use the unfiltered raw figure
                                                                 of merit FOM for BASE-R Inc/Dec direction hint computation.
                                                                 1 = The BASE-R transmitter adaptation logic use the
                                                                 filtered FOM for Inc/Dec direction hint computation. */
        uint64_t inv_pre_dir           : 1;  /**< [ 40: 40](R/W) BASE-R training when set reverses the direction of the pre tap (C-1)
                                                                 direction hint from the local device. */
        uint64_t inv_main_dir          : 1;  /**< [ 41: 41](R/W) BASE-R training when set reverses the direction of the main tap (C0)
                                                                 direction hint from the local device. */
        uint64_t inv_post_dir          : 1;  /**< [ 42: 42](R/W) BASE-R training when set reverses the direction of the post tap (C+1)
                                                                 direction hint from the local device. */
        uint64_t fdltfom_lo_lmt        : 8;  /**< [ 50: 43](R/W) BASE-R training sets the Delta Filtered FOM lower limit for training convergence.
                                                                 Value is a signed twos complement value. */
        uint64_t fdltfom_hi_lmt        : 8;  /**< [ 58: 51](R/W) BASE-R training sets the Delta Filtered FOM upper limit for training convergence.
                                                                 Value is a signed twos complement value. */
        uint64_t pat_match_en          : 1;  /**< [ 59: 59](R/W) BASE-R training controls the receiver adaptation algorithm when [PAT_MATCH_EN] is set to
                                                                 one
                                                                 the training convergence pattern matching logic is enabled.  The training pattern matching
                                                                 logic tracks the link partner transmitter tap moves and sets a flag when the pattern
                                                                 is found to be repeating in the taps moves tracking array.  This is used to help
                                                                 converge training adaptation.  When [PAT_MATCH_EN] is cleared to zero the pattern matching
                                                                 logic is disabled and not used to detect training convergence.

                                                                 The GSERN()_LANE()_TRAIN_5_BCFG[PAT_MATCH_EN] field is used in conjunction with the
                                                                 GSERN()_LANE()_TRAIN_5_BCFG[PAT_EXIT_CNT] field to control the training convergence
                                                                 pattern matching logic during BASE-R training. */
        uint64_t pat_exit_cnt          : 4;  /**< [ 63: 60](R/W) BASE-R training controls the receiver adaptation algorithm training convergence
                                                                 pattern matching logic.  As BASE-R training progresses the Pre/Main/Post tap
                                                                 direction change coefficient updates to the link partner start to dither around the
                                                                 optimal tap values.  The pattern matching logic looks for repeating patterns of
                                                                 the tap dithering around the optimal value and is used as one metric to determine
                                                                 that BASE-R training has converged and local device can signal receiver ready.

                                                                 The [PAT_EXIT_CNT] variable sets the maximum length of the repeating pattern to search
                                                                 for in the pattern matching array.  The pattern matching array has twelve elements
                                                                 therefore the maximum value of [PAT_EXIT_CNT] is 0xC.  A value of 0x6 has been
                                                                 found to be optimal for recognizing training tap convergence.

                                                                 The GSERN()_LANE()_TRAIN_5_BCFG[PAT_EXIT_CNT] field is used in conjunction with the
                                                                 GSERN()_LANE()_TRAIN_5_BCFG[PAT_MATCH_EN] field to control the training convergence
                                                                 pattern matching logic during BASE-R training. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_train_5_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_train_5_bcfg bdk_gsernx_lanex_train_5_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_TRAIN_5_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_TRAIN_5_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090003200ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_TRAIN_5_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_TRAIN_5_BCFG(a,b) bdk_gsernx_lanex_train_5_bcfg_t
#define bustype_BDK_GSERNX_LANEX_TRAIN_5_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_TRAIN_5_BCFG(a,b) "GSERNX_LANEX_TRAIN_5_BCFG"
#define device_bar_BDK_GSERNX_LANEX_TRAIN_5_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_TRAIN_5_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_TRAIN_5_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_train_6_bcfg
 *
 * GSER Lane Training Base Configuration Register 6
 * This register controls settings for lane training.
 */
union bdk_gsernx_lanex_train_6_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_train_6_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t frame_err             : 1;  /**< [ 63: 63](RO/H) Framing error. When set to a one and the
                                                                 GSERN()_LANE()_TRAIN_6_BCFG[EN_FRMOFFS_CHK] bit is set
                                                                 to a one and the training state machine has completed the framing
                                                                 alignment check indicates that the DOUTE and DOUTQ pipes could
                                                                 not be aligned to produce error free eye monitor data.
                                                                 For diagnostic use only. */
        uint64_t no_shft_path_gd       : 1;  /**< [ 62: 62](RO/H) The non-shifted error path completed the framing test without errors.
                                                                 Valid when the GSERN()_LANE()_TRAIN_6_BCFG[EN_FRMOFFS_CHK] bit is set
                                                                 to a one and the training state machine has completed the framing
                                                                 alignment check.
                                                                 For diagnostic use only. */
        uint64_t shft_path_gd          : 1;  /**< [ 61: 61](RO/H) The shifted error path completed the framing test without errors.
                                                                 Valid when the GSERN()_LANE()_TRAIN_6_BCFG[EN_FRMOFFS_CHK] bit is set
                                                                 to a one and the training state machine has completed the framing
                                                                 alignment check.
                                                                 For diagnostic use only. */
        uint64_t en_frmoffs_chk        : 1;  /**< [ 60: 60](R/W) Enable framing offset check. When [EN_FRMOFFS_CHK] is set to a one the training
                                                                 eye monitor state machine checks if framing offset is needed between the receiver
                                                                 DOUTQ and DOUTE pipes.  The framing offset check is performed when BASE-R or PCIe
                                                                 Gen3 training is first enabled.
                                                                 The GSERN()_LANE()_TRAIN_6_BCFG[SHFT_PATH_GD] or
                                                                 GSERN()_LANE()_TRAIN_6_BCFG[NO_SHFT_PATH_GD] flag will be set to indicate which
                                                                 framing offset was required.  If no framing offset can be found to that produces
                                                                 an error free eye measurement then the GSERN()_LANE()_TRAIN_6_BCFG[FRAME_ERR] flag will
                                                                 be set.
                                                                 For diagnostic use only. */
        uint64_t en_rxwt_ctr           : 1;  /**< [ 59: 59](R/W) Enable receiver adaptation wait timer. When [EN_RXWT_CTR] is set to a one the
                                                                 training state machine eye monitor measurement to measure the figure of merit
                                                                 (FOM) is delayed by 10 microseconds to allow the receiver equalizer to adjust
                                                                 to the link partner TX equalizer tap adjustments (BASE-R training and PCIe
                                                                 training) during link training.
                                                                 For diagnostic use only. */
        uint64_t en_teoffs             : 1;  /**< [ 58: 58](R/W) Enable E-path QAC time offset adjustment.  This is a diagnostic control used
                                                                 to adjust the QAC E-path time offset.  Typically the E-path QAC time offset is
                                                                 set to 0.5UI.  Setting [EN_TEOFFS] to a one enables the training state machine
                                                                 to adjust the E-path QAC time offset by the value specified in
                                                                 GSERN()_LANE()_TRAIN_6_BCFG[PRG_TEOFFS].
                                                                 For diagnostic use only. */
        uint64_t prg_teoffs            : 6;  /**< [ 57: 52](R/W) Programmable E-path QAC time offset. This is a diagnostic control used to set the
                                                                 eye monitor Epath QAC offset.  Use to trim the qac_eoffs offset during eye
                                                                 monitor usage when used in BASE-R and PCIE training to measure the RX eye figure of
                                                                 merit (FOM).  Typically set to the middle of the eye, e.g. 0.5UI.

                                                                 _ Target_eoffs = [PRG_TEOFFS] + (GSERN()_LANE()_RX_QAC_BSTS[QAC_EOFFS]
                                                                                - GSERN()_LANE()_TRAIN_6_BCFG[PRG_TDELTA]).
                                                                 _ [PRG_TEOFFS] = round(0.5UI/(1/63UI) = 6'h20.

                                                                 typically but other values can be set for testing purposes.
                                                                 For diagnostic use only.

                                                                 Internal:
                                                                 FIXME no such field GSERN()_LANE()_TRAIN_6_BCFG[PRG_TDELTA], then remove above exempt attribute. */
        uint64_t trn_tst_pat           : 2;  /**< [ 51: 50](R/W) Training test pattern. This is a diagnostic control used to send a sequence
                                                                 of predetermined cost values to the BASE-R training logic to mimic training of a
                                                                 predetermined channel between the local device and link partner.  This is to
                                                                 facilitate BASE-R testing between channels in a manufacturing test environment.
                                                                 When training starts the predetermined set of cost values (raw figure of merit)
                                                                 values will be provided to the BASE-R receiver and used to steer the training
                                                                 logic and tap convergence logic.

                                                                 Used only when GSERN()_LANE()_TRAIN_6_BCFG[TRN_TST_PATEN] is set to one.
                                                                 For diagnostic use only.

                                                                    0x0 = Test training pattern with cost cache disabled 32 dB channel.
                                                                    0x1 = Test training pattern with cost cache enabled 32 dB channel.
                                                                    0x2 = Test training pattern with cost cache disabled 32 dB channel.
                                                                    0x3 = Test training pattern with cost cache enabled 8 dB channel. */
        uint64_t trn_tst_paten         : 1;  /**< [ 49: 49](R/W) Training test pattern enable. This is a diagnostic control used to send a sequence
                                                                 of predetermined cost values to the BASE-R training logic to mimic training of a
                                                                 predetermined channel between the local device and link partner.  This is to
                                                                 facilitate BASE-R testing between channels in a manufacturing test environment.
                                                                 Used in conjunction with GSERN()_LANE()_TRAIN_6_BCFG[TRN_TST_PAT].
                                                                 For diagnostic use only. */
        uint64_t sav_cost_cache        : 1;  /**< [ 48: 48](R/W) Save cost cache contents when BASE-R training is completed.  This is a diagnostic
                                                                 control used to preserve the cost cache contents after training is complete.
                                                                 When [SAV_COST_CACHE] is set to one the cost cache is not automatically clear at the
                                                                 completion of BASE-R training. When [SAV_COST_CACHE] is cleared to zero the cost
                                                                 cached is cleared when training is complete so that the BASE-R training logic can
                                                                 process a new request for BASE-R training in cases where training is restarted.
                                                                 Used when GSERN()_LANE()_TRAIN_6_BCFG[COST_CACHE_EN] is set to one.
                                                                 For diagnostic use only. */
        uint64_t ccache_hits_min       : 5;  /**< [ 47: 43](R/W) Cost cache hits minimum.  When BASE-R training is using the cost average cache to
                                                                 improve the gradient estimation process to get more accurate tap moves during the
                                                                 final stages of training convergence [CCACHE_HITS_MIN] sets the minimum number of
                                                                 cache hits that must be accumulate before the cost cache will be used.
                                                                 Used when GSERN()_LANE()_TRAIN_6_BCFG[COST_CACHE_EN] is set to one.
                                                                 For diagnostic use only. */
        uint64_t cost_cache_en         : 1;  /**< [ 42: 42](R/W) Cost cache enable. When set BASE-R training will use the cost average cache to
                                                                 improve the gradient estimation process to get more accurate tap moves during
                                                                 the final stages of training convergence. For diagnostic use only. */
        uint64_t dffom_exit_en         : 1;  /**< [ 41: 41](R/W) Delta Filtered FOM Exit Enable.  When set to one BASE-R training will conclude and local
                                                                 device will signal ready if the Delta Filtered FOM is within the high and low limits
                                                                 specified in the GSERN()_LANE()_TRAIN_5_BCFG[FDLTFOM_HI_LMT] and
                                                                 GSERN()_LANE()_TRAIN_5_BCFG[FDLTFOM_LO_LMT] for the number of tap move iterations
                                                                 specified in the GSERN()_LANE()_TRAIN_6_BCFG[DELTA_FFOM_CCNT] field.
                                                                 For diagnostic use only. */
        uint64_t delta_ffom_ccnt       : 5;  /**< [ 40: 36](R/W) Delta Filtered FOM Convergence Count.  Used during BASE-R training to specify the
                                                                 number of successive iterations required for the Delta Filtered FOM to be within
                                                                 the high and low limits specified in the GSERN()_LANE()_TRAIN_5_BCFG[FDLTFOM_HI_LMT] and
                                                                 GSERN()_LANE()_TRAIN_5_BCFG[FDLTFOM_LO_LMT] to signal that BASE-R training is converged
                                                                 on the Local Device receiver.

                                                                 Used when GSERN()_LANE()_TRAIN_6_BCFG[DFFOM_EXIT_EN] is set to a one.

                                                                 For diagnostic use only. */
        uint64_t exit_loc_main         : 8;  /**< [ 35: 28](RO/H) Training Exit Location Main tap value.  Holds the exit location of the LP Main tap
                                                                 at the completion of BASE-R training when training completes.
                                                                 Number represented in offset binary notation.
                                                                 For diagnostic use only. */
        uint64_t exit_loc_post         : 8;  /**< [ 27: 20](RO/H) Training Exit Location Post tap value.  Holds the exit location of the LP Post tap
                                                                 at the completion of BASE-R training completes.
                                                                 Number represented in offset binary notation.
                                                                 For diagnostic use only. */
        uint64_t exit_loc_pre          : 8;  /**< [ 19: 12](RO/H) Training Exit Location Pre tap value.  Holds the exit location of the LP Pre tap
                                                                 at the completion of BASE-R training completes.
                                                                 Number represented in offset binary notation.
                                                                 For diagnostic use only. */
        uint64_t exit_fom_val          : 12; /**< [ 11:  0](RO/H) Pattern match logic exit value. Holds the Figure of merit (FOM) at the completion of
                                                                 BASE-R
                                                                 training when training is converged using the pattern matching logic.
                                                                 For diagnostic use only. */
#else /* Word 0 - Little Endian */
        uint64_t exit_fom_val          : 12; /**< [ 11:  0](RO/H) Pattern match logic exit value. Holds the Figure of merit (FOM) at the completion of
                                                                 BASE-R
                                                                 training when training is converged using the pattern matching logic.
                                                                 For diagnostic use only. */
        uint64_t exit_loc_pre          : 8;  /**< [ 19: 12](RO/H) Training Exit Location Pre tap value.  Holds the exit location of the LP Pre tap
                                                                 at the completion of BASE-R training completes.
                                                                 Number represented in offset binary notation.
                                                                 For diagnostic use only. */
        uint64_t exit_loc_post         : 8;  /**< [ 27: 20](RO/H) Training Exit Location Post tap value.  Holds the exit location of the LP Post tap
                                                                 at the completion of BASE-R training completes.
                                                                 Number represented in offset binary notation.
                                                                 For diagnostic use only. */
        uint64_t exit_loc_main         : 8;  /**< [ 35: 28](RO/H) Training Exit Location Main tap value.  Holds the exit location of the LP Main tap
                                                                 at the completion of BASE-R training when training completes.
                                                                 Number represented in offset binary notation.
                                                                 For diagnostic use only. */
        uint64_t delta_ffom_ccnt       : 5;  /**< [ 40: 36](R/W) Delta Filtered FOM Convergence Count.  Used during BASE-R training to specify the
                                                                 number of successive iterations required for the Delta Filtered FOM to be within
                                                                 the high and low limits specified in the GSERN()_LANE()_TRAIN_5_BCFG[FDLTFOM_HI_LMT] and
                                                                 GSERN()_LANE()_TRAIN_5_BCFG[FDLTFOM_LO_LMT] to signal that BASE-R training is converged
                                                                 on the Local Device receiver.

