aboutsummaryrefslogtreecommitdiff
path: root/src/vendorcode/cavium/bdk/libdram/dram-tune-ddr3.c
blob: e0e9d4442cf88b6aa9bfd89c055e0a7afbce84a9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
/***********************license start***********************************
* Copyright (c) 2003-2017  Cavium Inc. (support@cavium.com). All rights
* reserved.
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
*   * Redistributions of source code must retain the above copyright
*     notice, this list of conditions and the following disclaimer.
*
*   * Redistributions in binary form must reproduce the above
*     copyright notice, this list of conditions and the following
*     disclaimer in the documentation and/or other materials provided
*     with the distribution.
*
*   * Neither the name of Cavium Inc. nor the names of
*     its contributors may be used to endorse or promote products
*     derived from this software without specific prior written
*     permission.
*
* This Software, including technical data, may be subject to U.S. export
* control laws, including the U.S. Export Administration Act and its
* associated regulations, and may be subject to export or import
* regulations in other countries.
*
* TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
* AND WITH ALL FAULTS AND CAVIUM INC. MAKES NO PROMISES, REPRESENTATIONS OR
* WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT
* TO THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY
* REPRESENTATION OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT
* DEFECTS, AND CAVIUM SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES
* OF TITLE, MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR
* PURPOSE, LACK OF VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT,
* QUIET POSSESSION OR CORRESPONDENCE TO DESCRIPTION. THE ENTIRE  RISK
* ARISING OUT OF USE OR PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
***********************license end**************************************/
#include <bdk.h>
#include "dram-internal.h"

// if enhanced verbosity levels are defined, use them 
#if defined(VB_PRT)
#define ddr_print2(format, ...) VB_PRT(VBL_FAE,  format, ##__VA_ARGS__)
#define ddr_print3(format, ...) VB_PRT(VBL_TME,  format, ##__VA_ARGS__)
#define ddr_print4(format, ...) VB_PRT(VBL_DEV,  format, ##__VA_ARGS__)
#define ddr_print5(format, ...) VB_PRT(VBL_DEV3, format, ##__VA_ARGS__)
#else
#define ddr_print2 ddr_print
#define ddr_print4 ddr_print
#define ddr_print5 ddr_print
#endif

static  int64_t test_dram_byte_threads_done;
static uint64_t test_dram_byte_threads_errs;
static uint64_t test_dram_byte_lmc_errs[4];

#if 0
/*
 * Suggested testing patterns.
 */
static const uint64_t test_pattern_2[] = {
    0xFFFFFFFFFFFFFFFFULL,
    0xAAAAAAAAAAAAAAAAULL,
    0xFFFFFFFFFFFFFFFFULL,
    0xAAAAAAAAAAAAAAAAULL,
    0x5555555555555555ULL,
    0xAAAAAAAAAAAAAAAAULL,
    0xFFFFFFFFFFFFFFFFULL,
    0xAAAAAAAAAAAAAAAAULL,
    0xFFFFFFFFFFFFFFFFULL,
    0x5555555555555555ULL,
    0xFFFFFFFFFFFFFFFFULL,
    0x5555555555555555ULL,
    0xAAAAAAAAAAAAAAAAULL,
    0x5555555555555555ULL,
    0xFFFFFFFFFFFFFFFFULL,
    0x5555555555555555ULL,
};
 /*
 *  or possibly
 */
static const uint64_t test_pattern_3[] = {
    0xFDFDFDFDFDFDFDFDULL,
    0x8787878787878787ULL,
    0xFEFEFEFEFEFEFEFEULL,
    0xC3C3C3C3C3C3C3C3ULL,
    0x7F7F7F7F7F7F7F7FULL,
    0xE1E1E1E1E1E1E1E1ULL,
    0xBFBFBFBFBFBFBFBFULL,
    0xF0F0F0F0F0F0F0F0ULL,
    0xDFDFDFDFDFDFDFDFULL,
    0x7878787878787878ULL,
    0xEFEFEFEFEFEFEFEFULL,
    0x3C3C3C3C3C3C3C3CULL,
    0xF7F7F7F7F7F7F7F7ULL,
    0x1E1E1E1E1E1E1E1EULL,
    0xFBFBFBFBFBFBFBFBULL,
    0x0F0F0F0F0F0F0F0FULL,
};

static const uint64_t test_pattern_1[] = {
    0xAAAAAAAAAAAAAAAAULL,
    0x5555555555555555ULL,
    0xAAAAAAAAAAAAAAAAULL,
    0x5555555555555555ULL,
    0xAAAAAAAAAAAAAAAAULL,
    0x5555555555555555ULL,
    0xAAAAAAAAAAAAAAAAULL,
    0x5555555555555555ULL,
    0xAAAAAAAAAAAAAAAAULL,
    0x5555555555555555ULL,
    0xAAAAAAAAAAAAAAAAULL,
    0x5555555555555555ULL,
    0xAAAAAAAAAAAAAAAAULL,
    0x5555555555555555ULL,
    0xAAAAAAAAAAAAAAAAULL,
    0x5555555555555555ULL,
#if 0 // only need a cacheline size
    0xAAAAAAAAAAAAAAAAULL,
    0x5555555555555555ULL,
    0xAAAAAAAAAAAAAAAAULL,
    0x5555555555555555ULL,
    0xAAAAAAAAAAAAAAAAULL,
    0x5555555555555555ULL,
    0xAAAAAAAAAAAAAAAAULL,
    0x5555555555555555ULL,
    0xAAAAAAAAAAAAAAAAULL,
    0x5555555555555555ULL,
    0xAAAAAAAAAAAAAAAAULL,
    0x5555555555555555ULL,
    0xAAAAAAAAAAAAAAAAULL,
    0x5555555555555555ULL,
    0xAAAAAAAAAAAAAAAAULL,
    0x5555555555555555ULL,
#endif
};

// setup default for test pattern array
static const uint64_t *dram_tune_test_pattern = test_pattern_1;
#endif

// set this to 1 to shorten the testing to exit when all byte lanes have errors
// having this at 0 forces the testing to take place over the entire range every iteration,
// hopefully ensuring an even load on the memory subsystem 
#define EXIT_WHEN_ALL_LANES_HAVE_ERRORS 0

#define DEFAULT_TEST_BURSTS 5 // FIXME: this is what works so far...// FIXME: was 7
int dram_tune_use_bursts = DEFAULT_TEST_BURSTS;

// dram_tune_rank_offset is used to offset the second area used in test_dram_mem_xor.
//
// If only a single-rank DIMM, the offset will be 256MB from the start of the first area,
//  which is more than enough for the restricted looping/address range actually tested...
//
// If a 2-rank DIMM, the offset will be the size of a rank's address space, so the effect
//  will be to have the first and second areas in different ranks on the same DIMM.
//
// So, we default this to single-rank, and it will be overridden when 2-ranks are detected.
//

// FIXME: ASSUME that we have DIMMS no less than 4GB in size

// offset to first area that avoids any boot stuff in low range (below 256MB)
#define AREA_BASE_OFFSET (1ULL << 28) // bit 28 always ON

// offset to duplicate area; may coincide with rank 1 base address for 2-rank 4GB DIMM
#define AREA_DUPE_OFFSET (1ULL << 31) // bit 31 always ON

// defaults to DUPE, but will be set elsewhere to offset to next RANK if multi-rank DIMM
static uint64_t dram_tune_rank_offset = AREA_DUPE_OFFSET; // default

// defaults to 0, but will be set elsewhere to the address offset to next DIMM if multi-slot
static uint64_t dram_tune_dimm_offset = 0; // default


static int speed_bin_offset[3] = {25, 20, 15};
static int speed_bin_winlen[3] = {70, 60, 60};

static int
get_speed_bin(bdk_node_t node, int lmc)
{
    uint32_t mts_speed = (libdram_get_freq_from_pll(node, lmc) / 1000000) * 2;
    int ret = 0;

    // FIXME: is this reasonable speed "binning"?
    if (mts_speed >= 1700) {
	if (mts_speed >= 2000)
	    ret = 2;
	else
	    ret = 1;
    }

    debug_print("N%d.LMC%d: %s: returning bin %d for MTS %d\n", 
		node, lmc, __FUNCTION__, ret, mts_speed);

    return ret;
}

static int is_low_risk_offset(int speed_bin, int offset)
{
    return (_abs(offset) <= speed_bin_offset[speed_bin]);
}
static int is_low_risk_winlen(int speed_bin, int winlen)
{
    return (winlen >= speed_bin_winlen[speed_bin]);
}

#define ENABLE_PREFETCH 0
#define ENABLE_WBIL2    1
#define ENABLE_SBLKDTY  0

#define BDK_SYS_CVMCACHE_INV_L2 "#0,c11,c1,#1"          // L2 Cache Invalidate
#define BDK_CACHE_INV_L2(address) { asm volatile ("sys " BDK_SYS_CVMCACHE_INV_L2 ", %0" : : "r" (address)); }

int dram_tuning_mem_xor(bdk_node_t node, int lmc, uint64_t p, uint64_t bitmask, uint64_t *xor_data)
{
    uint64_t p1, p2, d1, d2;
    uint64_t v, v1;
    uint64_t p2offset = 0x10000000/* was: dram_tune_rank_offset; */; // FIXME?
    uint64_t datamask;
    uint64_t xor;
    uint64_t i, j, k;
    uint64_t ii;
    int errors = 0;
    //uint64_t index;
    uint64_t pattern1 = bdk_rng_get_random64();
    uint64_t pattern2 = 0;
    uint64_t bad_bits[2] = {0,0};

#if ENABLE_SBLKDTY
    BDK_CSR_MODIFY(c, node, BDK_L2C_CTL, c.s.dissblkdty = 0);
#endif

    // Byte lanes may be clear in the mask to indicate no testing on that lane.
    datamask = bitmask;