                                                                 Used when GSERN()_LANE()_TRAIN_6_BCFG[DFFOM_EXIT_EN] is set to a one.

                                                                 For diagnostic use only. */
        uint64_t dffom_exit_en         : 1;  /**< [ 41: 41](R/W) Delta Filtered FOM Exit Enable.  When set to one BASE-R training will conclude and local
                                                                 device will signal ready if the Delta Filtered FOM is within the high and low limits
                                                                 specified in the GSERN()_LANE()_TRAIN_5_BCFG[FDLTFOM_HI_LMT] and
                                                                 GSERN()_LANE()_TRAIN_5_BCFG[FDLTFOM_LO_LMT] for the number of tap move iterations
                                                                 specified in the GSERN()_LANE()_TRAIN_6_BCFG[DELTA_FFOM_CCNT] field.
                                                                 For diagnostic use only. */
        uint64_t cost_cache_en         : 1;  /**< [ 42: 42](R/W) Cost cache enable. When set BASE-R training will use the cost average cache to
                                                                 improve the gradient estimation process to get more accurate tap moves during
                                                                 the final stages of training convergence. For diagnostic use only. */
        uint64_t ccache_hits_min       : 5;  /**< [ 47: 43](R/W) Cost cache hits minimum.  When BASE-R training is using the cost average cache to
                                                                 improve the gradient estimation process to get more accurate tap moves during the
                                                                 final stages of training convergence [CCACHE_HITS_MIN] sets the minimum number of
                                                                 cache hits that must be accumulate before the cost cache will be used.
                                                                 Used when GSERN()_LANE()_TRAIN_6_BCFG[COST_CACHE_EN] is set to one.
                                                                 For diagnostic use only. */
        uint64_t sav_cost_cache        : 1;  /**< [ 48: 48](R/W) Save cost cache contents when BASE-R training is completed.  This is a diagnostic
                                                                 control used to preserve the cost cache contents after training is complete.
                                                                 When [SAV_COST_CACHE] is set to one the cost cache is not automatically clear at the
                                                                 completion of BASE-R training. When [SAV_COST_CACHE] is cleared to zero the cost
                                                                 cached is cleared when training is complete so that the BASE-R training logic can
                                                                 process a new request for BASE-R training in cases where training is restarted.
                                                                 Used when GSERN()_LANE()_TRAIN_6_BCFG[COST_CACHE_EN] is set to one.
                                                                 For diagnostic use only. */
        uint64_t trn_tst_paten         : 1;  /**< [ 49: 49](R/W) Training test pattern enable. This is a diagnostic control used to send a sequence
                                                                 of predetermined cost values to the BASE-R training logic to mimic training of a
                                                                 predetermined channel between the local device and link partner.  This is to
                                                                 facilitate BASE-R testing between channels in a manufacturing test environment.
                                                                 Used in conjunction with GSERN()_LANE()_TRAIN_6_BCFG[TRN_TST_PAT].
                                                                 For diagnostic use only. */
        uint64_t trn_tst_pat           : 2;  /**< [ 51: 50](R/W) Training test pattern. This is a diagnostic control used to send a sequence
                                                                 of predetermined cost values to the BASE-R training logic to mimic training of a
                                                                 predetermined channel between the local device and link partner.  This is to
                                                                 facilitate BASE-R testing between channels in a manufacturing test environment.
                                                                 When training starts the predetermined set of cost values (raw figure of merit)
                                                                 values will be provided to the BASE-R receiver and used to steer the training
                                                                 logic and tap convergence logic.

                                                                 Used only when GSERN()_LANE()_TRAIN_6_BCFG[TRN_TST_PATEN] is set to one.
                                                                 For diagnostic use only.

                                                                    0x0 = Test training pattern with cost cache disabled 32 dB channel.
                                                                    0x1 = Test training pattern with cost cache enabled 32 dB channel.
                                                                    0x2 = Test training pattern with cost cache disabled 32 dB channel.
                                                                    0x3 = Test training pattern with cost cache enabled 8 dB channel. */
        uint64_t prg_teoffs            : 6;  /**< [ 57: 52](R/W) Programmable E-path QAC time offset. This is a diagnostic control used to set the
                                                                 eye monitor Epath QAC offset.  Use to trim the qac_eoffs offset during eye
                                                                 monitor usage when used in BASE-R and PCIE training to measure the RX eye figure of
                                                                 merit (FOM).  Typically set to the middle of the eye, e.g. 0.5UI.

                                                                 _ Target_eoffs = [PRG_TEOFFS] + (GSERN()_LANE()_RX_QAC_BSTS[QAC_EOFFS]
                                                                                - GSERN()_LANE()_TRAIN_6_BCFG[PRG_TDELTA]).
                                                                 _ [PRG_TEOFFS] = round(0.5UI/(1/63UI) = 6'h20.

                                                                 typically but other values can be set for testing purposes.
                                                                 For diagnostic use only.

                                                                 Internal:
                                                                 FIXME no such field GSERN()_LANE()_TRAIN_6_BCFG[PRG_TDELTA], then remove above exempt attribute. */
        uint64_t en_teoffs             : 1;  /**< [ 58: 58](R/W) Enable E-path QAC time offset adjustment.  This is a diagnostic control used
                                                                 to adjust the QAC E-path time offset.  Typically the E-path QAC time offset is
                                                                 set to 0.5UI.  Setting [EN_TEOFFS] to a one enables the training state machine
                                                                 to adjust the E-path QAC time offset by the value specified in
                                                                 GSERN()_LANE()_TRAIN_6_BCFG[PRG_TEOFFS].
                                                                 For diagnostic use only. */
        uint64_t en_rxwt_ctr           : 1;  /**< [ 59: 59](R/W) Enable receiver adaptation wait timer. When [EN_RXWT_CTR] is set to a one the
                                                                 training state machine eye monitor measurement to measure the figure of merit
                                                                 (FOM) is delayed by 10 microseconds to allow the receiver equalizer to adjust
                                                                 to the link partner TX equalizer tap adjustments (BASE-R training and PCIe
                                                                 training) during link training.
                                                                 For diagnostic use only. */
        uint64_t en_frmoffs_chk        : 1;  /**< [ 60: 60](R/W) Enable framing offset check. When [EN_FRMOFFS_CHK] is set to a one the training
                                                                 eye monitor state machine checks if framing offset is needed between the receiver
                                                                 DOUTQ and DOUTE pipes.  The framing offset check is performed when BASE-R or PCIe
                                                                 Gen3 training is first enabled.
                                                                 The GSERN()_LANE()_TRAIN_6_BCFG[SHFT_PATH_GD] or
                                                                 GSERN()_LANE()_TRAIN_6_BCFG[NO_SHFT_PATH_GD] flag will be set to indicate which
                                                                 framing offset was required.  If no framing offset can be found to that produces
                                                                 an error free eye measurement then the GSERN()_LANE()_TRAIN_6_BCFG[FRAME_ERR] flag will
                                                                 be set.
                                                                 For diagnostic use only. */
        uint64_t shft_path_gd          : 1;  /**< [ 61: 61](RO/H) The shifted error path completed the framing test without errors.
                                                                 Valid when the GSERN()_LANE()_TRAIN_6_BCFG[EN_FRMOFFS_CHK] bit is set
                                                                 to a one and the training state machine has completed the framing
                                                                 alignment check.
                                                                 For diagnostic use only. */
        uint64_t no_shft_path_gd       : 1;  /**< [ 62: 62](RO/H) The non-shifted error path completed the framing test without errors.
                                                                 Valid when the GSERN()_LANE()_TRAIN_6_BCFG[EN_FRMOFFS_CHK] bit is set
                                                                 to a one and the training state machine has completed the framing
                                                                 alignment check.
                                                                 For diagnostic use only. */
        uint64_t frame_err             : 1;  /**< [ 63: 63](RO/H) Framing error. When set to a one and the
                                                                 GSERN()_LANE()_TRAIN_6_BCFG[EN_FRMOFFS_CHK] bit is set
                                                                 to a one and the training state machine has completed the framing
                                                                 alignment check indicates that the DOUTE and DOUTQ pipes could
                                                                 not be aligned to produce error free eye monitor data.
                                                                 For diagnostic use only. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_train_6_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_train_6_bcfg bdk_gsernx_lanex_train_6_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_TRAIN_6_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_TRAIN_6_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090003210ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_TRAIN_6_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_TRAIN_6_BCFG(a,b) bdk_gsernx_lanex_train_6_bcfg_t
#define bustype_BDK_GSERNX_LANEX_TRAIN_6_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_TRAIN_6_BCFG(a,b) "GSERNX_LANEX_TRAIN_6_BCFG"
#define device_bar_BDK_GSERNX_LANEX_TRAIN_6_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_TRAIN_6_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_TRAIN_6_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_train_7_bcfg
 *
 * GSER Lane Training Base Configuration Register 7
 * This register controls settings for lane training.
 */
union bdk_gsernx_lanex_train_7_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_train_7_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t pcie_fasteq_val       : 5;  /**< [ 63: 59](R/W) Reserved.
                                                                 Internal:
                                                                 PCIe fast equalization delay value for simulation.
                                                                 Used in conjunction with GSERN()_LANE()_TRAIN_7_BCFG[PCIE_FASTEQ]
                                                                 When testing PCIe Gen3/Gen4 equalization in simulation.
                                                                 The default value of 0x6 programs the PCIe equalization FOM and
                                                                 link evaluation direction change request acknowledgement handshake
                                                                 to 1.6 microseconds to accelerate simulation modeling of the PCIe
                                                                 Gen3/Gen4 equalization phases 2 and 3. .
                                                                 For simulation use only. */
        uint64_t pcie_fasteq           : 1;  /**< [ 58: 58](R/W) Reserved.
                                                                 Internal:
                                                                 PCIe fast equalization mode for simulation.
                                                                 When testing PCIe Gen3/Gen4 equalization in simulation setting [PCIE_FASTEQ]
                                                                 to 1 will reduce the PCIe equalization response to 1.6 microseconds.
                                                                 Can be used in conjunction with GSERN()_LANE()_TRAIN_7_BCFG[PCIE_TST_FOM_EN].
                                                                 If the GSERN()_LANE()_TRAIN_7_BCFG[PCIE_TST_FOM_EN] is not used the raw FOM
                                                                 value returned will be zero.  Further the [PCIE_FASTEQ] is set the link evaluation
                                                                 feedback direction change for C(-1), C(0), and C(+1) will indicate no change.
                                                                 For simulation use only. */
        uint64_t pcie_dir_eq_done      : 1;  /**< [ 57: 57](RO/H) PCIe direction change equalization done flag. During PCIe Gen3/Gen4
                                                                 direction change equalization reflects the state of the direction
                                                                 equalization done flag.  When set to 1 indicates that the current
                                                                 direction change equalization tap adjustment sequence is complete.
                                                                 Reset automatically by hardware when PCIe Gen3/Gen4 equalization is
                                                                 completed. */
        uint64_t pcie_term_adtmout     : 1;  /**< [ 56: 56](R/W) PCIe terminate direction change feedback equalization when reached the
                                                                 the equalization timeout specified in
                                                                 GSERN()_LANE()_TRAIN_7_BCFG[PCIE_ADTMOUT_SEL].
                                                                 During PCIe Gen3/Gen4 equalization direction change
                                                                 feedback mode the equalization timeout period is controlled by
                                                                 GSERN()_LANE()_TRAIN_7_BCFG[PCIE_ADTMOUT_SEL] and
                                                                 GSERN()_LANE()_TRAIN_7_BCFG[PCIE_ADTMOUT_FAST].
                                                                 When [PCIE_TERM_ADTMOUT] sets when the equalization timeout timer expires
                                                                 the equalization logic will signal equalization complete on the next
                                                                 equalization request from the PCIe controller.
                                                                 The training logic will signal equalization complete by returning
                                                                 C(-1) TAP direction change set to No Change and C(+1) TAP direction change
                                                                 also set to No Change.  This will signal the termination of
                                                                 PCIe Gen3/Gen4 equalization direction change feedback mode. */
        uint64_t pcie_adtmout_fast     : 1;  /**< [ 55: 55](R/W) Reserved.
                                                                 Internal:
                                                                 For simulation use only. When set accelerates the PCIe Gen3/Gen4 direction change
                                                                 feedback equalization timeout timer period.  When set shortens the direction change
                                                                 equalization time-out timer.
                                                                 See the description for
                                                                 GSERN()_LANE()_TRAIN_7_BCFG[PCIE_ADTMOUT_SEL].
                                                                 For diagnostic use only. */
        uint64_t pcie_adtmout_disable  : 1;  /**< [ 54: 54](R/W) PCIe Gen3/Gen4 direction change feedback equalization timeout timer disable.
                                                                 When [PCIE_ADTMOUT_DISABLE] is set to 1 the timeout timer that runs during
                                                                 PCIe Gen3/Gen4 direction change feecback equalization is disabled.  When
                                                                 [PCIE_ADTMOUT_DISABLE] is cleared to 0 the equalization timeout timer is enabled.
                                                                 The equalization timeout period is controlled by
                                                                 GSERN()_LANE()_TRAIN_7_BCFG[PCIE_ADTMOUT_SEL] and
                                                                 GSERN()_LANE()_TRAIN_7_BCFG[PCIE_ADTMOUT_FAST].
                                                                 For diagnostic use only. */
        uint64_t pcie_adtmout_sel      : 2;  /**< [ 53: 52](R/W) Selects the timeout value for the PCIe Gen3/Gen4 direction change feedback equalization.
                                                                 This time-out timer value is only valid if
                                                                 GSERN()_LANE()_TRAIN_7_BCFG[PCIE_ADTMOUT_DISABLE]
                                                                 is cleared to 0.

                                                                 When GSERN()_LANE()_TRAIN_7_BCFG[PCIE_ADTMOUT_FAST] is cleared to 0 the link training
                                                                 time-out timer value is set by [PCIE_ADTMOUT_SEL] to the values shown.
                                                                 0x0 = 5.24  milliseconds.
                                                                 0x1 = 10.49 milliseconds.
                                                                 0x2 = 13.1  milliseconds.
                                                                 0x3 = 15.73 milliseconds.