    // final address must include LMC and node
    p |= (lmc<<7); /* Map address into proper interface */
    p = bdk_numa_get_address(node, p); /* Map to node */

    /* Add offset to both test regions to not clobber boot stuff
     * when running from L2 for NAND boot.
     */
    p += AREA_BASE_OFFSET; // make sure base is out of the way of boot

#define II_INC (1ULL << 29)
#define II_MAX (1ULL << 31)
#define K_INC  (1ULL << 14)
#define K_MAX  (1ULL << 20)
#define J_INC  (1ULL <<  9)
#define J_MAX  (1ULL << 12)
#define I_INC  (1ULL <<  3)
#define I_MAX  (1ULL <<  7)

    debug_print("N%d.LMC%d: dram_tuning_mem_xor: phys_addr=0x%lx\n", 
              node, lmc, p);

#if 0
    int ix;
    // add this loop to fill memory with the test pattern first
    // loops are ordered so that only entire cachelines are written 
    for (ii = 0; ii < II_MAX; ii += II_INC) { // FIXME? extend the range of memory tested!!
	for (k = 0; k < K_MAX; k += K_INC) {
	    for (j = 0; j < J_MAX; j += J_INC) {
		p1 = p + ii + k + j;
		p2 = p1 + p2offset;
		for (i = 0, ix = 0; i < I_MAX; i += I_INC, ix++) {

		    v = dram_tune_test_pattern[ix];
		    v1 = v; // write the same thing to both areas

		    __bdk_dram_write64(p1 + i, v);
		    __bdk_dram_write64(p2 + i, v1);

		}
#if ENABLE_WBIL2
		BDK_CACHE_WBI_L2(p1);
		BDK_CACHE_WBI_L2(p2);
#endif
	    }
	}
    } /* for (ii = 0; ii < (1ULL << 31); ii += (1ULL << 29)) */
#endif

#if ENABLE_PREFETCH
    BDK_PREFETCH(p           , BDK_CACHE_LINE_SIZE);
    BDK_PREFETCH(p + p2offset, BDK_CACHE_LINE_SIZE);
#endif

    // loops are ordered so that only a single 64-bit slot is written to each cacheline at one time,
    // then the cachelines are forced out; this should maximize read/write traffic
    for (ii = 0; ii < II_MAX; ii += II_INC) { // FIXME? extend the range of memory tested!!
	for (k = 0; k < K_MAX; k += K_INC) {
	    for (i = 0; i < I_MAX; i += I_INC) {
		for (j = 0; j < J_MAX; j += J_INC) {

		    p1 = p + ii + k + j;
		    p2 = p1 + p2offset;

#if ENABLE_PREFETCH
                    if (j < (J_MAX - J_INC)) {
                        BDK_PREFETCH(p1 + J_INC, BDK_CACHE_LINE_SIZE);
                        BDK_PREFETCH(p2 + J_INC, BDK_CACHE_LINE_SIZE);
                    }
#endif
	    
		    v = pattern1 * (p1 + i);
		    v1 = v; // write the same thing to both areas

		    __bdk_dram_write64(p1 + i, v);
		    __bdk_dram_write64(p2 + i, v1);

#if ENABLE_WBIL2
		    BDK_CACHE_WBI_L2(p1);
		    BDK_CACHE_WBI_L2(p2);
#endif
		}
	    }
	}
    } /* for (ii = 0; ii < (1ULL << 31); ii += (1ULL << 29)) */

    BDK_DCACHE_INVALIDATE;

    debug_print("N%d.LMC%d: dram_tuning_mem_xor: done INIT loop\n", 
              node, lmc);

    /* Make a series of passes over the memory areas. */

    for (int burst = 0; burst < 1/* was: dram_tune_use_bursts*/; burst++)
    {
	uint64_t this_pattern = bdk_rng_get_random64();
	pattern2 ^= this_pattern;

        /* XOR the data with a random value, applying the change to both
         * memory areas.
         */
#if ENABLE_PREFETCH
	BDK_PREFETCH(p           , BDK_CACHE_LINE_SIZE);
	BDK_PREFETCH(p + p2offset, BDK_CACHE_LINE_SIZE);
#endif

	for (ii = 0; ii < II_MAX; ii += II_INC) { // FIXME? extend the range of memory tested!!
	    for (k = 0; k < K_MAX; k += K_INC) {
		for (i = 0; i < I_MAX; i += I_INC) { // FIXME: rearranged, did not make much difference?
		    for (j = 0; j < J_MAX; j += J_INC) {

			p1 = p + ii + k + j;
			p2 = p1 + p2offset;

#if ENABLE_PREFETCH
                        if (j < (J_MAX - J_INC)) {
                            BDK_PREFETCH(p1 + J_INC, BDK_CACHE_LINE_SIZE);
                            BDK_PREFETCH(p2 + J_INC, BDK_CACHE_LINE_SIZE);
                        }
#endif
	    
			v  = __bdk_dram_read64(p1 + i) ^ this_pattern;
			v1 = __bdk_dram_read64(p2 + i) ^ this_pattern;

#if ENABLE_WBIL2
			BDK_CACHE_INV_L2(p1);
			BDK_CACHE_INV_L2(p2);
#endif

			__bdk_dram_write64(p1 + i, v);
			__bdk_dram_write64(p2 + i, v1);

#if ENABLE_WBIL2
			BDK_CACHE_WBI_L2(p1);
			BDK_CACHE_WBI_L2(p2);
#endif
		    }
		}
	    }
	} /* for (ii = 0; ii < (1ULL << 31); ii += (1ULL << 29)) */

        BDK_DCACHE_INVALIDATE;

        debug_print("N%d.LMC%d: dram_tuning_mem_xor: done MODIFY loop\n", 
                  node, lmc);

#if ENABLE_PREFETCH
	BDK_PREFETCH(p           , BDK_CACHE_LINE_SIZE);
	BDK_PREFETCH(p + p2offset, BDK_CACHE_LINE_SIZE);
#endif

        /* Look for differences in the areas. If there is a mismatch, reset
         * both memory locations with the same pattern. Failing to do so
         * means that on all subsequent passes the pair of locations remain
         * out of sync giving spurious errors.
         */
	// FIXME: change the loop order so that an entire cache line is compared at one time
	// FIXME: this is so that a read error that occurs *anywhere* on the cacheline will be caught,
	// FIXME: rather than comparing only 1 cacheline slot at a time, where an error on a different
	// FIXME: slot will be missed that time around
	// Does the above make sense?

	for (ii = 0; ii < II_MAX; ii += II_INC) { // FIXME? extend the range of memory tested!!
	    for (k = 0; k < K_MAX; k += K_INC) {
		for (j = 0; j < J_MAX; j += J_INC) {

		    p1 = p + ii + k + j;
		    p2 = p1 + p2offset;

#if ENABLE_PREFETCH
                    if (j < (J_MAX - J_INC)) {
                        BDK_PREFETCH(p1 + J_INC, BDK_CACHE_LINE_SIZE);
                        BDK_PREFETCH(p2 + J_INC, BDK_CACHE_LINE_SIZE);
                    }
#endif
	    
		    // process entire cachelines in the innermost loop
		    for (i = 0; i < I_MAX; i += I_INC) {

			v = ((p1 + i) * pattern1) ^ pattern2; // FIXME: this should predict what we find...???
			d1 = __bdk_dram_read64(p1 + i);
			d2 = __bdk_dram_read64(p2 + i);

			xor = ((d1 ^ v) | (d2 ^ v)) & datamask; // union of error bits only in active byte lanes

                        if (!xor)
                            continue;

                        // accumulate bad bits
                        bad_bits[0] |= xor;
                        //bad_bits[1] |= ~mpr_data1 & 0xffUL; // cannot do ECC here

			int bybit = 1;
			uint64_t bymsk = 0xffULL; // start in byte lane 0
			while (xor != 0) {
			    debug_print("ERROR(%03d): [0x%016lX] [0x%016lX]  expected 0x%016lX d1 %016lX d2 %016lX\n",
					burst, p1, p2, v, d1, d2);
			    if (xor & bymsk) { // error(s) in this lane
				errors |= bybit; // set the byte error bit
				xor &= ~bymsk; // clear byte lane in error bits
				datamask &= ~bymsk; // clear the byte lane in the mask
#if EXIT_WHEN_ALL_LANES_HAVE_ERRORS
				if (datamask == 0) { // nothing left to do
				    return errors; // completely done when errors found in all byte lanes in datamask
				}
#endif /* EXIT_WHEN_ALL_LANES_HAVE_ERRORS */
			    }
			    bymsk <<= 8; // move mask into next byte lane
			    bybit <<= 1; // move bit into next byte position
			}
		    }
#if ENABLE_WBIL2
		    BDK_CACHE_WBI_L2(p1);
		    BDK_CACHE_WBI_L2(p2);
#endif
		}
	    }
	} /* for (ii = 0; ii < (1ULL << 31); ii += (1ULL << 29)) */

        debug_print("N%d.LMC%d: dram_tuning_mem_xor: done TEST loop\n", 
                  node, lmc);

    } /* for (int burst = 0; burst < dram_tune_use_bursts; burst++) */

    if (xor_data != NULL) { // send the bad bits back...
        xor_data[0] = bad_bits[0];
        xor_data[1] = bad_bits[1]; // let it be zeroed
    }

#if ENABLE_SBLKDTY
    BDK_CSR_MODIFY(c, node, BDK_L2C_CTL, c.s.dissblkdty = 1);
#endif

    return errors;
}

#undef II_INC
#undef II_MAX

#define EXTRACT(v, lsb, width) (((v) >> (lsb)) & ((1ull << (width)) - 1))
#define LMCNO(address, xbits) (EXTRACT(address, 7, xbits) ^ EXTRACT(address, 20, xbits) ^ EXTRACT(address, 12, xbits))

static int dram_tuning_mem_xor2(uint64_t p, uint64_t bitmask, int xbits)
{
    uint64_t p1, p2, d1, d2;
    uint64_t v, vpred;
    uint64_t p2offset = dram_tune_rank_offset; // FIXME?
    uint64_t datamask;
    uint64_t xor;
    uint64_t ii;
    uint64_t pattern1 = bdk_rng_get_random64();
    uint64_t pattern2 = 0;
    int errors = 0;
    int errs_by_lmc[4] = { 0,0,0,0 };
    int lmc;
    uint64_t vbase, vincr;

    // Byte lanes may be clear in the mask to indicate no testing on that lane.
    datamask = bitmask;

    /* Add offset to both test regions to not clobber boot stuff
     * when running from L2 for NAND boot.
     */
    p += AREA_BASE_OFFSET; // make sure base is out of the way of boot

    // move the multiplies outside the loop
    vbase = p * pattern1;
    vincr = 8 * pattern1;

#define II_INC (1ULL <<  3)
#define II_MAX (1ULL << 22) // stop where the core ID bits start

    // walk the memory areas by 8-byte words
    v = vbase;
    for (ii = 0; ii < II_MAX; ii += II_INC) {

	p1 = p + ii;
	p2 = p1 + p2offset;

	__bdk_dram_write64(p1, v);
	__bdk_dram_write64(p2, v);

        v += vincr;
    }

    __bdk_dram_flush_to_mem_range(p           , p            + II_MAX);
    __bdk_dram_flush_to_mem_range(p + p2offset, p + p2offset + II_MAX);
    BDK_DCACHE_INVALIDATE;

    /* Make a series of passes over the memory areas. */

    for (int burst = 0; burst < dram_tune_use_bursts; burst++)
    {
	uint64_t this_pattern = bdk_rng_get_random64();
	pattern2 ^= this_pattern;

        /* XOR the data with a random value, applying the change to both
         * memory areas.
         */
#if 0
	BDK_PREFETCH(p           , BDK_CACHE_LINE_SIZE);
	BDK_PREFETCH(p + p2offset, BDK_CACHE_LINE_SIZE);
#endif
	for (ii = 0; ii < II_MAX; ii += II_INC) { // FIXME? extend the range of memory tested!!

	    p1 = p + ii;
	    p2 = p1 + p2offset;

	    d1 = __bdk_dram_read64(p1) ^ this_pattern;
	    d2 = __bdk_dram_read64(p2) ^ this_pattern;

	    __bdk_dram_write64(p1, d1);
	    __bdk_dram_write64(p2, d2);

	}
	__bdk_dram_flush_to_mem_range(p           , p            + II_MAX);
	__bdk_dram_flush_to_mem_range(p + p2offset, p + p2offset + II_MAX);
        BDK_DCACHE_INVALIDATE;

        /* Look for differences in the areas. If there is a mismatch, reset
         * both memory locations with the same pattern. Failing to do so
         * means that on all subsequent passes the pair of locations remain
         * out of sync giving spurious errors.
         */
#if 0
	BDK_PREFETCH(p           , BDK_CACHE_LINE_SIZE);
	BDK_PREFETCH(p + p2offset, BDK_CACHE_LINE_SIZE);
#endif
        vpred = vbase;
	for (ii = 0; ii < II_MAX; ii += II_INC) {

	    p1 = p + ii;
	    p2 = p1 + p2offset;

	    v = vpred ^ pattern2; // this should predict what we find...
	    d1 = __bdk_dram_read64(p1);
	    d2 = __bdk_dram_read64(p2);
            vpred += vincr;

	    xor = ((d1 ^ v) | (d2 ^ v)) & datamask; // union of error bits only in active byte lanes
	    if (!xor) // no errors
		continue;

	    lmc = LMCNO(p1, xbits); // FIXME: LMC should be SAME for p1 and p2!!!
	    if (lmc != (int)LMCNO(p2, xbits)) {
		printf("ERROR: LMCs for addresses [0x%016lX] (%lld) and [0x%016lX] (%lld) differ!!!\n",
		       p1, LMCNO(p1, xbits), p2, LMCNO(p2, xbits));
	    }
	    int bybit = 1;
	    uint64_t bymsk = 0xffULL; // start in byte lane 0
	    while (xor != 0) {
		debug_print("ERROR(%03d): [0x%016lX] [0x%016lX]  expected 0x%016lX d1 %016lX d2 %016lX\n",
			    burst, p1, p2, v, d1, d2);
		if (xor & bymsk) { // error(s) in this lane
		    errs_by_lmc[lmc] |= bybit; // set the byte error bit in the LMCs errors
		    errors |= bybit; // set the byte error bit
		    xor &= ~bymsk; // clear byte lane in error bits
		    //datamask &= ~bymsk; // clear the byte lane in the mask
		}
		bymsk <<= 8; // move mask into next byte lane
		bybit <<= 1; // move bit into next byte position
	    } /* while (xor != 0) */
	} /* for (ii = 0; ii < II_MAX; ii += II_INC) */
    } /* for (int burst = 0; burst < dram_tune_use_bursts; burst++) */

    // update the global LMC error states
    for (lmc = 0; lmc < 4; lmc++) {
	if (errs_by_lmc[lmc]) {
	    bdk_atomic_fetch_and_bset64_nosync(&test_dram_byte_lmc_errs[lmc], errs_by_lmc[lmc]);
	}
    }

    return errors;
}

#if 0
static int dram_tuning_mem_rows(uint64_t p, uint64_t bitmask)
{
    uint64_t p1, p2, d1, d2;
    uint64_t v, v1;
    uint64_t p2offset = dram_tune_rank_offset; // FIXME?
    uint64_t datamask;
    uint64_t xor;
    int i, j, k, ii;
    int errors = 0;
    int index;
    uint64_t pattern1 = 0; // FIXME: maybe this could be from a table?
    uint64_t pattern2;

    // Byte lanes may be clear in the mask to indicate no testing on that lane.
    datamask = bitmask;

    /* Add offset to both test regions to not clobber boot stuff
     * when running from L2 for NAND boot.
     */
    p += 0x10000000; // FIXME? was: 0x4000000; // make sure base is out of the way of cores for tuning

    pattern2 = pattern1;
    for (k = 0; k < (1 << 20); k += (1 << 14)) {
	for (j = 0; j < (1 << 12); j += (1 << 9)) {
	    for (i = 0; i < (1 << 7); i += 8) {
		index = i + j + k;
		p1 = p + index;
		p2 = p1 + p2offset;

		v = pattern2;
		v1 = v; // write the same thing to same slot in both cachelines
		pattern2 = ~pattern2; // flip bits for next slots

		__bdk_dram_write64(p1, v);
		__bdk_dram_write64(p2, v1);
	    }
#if 1
	    BDK_CACHE_WBI_L2(p1);
	    BDK_CACHE_WBI_L2(p2);
#endif
	}
    }

#if 0
    __bdk_dram_flush_to_mem_range(p, p + (1ULL << 20)); // max_addr is start + where k stops...
    __bdk_dram_flush_to_mem_range(p + p2offset, p + p2offset + (1ULL << 20)); // max_addr is start + where k stops...
#endif
    BDK_DCACHE_INVALIDATE;

    /* Make a series of passes over the memory areas. */

    for (int burst = 0; burst < dram_tune_use_bursts; burst++)
    {
        /* just read and flip the bits applying the change to both
         * memory areas.
         */
	for (k = 0; k < (1 << 20); k += (1 << 14)) {
	    for (j = 0; j < (1 << 12); j += (1 << 9)) {
		for (i = 0; i < (1 << 7); i += 8) {
		    index = i + j + k;
		    p1 = p + index;
		    p2 = p1 + p2offset;

		    v  = ~__bdk_dram_read64(p1);
		    v1 = ~__bdk_dram_read64(p2);

		    __bdk_dram_write64(p1, v);
		    __bdk_dram_write64(p2, v1);
		}
#if 1
		BDK_CACHE_WBI_L2(p1);
		BDK_CACHE_WBI_L2(p2);
#endif
	    }
	}

#if 0
	__bdk_dram_flush_to_mem_range(p, p + (1ULL << 20)); // max_addr is start + where k stops...
	__bdk_dram_flush_to_mem_range(p + p2offset, p + p2offset + (1ULL << 20)); // max_addr is start + where k stops...
#endif
        BDK_DCACHE_INVALIDATE;

        /* Look for differences in the areas. If there is a mismatch, reset
         * both memory locations with the same pattern. Failing to do so
         * means that on all subsequent passes the pair of locations remain
         * out of sync giving spurious errors.
         */

	// FIXME: change the loop order so that an entire cache line is compared at one time
	// FIXME: this is so that a read error that occurs *anywhere* on the cacheline will be caught,
	// FIXME: rather than comparing only 1 cacheline slot at a time, where an error on a different
	// FIXME: slot will be missed that time around
	// Does the above make sense?

	pattern2 = ~pattern1; // slots have been flipped by the above loop

	for (k = 0; k < (1 << 20); k += (1 << 14)) {
	    for (j = 0; j < (1 << 12); j += (1 << 9)) {
		for (i = 0; i < (1 << 7); i += 8) {
		    index = i + j + k;
		    p1 = p + index;
		    p2 = p1 + p2offset;

		    v = pattern2; // FIXME: this should predict what we find...???
		    d1 = __bdk_dram_read64(p1);
		    d2 = __bdk_dram_read64(p2);
		    pattern2 = ~pattern2; // flip for next slot

		    xor = ((d1 ^ v) | (d2 ^ v)) & datamask; // union of error bits only in active byte lanes

		    int bybit = 1;
		    uint64_t bymsk = 0xffULL; // start in byte lane 0
		    while (xor != 0) {
			debug_print("ERROR(%03d): [0x%016lX] [0x%016lX]  expected 0x%016lX d1 %016lX d2 %016lX\n",
				  burst, p1, p2, v, d1, d2);
			if (xor & bymsk) { // error(s) in this lane
			    errors |= bybit; // set the byte error bit
			    xor &= ~bymsk; // clear byte lane in error bits
			    datamask &= ~bymsk; // clear the byte lane in the mask
#if EXIT_WHEN_ALL_LANES_HAVE_ERRORS
			    if (datamask == 0) { // nothing left to do
				return errors; // completely done when errors found in all byte lanes in datamask
			    }
#endif /* EXIT_WHEN_ALL_LANES_HAVE_ERRORS */
			}
			bymsk <<= 8; // move mask into next byte lane
			bybit <<= 1; // move bit into next byte position
		    }
		}
	    }
	}
	pattern1 = ~pattern1; // flip the starting pattern for the next burst