                                                                 When GSERN()_LANE()_TRAIN_7_BCFG[PCIE_ADTMOUT_FAST] is set to 1 the link training
                                                                 time-out timer value is set by [PCIE_ADTMOUT_SEL] to the values shown.
                                                                 0x0 = 81.92  microseconds.
                                                                 0x1 = 163.84 microseconds.
                                                                 0x2 = 327.68 microseconds.
                                                                 0x3 = 655.36 microseconds. */
        uint64_t pcie_term_max_mvs     : 1;  /**< [ 51: 51](R/W) PCIe terminate direction change feedback equalization when reached the
                                                                 the maximum number of tap moves specified in
                                                                 GSERN()_LANE()_TRAIN_7_BCFG[PCIE_MAX_MOVES].
                                                                 During PCIe Gen3/Gen4 equalization direction change
                                                                 feedback mode [PCIE_MAX_MOVES] sets the maximum number of tap moves to make
                                                                 before signaling equalization complete. When [PCIE_TERM_MAX_MVS] is set
                                                                 to 1 the training logic will signal equalization complete by returning
                                                                 C(-1) TAP direction change set to No Change and C(+1) TAP direction change
                                                                 also set to No Change.  This will signal the termination of
                                                                 PCIe Gen3/Gen4 equalization direction change feedback mode. */
        uint64_t pcie_term_min_mvs     : 1;  /**< [ 50: 50](R/W) PCIe terminate direction change feedback equalization when exceeded the
                                                                 the minimum number of tap moves specified in
                                                                 GSERN()_LANE()_TRAIN_7_BCFG[PCIE_MIN_MOVES].
                                                                 During PCIe Gen3/Gen4 equalization direction change
                                                                 feedback mode [PCIE_MIN_MOVES] sets the minimum number of tap moves to make
                                                                 before signaling equalization complete. When [PCIE_TERM_MIN_MVS] is set
                                                                 to 1 the training logic will signal equalization complete by returning
                                                                 C(-1) TAP direction change set to No Change and C(+1) TAP direction change
                                                                 also set to No Change.  This will signal the termination of
                                                                 PCIe Gen3/Gen4 equalization direction change feedback mode. */
        uint64_t pcie_max_moves        : 8;  /**< [ 49: 42](R/W) PCIe maximum tap moves. During PCIe Gen3/Gen4 equalization direction change
                                                                 feedback mode [PCIE_MIN_MOVES] sets the maximum number of tap moves to make
                                                                 before signaling equalization complete. */
        uint64_t pcie_min_moves        : 8;  /**< [ 41: 34](R/W) PCIe minimum tap moves. During PCIe Gen3/Gen4 equalization direction change
                                                                 feedback mode [PCIE_MIN_MOVES] sets the minimum number of tap moves to make
                                                                 before signaling equalization complete. */
        uint64_t pcie_rev_dir_hints    : 1;  /**< [ 33: 33](R/W) When set, reverses the direction of the
                                                                 GSERN()_LANE()_TRAIN_7_BCFG[PCIE_POST_DIR],
                                                                 GSERN()_LANE()_TRAIN_7_BCFG[PCIE_MAIN_DIR], and
                                                                 GSERN()_LANE()_TRAIN_7_BCFG[PCIE_PRE_DIR]
                                                                 Tx tap direction feedback hints. For diagnostic use only. */
        uint64_t pcie_inv_post_dir     : 1;  /**< [ 32: 32](R/W) PCIe direction change equalization invert post tap direction.
                                                                 When set reverses the Increment/Decrement direction
                                                                 of the GSERN()_LANE()_TRAIN_7_BCFG[PCIE_POST_DIR]
                                                                 Tx tap direction feedback.  For diagnostic use only. */
        uint64_t pcie_inv_main_dir     : 1;  /**< [ 31: 31](R/W) PCIe direction change equalization invert main tap direction.
                                                                 When set reverses the Increment/Decrement direction
                                                                 of the GSERN()_LANE()_TRAIN_7_BCFG[PCIE_MAIN_DIR]
                                                                 Tx tap direction feedback.  For diagnostic use only. */
        uint64_t pcie_inv_pre_dir      : 1;  /**< [ 30: 30](R/W) PCIe direction change equalization invert pre tap direction.
                                                                 When set reverses the Increment/Decrement direction
                                                                 of the GSERN()_LANE()_TRAIN_7_BCFG[PCIE_PRE_DIR]
                                                                 Tx tap direction feedback.  For diagnostic use only. */
        uint64_t pcie_post_dir         : 2;  /**< [ 29: 28](RO/H) PCIe direction change equalization post (C+1) tap direction.
                                                                 During PCIe Gen3/Gen4 link training using direction change equalization
                                                                 the [PCIE_POST_DIR] field reflects the value of the post (C+1) tap
                                                                 direction for the link evaluation direction feedback.
                                                                     0x0 = No change.
                                                                     0x1 = Increment feedback for each coefficient.
                                                                     0x2 = Decrement feedback for each coefficient.
                                                                     0x3 = Reserved. */
        uint64_t pcie_main_dir         : 2;  /**< [ 27: 26](RO/H) PCIe direction change equalization main (C0) tap direction.
                                                                 During PCIe Gen3/Gen4 link training using direction change equalization
                                                                 the [PCIE_MAIN_DIR] field reflects the value of the main (C0) tap
                                                                 direction for the link evaluation direction feedback.
                                                                     0x0 = No change.
                                                                     0x1 = Increment feedback for each coefficient.
                                                                     0x2 = Decrement feedback for each coefficient.
                                                                     0x3 = Reserved.

                                                                 The main direction will always be 0x0 no change. The PCIe
                                                                 MAC computes the Main (C0) tap direction change. */
        uint64_t pcie_pre_dir          : 2;  /**< [ 25: 24](RO/H) PCIe direction change equalization pre (C-1) tap direction.
                                                                 During PCIe Gen3/Gen4 link training using direction change equalization
                                                                 the [PCIE_PRE_DIR] field reflects the value of the pre (C-1) tap
                                                                 direction for the link evaluation direction feedback.
                                                                     0x0 = No change.
                                                                     0x1 = Increment feedback for each coefficient.
                                                                     0x2 = Decrement feedback for each coefficient.
                                                                     0x3 = Reserved. */
        uint64_t pcie_tst_array_rdy    : 1;  /**< [ 23: 23](RO/H) PCIe test FOM array ready. For verification diagnostic use only.
                                                                 See [PCIE_TST_FOM_VAL].

                                                                 Internal:
                                                                 PCIe test FOM array ready.  For verification diagnostic use only.
                                                                 All entries of the PCIe test FOM array are cleared following release
                                                                 of reset.  When [PCIE_TST_ARRAY_RDY] is set to 1 the PCIe test FOM
                                                                 array is ready and can be used for PCIe training testing.  Do not
                                                                 read or write the PCIe test FOM array while [PCIE_TST_ARRAY_RDY] is
                                                                 cleared to 0.  When the GSER QLM is released from reset the
                                                                 [PCIE_TST_ARRAY_RDY] will transition from 0 to 1 after 128 service
                                                                 clock cycles. */
        uint64_t pcie_tst_fom_mode     : 1;  /**< [ 22: 22](R/W) PCIe test FOM array mode. For verification diagnostic use only.
                                                                 See [PCIE_TST_FOM_VAL].

                                                                 Internal:
                                                                 PCIe test FOM array mode.  For verification diagnostic use only.
                                                                     0x0 = Test FOM array is used to load and play back test FOMs for PCIe link
                                                                           training.
                                                                     0x1 = Test FOM array is used to capture raw FOMs during link training for
                                                                           diagnostic verification. */
        uint64_t pcie_tst_fom_en       : 1;  /**< [ 21: 21](R/W) PCIe test figure of merit array enable. For verification diagnostic use only.
                                                                 See [PCIE_TST_FOM_VAL]. */
        uint64_t pcie_tst_fom_rd       : 1;  /**< [ 20: 20](R/W) PCIe test figure of merit array enable. For verification diagnostic use only.
                                                                 See [PCIE_TST_FOM_VAL]. */
        uint64_t pcie_tst_fom_ld       : 1;  /**< [ 19: 19](R/W) PCIe test figure of merit array enable. For verification diagnostic use only.
                                                                 See [PCIE_TST_FOM_VAL]. */
        uint64_t pcie_tst_fom_addr     : 7;  /**< [ 18: 12](R/W) PCIe test figure of merit array enable. For verification diagnostic use only.
                                                                 See [PCIE_TST_FOM_VAL]. */
        uint64_t pcie_tst_fom_val      : 12; /**< [ 11:  0](R/W/H) PCIe test figure of merit array enable. For verification diagnostic use only.
                                                                 Internal:
                                                                 Used to load the test raw figure of merit (raw FOM) array with test
                                                                 FOM values to play back during PCIe Gen3/Gen4 training to check the
                                                                 training preset selection logic and PCIE training logic.
                                                                 An 11-bit by 32 word array is used to hold the test raw FOM values.
                                                                 The array FOM values are initialized by writing the
                                                                 [PCIE_TST_FOM_ADDR] field with a value
                                                                 from 0x0 to 0x7F to index a location in the array, then writing the
                                                                 [PCIE_TST_FOM_VAL] with a 12-bit quantity representing the raw
                                                                 FOM value to be written to the array location, then writing the
                                                                 [PCIE_TST_FOM_LD] bit to 1 to write
                                                                 the raw FOM 12-bit value to the array, and the writing the
                                                                 [PCIE_TST_FOM_LD] bit to 0 to complete
                                                                 array write operation.
                                                                 Before writing the array software should poll the
                                                                 GSERN()_LANE()_TRAIN_7_BCFG[PCIE_TST_ARRAY_RDY] and wait for
                                                                 [PCIE_TST_ARRAY_RDY] field to be set to 1 before reading or writing
                                                                 the test fom array.  Also write
                                                                 GSERN()_LANE()_TRAIN_7_BCFG[PCIE_TST_FOM_MODE] to 0.

                                                                 Each array location is written with the desired raw FOM value following
                                                                 the thse steps.

                                                                 After all array locations are written, the array locations can be read
                                                                 back.  Write the [PCIE_TST_FOM_ADDR] to point
                                                                 to the desired array location, next write
                                                                 [PCIE_TST_FOM_RD] to 1 to enable read back mode.
                                                                 Read the [PCIE_TST_FOM_VAL] field to readback the 12-bit test raw FOM
                                                                 value from the array. Finally write
                                                                 [PCIE_TST_FOM_RD] to 0 to disable read back mode.

                                                                 To enable the PCI Express Test FOM array during PCIe Gen3/Gen4 link training
                                                                 write [PCIE_TST_FOM_EN] to 1. Note prior to
                                                                 writing [PCIE_TST_FOM_EN] to 1, ensure that
                                                                 [PCIE_TST_FOM_RD] is cleared to 0 and
                                                                 [PCIE_TST_FOM_LD] is cleared to 0.

                                                                 During PCIe Gen3/Gen4 link training each time a Preset receiver evaluation
                                                                 request is received the training logic will return the 12-bit raw FOM
                                                                 from the current test FOM array location to the PIPE PCS logic and then
                                                                 move to the next test FOM array location.  The test FOM array always
                                                                 starts at location 0x0 and increments to the next location in the FOM
                                                                 array after each preset evaluation.

                                                                 Related Registers
                                                                 GSERN()_LANE()_TRAIN_7_BCFG[PCIE_TST_FOM_ADDR]
                                                                 GSERN()_LANE()_TRAIN_7_BCFG[PCIE_TST_FOM_LD]
                                                                 GSERN()_LANE()_TRAIN_7_BCFG[PCIE_TST_FOM_RD]
                                                                 GSERN()_LANE()_TRAIN_7_BCFG[PCIE_TST_FOM_EN]
                                                                 GSERN()_LANE()_TRAIN_7_BCFG[PCIE_TST_FOM_MODE]
                                                                 GSERN()_LANE()_TRAIN_7_BCFG[PCIE_TST_ARRAY_RDY] */
#else /* Word 0 - Little Endian */
        uint64_t pcie_tst_fom_val      : 12; /**< [ 11:  0](R/W/H) PCIe test figure of merit array enable. For verification diagnostic use only.
                                                                 Internal:
                                                                 Used to load the test raw figure of merit (raw FOM) array with test
                                                                 FOM values to play back during PCIe Gen3/Gen4 training to check the
                                                                 training preset selection logic and PCIE training logic.
                                                                 An 11-bit by 32 word array is used to hold the test raw FOM values.
                                                                 The array FOM values are initialized by writing the
                                                                 [PCIE_TST_FOM_ADDR] field with a value
                                                                 from 0x0 to 0x7F to index a location in the array, then writing the
                                                                 [PCIE_TST_FOM_VAL] with a 12-bit quantity representing the raw
                                                                 FOM value to be written to the array location, then writing the
                                                                 [PCIE_TST_FOM_LD] bit to 1 to write
                                                                 the raw FOM 12-bit value to the array, and the writing the
                                                                 [PCIE_TST_FOM_LD] bit to 0 to complete
                                                                 array write operation.
                                                                 Before writing the array software should poll the
                                                                 GSERN()_LANE()_TRAIN_7_BCFG[PCIE_TST_ARRAY_RDY] and wait for
                                                                 [PCIE_TST_ARRAY_RDY] field to be set to 1 before reading or writing
                                                                 the test fom array.  Also write
                                                                 GSERN()_LANE()_TRAIN_7_BCFG[PCIE_TST_FOM_MODE] to 0.

                                                                 Each array location is written with the desired raw FOM value following
                                                                 the thse steps.

                                                                 After all array locations are written, the array locations can be read
                                                                 back.  Write the [PCIE_TST_FOM_ADDR] to point
                                                                 to the desired array location, next write
                                                                 [PCIE_TST_FOM_RD] to 1 to enable read back mode.
                                                                 Read the [PCIE_TST_FOM_VAL] field to readback the 12-bit test raw FOM
                                                                 value from the array. Finally write
                                                                 [PCIE_TST_FOM_RD] to 0 to disable read back mode.

                                                                 To enable the PCI Express Test FOM array during PCIe Gen3/Gen4 link training
                                                                 write [PCIE_TST_FOM_EN] to 1. Note prior to
                                                                 writing [PCIE_TST_FOM_EN] to 1, ensure that
                                                                 [PCIE_TST_FOM_RD] is cleared to 0 and
                                                                 [PCIE_TST_FOM_LD] is cleared to 0.

                                                                 During PCIe Gen3/Gen4 link training each time a Preset receiver evaluation
                                                                 request is received the training logic will return the 12-bit raw FOM
                                                                 from the current test FOM array location to the PIPE PCS logic and then
                                                                 move to the next test FOM array location.  The test FOM array always
                                                                 starts at location 0x0 and increments to the next location in the FOM
                                                                 array after each preset evaluation.

                                                                 Related Registers
                                                                 GSERN()_LANE()_TRAIN_7_BCFG[PCIE_TST_FOM_ADDR]
                                                                 GSERN()_LANE()_TRAIN_7_BCFG[PCIE_TST_FOM_LD]
                                                                 GSERN()_LANE()_TRAIN_7_BCFG[PCIE_TST_FOM_RD]
                                                                 GSERN()_LANE()_TRAIN_7_BCFG[PCIE_TST_FOM_EN]
                                                                 GSERN()_LANE()_TRAIN_7_BCFG[PCIE_TST_FOM_MODE]
                                                                 GSERN()_LANE()_TRAIN_7_BCFG[PCIE_TST_ARRAY_RDY] */
        uint64_t pcie_tst_fom_addr     : 7;  /**< [ 18: 12](R/W) PCIe test figure of merit array enable. For verification diagnostic use only.
                                                                 See [PCIE_TST_FOM_VAL]. */
        uint64_t pcie_tst_fom_ld       : 1;  /**< [ 19: 19](R/W) PCIe test figure of merit array enable. For verification diagnostic use only.
                                                                 See [PCIE_TST_FOM_VAL]. */
        uint64_t pcie_tst_fom_rd       : 1;  /**< [ 20: 20](R/W) PCIe test figure of merit array enable. For verification diagnostic use only.
                                                                 See [PCIE_TST_FOM_VAL]. */
        uint64_t pcie_tst_fom_en       : 1;  /**< [ 21: 21](R/W) PCIe test figure of merit array enable. For verification diagnostic use only.
                                                                 See [PCIE_TST_FOM_VAL]. */
        uint64_t pcie_tst_fom_mode     : 1;  /**< [ 22: 22](R/W) PCIe test FOM array mode. For verification diagnostic use only.
                                                                 See [PCIE_TST_FOM_VAL].

                                                                 Internal:
                                                                 PCIe test FOM array mode.  For verification diagnostic use only.
                                                                     0x0 = Test FOM array is used to load and play back test FOMs for PCIe link
                                                                           training.
                                                                     0x1 = Test FOM array is used to capture raw FOMs during link training for
                                                                           diagnostic verification. */
        uint64_t pcie_tst_array_rdy    : 1;  /**< [ 23: 23](RO/H) PCIe test FOM array ready. For verification diagnostic use only.
                                                                 See [PCIE_TST_FOM_VAL].

                                                                 Internal:
                                                                 PCIe test FOM array ready.  For verification diagnostic use only.
                                                                 All entries of the PCIe test FOM array are cleared following release
                                                                 of reset.  When [PCIE_TST_ARRAY_RDY] is set to 1 the PCIe test FOM
                                                                 array is ready and can be used for PCIe training testing.  Do not
                                                                 read or write the PCIe test FOM array while [PCIE_TST_ARRAY_RDY] is
                                                                 cleared to 0.  When the GSER QLM is released from reset the
                                                                 [PCIE_TST_ARRAY_RDY] will transition from 0 to 1 after 128 service
                                                                 clock cycles. */
        uint64_t pcie_pre_dir          : 2;  /**< [ 25: 24](RO/H) PCIe direction change equalization pre (C-1) tap direction.
                                                                 During PCIe Gen3/Gen4 link training using direction change equalization
                                                                 the [PCIE_PRE_DIR] field reflects the value of the pre (C-1) tap
                                                                 direction for the link evaluation direction feedback.
                                                                     0x0 = No change.
                                                                     0x1 = Increment feedback for each coefficient.
                                                                     0x2 = Decrement feedback for each coefficient.
                                                                     0x3 = Reserved. */
        uint64_t pcie_main_dir         : 2;  /**< [ 27: 26](RO/H) PCIe direction change equalization main (C0) tap direction.
                                                                 During PCIe Gen3/Gen4 link training using direction change equalization
                                                                 the [PCIE_MAIN_DIR] field reflects the value of the main (C0) tap
                                                                 direction for the link evaluation direction feedback.
                                                                     0x0 = No change.
                                                                     0x1 = Increment feedback for each coefficient.
                                                                     0x2 = Decrement feedback for each coefficient.
                                                                     0x3 = Reserved.

                                                                 The main direction will always be 0x0 no change. The PCIe
                                                                 MAC computes the Main (C0) tap direction change. */
        uint64_t pcie_post_dir         : 2;  /**< [ 29: 28](RO/H) PCIe direction change equalization post (C+1) tap direction.
                                                                 During PCIe Gen3/Gen4 link training using direction change equalization
                                                                 the [PCIE_POST_DIR] field reflects the value of the post (C+1) tap
                                                                 direction for the link evaluation direction feedback.
                                                                     0x0 = No change.
                                                                     0x1 = Increment feedback for each coefficient.
                                                                     0x2 = Decrement feedback for each coefficient.
                                                                     0x3 = Reserved. */
        uint64_t pcie_inv_pre_dir      : 1;  /**< [ 30: 30](R/W) PCIe direction change equalization invert pre tap direction.
                                                                 When set reverses the Increment/Decrement direction
                                                                 of the GSERN()_LANE()_TRAIN_7_BCFG[PCIE_PRE_DIR]
                                                                 Tx tap direction feedback.  For diagnostic use only. */
        uint64_t pcie_inv_main_dir     : 1;  /**< [ 31: 31](R/W) PCIe direction change equalization invert main tap direction.
                                                                 When set reverses the Increment/Decrement direction
                                                                 of the GSERN()_LANE()_TRAIN_7_BCFG[PCIE_MAIN_DIR]
                                                                 Tx tap direction feedback.  For diagnostic use only. */
        uint64_t pcie_inv_post_dir     : 1;  /**< [ 32: 32](R/W) PCIe direction change equalization invert post tap direction.
                                                                 When set reverses the Increment/Decrement direction
                                                                 of the GSERN()_LANE()_TRAIN_7_BCFG[PCIE_POST_DIR]
                                                                 Tx tap direction feedback.  For diagnostic use only. */
        uint64_t pcie_rev_dir_hints    : 1;  /**< [ 33: 33](R/W) When set, reverses the direction of the
                                                                 GSERN()_LANE()_TRAIN_7_BCFG[PCIE_POST_DIR],
                                                                 GSERN()_LANE()_TRAIN_7_BCFG[PCIE_MAIN_DIR], and
                                                                 GSERN()_LANE()_TRAIN_7_BCFG[PCIE_PRE_DIR]
                                                                 Tx tap direction feedback hints. For diagnostic use only. */
        uint64_t pcie_min_moves        : 8;  /**< [ 41: 34](R/W) PCIe minimum tap moves. During PCIe Gen3/Gen4 equalization direction change
                                                                 feedback mode [PCIE_MIN_MOVES] sets the minimum number of tap moves to make
                                                                 before signaling equalization complete. */
        uint64_t pcie_max_moves        : 8;  /**< [ 49: 42](R/W) PCIe maximum tap moves. During PCIe Gen3/Gen4 equalization direction change
                                                                 feedback mode [PCIE_MIN_MOVES] sets the maximum number of tap moves to make
                                                                 before signaling equalization complete. */
        uint64_t pcie_term_min_mvs     : 1;  /**< [ 50: 50](R/W) PCIe terminate direction change feedback equalization when exceeded the
                                                                 the minimum number of tap moves specified in
                                                                 GSERN()_LANE()_TRAIN_7_BCFG[PCIE_MIN_MOVES].
                                                                 During PCIe Gen3/Gen4 equalization direction change
                                                                 feedback mode [PCIE_MIN_MOVES] sets the minimum number of tap moves to make
                                                                 before signaling equalization complete. When [PCIE_TERM_MIN_MVS] is set
                                                                 to 1 the training logic will signal equalization complete by returning
                                                                 C(-1) TAP direction change set to No Change and C(+1) TAP direction change
                                                                 also set to No Change.  This will signal the termination of
                                                                 PCIe Gen3/Gen4 equalization direction change feedback mode. */
        uint64_t pcie_term_max_mvs     : 1;  /**< [ 51: 51](R/W) PCIe terminate direction change feedback equalization when reached the
                                                                 the maximum number of tap moves specified in
                                                                 GSERN()_LANE()_TRAIN_7_BCFG[PCIE_MAX_MOVES].
                                                                 During PCIe Gen3/Gen4 equalization direction change
                                                                 feedback mode [PCIE_MAX_MOVES] sets the maximum number of tap moves to make
                                                                 before signaling equalization complete. When [PCIE_TERM_MAX_MVS] is set
                                                                 to 1 the training logic will signal equalization complete by returning
                                                                 C(-1) TAP direction change set to No Change and C(+1) TAP direction change
                                                                 also set to No Change.  This will signal the termination of
                                                                 PCIe Gen3/Gen4 equalization direction change feedback mode. */
        uint64_t pcie_adtmout_sel      : 2;  /**< [ 53: 52](R/W) Selects the timeout value for the PCIe Gen3/Gen4 direction change feedback equalization.
                                                                 This time-out timer value is only valid if
                                                                 GSERN()_LANE()_TRAIN_7_BCFG[PCIE_ADTMOUT_DISABLE]
                                                                 is cleared to 0.

                                                                 When GSERN()_LANE()_TRAIN_7_BCFG[PCIE_ADTMOUT_FAST] is cleared to 0 the link training
                                                                 time-out timer value is set by [PCIE_ADTMOUT_SEL] to the values shown.
                                                                 0x0 = 5.24  milliseconds.
                                                                 0x1 = 10.49 milliseconds.
                                                                 0x2 = 13.1  milliseconds.
                                                                 0x3 = 15.73 milliseconds.

                                                                 When GSERN()_LANE()_TRAIN_7_BCFG[PCIE_ADTMOUT_FAST] is set to 1 the link training
                                                                 time-out timer value is set by [PCIE_ADTMOUT_SEL] to the values shown.
                                                                 0x0 = 81.92  microseconds.
                                                                 0x1 = 163.84 microseconds.
                                                                 0x2 = 327.68 microseconds.
                                                                 0x3 = 655.36 microseconds. */
        uint64_t pcie_adtmout_disable  : 1;  /**< [ 54: 54](R/W) PCIe Gen3/Gen4 direction change feedback equalization timeout timer disable.
                                                                 When [PCIE_ADTMOUT_DISABLE] is set to 1 the timeout timer that runs during
                                                                 PCIe Gen3/Gen4 direction change feecback equalization is disabled.  When
                                                                 [PCIE_ADTMOUT_DISABLE] is cleared to 0 the equalization timeout timer is enabled.
                                                                 The equalization timeout period is controlled by
                                                                 GSERN()_LANE()_TRAIN_7_BCFG[PCIE_ADTMOUT_SEL] and
                                                                 GSERN()_LANE()_TRAIN_7_BCFG[PCIE_ADTMOUT_FAST].
                                                                 For diagnostic use only. */
        uint64_t pcie_adtmout_fast     : 1;  /**< [ 55: 55](R/W) Reserved.
                                                                 Internal:
                                                                 For simulation use only. When set accelerates the PCIe Gen3/Gen4 direction change
                                                                 feedback equalization timeout timer period.  When set shortens the direction change
                                                                 equalization time-out timer.
                                                                 See the description for
                                                                 GSERN()_LANE()_TRAIN_7_BCFG[PCIE_ADTMOUT_SEL].
                                                                 For diagnostic use only. */
        uint64_t pcie_term_adtmout     : 1;  /**< [ 56: 56](R/W) PCIe terminate direction change feedback equalization when reached the
                                                                 the equalization timeout specified in
                                                                 GSERN()_LANE()_TRAIN_7_BCFG[PCIE_ADTMOUT_SEL].
                                                                 During PCIe Gen3/Gen4 equalization direction change
                                                                 feedback mode the equalization timeout period is controlled by
                                                                 GSERN()_LANE()_TRAIN_7_BCFG[PCIE_ADTMOUT_SEL] and
                                                                 GSERN()_LANE()_TRAIN_7_BCFG[PCIE_ADTMOUT_FAST].
                                                                 When [PCIE_TERM_ADTMOUT] sets when the equalization timeout timer expires
                                                                 the equalization logic will signal equalization complete on the next
                                                                 equalization request from the PCIe controller.
                                                                 The training logic will signal equalization complete by returning
                                                                 C(-1) TAP direction change set to No Change and C(+1) TAP direction change
                                                                 also set to No Change.  This will signal the termination of
                                                                 PCIe Gen3/Gen4 equalization direction change feedback mode. */
        uint64_t pcie_dir_eq_done      : 1;  /**< [ 57: 57](RO/H) PCIe direction change equalization done flag. During PCIe Gen3/Gen4
                                                                 direction change equalization reflects the state of the direction
                                                                 equalization done flag.  When set to 1 indicates that the current
                                                                 direction change equalization tap adjustment sequence is complete.
                                                                 Reset automatically by hardware when PCIe Gen3/Gen4 equalization is
                                                                 completed. */
        uint64_t pcie_fasteq           : 1;  /**< [ 58: 58](R/W) Reserved.
                                                                 Internal:
                                                                 PCIe fast equalization mode for simulation.
                                                                 When testing PCIe Gen3/Gen4 equalization in simulation setting [PCIE_FASTEQ]
                                                                 to 1 will reduce the PCIe equalization response to 1.6 microseconds.
                                                                 Can be used in conjunction with GSERN()_LANE()_TRAIN_7_BCFG[PCIE_TST_FOM_EN].
                                                                 If the GSERN()_LANE()_TRAIN_7_BCFG[PCIE_TST_FOM_EN] is not used the raw FOM
                                                                 value returned will be zero.  Further the [PCIE_FASTEQ] is set the link evaluation
                                                                 feedback direction change for C(-1), C(0), and C(+1) will indicate no change.
                                                                 For simulation use only. */
        uint64_t pcie_fasteq_val       : 5;  /**< [ 63: 59](R/W) Reserved.
                                                                 Internal:
                                                                 PCIe fast equalization delay value for simulation.
                                                                 Used in conjunction with GSERN()_LANE()_TRAIN_7_BCFG[PCIE_FASTEQ]
                                                                 When testing PCIe Gen3/Gen4 equalization in simulation.
                                                                 The default value of 0x6 programs the PCIe equalization FOM and
                                                                 link evaluation direction change request acknowledgement handshake
                                                                 to 1.6 microseconds to accelerate simulation modeling of the PCIe
                                                                 Gen3/Gen4 equalization phases 2 and 3. .
                                                                 For simulation use only. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_train_7_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_train_7_bcfg bdk_gsernx_lanex_train_7_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_TRAIN_7_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_TRAIN_7_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090003220ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_TRAIN_7_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_TRAIN_7_BCFG(a,b) bdk_gsernx_lanex_train_7_bcfg_t
#define bustype_BDK_GSERNX_LANEX_TRAIN_7_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_TRAIN_7_BCFG(a,b) "GSERNX_LANEX_TRAIN_7_BCFG"
#define device_bar_BDK_GSERNX_LANEX_TRAIN_7_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_TRAIN_7_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_TRAIN_7_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_train_8_bcfg
 *
 * GSER Lane Training Base Configuration Register 8
 * This register controls settings for lane training.
 */
union bdk_gsernx_lanex_train_8_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_train_8_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_61_63        : 3;
        uint64_t pcie_l_c1_e_adj_sgn   : 1;  /**< [ 60: 60](R/W) Sets the lower C1 E sampler adjustment voltage offset sign.
                                                                 0 = The offset sign is positive
                                                                 positioning the lower C1_E sampler below the eye C1_Q sampler.
                                                                 1 = The offset sign is negative
                                                                 positioning the lower C1_E sampler above the eye C1_Q sampler.