    } /* for (int burst = 0; burst < dram_tune_use_bursts; burst++) */
    return errors;
}
#endif

// cores to use
#define DEFAULT_USE_CORES 44   // FIXME: was (1 << CORE_BITS)
int dram_tune_use_cores = DEFAULT_USE_CORES; // max cores to use, override available
int dram_tune_max_cores; // max cores available on a node
#define CORE_SHIFT 22          // FIXME: offset into rank_address passed to test_dram_byte

typedef void (*__dram_tuning_thread_t)(int arg, void *arg1);

typedef struct
{
    bdk_node_t node;
    int64_t num_lmcs;
    uint64_t byte_mask;
} test_dram_byte_info_t;

static void dram_tuning_thread(int arg, void *arg1)
{
    test_dram_byte_info_t *test_info = arg1;
    int core = arg;
    uint64_t errs;
    bdk_node_t node = test_info->node;
    int num_lmcs, lmc;
#if 0
    num_lmcs = test_info->num_lmcs;
    // map core numbers into hopefully equal groups per LMC
    lmc = core % num_lmcs;
#else
    // FIXME: this code should allow running all the cores on a single LMC...
    // if incoming num_lmcs > 0, then use as normal; if < 0 remap to a single LMC
    if (test_info->num_lmcs >= 0) {
	num_lmcs = test_info->num_lmcs;
	// map core numbers into hopefully equal groups per LMC
	lmc = core % num_lmcs;
    } else {
	num_lmcs = 1;
	// incoming num_lmcs is (desired LMC - 10)
	lmc = 10 + test_info->num_lmcs;
    }
#endif
    uint64_t base_address = 0/* was: (lmc << 7); now done by callee */;
    uint64_t bytemask = test_info->byte_mask;

    /* Figure out our work memory range.
     *
     * Note: base_address above just provides the physical offset which determines
     * specific LMC portions of the address space and does not have the node bits set.
     */
    //was: base_address  = bdk_numa_get_address(node, base_address); // map to node // now done by callee
    base_address |= (core << CORE_SHIFT); // FIXME: also put full core into address
    if (dram_tune_dimm_offset) { // if multi-slot in some way, choose a DIMM for the core
	base_address |= (core & (1 << (num_lmcs >> 1))) ? dram_tune_dimm_offset : 0;
    }

    debug_print("Node %d, core %d, Testing area 1 at 0x%011lx, area 2 at 0x%011lx\n",
		node, core, base_address + AREA_BASE_OFFSET,
		base_address + AREA_BASE_OFFSET + dram_tune_rank_offset);

    errs = dram_tuning_mem_xor(node, lmc, base_address, bytemask, NULL);
    //errs = dram_tuning_mem_rows(base_address, bytemask);

    /* Report that we're done */
    debug_print("Core %d on LMC %d node %d done with test_dram_byte with 0x%lx errs\n",
	      core, lmc, node, errs);

    if (errs) {
	bdk_atomic_fetch_and_bset64_nosync(&test_dram_byte_threads_errs, errs);
	bdk_atomic_fetch_and_bset64_nosync(&test_dram_byte_lmc_errs[lmc], errs);
    }

    bdk_atomic_add64_nosync(&test_dram_byte_threads_done, 1);

    return;
}

static void dram_tuning_thread2(int arg, void *arg1)
{
    test_dram_byte_info_t *test_info = arg1;
    int core = arg;
    uint64_t errs;
    bdk_node_t node = test_info->node;
    int num_lmcs = test_info->num_lmcs;

    uint64_t base_address = 0; // 
    uint64_t bytemask = test_info->byte_mask;

    /* Figure out our work memory range.
     *
     * Note: base_address above just provides the physical offset which determines
     * specific portions of the address space and does not have the node bits set.
     */
    base_address  = bdk_numa_get_address(node, base_address); // map to node
    base_address |= (core << CORE_SHIFT); // FIXME: also put full core into address
    if (dram_tune_dimm_offset) { // if multi-slot in some way, choose a DIMM for the core
	base_address |= (core & 1) ? dram_tune_dimm_offset : 0;
    }

    debug_print("Node %d, core %d, Testing area 1 at 0x%011lx, area 2 at 0x%011lx\n",
                node, core, base_address + AREA_BASE_OFFSET,
                base_address + AREA_BASE_OFFSET + dram_tune_rank_offset);

    errs = dram_tuning_mem_xor2(base_address, bytemask, (num_lmcs >> 1)); // 4->2, 2->1, 1->0
    //errs = dram_tuning_mem_rows(base_address, bytemask);

    /* Report that we're done */
    debug_print("Core %d on LMC %d node %d done with test_dram_byte with 0x%lx errs\n",
	      core, lmc, node, errs);

    if (errs) {
	bdk_atomic_fetch_and_bset64_nosync(&test_dram_byte_threads_errs, errs);
	// FIXME: this will have been done already in the called test routine
	//bdk_atomic_fetch_and_bset64_nosync(&test_dram_byte_lmc_errs[lmc], errs);
    }

    bdk_atomic_add64_nosync(&test_dram_byte_threads_done, 1);

    return;
}

static int dram_tune_use_xor2 = 1; // FIXME: do NOT default to original mem_xor (LMC-based) code

static int
run_dram_tuning_threads(bdk_node_t node, int num_lmcs, uint64_t bytemask)
{
    test_dram_byte_info_t test_dram_byte_info;
    test_dram_byte_info_t *test_info = &test_dram_byte_info;
    int total_count = 0;
    __dram_tuning_thread_t thread_p = (dram_tune_use_xor2) ? dram_tuning_thread2 : dram_tuning_thread;

    test_info->node = node;
    test_info->num_lmcs = num_lmcs;
    test_info->byte_mask = bytemask;

    // init some global data
    bdk_atomic_set64(&test_dram_byte_threads_done, 0);
    bdk_atomic_set64((int64_t *)&test_dram_byte_threads_errs, 0);
    bdk_atomic_set64((int64_t *)&test_dram_byte_lmc_errs[0], 0);
    bdk_atomic_set64((int64_t *)&test_dram_byte_lmc_errs[1], 0);
    bdk_atomic_set64((int64_t *)&test_dram_byte_lmc_errs[2], 0);
    bdk_atomic_set64((int64_t *)&test_dram_byte_lmc_errs[3], 0);

    /* Start threads for cores on the node */
    if (bdk_numa_exists(node)) {
	debug_print("Starting %d threads for test_dram_byte\n", dram_tune_use_cores);
	for (int core = 0; core < dram_tune_use_cores; core++) {
	    if (bdk_thread_create(node, 0, thread_p, core, (void *)test_info, 0)) {
		bdk_error("Failed to create thread %d for test_dram_byte\n", core);
	    } else {
		total_count++;
	    }
	}
    }

#if 0
    /* Wait for threads to finish */
    while (bdk_atomic_get64(&test_dram_byte_threads_done) < total_count)
	bdk_thread_yield();
#else
#define TIMEOUT_SECS 5  // FIXME: long enough so a pass for a given setting will not print
        /* Wait for threads to finish, with progress */
        int cur_count;
        uint64_t cur_time;
        uint64_t period = bdk_clock_get_rate(bdk_numa_local(), BDK_CLOCK_TIME) * TIMEOUT_SECS; // FIXME? 
        uint64_t timeout = bdk_clock_get_count(BDK_CLOCK_TIME) + period;
        do {
            bdk_thread_yield();
            cur_count = bdk_atomic_get64(&test_dram_byte_threads_done);
            cur_time = bdk_clock_get_count(BDK_CLOCK_TIME);
            if (cur_time >= timeout) {
                printf("Waiting for %d cores\n", total_count - cur_count);
                timeout = cur_time + period;
            }
        } while (cur_count < total_count);
#endif

    // NOTE: this is the summary of errors across all LMCs
    return (int)bdk_atomic_get64((int64_t *)&test_dram_byte_threads_errs);
}

/* These variables count the number of ECC errors. They should only be accessed atomically */
extern int64_t __bdk_dram_ecc_single_bit_errors[];
extern int64_t __bdk_dram_ecc_double_bit_errors[];

#if 0
// make the tuning test callable as a standalone
int
bdk_run_dram_tuning_test(int node)
{
    int num_lmcs = __bdk_dram_get_num_lmc(node);
    const char *s;
    int lmc, byte;
    int errors;
    uint64_t start_dram_dclk[4], start_dram_ops[4];
    int save_use_bursts;

    // check for the cores on this node, abort if not more than 1 // FIXME?
    dram_tune_max_cores = bdk_get_num_running_cores(node);
    if (dram_tune_max_cores < 2) {
	//bdk_init_cores(node, 0);
	printf("N%d: ERROR: not enough cores to run the DRAM tuning test.\n", node);
	return 0;
    }

    // but use only a certain number of cores, at most what is available
    if ((s = getenv("ddr_tune_use_cores")) != NULL) {
	dram_tune_use_cores = strtoul(s, NULL, 0);
	if (dram_tune_use_cores <= 0) // allow 0 or negative to mean all
	    dram_tune_use_cores = dram_tune_max_cores;
    }
    if (dram_tune_use_cores > dram_tune_max_cores)
	dram_tune_use_cores = dram_tune_max_cores;

    // save the original bursts, so we can replace it with a better number for just testing
    save_use_bursts = dram_tune_use_bursts;
    dram_tune_use_bursts = 1500; // FIXME: hard code bursts for the test here...

    // allow override of the test repeats (bursts) per thread create
    if ((s = getenv("ddr_tune_use_bursts")) != NULL) {
        dram_tune_use_bursts = strtoul(s, NULL, 10);
    }

    // allow override of the test mem_xor algorithm
    if ((s = getenv("ddr_tune_use_xor2")) != NULL) {
        dram_tune_use_xor2 = !!strtoul(s, NULL, 10);
    }

    // FIXME? consult LMC0 only
    BDK_CSR_INIT(lmcx_config, node, BDK_LMCX_CONFIG(0));
    if (lmcx_config.s.rank_ena) { // replace the default offset when there is more than 1 rank...
	dram_tune_rank_offset = 1ull << (28 + lmcx_config.s.pbank_lsb - lmcx_config.s.rank_ena + (num_lmcs/2));
	ddr_print("N%d: run_dram_tuning_test: changing rank offset to 0x%lx\n", node, dram_tune_rank_offset);
    }
    if (lmcx_config.s.init_status & 0x0c) { // bit 2 or 3 set indicates 2 DIMMs
	dram_tune_dimm_offset = 1ull << (28 + lmcx_config.s.pbank_lsb + (num_lmcs/2));
	ddr_print("N%d: run_dram_tuning_test: changing dimm offset to 0x%lx\n", node, dram_tune_dimm_offset);
    }
    int ddr_interface_64b = !lmcx_config.s.mode32b;

    // construct the bytemask
    int bytes_todo = (ddr_interface_64b) ? 0xff : 0x0f; // FIXME: hack?
    uint64_t bytemask = 0;
    for (byte = 0; byte < 8; ++byte) {
	uint64_t bitmask;
	if (bytes_todo & (1 << byte)) {
	    bitmask = ((!ddr_interface_64b) && (byte == 4)) ? 0x0f: 0xff;
	    bytemask |= bitmask << (8*byte); // set the bytes bits in the bytemask 
	}
    } /* for (byte = 0; byte < 8; ++byte) */

    // print current working values
    ddr_print("N%d: run_dram_tuning_test: max %d cores, use %d cores, use %d bursts.\n",
	      node, dram_tune_max_cores, dram_tune_use_cores, dram_tune_use_bursts);

    // do the setup on active LMCs
    for (lmc = 0; lmc < num_lmcs; lmc++) {
	// record start cycle CSRs here for utilization measure
	start_dram_dclk[lmc] = BDK_CSR_READ(node, BDK_LMCX_DCLK_CNT(lmc));
	start_dram_ops[lmc]  = BDK_CSR_READ(node, BDK_LMCX_OPS_CNT(lmc));
#if 0
	bdk_atomic_set64(&__bdk_dram_ecc_single_bit_errors[lmc], 0);
	bdk_atomic_set64(&__bdk_dram_ecc_double_bit_errors[lmc], 0);
#else
	__bdk_dram_ecc_single_bit_errors[lmc] = 0;
	__bdk_dram_ecc_double_bit_errors[lmc] = 0;
#endif
    } /* for (lmc = 0; lmc < num_lmcs; lmc++) */

    bdk_watchdog_poke();

    // run the test(s)
    // only 1 call should be enough, let the bursts, etc, control the load...  
    errors = run_dram_tuning_threads(node, num_lmcs, bytemask);

    /* Check ECC error counters after the test */
    int64_t ecc_single = 0;
    int64_t ecc_double = 0;
    int64_t ecc_single_errs[4];
    int64_t ecc_double_errs[4];

    // finally, print the utilizations all together, and sum the ECC errors
    for (lmc = 0; lmc < num_lmcs; lmc++) {
	uint64_t dclk_diff = BDK_CSR_READ(node, BDK_LMCX_DCLK_CNT(lmc)) - start_dram_dclk[lmc];
	uint64_t ops_diff  = BDK_CSR_READ(node, BDK_LMCX_OPS_CNT(lmc)) - start_dram_ops[lmc];
	uint64_t percent_x10 = ops_diff * 1000 / dclk_diff;
	printf("N%d.LMC%d: ops %lu, cycles %lu, used %lu.%lu%%\n",
		  node, lmc, ops_diff, dclk_diff, percent_x10 / 10, percent_x10 % 10);

        ecc_single += (ecc_single_errs[lmc] = bdk_atomic_get64(&__bdk_dram_ecc_single_bit_errors[lmc]));
        ecc_double += (ecc_double_errs[lmc] = bdk_atomic_get64(&__bdk_dram_ecc_double_bit_errors[lmc]));
    } /* for (lmc = 0; lmc < num_lmcs; lmc++) */

    /* Always print any ECC errors */
    if (ecc_single || ecc_double) {
        printf("Test \"%s\": ECC errors, %ld/%ld/%ld/%ld corrected, %ld/%ld/%ld/%ld uncorrected\n",
	       "DRAM Tuning Test",
	       ecc_single_errs[0], ecc_single_errs[1], ecc_single_errs[2], ecc_single_errs[3],
	       ecc_double_errs[0], ecc_double_errs[1], ecc_double_errs[2], ecc_double_errs[3]);
    }
    if (errors || ecc_double || ecc_single) {
	printf("Test \"%s\": FAIL: %ld single, %ld double, %d compare errors\n",
	       "DRAM Tuning Test", ecc_single, ecc_double, errors);
    }

    // restore bursts
    dram_tune_use_bursts = save_use_bursts;

    return (errors + ecc_double + ecc_single);
}
#endif /* 0 */

#define DEFAULT_SAMPLE_GRAN 3 // sample for errors every N offset values
#define MIN_BYTE_OFFSET -63
#define MAX_BYTE_OFFSET +63
int dram_tune_use_gran = DEFAULT_SAMPLE_GRAN;

static int
auto_set_dll_offset(bdk_node_t node, int dll_offset_mode,
		    int num_lmcs, int ddr_interface_64b,
		    int do_tune)
{
    int byte_offset;
    //unsigned short result[9];
    int byte;
    int byte_delay_start[4][9];
    int byte_delay_count[4][9];
    uint64_t byte_delay_windows [4][9];
    int byte_delay_best_start[4][9];
    int byte_delay_best_count[4][9];
    //int this_rodt;
    uint64_t ops_sum[4], dclk_sum[4];
    uint64_t start_dram_dclk[4], stop_dram_dclk[4];
    uint64_t start_dram_ops[4], stop_dram_ops[4];
    int errors, tot_errors;
    int lmc;
    char *mode_str = (dll_offset_mode == 2) ? "Read" : "Write";
    int mode_is_read = (dll_offset_mode == 2);
    char *mode_blk = (dll_offset_mode == 2) ? " " : "";
    int start_offset, end_offset, incr_offset;

    int speed_bin = get_speed_bin(node, 0); // FIXME: just get from LMC0?
    int low_risk_count = 0, needs_review_count = 0;

    if (dram_tune_use_gran != DEFAULT_SAMPLE_GRAN) {
	ddr_print2("N%d: Changing sample granularity from %d to %d\n",
		  node, DEFAULT_SAMPLE_GRAN, dram_tune_use_gran);
    }
    // ensure sample is taken at 0
    start_offset = MIN_BYTE_OFFSET - (MIN_BYTE_OFFSET % dram_tune_use_gran);
    end_offset   = MAX_BYTE_OFFSET - (MAX_BYTE_OFFSET % dram_tune_use_gran);
    incr_offset  = dram_tune_use_gran;

    memset(ops_sum, 0, sizeof(ops_sum));
    memset(dclk_sum, 0, sizeof(dclk_sum));
    memset(byte_delay_start, 0, sizeof(byte_delay_start));
    memset(byte_delay_count, 0, sizeof(byte_delay_count));
    memset(byte_delay_windows,  0, sizeof(byte_delay_windows));
    memset(byte_delay_best_start, 0, sizeof(byte_delay_best_start));
    memset(byte_delay_best_count, 0, sizeof(byte_delay_best_count));

    // FIXME? consult LMC0 only
    BDK_CSR_INIT(lmcx_config, node, BDK_LMCX_CONFIG(0));
    if (lmcx_config.s.rank_ena) { // replace the default offset when there is more than 1 rank...
	dram_tune_rank_offset = 1ull << (28 + lmcx_config.s.pbank_lsb - lmcx_config.s.rank_ena + (num_lmcs/2));
	ddr_print2("N%d: Tuning multiple ranks per DIMM (rank offset 0x%lx).\n", node, dram_tune_rank_offset);
    }
    if (lmcx_config.s.init_status & 0x0c) { // bit 2 or 3 set indicates 2 DIMMs
	dram_tune_dimm_offset = 1ull << (28 + lmcx_config.s.pbank_lsb + (num_lmcs/2));
	ddr_print2("N%d: Tuning multiple DIMMs per channel (DIMM offset 0x%lx)\n", node, dram_tune_dimm_offset);
    }

    // FIXME? do this for LMC0 only
    //BDK_CSR_INIT(comp_ctl2, node, BDK_LMCX_COMP_CTL2(0));
    //this_rodt = comp_ctl2.s.rodt_ctl;

    // construct the bytemask
    int bytes_todo = (ddr_interface_64b) ? 0xff : 0x0f;
    uint64_t bytemask = 0;
    for (byte = 0; byte < 8; ++byte) {
	if (bytes_todo & (1 << byte)) {
	    bytemask |= 0xfful << (8*byte); // set the bytes bits in the bytemask 
	}
    } /* for (byte = 0; byte < 8; ++byte) */

    // now loop through selected legal values for the DLL byte offset...

    for (byte_offset = start_offset; byte_offset <= end_offset; byte_offset += incr_offset) {