                                                                 Used in conjunction with
                                                                 GSERN()_LANE()_TRAIN_8_BCFG[PCIE_L_C1_E_ADJ_STEP] during PCIE training.
                                                                 For diagnostic use only. */
        uint64_t pcie_u_c1_e_adj_sgn   : 1;  /**< [ 59: 59](R/W) Sets the upper C1 E sampler adjustment voltage offset sign.
                                                                 0 = The offset sign is positive
                                                                 positioning the upper C1_E sampler above the eye C1_Q sampler.
                                                                 1 = The offset sign is negative
                                                                 positioning the upper C1_E sampler below the eye C1_Q sampler.

                                                                 Used in conjunction with
                                                                 GSERN()_LANE()_TRAIN_8_BCFG[PCIE_U_C1_E_ADJ_STEP] for PCIE training.
                                                                 For diagnostic use only. */
        uint64_t pcie_u_c1_e_adj_step  : 5;  /**< [ 58: 54](R/W) Sets the C1 E sampler voltage level during eye monitor sampling.
                                                                 Typically [PCIE_U_C1_E_ADJ_STEP] is set to 0x3 to position the eye monitor
                                                                 error sampler at ~15 mV above the C1 Q sampler voltage level.
                                                                 Steps are in units of 5.08 mV per step.
                                                                 Used in conjunction with
                                                                 GSERN()_LANE()_TRAIN_8_BCFG[PCIE_U_C1_E_ADJ_SGN] for PCIE training.
                                                                 For diagnostic use only. */
        uint64_t pcie_adapt_axis       : 3;  /**< [ 53: 51](R/W) Sets the number or adaptation axes to use during receiver adaptation.
                                                                 Typically set to 0x7 to enable all three adaptation axes.  One-hot encoded.

                                                                 Set to 0x1 to only enable axis 1 and disable axis 2 and axis 3.
                                                                 Set to 0x3 to enable axis 1 and axis 2 but disable axis 3.
                                                                 Set to 0x7 to enable axis 1, 2 and 3. (default.)
                                                                 For diagnostic use only. */
        uint64_t pcie_l_c1_e_adj_step  : 5;  /**< [ 50: 46](R/W) Sets the lower C1 E sampler voltage level during eye monitor sampling.
                                                                 Typically set to 0x2 to position the eye monitor
                                                                 error sampler at ~15mV below the C1 Q sampler voltage level.
                                                                 Steps are in units of 5.08 mV per step.
                                                                 Used in conjunction with
                                                                 GSERN()_LANE()_TRAIN_8_BCFG[PCIE_L_C1_E_ADJ_SGN] during PCIE training.
                                                                 For diagnostic use only. */
        uint64_t pcie_ecnt_div_val     : 4;  /**< [ 45: 42](R/W) Error counter divider override value. See table below.
                                                                 Divider is active when the [PCIE_ECNT_DIV_EN] is set.
                                                                 For diagnostic use only.

                                                                    0x0 = No divider.
                                                                    0x1 = Divide by 2.
                                                                    0x2 = Divide by 4.
                                                                    0x3 = Divide by 8.
                                                                    0x4 = Divide by 16.
                                                                    0x5 = Divide by 32.
                                                                    0x6 = Divide by 64.
                                                                    0x7 = Divide by 128.
                                                                    0x8 = Divide by 256.
                                                                    0x9 = Divide by 512.
                                                                    0xA = Divide by 1024.
                                                                    0xB = Divide by 2048.
                                                                    0xC = Divide by 4096.
                                                                    0xD = Divide by 8192.
                                                                    0xE = Divide by 16384.
                                                                    0xF = Divide by 32768. */
        uint64_t pcie_ecnt_div_en      : 1;  /**< [ 41: 41](R/W) Error counter divider override enable.
                                                                 For diagnostic use only. */
        uint64_t pcie_eye_cnt_en       : 1;  /**< [ 40: 40](R/W) Eye cycle count enable. When set the number of eye monitor
                                                                 cycles to sample and count during the PCIe Gen3/Gen4 training
                                                                 figure of merit (FOM) calculation
                                                                 is controlled by GSERN()_LANE()_TRAIN_8_BCFG[PCIE_EYE_CNT_VAL].
                                                                 For diagnostic use only. */
        uint64_t pcie_eye_cnt_val      : 40; /**< [ 39:  0](R/W) PCIe eye count value Preset FOM.  Sets the number of eye monitor cycles to sample/count
                                                                 during the PCIe training figure of merit (FOM) calculation when
                                                                 GSERN()_LANE()_TRAIN_8_BCFG[PCIE_EYE_CNT_EN]=1.
                                                                 For diagnostic use only. */
#else /* Word 0 - Little Endian */
        uint64_t pcie_eye_cnt_val      : 40; /**< [ 39:  0](R/W) PCIe eye count value Preset FOM.  Sets the number of eye monitor cycles to sample/count
                                                                 during the PCIe training figure of merit (FOM) calculation when
                                                                 GSERN()_LANE()_TRAIN_8_BCFG[PCIE_EYE_CNT_EN]=1.
                                                                 For diagnostic use only. */
        uint64_t pcie_eye_cnt_en       : 1;  /**< [ 40: 40](R/W) Eye cycle count enable. When set the number of eye monitor
                                                                 cycles to sample and count during the PCIe Gen3/Gen4 training
                                                                 figure of merit (FOM) calculation
                                                                 is controlled by GSERN()_LANE()_TRAIN_8_BCFG[PCIE_EYE_CNT_VAL].
                                                                 For diagnostic use only. */
        uint64_t pcie_ecnt_div_en      : 1;  /**< [ 41: 41](R/W) Error counter divider override enable.
                                                                 For diagnostic use only. */
        uint64_t pcie_ecnt_div_val     : 4;  /**< [ 45: 42](R/W) Error counter divider override value. See table below.
                                                                 Divider is active when the [PCIE_ECNT_DIV_EN] is set.
                                                                 For diagnostic use only.

                                                                    0x0 = No divider.
                                                                    0x1 = Divide by 2.
                                                                    0x2 = Divide by 4.
                                                                    0x3 = Divide by 8.
                                                                    0x4 = Divide by 16.
                                                                    0x5 = Divide by 32.
                                                                    0x6 = Divide by 64.
                                                                    0x7 = Divide by 128.
                                                                    0x8 = Divide by 256.
                                                                    0x9 = Divide by 512.
                                                                    0xA = Divide by 1024.
                                                                    0xB = Divide by 2048.
                                                                    0xC = Divide by 4096.
                                                                    0xD = Divide by 8192.
                                                                    0xE = Divide by 16384.
                                                                    0xF = Divide by 32768. */
        uint64_t pcie_l_c1_e_adj_step  : 5;  /**< [ 50: 46](R/W) Sets the lower C1 E sampler voltage level during eye monitor sampling.
                                                                 Typically set to 0x2 to position the eye monitor
                                                                 error sampler at ~15mV below the C1 Q sampler voltage level.
                                                                 Steps are in units of 5.08 mV per step.
                                                                 Used in conjunction with
                                                                 GSERN()_LANE()_TRAIN_8_BCFG[PCIE_L_C1_E_ADJ_SGN] during PCIE training.
                                                                 For diagnostic use only. */
        uint64_t pcie_adapt_axis       : 3;  /**< [ 53: 51](R/W) Sets the number or adaptation axes to use during receiver adaptation.
                                                                 Typically set to 0x7 to enable all three adaptation axes.  One-hot encoded.

                                                                 Set to 0x1 to only enable axis 1 and disable axis 2 and axis 3.
                                                                 Set to 0x3 to enable axis 1 and axis 2 but disable axis 3.
                                                                 Set to 0x7 to enable axis 1, 2 and 3. (default.)
                                                                 For diagnostic use only. */
        uint64_t pcie_u_c1_e_adj_step  : 5;  /**< [ 58: 54](R/W) Sets the C1 E sampler voltage level during eye monitor sampling.
                                                                 Typically [PCIE_U_C1_E_ADJ_STEP] is set to 0x3 to position the eye monitor
                                                                 error sampler at ~15 mV above the C1 Q sampler voltage level.
                                                                 Steps are in units of 5.08 mV per step.
                                                                 Used in conjunction with
                                                                 GSERN()_LANE()_TRAIN_8_BCFG[PCIE_U_C1_E_ADJ_SGN] for PCIE training.
                                                                 For diagnostic use only. */
        uint64_t pcie_u_c1_e_adj_sgn   : 1;  /**< [ 59: 59](R/W) Sets the upper C1 E sampler adjustment voltage offset sign.
                                                                 0 = The offset sign is positive
                                                                 positioning the upper C1_E sampler above the eye C1_Q sampler.
                                                                 1 = The offset sign is negative
                                                                 positioning the upper C1_E sampler below the eye C1_Q sampler.

                                                                 Used in conjunction with
                                                                 GSERN()_LANE()_TRAIN_8_BCFG[PCIE_U_C1_E_ADJ_STEP] for PCIE training.
                                                                 For diagnostic use only. */
        uint64_t pcie_l_c1_e_adj_sgn   : 1;  /**< [ 60: 60](R/W) Sets the lower C1 E sampler adjustment voltage offset sign.
                                                                 0 = The offset sign is positive
                                                                 positioning the lower C1_E sampler below the eye C1_Q sampler.
                                                                 1 = The offset sign is negative
                                                                 positioning the lower C1_E sampler above the eye C1_Q sampler.

                                                                 Used in conjunction with
                                                                 GSERN()_LANE()_TRAIN_8_BCFG[PCIE_L_C1_E_ADJ_STEP] during PCIE training.
                                                                 For diagnostic use only. */
        uint64_t reserved_61_63        : 3;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_train_8_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_train_8_bcfg bdk_gsernx_lanex_train_8_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_TRAIN_8_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_TRAIN_8_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090003230ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_TRAIN_8_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_TRAIN_8_BCFG(a,b) bdk_gsernx_lanex_train_8_bcfg_t
#define bustype_BDK_GSERNX_LANEX_TRAIN_8_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_TRAIN_8_BCFG(a,b) "GSERNX_LANEX_TRAIN_8_BCFG"
#define device_bar_BDK_GSERNX_LANEX_TRAIN_8_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_TRAIN_8_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_TRAIN_8_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_train_9_bcfg
 *
 * GSER Lane Training Base Configuration Register 9
 * This register controls settings for lane training.
 */
union bdk_gsernx_lanex_train_9_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_train_9_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_59_63        : 5;
        uint64_t pcie_dir_fom_en       : 1;  /**< [ 58: 58](R/W) Enable PCIe Gen3 and Gen4 equalization direction change minimum FOM for termination.
                                                                 During PCIe Gen3 and Gen4 equalization using the direction change method
                                                                 the GSERN()_LANE()_TRAIN_9_BCFG[PCIE_DIR_FOM_THRS] field sets the minimum threshold
                                                                 for the raw 12-bit FOM value that when exceeded will terminate direction change
                                                                 equalization.
                                                                 [PCIE_DIR_FOM_EN] must be set to 1 to allow the direction change state machine
                                                                 to terminate equalization when the measured raw FOM has exceeded the value in the
                                                                 GSERN()_LANE()_TRAIN_9_BCFG[PCIE_DIR_FOM_THRS] field.
                                                                 For diagnostic use only. */
        uint64_t pcie_dir_fom_thrs     : 12; /**< [ 57: 46](R/W) PCIe Gen3 and Gen4 equalization direction change FOM threshold for termination.
                                                                 During PCIe Gen3 and Gen4 equalization using the direction change method
                                                                 [PCIE_DIR_FOM_THRS] sets the minimum threshold for the raw 12-bit FOM
                                                                 value that when exceeded will terminate direction change equalization.
                                                                 The GSERN()_LANE()_TRAIN_9_BCFG[PCIE_DIR_FOM_EN] field must be set to 1 to
                                                                 allow the direction change state machine to terminate equalization when the
                                                                 raw FOM has exceeded the value in [PCIE_DIR_FOM_THRS].
                                                                 For diagnostic use only. */
        uint64_t pcie_dir_ecnt_div_val : 4;  /**< [ 45: 42](R/W) Error counter divider override value. See table below.
                                                                 Divider is active when the [PCIE_DIR_ECNT_DIV_EN] is set.
                                                                 Used when direction change equalization is enabled.
                                                                 For diagnostic use only.

                                                                    0x0 = No divider.
                                                                    0x1 = Divide by 2.
                                                                    0x2 = Divide by 4.
                                                                    0x3 = Divide by 8.
                                                                    0x4 = Divide by 16.
                                                                    0x5 = Divide by 32.
                                                                    0x6 = Divide by 64.
                                                                    0x7 = Divide by 128.
                                                                    0x8 = Divide by 256.
                                                                    0x9 = Divide by 512.
                                                                    0xA = Divide by 1024.
                                                                    0xB = Divide by 2048.
                                                                    0xC = Divide by 4096.
                                                                    0xD = Divide by 8192.
                                                                    0xE = Divide by 16384.
                                                                    0xF = Divide by 32768. */
        uint64_t pcie_dir_ecnt_div_en  : 1;  /**< [ 41: 41](R/W) Error counter divider override enable.
                                                                 Used when direction change equalization is enabled.
                                                                 For diagnostic use only. */
        uint64_t pcie_dir_eye_cnt_en   : 1;  /**< [ 40: 40](R/W) Eye cycle count enable. When set the number of eye monitor
                                                                 cycles to sample and count during the PCIe Gen3/Gen4 training
                                                                 figure of merit (FOM) calculation
                                                                 is controlled by GSERN()_LANE()_TRAIN_9_BCFG[PCIE_DIR_EYE_CNT_VAL].
                                                                 Used when direction change equalization is enabled.
                                                                 For diagnostic use only. */
        uint64_t pcie_dir_eye_cnt_val  : 40; /**< [ 39:  0](R/W) PCIe eye count value in direction change mode.  Sets the number of eye monitor cycles to
                                                                 sample/count during the PCIe training figure of merit (FOM) calculation when
                                                                 GSERN()_LANE()_TRAIN_9_BCFG[PCIE_DIR_EYE_CNT_EN]=1.
                                                                 See GSERN()_LANE()_TRAIN_8_BCFG[PCIE_EYE_CNT_VAL]. */
#else /* Word 0 - Little Endian */
        uint64_t pcie_dir_eye_cnt_val  : 40; /**< [ 39:  0](R/W) PCIe eye count value in direction change mode.  Sets the number of eye monitor cycles to
                                                                 sample/count during the PCIe training figure of merit (FOM) calculation when
                                                                 GSERN()_LANE()_TRAIN_9_BCFG[PCIE_DIR_EYE_CNT_EN]=1.
                                                                 See GSERN()_LANE()_TRAIN_8_BCFG[PCIE_EYE_CNT_VAL]. */
        uint64_t pcie_dir_eye_cnt_en   : 1;  /**< [ 40: 40](R/W) Eye cycle count enable. When set the number of eye monitor
                                                                 cycles to sample and count during the PCIe Gen3/Gen4 training
                                                                 figure of merit (FOM) calculation
                                                                 is controlled by GSERN()_LANE()_TRAIN_9_BCFG[PCIE_DIR_EYE_CNT_VAL].
                                                                 Used when direction change equalization is enabled.
                                                                 For diagnostic use only. */
        uint64_t pcie_dir_ecnt_div_en  : 1;  /**< [ 41: 41](R/W) Error counter divider override enable.
                                                                 Used when direction change equalization is enabled.
                                                                 For diagnostic use only. */
        uint64_t pcie_dir_ecnt_div_val : 4;  /**< [ 45: 42](R/W) Error counter divider override value. See table below.
                                                                 Divider is active when the [PCIE_DIR_ECNT_DIV_EN] is set.
                                                                 Used when direction change equalization is enabled.
                                                                 For diagnostic use only.