	// do the setup on active LMCs
	for (lmc = 0; lmc < num_lmcs; lmc++) {
	    change_dll_offset_enable(node, lmc, 0);

	    // set all byte lanes at once
	    load_dll_offset(node, lmc, dll_offset_mode, byte_offset, 10 /* All bytes at once */);
	    // but then clear the ECC byte lane so it should be neutral for the test...
	    load_dll_offset(node, lmc, dll_offset_mode, 0, 8);

	    change_dll_offset_enable(node, lmc, 1);

	    // record start cycle CSRs here for utilization measure
	    start_dram_dclk[lmc] = BDK_CSR_READ(node, BDK_LMCX_DCLK_CNT(lmc));
	    start_dram_ops[lmc]  = BDK_CSR_READ(node, BDK_LMCX_OPS_CNT(lmc));
	} /* for (lmc = 0; lmc < num_lmcs; lmc++) */

	bdk_watchdog_poke();

	// run the test(s)
	// only 1 call should be enough, let the bursts, etc, control the load...  
	tot_errors = run_dram_tuning_threads(node, num_lmcs, bytemask);

	for (lmc = 0; lmc < num_lmcs; lmc++) {
	    // record stop cycle CSRs here for utilization measure
	    stop_dram_dclk[lmc] = BDK_CSR_READ(node, BDK_LMCX_DCLK_CNT(lmc));
	    stop_dram_ops[lmc]  = BDK_CSR_READ(node, BDK_LMCX_OPS_CNT(lmc));

	    // accumulate...
	    ops_sum[lmc]  += stop_dram_ops[lmc]  - start_dram_ops[lmc];
	    dclk_sum[lmc] += stop_dram_dclk[lmc] - start_dram_dclk[lmc];

	    errors = test_dram_byte_lmc_errs[lmc];

	    // check errors by byte, but not ECC
	    for (byte = 0; byte < 8; ++byte) {
		if (!(bytes_todo & (1 << byte))) // is this byte lane to be done
		    continue; // no

		byte_delay_windows[lmc][byte] <<= 1; // always put in a zero
		if (errors & (1 << byte)) { // yes, an error in this byte lane
		    byte_delay_count[lmc][byte] = 0; // stop now always
		} else { // no error in this byte lane
		    if (byte_delay_count[lmc][byte] == 0) { // first success, set run start
			byte_delay_start[lmc][byte] = byte_offset;
		    }
		    byte_delay_count[lmc][byte] += incr_offset; // bump run length

		    if (byte_delay_count[lmc][byte] > byte_delay_best_count[lmc][byte]) {
			byte_delay_best_count[lmc][byte] = byte_delay_count[lmc][byte];
			byte_delay_best_start[lmc][byte] = byte_delay_start[lmc][byte];
		    }
		    byte_delay_windows[lmc][byte] |= 1ULL; // for pass, put in a 1
		}
	    } /* for (byte = 0; byte < 8; ++byte) */

	    // only print when there are errors and verbose...
	    if (errors) {
		debug_print("DLL %s Offset Test %3d: errors 0x%x\n",
			    mode_str, byte_offset, errors);
	    }
	} /* for (lmc = 0; lmc < num_lmcs; lmc++) */

    } /* for (byte_offset=-63; byte_offset<63; byte_offset += incr_offset) */

    // done with testing, load up and/or print out the offsets we found...

    // only when margining...
    if (!do_tune) {
	printf("  \n");
	printf("-------------------------------------\n");
#if 0
	uint32_t mts_speed = (libdram_get_freq_from_pll(node, 0) * 2) / 1000000; // FIXME: sample LMC0
	printf("N%d: Starting %s Timing Margining for %d MT/s.\n", node, mode_str, mts_speed);
#else
	printf("N%d: Starting %s Timing Margining.\n", node, mode_str);
#endif
	printf("  \n");
    } /* if (!do_tune) */

    for (lmc = 0; lmc < num_lmcs; lmc++) {
#if 1
	// FIXME FIXME
	// FIXME: this just makes ECC always show 0
	byte_delay_best_start[lmc][8] = start_offset;
	byte_delay_best_count[lmc][8] = end_offset - start_offset + incr_offset;
#endif

	// disable offsets while we load...
	change_dll_offset_enable(node, lmc, 0);

	// only when margining...
	if (!do_tune) {
	    // print the heading
	    printf("  \n");
	    printf("N%d.LMC%d: %s Timing Margin     %s : ", node, lmc, mode_str, mode_blk);
	    printf("     ECC/8 ");
	    for (byte = 7; byte >= 0; byte--) {
		printf("    Byte %d ", byte);
	    }
	    printf("\n");
	} /* if (!do_tune) */

	// print and load the offset values
	// print the windows bit arrays
	// only when margining...
	if (!do_tune) {
            printf("N%d.LMC%d: DLL %s Offset Amount %s : ", node, lmc, mode_str, mode_blk);
        } else {
            ddr_print("N%d.LMC%d: SW DLL %s Offset Amount %s : ", node, lmc, mode_str, mode_blk);
        }
	for (byte = 8; byte >= 0; --byte) { // print in "normal" reverse index order

	    int count = byte_delay_best_count[lmc][byte];
	    if (count == 0)
		count = incr_offset; // should make non-tested ECC byte come out 0
	   
	    byte_offset =  byte_delay_best_start[lmc][byte] +
		((count - incr_offset) / 2); // adj by incr

	    if (!do_tune) { // do counting and special flag if margining
                int will_need_review = !is_low_risk_winlen(speed_bin, (count - incr_offset)) &&
		                       !is_low_risk_offset(speed_bin, byte_offset);

                printf("%10d%c", byte_offset, (will_need_review) ? '<' :' ');

		if (will_need_review)
		    needs_review_count++;
		else
		    low_risk_count++;
	    } else { // if just tuning, make the printout less lengthy
                ddr_print("%5d ", byte_offset);
            }

	    // FIXME? should we be able to override this?
	    if (mode_is_read) // for READ offsets, always store what we found
		load_dll_offset(node, lmc, dll_offset_mode, byte_offset, byte);
	    else // for WRITE offsets, always store 0
		load_dll_offset(node, lmc, dll_offset_mode, 0, byte);

	}
	if (!do_tune) {
            printf("\n");
        } else {
            ddr_print("\n");
        }


	// re-enable the offsets now that we are done loading
	change_dll_offset_enable(node, lmc, 1);

	// only when margining...
	if (!do_tune) {
	    // print the window sizes
	    printf("N%d.LMC%d: DLL %s Window Length %s : ", node, lmc, mode_str, mode_blk);
	    for (byte = 8; byte >= 0; --byte) { // print in "normal" reverse index order
		int count = byte_delay_best_count[lmc][byte];
		if (count == 0)
		    count = incr_offset; // should make non-tested ECC byte come out 0

		// do this again since the "needs review" test is an AND...
		byte_offset =  byte_delay_best_start[lmc][byte] +
		    ((count - incr_offset) / 2); // adj by incr

		int will_need_review = !is_low_risk_winlen(speed_bin, (count - incr_offset)) &&
		    !is_low_risk_offset(speed_bin, byte_offset);

		printf("%10d%c", count - incr_offset, (will_need_review) ? '<' :' ');
	    }
	    printf("\n");

	    // print the window extents
	    printf("N%d.LMC%d: DLL %s Window Bounds %s : ", node, lmc, mode_str, mode_blk);
	    for (byte = 8; byte >= 0; --byte) { // print in "normal" reverse index order
		int start = byte_delay_best_start[lmc][byte];
		int count = byte_delay_best_count[lmc][byte];
		if (count == 0)
		    count = incr_offset; // should make non-tested ECC byte come out 0
		printf(" %3d to%3d ", start,
		       start + count - incr_offset);
	    }
	    printf("\n");
#if 0
	    // FIXME: should have a way to force these out...
	    // print the windows bit arrays
	    printf("N%d.LMC%d: DLL %s Window Bitmap%s : ", node, lmc, mode_str, mode_blk);
	    for (byte = 8; byte >= 0; --byte) { // print in "normal" reverse index order
		printf("%010lx ", byte_delay_windows[lmc][byte]);
	    }
	    printf("\n");
#endif
	} /* if (!do_tune) */
    } /* for (lmc = 0; lmc < num_lmcs; lmc++) */

    // only when margining...
    if (!do_tune) {
	// print the Summary line(s) here
	printf("  \n");
	printf("N%d: %s Timing Margining Summary : %s ", node, mode_str,
	       (needs_review_count > 0) ? "Needs Review" : "Low Risk");
	if (needs_review_count > 0)
	    printf("(%d)", needs_review_count); 
	printf("\n");

	// FIXME??? want to print here: "N0: %s Offsets have been applied already"

	printf("-------------------------------------\n");
	printf("  \n");
    } /* if (!do_tune) */

    // FIXME: we probably want this only when doing verbose...
    // finally, print the utilizations all together
    for (lmc = 0; lmc < num_lmcs; lmc++) {
	uint64_t percent_x10 = ops_sum[lmc] * 1000 / dclk_sum[lmc];
	ddr_print2("N%d.LMC%d: ops %lu, cycles %lu, used %lu.%lu%%\n",
		  node, lmc, ops_sum[lmc], dclk_sum[lmc], percent_x10 / 10, percent_x10 % 10);
    } /* for (lmc = 0; lmc < num_lmcs; lmc++) */

    // FIXME: only when verbose, or only when there are errors?
    // run the test one last time 
    // print whether there are errors or not, but only when verbose...
    bdk_watchdog_poke();
    debug_print("N%d: %s: Start running test one last time\n", node, __FUNCTION__);
    tot_errors = run_dram_tuning_threads(node, num_lmcs, bytemask);
    debug_print("N%d: %s: Finished running test one last time\n", node, __FUNCTION__);
    if (tot_errors)
	ddr_print2("%s Timing Final Test: errors 0x%x\n", mode_str, tot_errors);

    return (do_tune) ? tot_errors : !!(needs_review_count > 0);
}

#define USE_L2_WAYS_LIMIT 0 // non-zero to enable L2 ways limiting

/*
 * Automatically adjust the DLL offset for the data bytes
 */
int perform_dll_offset_tuning(bdk_node_t node, int dll_offset_mode, int do_tune)
{
    int ddr_interface_64b;
    int save_ecc_ena[4];
    bdk_lmcx_config_t lmc_config;
    int lmc, num_lmcs = __bdk_dram_get_num_lmc(node);
    const char *s;
#if USE_L2_WAYS_LIMIT
    int ways, ways_print = 0;
#endif
#if 0
    int dram_tune_use_rodt = -1, save_rodt[4];
    bdk_lmcx_comp_ctl2_t comp_ctl2;
#endif
    int loops = 1, loop;
    uint64_t orig_coremask;
    int errs = 0;

    // enable any non-running cores on this node
    orig_coremask = bdk_get_running_coremask(node);
    ddr_print4("N%d: %s: Starting cores (mask was 0x%lx)\n",
	      node, __FUNCTION__, orig_coremask);
    bdk_init_cores(node, ~0ULL & ~orig_coremask);
    dram_tune_max_cores = bdk_get_num_running_cores(node);

    // but use only a certain number of cores, at most what is available
    if ((s = getenv("ddr_tune_use_cores")) != NULL) {
	dram_tune_use_cores = strtoul(s, NULL, 0);
	if (dram_tune_use_cores <= 0) // allow 0 or negative to mean all
	    dram_tune_use_cores = dram_tune_max_cores;
    }
    if (dram_tune_use_cores > dram_tune_max_cores)
	dram_tune_use_cores = dram_tune_max_cores;

    // see if we want to do the tuning more than once per LMC...
    if ((s = getenv("ddr_tune_use_loops"))) {
	loops = strtoul(s, NULL, 0);
    }

    // see if we want to change the granularity of the byte_offset sampling 
    if ((s = getenv("ddr_tune_use_gran"))) {
	dram_tune_use_gran = strtoul(s, NULL, 0);
    }

    // allow override of the test repeats (bursts) per thread create
    if ((s = getenv("ddr_tune_use_bursts")) != NULL) {
        dram_tune_use_bursts = strtoul(s, NULL, 10);
    }

#if 0
    // allow override of Read ODT setting just during the tuning run(s)
    if ((s = getenv("ddr_tune_use_rodt")) != NULL) {
        int temp = strtoul(s, NULL, 10);
	// validity check
	if (temp >= 0 && temp <= 7)
	    dram_tune_use_rodt = temp;
    }
#endif

#if 0
    // allow override of the test pattern
    // FIXME: a bit simplistic...
    if ((s = getenv("ddr_tune_use_pattern")) != NULL) {
	int patno = strtoul(s, NULL, 10);
	if (patno == 2)
	    dram_tune_test_pattern = test_pattern_2;
	else if (patno == 3)
	    dram_tune_test_pattern = test_pattern_3;
	else // all other values use default
	    dram_tune_test_pattern = test_pattern_1;
    }
#endif

    // allow override of the test mem_xor algorithm
    if ((s = getenv("ddr_tune_use_xor2")) != NULL) {
        dram_tune_use_xor2 = !!strtoul(s, NULL, 10);
    }

    // print current working values
    ddr_print2("N%d: Tuning will use %d cores of max %d cores, and use %d repeats.\n",
		node, dram_tune_use_cores, dram_tune_max_cores,
		dram_tune_use_bursts);

#if USE_L2_WAYS_LIMIT
    // see if L2 ways are limited
    if ((s = lookup_env_parameter("limit_l2_ways")) != NULL) {
	ways = strtoul(s, NULL, 10);
	ways_print = 1;
    } else {
	ways = bdk_l2c_get_num_assoc(node);
    }
#endif

#if 0
    // if RODT is to be overridden during tuning, note change
    if (dram_tune_use_rodt >= 0) {
	ddr_print("N%d: using RODT %d for tuning.\n",
		  node, dram_tune_use_rodt);
    }
#endif

    // FIXME? get flag from LMC0 only
    lmc_config.u = BDK_CSR_READ(node, BDK_LMCX_CONFIG(0));
    ddr_interface_64b = !lmc_config.s.mode32b;

    // do setup for each active LMC
    debug_print("N%d: %s: starting LMCs setup.\n", node, __FUNCTION__);
    for (lmc = 0; lmc < num_lmcs; lmc++) {

#if 0
	// if RODT change, save old and set new here...
	if (dram_tune_use_rodt >= 0) {
	    comp_ctl2.u = BDK_CSR_READ(node, BDK_LMCX_COMP_CTL2(lmc));
	    save_rodt[lmc] = comp_ctl2.s.rodt_ctl;
	    comp_ctl2.s.rodt_ctl = dram_tune_use_rodt;
	    DRAM_CSR_WRITE(node, BDK_LMCX_COMP_CTL2(lmc), comp_ctl2.u);
	    BDK_CSR_READ(node, BDK_LMCX_COMP_CTL2(lmc));
	}
#endif
	/* Disable ECC for DRAM tests */
	lmc_config.u = BDK_CSR_READ(node, BDK_LMCX_CONFIG(lmc));
	save_ecc_ena[lmc] = lmc_config.s.ecc_ena;
	lmc_config.s.ecc_ena = 0;
	DRAM_CSR_WRITE(node, BDK_LMCX_CONFIG(lmc), lmc_config.u);
	lmc_config.u = BDK_CSR_READ(node, BDK_LMCX_CONFIG(lmc));

    } /* for (lmc = 0; lmc < num_lmcs; lmc++) */

#if USE_L2_WAYS_LIMIT
    /* Disable l2 sets for DRAM testing */
    limit_l2_ways(node, 0, ways_print);
#endif

    // testing is done on all LMCs simultaneously
    // FIXME: for now, loop here to show what happens multiple times
    for (loop = 0; loop < loops; loop++) {
	/* Perform DLL offset tuning */
	errs = auto_set_dll_offset(node, dll_offset_mode, num_lmcs, ddr_interface_64b, do_tune);
    }

#if USE_L2_WAYS_LIMIT
    /* Restore the l2 set configuration */
    limit_l2_ways(node, ways, ways_print);
#endif

    // perform cleanup on all active LMCs   
    debug_print("N%d: %s: starting LMCs cleanup.\n", node, __FUNCTION__);
    for (lmc = 0; lmc < num_lmcs; lmc++) {

	/* Restore ECC for DRAM tests */
	lmc_config.u = BDK_CSR_READ(node, BDK_LMCX_CONFIG(lmc));
	lmc_config.s.ecc_ena = save_ecc_ena[lmc];
	DRAM_CSR_WRITE(node, BDK_LMCX_CONFIG(lmc), lmc_config.u);
	lmc_config.u = BDK_CSR_READ(node, BDK_LMCX_CONFIG(lmc));
#if 0
	// if RODT change, restore old here...
	if (dram_tune_use_rodt >= 0) {
	    comp_ctl2.u = BDK_CSR_READ(node, BDK_LMCX_COMP_CTL2(lmc));
	    comp_ctl2.s.rodt_ctl = save_rodt[lmc];
	    DRAM_CSR_WRITE(node, BDK_LMCX_COMP_CTL2(lmc), comp_ctl2.u);
	    BDK_CSR_READ(node, BDK_LMCX_COMP_CTL2(lmc));
	}
#endif
	// finally, see if there are any read offset overrides after tuning
        // FIXME: provide a way to do write offsets also??
        if (dll_offset_mode == 2) {
            for (int by = 0; by < 9; by++) {
                if ((s = lookup_env_parameter("ddr%d_tune_byte%d", lmc, by)) != NULL) {
                    int dllro = strtoul(s, NULL, 10);
                    change_dll_offset_enable(node, lmc, 0);
                    load_dll_offset(node, lmc, /* read */2, dllro, by);
                    change_dll_offset_enable(node, lmc, 1);
                }
            }
        }
    } /* for (lmc = 0; lmc < num_lmcs; lmc++) */

    // finish up...

#if 0
    // if RODT was overridden during tuning, note restore
    if (dram_tune_use_rodt >= 0) {
	ddr_print("N%d: restoring RODT %d after tuning.\n",
		  node, save_rodt[0]); // FIXME? use LMC0
    }
#endif

    // put any cores on this node, that were not running at the start, back into reset
    uint64_t reset_coremask = bdk_get_running_coremask(node) & ~orig_coremask;
    if (reset_coremask) {
	ddr_print4("N%d: %s: Stopping cores 0x%lx\n", node, __FUNCTION__,
		  reset_coremask);
	bdk_reset_cores(node, reset_coremask);
    } else {
	ddr_print4("N%d: %s: leaving cores set to 0x%lx\n", node, __FUNCTION__,
		  orig_coremask);
    }

    return errs;

} /* perform_dll_offset_tuning */

/////////////////////////////////////////////////////////////////////////////////////////////

/////    HW-assist byte DLL offset tuning   //////

#if 1
// setup defaults for byte test pattern array
// take these first two from the HRM section 6.9.13
static const uint64_t byte_pattern_0[] = {
    0xFFAAFFFFFF55FFFFULL, // GP0
    0x55555555AAAAAAAAULL, // GP1
    0xAA55AAAAULL,         // GP2
};
static const uint64_t byte_pattern_1[] = {
    0xFBF7EFDFBF7FFEFDULL, // GP0
    0x0F1E3C78F0E1C387ULL, // GP1
    0xF0E1BF7FULL,         // GP2
};
// this is from Andrew via LFSR with PRBS=0xFFFFAAAA
static const uint64_t byte_pattern_2[] = {
    0xEE55AADDEE55AADDULL, // GP0
    0x55AADDEE55AADDEEULL, // GP1
    0x55EEULL,             // GP2
};
// this is from Mike via LFSR with PRBS=0x4A519909
static const uint64_t byte_pattern_3[] = {
    0x0088CCEE0088CCEEULL, // GP0
    0xBB552211BB552211ULL, // GP1
    0xBB00ULL,             // GP2
};

static const uint64_t *byte_patterns[] = {
    byte_pattern_0, byte_pattern_1, byte_pattern_2, byte_pattern_3 // FIXME: use all we have
};
#define NUM_BYTE_PATTERNS ((int)(sizeof(byte_patterns)/sizeof(uint64_t *)))