                                                                    0x0 = No divider.
                                                                    0x1 = Divide by 2.
                                                                    0x2 = Divide by 4.
                                                                    0x3 = Divide by 8.
                                                                    0x4 = Divide by 16.
                                                                    0x5 = Divide by 32.
                                                                    0x6 = Divide by 64.
                                                                    0x7 = Divide by 128.
                                                                    0x8 = Divide by 256.
                                                                    0x9 = Divide by 512.
                                                                    0xA = Divide by 1024.
                                                                    0xB = Divide by 2048.
                                                                    0xC = Divide by 4096.
                                                                    0xD = Divide by 8192.
                                                                    0xE = Divide by 16384.
                                                                    0xF = Divide by 32768. */
        uint64_t pcie_dir_fom_thrs     : 12; /**< [ 57: 46](R/W) PCIe Gen3 and Gen4 equalization direction change FOM threshold for termination.
                                                                 During PCIe Gen3 and Gen4 equalization using the direction change method
                                                                 [PCIE_DIR_FOM_THRS] sets the minimum threshold for the raw 12-bit FOM
                                                                 value that when exceeded will terminate direction change equalization.
                                                                 The GSERN()_LANE()_TRAIN_9_BCFG[PCIE_DIR_FOM_EN] field must be set to 1 to
                                                                 allow the direction change state machine to terminate equalization when the
                                                                 raw FOM has exceeded the value in [PCIE_DIR_FOM_THRS].
                                                                 For diagnostic use only. */
        uint64_t pcie_dir_fom_en       : 1;  /**< [ 58: 58](R/W) Enable PCIe Gen3 and Gen4 equalization direction change minimum FOM for termination.
                                                                 During PCIe Gen3 and Gen4 equalization using the direction change method
                                                                 the GSERN()_LANE()_TRAIN_9_BCFG[PCIE_DIR_FOM_THRS] field sets the minimum threshold
                                                                 for the raw 12-bit FOM value that when exceeded will terminate direction change
                                                                 equalization.
                                                                 [PCIE_DIR_FOM_EN] must be set to 1 to allow the direction change state machine
                                                                 to terminate equalization when the measured raw FOM has exceeded the value in the
                                                                 GSERN()_LANE()_TRAIN_9_BCFG[PCIE_DIR_FOM_THRS] field.
                                                                 For diagnostic use only. */
        uint64_t reserved_59_63        : 5;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_train_9_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_train_9_bcfg bdk_gsernx_lanex_train_9_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_TRAIN_9_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_TRAIN_9_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090003240ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_TRAIN_9_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_TRAIN_9_BCFG(a,b) bdk_gsernx_lanex_train_9_bcfg_t
#define bustype_BDK_GSERNX_LANEX_TRAIN_9_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_TRAIN_9_BCFG(a,b) "GSERNX_LANEX_TRAIN_9_BCFG"
#define device_bar_BDK_GSERNX_LANEX_TRAIN_9_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_TRAIN_9_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_TRAIN_9_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_tx_1_bcfg
 *
 * GSER Lane TX Base Configuration Register 1
 * lane transmitter configuration Register 1
 */
union bdk_gsernx_lanex_tx_1_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_tx_1_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_57_63        : 7;
        uint64_t tx_acjtag             : 1;  /**< [ 56: 56](R/W) TBD */
        uint64_t tx_dacj               : 8;  /**< [ 55: 48](R/W) ACJTAG block data bits (some redundant). */
        uint64_t reserved_41_47        : 7;
        uint64_t tx_enloop             : 1;  /**< [ 40: 40](R/W) Set to enable the DDR loopback mux in the custom transmitter to
                                                                 send a copy of transmit data back into the receive path. */
        uint64_t reserved_33_39        : 7;
        uint64_t nvlink                : 1;  /**< [ 32: 32](R/W) Transmitter lower impedance termination control (43 ohm instead of 50 ohm). */
        uint64_t reserved_26_31        : 6;
        uint64_t rx_mod4               : 1;  /**< [ 25: 25](R/W) Use PCS layer receive data path clock ratio of 16:1 or 32:1
                                                                 (serdes-data-rate:PCS-layer-clock-frequency) when set to 1. When set
                                                                 to 0, use PCS layer receive clock ratio of 20:1 or 40:1.

                                                                 GSERN()_LANE()_TX_1_BCFG[RX_POST4] and GSERN()_LANE()_TX_1_BCFG[RX_MOD4]
                                                                 together set the width of the parallel receive data path (pipe) in the
                                                                 custom receiver. GSERN()_LANE()_TX_1_BCFG[RX_POST4] and
                                                                 GSERN()_LANE()_TX_1_BCFG[RX_MOD4] together control the clock ratio of the
                                                                 serializer in the custom receiver.

                                                                 GSERN()_LANE()_TX_1_BCFG[RX_MOD4] and GSERN()_LANE()_TX_1_BCFG[MOD4] and
                                                                 would normally be set to the same value to use the transmitter and
                                                                 receiver at the same PCS clock ratio. */
        uint64_t rx_post4              : 1;  /**< [ 24: 24](R/W) Use PCS layer receive data path clock ratio of 32:1 or 40:1
                                                                 (serdes-data-rate:PCS-layer-clock-frequency) when set to 1. When set
                                                                 to 0, use PCS layer receive clock ratio of 16:1 or 20:1. (The
                                                                 function is similar to [DIV20] but for the receiver instead of the
                                                                 transmitter.)

                                                                 GSERN()_LANE()_TX_1_BCFG[RX_POST4] and GSERN()_LANE()_TX_1_BCFG[RX_MOD4]
                                                                 together set the width of the parallel receive data path (pipe) in the
                                                                 custom receiver. GSERN()_LANE()_TX_1_BCFG[RX_POST4] and
                                                                 GSERN()_LANE()_TX_1_BCFG[RX_MOD4] together control the clock ratio of the
                                                                 serializer in the custom receiver.

                                                                 GSERN()_LANE()_TX_1_BCFG[RX_POST4] and GSERN()_LANE()_TX_1_BCFG[DIV20] and
                                                                 would normally be set to the same value to use the transmitter and
                                                                 receiver at the same PCS clock ratio. */
        uint64_t reserved_18_23        : 6;
        uint64_t mod4                  : 1;  /**< [ 17: 17](R/W) Use PCS layer transmit data path clock ratio of 16:1 or 32:1
                                                                 (serdes-data-rate:PCS-layer-clock-frequency) when set to 1. When set
                                                                 to 0, use PCS layer transmit clock ratio of 20:1 or 40:1.

                                                                 Should be programed as desired before sequencing the transmitter reset
                                                                 state machine.

                                                                 GSERN()_LANE()_TX_1_BCFG[DIV20] and GSERN()_LANE()_TX_1_BCFG[MOD4] together set
                                                                 the width of the parallel transmit data path (pipe) in the custom
                                                                 transmitter. GSERN()_LANE()_TX_1_BCFG[DIV20] and GSERN()_LANE()_TX_1_BCFG[MOD4]
                                                                 together control the clock ratio of the serializer in the custom
                                                                 transmitter.

                                                                 GSERN()_LANE()_TX_1_BCFG[RX_MOD4] and GSERN()_LANE()_TX_1_BCFG[MOD4] and
                                                                 would normally be set to the same value to use the transmitter and
                                                                 receiver at the same PCS clock ratio. */
        uint64_t div20                 : 1;  /**< [ 16: 16](R/W) Use PCS layer transmit data path clock ratio of 32:1 or 40:1
                                                                 (serdes-data-rate:PCS-layer-clock-frequency) when set to 1. When set
                                                                 to 0, use PCS layer transmit clock ratio of 16:1 or 20:1.

                                                                 Should be programed as desired before sequencing the transmitter reset
                                                                 state machine.

                                                                 GSERN()_LANE()_TX_1_BCFG[DIV20] and GSERN()_LANE()_TX_1_BCFG[MOD4] together set
                                                                 the width of the parallel transmit data path (pipe) in the custom
                                                                 transmitter. GSERN()_LANE()_TX_1_BCFG[DIV20] and GSERN()_LANE()_TX_1_BCFG[MOD4]
                                                                 together control the clock ratio of the serializer in the custom
                                                                 transnmitter.

                                                                 GSERN()_LANE()_TX_1_BCFG[RX_POST4] and GSERN()_LANE()_TX_1_BCFG[DIV20] and
                                                                 would normally be set to the same value to use the transmitter and
                                                                 receiver at the same PCS clock ratio. */
        uint64_t reserved_9_15         : 7;
        uint64_t tx_enfast             : 1;  /**< [  8:  8](R/W) Enable fast slew on the TX preamp output. */
        uint64_t reserved_1_7          : 7;
        uint64_t tx_encm               : 1;  /**< [  0:  0](R/W) Enable common mode correction in the transmitter. */
#else /* Word 0 - Little Endian */
        uint64_t tx_encm               : 1;  /**< [  0:  0](R/W) Enable common mode correction in the transmitter. */
        uint64_t reserved_1_7          : 7;
        uint64_t tx_enfast             : 1;  /**< [  8:  8](R/W) Enable fast slew on the TX preamp output. */
        uint64_t reserved_9_15         : 7;
        uint64_t div20                 : 1;  /**< [ 16: 16](R/W) Use PCS layer transmit data path clock ratio of 32:1 or 40:1
                                                                 (serdes-data-rate:PCS-layer-clock-frequency) when set to 1. When set
                                                                 to 0, use PCS layer transmit clock ratio of 16:1 or 20:1.

                                                                 Should be programed as desired before sequencing the transmitter reset
                                                                 state machine.

                                                                 GSERN()_LANE()_TX_1_BCFG[DIV20] and GSERN()_LANE()_TX_1_BCFG[MOD4] together set
                                                                 the width of the parallel transmit data path (pipe) in the custom
                                                                 transmitter. GSERN()_LANE()_TX_1_BCFG[DIV20] and GSERN()_LANE()_TX_1_BCFG[MOD4]
                                                                 together control the clock ratio of the serializer in the custom
                                                                 transnmitter.

                                                                 GSERN()_LANE()_TX_1_BCFG[RX_POST4] and GSERN()_LANE()_TX_1_BCFG[DIV20] and
                                                                 would normally be set to the same value to use the transmitter and
                                                                 receiver at the same PCS clock ratio. */
        uint64_t mod4                  : 1;  /**< [ 17: 17](R/W) Use PCS layer transmit data path clock ratio of 16:1 or 32:1
                                                                 (serdes-data-rate:PCS-layer-clock-frequency) when set to 1. When set
                                                                 to 0, use PCS layer transmit clock ratio of 20:1 or 40:1.

                                                                 Should be programed as desired before sequencing the transmitter reset
                                                                 state machine.

                                                                 GSERN()_LANE()_TX_1_BCFG[DIV20] and GSERN()_LANE()_TX_1_BCFG[MOD4] together set
                                                                 the width of the parallel transmit data path (pipe) in the custom
                                                                 transmitter. GSERN()_LANE()_TX_1_BCFG[DIV20] and GSERN()_LANE()_TX_1_BCFG[MOD4]
                                                                 together control the clock ratio of the serializer in the custom
                                                                 transmitter.

                                                                 GSERN()_LANE()_TX_1_BCFG[RX_MOD4] and GSERN()_LANE()_TX_1_BCFG[MOD4] and
                                                                 would normally be set to the same value to use the transmitter and
                                                                 receiver at the same PCS clock ratio. */
        uint64_t reserved_18_23        : 6;
        uint64_t rx_post4              : 1;  /**< [ 24: 24](R/W) Use PCS layer receive data path clock ratio of 32:1 or 40:1
                                                                 (serdes-data-rate:PCS-layer-clock-frequency) when set to 1. When set
                                                                 to 0, use PCS layer receive clock ratio of 16:1 or 20:1. (The
                                                                 function is similar to [DIV20] but for the receiver instead of the
                                                                 transmitter.)

                                                                 GSERN()_LANE()_TX_1_BCFG[RX_POST4] and GSERN()_LANE()_TX_1_BCFG[RX_MOD4]
                                                                 together set the width of the parallel receive data path (pipe) in the
                                                                 custom receiver. GSERN()_LANE()_TX_1_BCFG[RX_POST4] and
                                                                 GSERN()_LANE()_TX_1_BCFG[RX_MOD4] together control the clock ratio of the
                                                                 serializer in the custom receiver.

                                                                 GSERN()_LANE()_TX_1_BCFG[RX_POST4] and GSERN()_LANE()_TX_1_BCFG[DIV20] and
                                                                 would normally be set to the same value to use the transmitter and
                                                                 receiver at the same PCS clock ratio. */
        uint64_t rx_mod4               : 1;  /**< [ 25: 25](R/W) Use PCS layer receive data path clock ratio of 16:1 or 32:1
                                                                 (serdes-data-rate:PCS-layer-clock-frequency) when set to 1. When set
                                                                 to 0, use PCS layer receive clock ratio of 20:1 or 40:1.

                                                                 GSERN()_LANE()_TX_1_BCFG[RX_POST4] and GSERN()_LANE()_TX_1_BCFG[RX_MOD4]
                                                                 together set the width of the parallel receive data path (pipe) in the
                                                                 custom receiver. GSERN()_LANE()_TX_1_BCFG[RX_POST4] and
                                                                 GSERN()_LANE()_TX_1_BCFG[RX_MOD4] together control the clock ratio of the
                                                                 serializer in the custom receiver.

                                                                 GSERN()_LANE()_TX_1_BCFG[RX_MOD4] and GSERN()_LANE()_TX_1_BCFG[MOD4] and
                                                                 would normally be set to the same value to use the transmitter and
                                                                 receiver at the same PCS clock ratio. */
        uint64_t reserved_26_31        : 6;
        uint64_t nvlink                : 1;  /**< [ 32: 32](R/W) Transmitter lower impedance termination control (43 ohm instead of 50 ohm). */
        uint64_t reserved_33_39        : 7;
        uint64_t tx_enloop             : 1;  /**< [ 40: 40](R/W) Set to enable the DDR loopback mux in the custom transmitter to
                                                                 send a copy of transmit data back into the receive path. */
        uint64_t reserved_41_47        : 7;
        uint64_t tx_dacj               : 8;  /**< [ 55: 48](R/W) ACJTAG block data bits (some redundant). */
        uint64_t tx_acjtag             : 1;  /**< [ 56: 56](R/W) TBD */
        uint64_t reserved_57_63        : 7;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_tx_1_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_tx_1_bcfg bdk_gsernx_lanex_tx_1_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_TX_1_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_TX_1_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000b40ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_TX_1_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_TX_1_BCFG(a,b) bdk_gsernx_lanex_tx_1_bcfg_t
#define bustype_BDK_GSERNX_LANEX_TX_1_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_TX_1_BCFG(a,b) "GSERNX_LANEX_TX_1_BCFG"
#define device_bar_BDK_GSERNX_LANEX_TX_1_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_TX_1_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_TX_1_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_tx_bsts
 *
 * GSER Lane TX Base Status Register
 * lane transmitter status
 */
union bdk_gsernx_lanex_tx_bsts
{
    uint64_t u;
    struct bdk_gsernx_lanex_tx_bsts_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_3_63         : 61;
        uint64_t rxdetn                : 1;  /**< [  2:  2](RO/H) Transmitter block detection of receiver termination presence,
                                                                 low-side. Asserted indicates termination presence was
                                                                 detected. Valid only if [RXDETCOMPLETE] is set. */
        uint64_t rxdetp                : 1;  /**< [  1:  1](RO/H) Transmitter block detection of receiver termination presence,
                                                                 high-side. Asserted indicates termination presence was
                                                                 detected. Valid only if [RXDETCOMPLETE] is set. */
        uint64_t rxdetcomplete         : 1;  /**< [  0:  0](RO/H) Receiver presence detection engine has completed. */
#else /* Word 0 - Little Endian */
        uint64_t rxdetcomplete         : 1;  /**< [  0:  0](RO/H) Receiver presence detection engine has completed. */
        uint64_t rxdetp                : 1;  /**< [  1:  1](RO/H) Transmitter block detection of receiver termination presence,
                                                                 high-side. Asserted indicates termination presence was
                                                                 detected. Valid only if [RXDETCOMPLETE] is set. */
        uint64_t rxdetn                : 1;  /**< [  2:  2](RO/H) Transmitter block detection of receiver termination presence,
                                                                 low-side. Asserted indicates termination presence was
                                                                 detected. Valid only if [RXDETCOMPLETE] is set. */
        uint64_t reserved_3_63         : 61;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_tx_bsts_s cn; */
};
typedef union bdk_gsernx_lanex_tx_bsts bdk_gsernx_lanex_tx_bsts_t;

static inline uint64_t BDK_GSERNX_LANEX_TX_BSTS(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_TX_BSTS(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000b60ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_TX_BSTS", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_TX_BSTS(a,b) bdk_gsernx_lanex_tx_bsts_t
#define bustype_BDK_GSERNX_LANEX_TX_BSTS(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_TX_BSTS(a,b) "GSERNX_LANEX_TX_BSTS"
#define device_bar_BDK_GSERNX_LANEX_TX_BSTS(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_TX_BSTS(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_TX_BSTS(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_tx_drv2_bcfg
 *
 * GSER Lane TX Drive Override Base Configuration Register 2
 * Upper limits on the allowed preemphasis and postemphasis values before translating to the
 * raw transmitter control settings.
 */
union bdk_gsernx_lanex_tx_drv2_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_tx_drv2_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_13_63        : 51;
        uint64_t cpost_limit           : 5;  /**< [ 12:  8](R/W) Upper limit for the postemphasis value. The valid range is 0x0 to 0x10. */
        uint64_t reserved_5_7          : 3;
        uint64_t cpre_limit            : 5;  /**< [  4:  0](R/W) Upper limit for the preemphasis value. The valid range is 0x0 to 0x10. */
#else /* Word 0 - Little Endian */
        uint64_t cpre_limit            : 5;  /**< [  4:  0](R/W) Upper limit for the preemphasis value. The valid range is 0x0 to 0x10. */
        uint64_t reserved_5_7          : 3;
        uint64_t cpost_limit           : 5;  /**< [ 12:  8](R/W) Upper limit for the postemphasis value. The valid range is 0x0 to 0x10. */
        uint64_t reserved_13_63        : 51;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_tx_drv2_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_tx_drv2_bcfg bdk_gsernx_lanex_tx_drv2_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_TX_DRV2_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_TX_DRV2_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000b20ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_TX_DRV2_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_TX_DRV2_BCFG(a,b) bdk_gsernx_lanex_tx_drv2_bcfg_t
#define bustype_BDK_GSERNX_LANEX_TX_DRV2_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_TX_DRV2_BCFG(a,b) "GSERNX_LANEX_TX_DRV2_BCFG"
#define device_bar_BDK_GSERNX_LANEX_TX_DRV2_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_TX_DRV2_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_TX_DRV2_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_tx_drv_bcfg
 *
 * GSER Lane TX Drive Override Base Configuration Register
 * Lane transmitter drive override values and enables configuration
 * Register. Default values are chosen to provide the "idle" configuration
 * when the lane reset state machine completes. The transmitter "idle"
 * configuration drives the output to mid-rail with 2 pull-up and 2
 * pull-down legs active.
 *
 * These value fields in this register are in effect when the
 * corresponding enable fields ([EN_TX_DRV], [EN_TX_CSPD], and
 * GSERN()_LANE()_TX_DRV_BCFG[EN_TX_BS]) are set.
 */
union bdk_gsernx_lanex_tx_drv_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_tx_drv_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t tx_cspd               : 1;  /**< [ 63: 63](R/W) Power-down control for a second TX bias/swing leg with the same
                                                                 weight as TX_BS[3]. Normally this field is left deasserted to
                                                                 provide a minimum transmit amplitude. Asserting [TX_CSPD] will turn
                                                                 off all legs of the bias/swing generator for lower standby power. */
        uint64_t reserved_62           : 1;
        uint64_t tx_bs                 : 6;  /**< [ 61: 56](R/W) TX bias/swing selection. This setting only takes effect if [EN_TX_BS]
                                                                 is asserted and [TX_CSPD] is deasserted; with [TX_CSPD] asserted the
                                                                 bias/swing control setting seen in the analog bias generator is zero.

                                                                 Typical override values would be:
                                                                   42 = Nominal 1.0V p-p transmit amplitude.
                                                                   52 = Nominal 1.2V p-p transmit amplitude.

                                                                 The maximum usable value without transmitted waveform distortion depends
                                                                 primarily on voltage, secondarily on process corner and temperature, but is at
                                                                 least 52.  There is no minimum setting based on transmitter distortion, only
                                                                 that set by the receiver. */
        uint64_t reserved_51_55        : 5;
        uint64_t en_tx_cspd            : 1;  /**< [ 50: 50](R/W) Enables use of [TX_CSPD] an overrides to
                                                                 set the current source power down control of the transmitter. */
        uint64_t en_tx_bs              : 1;  /**< [ 49: 49](R/W) Enables use of [TX_BS] as an override to
                                                                 set the bias/swing control of the transmitter. */
        uint64_t en_tx_drv             : 1;  /**< [ 48: 48](R/W) Enables use of the transmit drive strength fields in this register as overrides
                                                                 to explicitly set the base transmitter controls. (All fields except [TX_BS] and
                                                                 [TX_CSPD], which have separate override enables.) For diagnostic use only. */
        uint64_t reserved_42_47        : 6;
        uint64_t muxpost               : 2;  /**< [ 41: 40](R/W) Postcursor mux controls. */
        uint64_t cpostb                : 3;  /**< [ 39: 37](R/W) Post cursor block 1 coefficient. */
        uint64_t cposta                : 3;  /**< [ 36: 34](R/W) Post cursor block 0 coefficient. */
        uint64_t enpost                : 2;  /**< [ 33: 32](R/W) Postcursor block enables. */
        uint64_t reserved_27_31        : 5;
        uint64_t muxmain               : 4;  /**< [ 26: 23](R/W) Main mux controls (some redundant). */
        uint64_t cmaind                : 3;  /**< [ 22: 20](R/W) Main block 3 coefficient. */
        uint64_t enmain                : 4;  /**< [ 19: 16](R/W) Main block enables. */
        uint64_t reserved_10_15        : 6;
        uint64_t muxpre                : 2;  /**< [  9:  8](R/W) Precursor mux controls. */
        uint64_t cpreb                 : 3;  /**< [  7:  5](R/W) Precursor Block 1 coefficient. */
        uint64_t cprea                 : 3;  /**< [  4:  2](R/W) Precursor Block 0 coefficient. */
        uint64_t enpre                 : 2;  /**< [  1:  0](R/W) Precursor block enables. */
#else /* Word 0 - Little Endian */
        uint64_t enpre                 : 2;  /**< [  1:  0](R/W) Precursor block enables. */
        uint64_t cprea                 : 3;  /**< [  4:  2](R/W) Precursor Block 0 coefficient. */
        uint64_t cpreb                 : 3;  /**< [  7:  5](R/W) Precursor Block 1 coefficient. */
        uint64_t muxpre                : 2;  /**< [  9:  8](R/W) Precursor mux controls. */
        uint64_t reserved_10_15        : 6;
        uint64_t enmain                : 4;  /**< [ 19: 16](R/W) Main block enables. */
        uint64_t cmaind                : 3;  /**< [ 22: 20](R/W) Main block 3 coefficient. */
        uint64_t muxmain               : 4;  /**< [ 26: 23](R/W) Main mux controls (some redundant). */
        uint64_t reserved_27_31        : 5;
        uint64_t enpost                : 2;  /**< [ 33: 32](R/W) Postcursor block enables. */
        uint64_t cposta                : 3;  /**< [ 36: 34](R/W) Post cursor block 0 coefficient. */
        uint64_t cpostb                : 3;  /**< [ 39: 37](R/W) Post cursor block 1 coefficient. */
        uint64_t muxpost               : 2;  /**< [ 41: 40](R/W) Postcursor mux controls. */
        uint64_t reserved_42_47        : 6;
        uint64_t en_tx_drv             : 1;  /**< [ 48: 48](R/W) Enables use of the transmit drive strength fields in this register as overrides
                                                                 to explicitly set the base transmitter controls. (All fields except [TX_BS] and
                                                                 [TX_CSPD], which have separate override enables.) For diagnostic use only. */
        uint64_t en_tx_bs              : 1;  /**< [ 49: 49](R/W) Enables use of [TX_BS] as an override to
                                                                 set the bias/swing control of the transmitter. */
        uint64_t en_tx_cspd            : 1;  /**< [ 50: 50](R/W) Enables use of [TX_CSPD] an overrides to
                                                                 set the current source power down control of the transmitter. */
        uint64_t reserved_51_55        : 5;
        uint64_t tx_bs                 : 6;  /**< [ 61: 56](R/W) TX bias/swing selection. This setting only takes effect if [EN_TX_BS]
                                                                 is asserted and [TX_CSPD] is deasserted; with [TX_CSPD] asserted the
                                                                 bias/swing control setting seen in the analog bias generator is zero.

                                                                 Typical override values would be:
                                                                   42 = Nominal 1.0V p-p transmit amplitude.
                                                                   52 = Nominal 1.2V p-p transmit amplitude.

                                                                 The maximum usable value without transmitted waveform distortion depends
                                                                 primarily on voltage, secondarily on process corner and temperature, but is at
                                                                 least 52.  There is no minimum setting based on transmitter distortion, only
                                                                 that set by the receiver. */
        uint64_t reserved_62           : 1;
        uint64_t tx_cspd               : 1;  /**< [ 63: 63](R/W) Power-down control for a second TX bias/swing leg with the same
                                                                 weight as TX_BS[3]. Normally this field is left deasserted to
                                                                 provide a minimum transmit amplitude. Asserting [TX_CSPD] will turn
                                                                 off all legs of the bias/swing generator for lower standby power. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_tx_drv_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_tx_drv_bcfg bdk_gsernx_lanex_tx_drv_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_TX_DRV_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_TX_DRV_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000b10ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_TX_DRV_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_TX_DRV_BCFG(a,b) bdk_gsernx_lanex_tx_drv_bcfg_t
#define bustype_BDK_GSERNX_LANEX_TX_DRV_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_TX_DRV_BCFG(a,b) "GSERNX_LANEX_TX_DRV_BCFG"
#define device_bar_BDK_GSERNX_LANEX_TX_DRV_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_TX_DRV_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_TX_DRV_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_tx_drv_bsts
 *
 * GSER Lane TX Drive Base Status Register
 * Lane transmitter drive setup status, i.e., settings which the
 * transmitter is actually using. During a transmitter receiver presence
 * detection sequence the fields of this register not reliable, i.e.,
 * following a write of GSERN()_LANE()_TX_RXD_BCFG[TRIGGER] to one this register is not
 * reliable until after GSERN()_LANE()_TX_BSTS[RXDETCOMPLETE] reads as one.
 */
union bdk_gsernx_lanex_tx_drv_bsts
{
    uint64_t u;
    struct bdk_gsernx_lanex_tx_drv_bsts_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t tx_cspd               : 1;  /**< [ 63: 63](RO/H) TX current source power down (cspd) setting in use, a second
                                                                 bias/swing leg with the same weight as TX_BS[3], but with opposite
                                                                 polarity for the control signal. */
        uint64_t reserved_62           : 1;
        uint64_t tx_bs                 : 6;  /**< [ 61: 56](RO/H) TX bias/swing selection in use. */
        uint64_t reserved_52_55        : 4;
        uint64_t tx_invalid            : 1;  /**< [ 51: 51](RO/H) Invalid status generated by the gser_lane_pnr_txdrv_remap module
                                                                 indicating an invalid combination of (cpre, cpost, cmain, bit-stuff)
                                                                 was requested. */
        uint64_t reserved_42_50        : 9;
        uint64_t muxpost               : 2;  /**< [ 41: 40](RO/H) Postcursor mux controls in use. */
        uint64_t cpostb                : 3;  /**< [ 39: 37](RO/H) Post cursor block 1 coefficient in use. */
        uint64_t cposta                : 3;  /**< [ 36: 34](RO/H) Post cursor block 0 coefficient in use. */
        uint64_t enpost                : 2;  /**< [ 33: 32](RO/H) Postcursor block enables in use. */
        uint64_t reserved_27_31        : 5;
        uint64_t muxmain               : 4;  /**< [ 26: 23](RO/H) Main mux controls (some redundant) in use. */
        uint64_t cmaind                : 3;  /**< [ 22: 20](RO/H) Main block 3 coefficient in use. */
        uint64_t enmain                : 4;  /**< [ 19: 16](RO/H) Main block enables in use. */
        uint64_t reserved_10_15        : 6;
        uint64_t muxpre                : 2;  /**< [  9:  8](RO/H) Precursor mux controls in use. */
        uint64_t cpreb                 : 3;  /**< [  7:  5](RO/H) Precursor Block 1 coefficient in use. */
        uint64_t cprea                 : 3;  /**< [  4:  2](RO/H) Precursor Block 0 coefficient in use. */
        uint64_t enpre                 : 2;  /**< [  1:  0](RO/H) Precursor block enables in use. */
#else /* Word 0 - Little Endian */
        uint64_t enpre                 : 2;  /**< [  1:  0](RO/H) Precursor block enables in use. */
        uint64_t cprea                 : 3;  /**< [  4:  2](RO/H) Precursor Block 0 coefficient in use. */
        uint64_t cpreb                 : 3;  /**< [  7:  5](RO/H) Precursor Block 1 coefficient in use. */
        uint64_t muxpre                : 2;  /**< [  9:  8](RO/H) Precursor mux controls in use. */
        uint64_t reserved_10_15        : 6;
        uint64_t enmain                : 4;  /**< [ 19: 16](RO/H) Main block enables in use. */
        uint64_t cmaind                : 3;  /**< [ 22: 20](RO/H) Main block 3 coefficient in use. */
        uint64_t muxmain               : 4;  /**< [ 26: 23](RO/H) Main mux controls (some redundant) in use. */
        uint64_t reserved_27_31        : 5;
        uint64_t enpost                : 2;  /**< [ 33: 32](RO/H) Postcursor block enables in use. */
        uint64_t cposta                : 3;  /**< [ 36: 34](RO/H) Post cursor block 0 coefficient in use. */
        uint64_t cpostb                : 3;  /**< [ 39: 37](RO/H) Post cursor block 1 coefficient in use. */
        uint64_t muxpost               : 2;  /**< [ 41: 40](RO/H) Postcursor mux controls in use. */
        uint64_t reserved_42_50        : 9;
        uint64_t tx_invalid            : 1;  /**< [ 51: 51](RO/H) Invalid status generated by the gser_lane_pnr_txdrv_remap module
                                                                 indicating an invalid combination of (cpre, cpost, cmain, bit-stuff)
                                                                 was requested. */
        uint64_t reserved_52_55        : 4;
        uint64_t tx_bs                 : 6;  /**< [ 61: 56](RO/H) TX bias/swing selection in use. */
        uint64_t reserved_62           : 1;
        uint64_t tx_cspd               : 1;  /**< [ 63: 63](RO/H) TX current source power down (cspd) setting in use, a second
                                                                 bias/swing leg with the same weight as TX_BS[3], but with opposite
                                                                 polarity for the control signal. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_tx_drv_bsts_s cn; */
};
typedef union bdk_gsernx_lanex_tx_drv_bsts bdk_gsernx_lanex_tx_drv_bsts_t;

static inline uint64_t BDK_GSERNX_LANEX_TX_DRV_BSTS(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_TX_DRV_BSTS(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000b30ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_TX_DRV_BSTS", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_TX_DRV_BSTS(a,b) bdk_gsernx_lanex_tx_drv_bsts_t
#define bustype_BDK_GSERNX_LANEX_TX_DRV_BSTS(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_TX_DRV_BSTS(a,b) "GSERNX_LANEX_TX_DRV_BSTS"
#define device_bar_BDK_GSERNX_LANEX_TX_DRV_BSTS(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_TX_DRV_BSTS(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_TX_DRV_BSTS(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_tx_rxd_bcfg
 *
 * GSER Lane TX Receive Presence Detector Base Configuration Register
 * The lane transmitter receiver presence detector controls are in this
 * register. When the transmitter's receiver presence detection sequencer
 * is triggered (by asserting [TRIGGER]), the transmitter needs to
 * be in a weak idle state, i.e., all fields of GSERN()_LANE()_TX_DRV_BSTS
 * should reflect the reset default values of the same fields in
 * GSERN()_LANE()_TX_DRV_BCFG.
 */
union bdk_gsernx_lanex_tx_rxd_bcfg
{
    uint64_t u;
    struct bdk_gsernx_lanex_tx_rxd_bcfg_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t reserved_34_63        : 30;
        uint64_t ovrride_det_en        : 1;  /**< [ 33: 33](R/W) Enable use of the [OVRRIDE_DET] value for the result of PCIe transmitter
                                                                 receiver presense detection instead of the normal measured result.

                                                                 Internal:
                                                                 When asserted, this control will also suppress the normal pull-down and release
                                                                 of the transmit signals that takes place during receiver presence detaction. */
        uint64_t ovrride_det           : 1;  /**< [ 32: 32](R/W) When enabled by [OVRRIDE_DET_EN], the PCIe transmitter receiver presence
                                                                 detector will use this value instead of that measured by the functional
                                                                 circuit. This provides a mechanism to force recognition of a known number of
                                                                 lanes in the link independent of the normal receiver presence detection
                                                                 procedure. */
        uint64_t reserved_30_31        : 2;
        uint64_t release_wait          : 6;  /**< [ 29: 24](R/W) Wait time after asserting rxd_samp and rxd_samn to capture the
                                                                 result before releasing tx_rxd, rxd_samp, and rxd_samn,
                                                                 expressed as a count of txdivclk cycles minus one, e.g., set to 0
                                                                 to get 1 cycles. Typically set for 8 ns, or a count of 1 cycle when
                                                                 using for PCIe gen1 (125 MHz txdivclk). */
        uint64_t reserved_22_23        : 2;
        uint64_t sample_wait           : 6;  /**< [ 21: 16](R/W) Wait time after asserting tx_rxd before asserting rxd_samp and
                                                                 rxd_samn to sample the result, expressed as a count of lane PLL
                                                                 reference clock cycles minus 1, e.g., set to 1 to get 2 cycles.
                                                                 Typically set for 16 ns, or a count of 2 cycles for PCIe gen1
                                                                 (125 MHz txdivclk). */
        uint64_t reserved_12_15        : 4;
        uint64_t tx_disable            : 1;  /**< [ 11: 11](R/W) Disable all transmitter eqdrv blocks during the receiver-present
                                                                 detection sequence. When asserted, this temporarily overrides the
                                                                 enmain, empre, and enpost settings in
                                                                 GSERN()_LANE()_TX_DRV_BCFG, tri-stating the transmitter
                                                                 during the sequence instead of leaving it in weak idle. */
        uint64_t samn_en               : 1;  /**< [ 10: 10](R/W) Enable sampling of the transmitter's receiver termination presence
                                                                 detector on the padn output. */
        uint64_t samp_en               : 1;  /**< [  9:  9](R/W) Enable sampling of the transmitter's receiver termination presence
                                                                 detector on the padp output. */
        uint64_t rxd_en                : 1;  /**< [  8:  8](R/W) Enable assertion of the RXD pulldown on the (common) termination
                                                                 point for differential pair prior to sampling the pad voltages. Set
                                                                 to one for the normal detection sequence to work correctly. Setting
                                                                 to zero is a verification hook to allow sampling the pad values
                                                                 without first pulling the pads low. */
        uint64_t reserved_1_7          : 7;
        uint64_t trigger               : 1;  /**< [  0:  0](R/W/H) Enable the sequencer which exercises the transmitter's receiver
                                                                 termination presence detection. An asserting edge will start the
                                                                 sequencer. This field self-clears when the sequence has completed. */
#else /* Word 0 - Little Endian */
        uint64_t trigger               : 1;  /**< [  0:  0](R/W/H) Enable the sequencer which exercises the transmitter's receiver
                                                                 termination presence detection. An asserting edge will start the
                                                                 sequencer. This field self-clears when the sequence has completed. */
        uint64_t reserved_1_7          : 7;
        uint64_t rxd_en                : 1;  /**< [  8:  8](R/W) Enable assertion of the RXD pulldown on the (common) termination
                                                                 point for differential pair prior to sampling the pad voltages. Set
                                                                 to one for the normal detection sequence to work correctly. Setting
                                                                 to zero is a verification hook to allow sampling the pad values
                                                                 without first pulling the pads low. */
        uint64_t samp_en               : 1;  /**< [  9:  9](R/W) Enable sampling of the transmitter's receiver termination presence
                                                                 detector on the padp output. */
        uint64_t samn_en               : 1;  /**< [ 10: 10](R/W) Enable sampling of the transmitter's receiver termination presence
                                                                 detector on the padn output. */
        uint64_t tx_disable            : 1;  /**< [ 11: 11](R/W) Disable all transmitter eqdrv blocks during the receiver-present
                                                                 detection sequence. When asserted, this temporarily overrides the
                                                                 enmain, empre, and enpost settings in
                                                                 GSERN()_LANE()_TX_DRV_BCFG, tri-stating the transmitter
                                                                 during the sequence instead of leaving it in weak idle. */
        uint64_t reserved_12_15        : 4;
        uint64_t sample_wait           : 6;  /**< [ 21: 16](R/W) Wait time after asserting tx_rxd before asserting rxd_samp and
                                                                 rxd_samn to sample the result, expressed as a count of lane PLL
                                                                 reference clock cycles minus 1, e.g., set to 1 to get 2 cycles.
                                                                 Typically set for 16 ns, or a count of 2 cycles for PCIe gen1
                                                                 (125 MHz txdivclk). */
        uint64_t reserved_22_23        : 2;
        uint64_t release_wait          : 6;  /**< [ 29: 24](R/W) Wait time after asserting rxd_samp and rxd_samn to capture the
                                                                 result before releasing tx_rxd, rxd_samp, and rxd_samn,
                                                                 expressed as a count of txdivclk cycles minus one, e.g., set to 0
                                                                 to get 1 cycles. Typically set for 8 ns, or a count of 1 cycle when
                                                                 using for PCIe gen1 (125 MHz txdivclk). */
        uint64_t reserved_30_31        : 2;
        uint64_t ovrride_det           : 1;  /**< [ 32: 32](R/W) When enabled by [OVRRIDE_DET_EN], the PCIe transmitter receiver presence
                                                                 detector will use this value instead of that measured by the functional
                                                                 circuit. This provides a mechanism to force recognition of a known number of
                                                                 lanes in the link independent of the normal receiver presence detection
                                                                 procedure. */
        uint64_t ovrride_det_en        : 1;  /**< [ 33: 33](R/W) Enable use of the [OVRRIDE_DET] value for the result of PCIe transmitter
                                                                 receiver presense detection instead of the normal measured result.

                                                                 Internal:
                                                                 When asserted, this control will also suppress the normal pull-down and release
                                                                 of the transmit signals that takes place during receiver presence detaction. */
        uint64_t reserved_34_63        : 30;
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_tx_rxd_bcfg_s cn; */
};
typedef union bdk_gsernx_lanex_tx_rxd_bcfg bdk_gsernx_lanex_tx_rxd_bcfg_t;

static inline uint64_t BDK_GSERNX_LANEX_TX_RXD_BCFG(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_TX_RXD_BCFG(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e090000b50ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_TX_RXD_BCFG", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_TX_RXD_BCFG(a,b) bdk_gsernx_lanex_tx_rxd_bcfg_t
#define bustype_BDK_GSERNX_LANEX_TX_RXD_BCFG(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_TX_RXD_BCFG(a,b) "GSERNX_LANEX_TX_RXD_BCFG"
#define device_bar_BDK_GSERNX_LANEX_TX_RXD_BCFG(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_TX_RXD_BCFG(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_TX_RXD_BCFG(a,b) (a),(b),-1,-1

/**
 * Register (RSL) gsern#_lane#_txdivclk_ctr
 *
 * GSER Lane TX Div Clock Cycle Counter Register
 * A free-running counter of lane txdivclk cycles to enable rough confirmation of
 * SerDes transmit data rate. Read the counter; wait some time, e.g., 100ms; read the
 * counter; calculate frequency based on the difference in values during the known wait
 * time and the programmed data path width.
 */
union bdk_gsernx_lanex_txdivclk_ctr
{
    uint64_t u;
    struct bdk_gsernx_lanex_txdivclk_ctr_s
    {
#if __BYTE_ORDER == __BIG_ENDIAN /* Word 0 - Big Endian */
        uint64_t count                 : 64; /**< [ 63:  0](R/W/H) Running count of txdivclk cycles. */
#else /* Word 0 - Little Endian */
        uint64_t count                 : 64; /**< [ 63:  0](R/W/H) Running count of txdivclk cycles. */
#endif /* Word 0 - End */
    } s;
    /* struct bdk_gsernx_lanex_txdivclk_ctr_s cn; */
};
typedef union bdk_gsernx_lanex_txdivclk_ctr bdk_gsernx_lanex_txdivclk_ctr_t;

static inline uint64_t BDK_GSERNX_LANEX_TXDIVCLK_CTR(unsigned long a, unsigned long b) __attribute__ ((pure, always_inline));
static inline uint64_t BDK_GSERNX_LANEX_TXDIVCLK_CTR(unsigned long a, unsigned long b)
{
    if (CAVIUM_IS_MODEL(CAVIUM_CN9XXX) && ((a<=7) && (b<=4)))
        return 0x87e0900030b0ll + 0x1000000ll * ((a) & 0x7) + 0x10000ll * ((b) & 0x7);
    __bdk_csr_fatal("GSERNX_LANEX_TXDIVCLK_CTR", 2, a, b, 0, 0);
}

#define typedef_BDK_GSERNX_LANEX_TXDIVCLK_CTR(a,b) bdk_gsernx_lanex_txdivclk_ctr_t
#define bustype_BDK_GSERNX_LANEX_TXDIVCLK_CTR(a,b) BDK_CSR_TYPE_RSL
#define basename_BDK_GSERNX_LANEX_TXDIVCLK_CTR(a,b) "GSERNX_LANEX_TXDIVCLK_CTR"
#define device_bar_BDK_GSERNX_LANEX_TXDIVCLK_CTR(a,b) 0x0 /* PF_BAR0 */
#define busnum_BDK_GSERNX_LANEX_TXDIVCLK_CTR(a,b) (a)
#define arguments_BDK_GSERNX_LANEX_TXDIVCLK_CTR(a,b) (a),(b),-1,-1

#endif /* __BDK_CSRS_GSERN_H__ */