#define DEFAULT_BYTE_BURSTS 32 // FIXME: this is what what the longest test usually has
int dram_tune_byte_bursts = DEFAULT_BYTE_BURSTS;
#endif

static void
setup_hw_pattern(bdk_node_t node, int lmc, const uint64_t *pattern_p)
{
    /*
      3) Setup GENERAL_PURPOSE[0-2] registers with the data pattern of choice.
      a. GENERAL_PURPOSE0[DATA<63:0>] – sets the initial lower (rising edge) 64 bits of data.
      b. GENERAL_PURPOSE1[DATA<63:0>] – sets the initial upper (falling edge) 64 bits of data.
      c. GENERAL_PURPOSE2[DATA<15:0>] – sets the initial lower (rising edge <7:0>) and upper
      (falling edge <15:8>) ECC data.
    */
    DRAM_CSR_WRITE(node, BDK_LMCX_GENERAL_PURPOSE0(lmc), pattern_p[0]);
    DRAM_CSR_WRITE(node, BDK_LMCX_GENERAL_PURPOSE1(lmc), pattern_p[1]);
    DRAM_CSR_WRITE(node, BDK_LMCX_GENERAL_PURPOSE2(lmc), pattern_p[2]);
}

#define DEFAULT_PRBS 0xFFFFAAAAUL /* FIXME: maybe try 0x4A519909UL */

static void
setup_lfsr_pattern(bdk_node_t node, int lmc, uint64_t data)
{
    uint32_t prbs;
    const char *s;

    if ((s = getenv("ddr_lfsr_prbs"))) {
        prbs = strtoul(s, NULL, 0);
    } else
        prbs = DEFAULT_PRBS; // FIXME: from data arg?

    /*
      2) DBTRAIN_CTL[LFSR_PATTERN_SEL] = 1
         here data comes from the LFSR generating a PRBS pattern
         CHAR_CTL.EN = 0
         CHAR_CTL.SEL = 0; // for PRBS
         CHAR_CTL.DR = 1;
         CHAR_CTL.PRBS = setup for whatever type of PRBS to send
         CHAR_CTL.SKEW_ON = 1;
    */
    BDK_CSR_INIT(char_ctl, node, BDK_LMCX_CHAR_CTL(lmc));
    char_ctl.s.en      = 0;
    char_ctl.s.sel     = 0;
    char_ctl.s.dr      = 1;
    char_ctl.s.prbs    = prbs;
    char_ctl.s.skew_on = 1;
    DRAM_CSR_WRITE(node, BDK_LMCX_CHAR_CTL(lmc), char_ctl.u);
}

int
choose_best_hw_patterns(bdk_node_t node, int lmc, int mode)
{
    int new_mode = mode;
    const char *s;

    switch (mode) {
    case DBTRAIN_TEST: // always choose LFSR if chip supports it
        if (! CAVIUM_IS_MODEL(CAVIUM_CN88XX)) {
            int lfsr_enable = 1;
            if ((s = getenv("ddr_allow_lfsr"))) { // override?
                lfsr_enable = !!strtoul(s, NULL, 0);
            }
            if (lfsr_enable)
                new_mode = DBTRAIN_LFSR;
        }
        break;
    case DBTRAIN_DBI: // possibly can allow LFSR use?
        break;
    case DBTRAIN_LFSR: // forced already
        if (CAVIUM_IS_MODEL(CAVIUM_CN88XX)) {
            ddr_print("ERROR: illegal HW assist mode %d\n", mode);
            new_mode = DBTRAIN_TEST;
        }
        break;
    default:
        ddr_print("ERROR: unknown HW assist mode %d\n", mode);
    }

    if (new_mode != mode)
        VB_PRT(VBL_DEV2, "choose_best_hw_patterns: changing mode %d to %d\n", mode, new_mode);

    return new_mode;
}

int
run_best_hw_patterns(bdk_node_t node, int lmc, uint64_t phys_addr,
                     int mode, uint64_t *xor_data)
{
    int pattern;
    const uint64_t *pattern_p;
    int errs, errors = 0;

    // FIXME? always choose LFSR if chip supports it???
    mode = choose_best_hw_patterns(node, lmc, mode);

    if (mode == DBTRAIN_LFSR) {
            setup_lfsr_pattern(node, lmc, 0);
            errors = test_dram_byte_hw(node, lmc, phys_addr, mode, xor_data);
            VB_PRT(VBL_DEV2, "%s: LFSR at A:0x%012lx errors 0x%x\n",
                   __FUNCTION__, phys_addr, errors);
    } else {
        for (pattern = 0; pattern < NUM_BYTE_PATTERNS; pattern++) {
            pattern_p = byte_patterns[pattern];
            setup_hw_pattern(node, lmc, pattern_p);

            errs = test_dram_byte_hw(node, lmc, phys_addr, mode, xor_data);

            VB_PRT(VBL_DEV2, "%s: PATTERN %d at A:0x%012lx errors 0x%x\n",
                   __FUNCTION__, pattern, phys_addr, errs);

            errors |= errs;
        } /* for (pattern = 0; pattern < NUM_BYTE_PATTERNS; pattern++) */
    }
    return errors;
}

static void
hw_assist_test_dll_offset(bdk_node_t node, int dll_offset_mode,
                          int lmc, int bytelane)
{
    int byte_offset, new_best_offset[9];
    int rank_delay_start[4][9];
    int rank_delay_count[4][9];
    int rank_delay_best_start[4][9];
    int rank_delay_best_count[4][9];
    int errors[4], off_errors, tot_errors;
    int num_lmcs = __bdk_dram_get_num_lmc(node);
    int rank_mask, rankx, active_ranks;
    int pattern;
    const uint64_t *pattern_p;
    int byte;
    char *mode_str = (dll_offset_mode == 2) ? "Read" : "Write";
    int pat_best_offset[9];
    uint64_t phys_addr;
    int pat_beg, pat_end;
    int rank_beg, rank_end;
    int byte_lo, byte_hi;
    uint64_t hw_rank_offset;
    // FIXME? always choose LFSR if chip supports it???
    int mode = choose_best_hw_patterns(node, lmc, DBTRAIN_TEST);

    if (bytelane == 0x0A) { // all bytelanes
        byte_lo = 0;
        byte_hi = 8;
    } else { // just 1
        byte_lo = byte_hi = bytelane;
    }

    BDK_CSR_INIT(lmcx_config, node, BDK_LMCX_CONFIG(lmc));
    rank_mask = lmcx_config.s.init_status;
    // this should be correct for 1 or 2 ranks, 1 or 2 DIMMs
    hw_rank_offset = 1ull << (28 + lmcx_config.s.pbank_lsb - lmcx_config.s.rank_ena + (num_lmcs/2));

    debug_print("N%d: %s: starting LMC%d with rank offset 0x%lx\n",
                node, __FUNCTION__, lmc, hw_rank_offset);

    // start of pattern loop
    // we do the set of tests for each pattern supplied...

    memset(new_best_offset, 0, sizeof(new_best_offset));
    for (pattern = 0; pattern < NUM_BYTE_PATTERNS; pattern++) {

	memset(pat_best_offset, 0, sizeof(pat_best_offset));

        if (mode == DBTRAIN_TEST) {
            pattern_p = byte_patterns[pattern];
            setup_hw_pattern(node, lmc, pattern_p);
        } else {
            setup_lfsr_pattern(node, lmc, 0);
        }

	// now loop through all legal values for the DLL byte offset...

#define BYTE_OFFSET_INCR 3 // FIXME: make this tunable?

	tot_errors = 0;

	memset(rank_delay_count, 0, sizeof(rank_delay_count));
	memset(rank_delay_start, 0, sizeof(rank_delay_start));
	memset(rank_delay_best_count, 0, sizeof(rank_delay_best_count));
	memset(rank_delay_best_start, 0, sizeof(rank_delay_best_start));

	for (byte_offset = -63; byte_offset < 64; byte_offset += BYTE_OFFSET_INCR) {

	    // do the setup on the active LMC
	    // set the bytelanes DLL offsets
	    change_dll_offset_enable(node, lmc, 0);
	    load_dll_offset(node, lmc, dll_offset_mode, byte_offset, bytelane); // FIXME? bytelane?
	    change_dll_offset_enable(node, lmc, 1);

	    bdk_watchdog_poke();

	    // run the test on each rank
	    // only 1 call per rank should be enough, let the bursts, loops, etc, control the load...
	
	    off_errors = 0; // errors for this byte_offset, all ranks

            active_ranks = 0;

	    for (rankx = 0; rankx < 4; rankx++) {
                if (!(rank_mask & (1 << rankx)))
                    continue;

		phys_addr = hw_rank_offset * active_ranks;
		// FIXME: now done by test_dram_byte_hw()
                //phys_addr |= (lmc << 7);
                //phys_addr = bdk_numa_get_address(node, phys_addr); // map to node

                active_ranks++;

                // NOTE: return is a now a bitmask of the erroring bytelanes..
		errors[rankx] = test_dram_byte_hw(node, lmc, phys_addr, mode, NULL);

                for (byte = byte_lo; byte <= byte_hi; byte++) { // do bytelane(s)

                    // check errors
                    if (errors[rankx] & (1 << byte)) { // yes, an error in the byte lane in this rank
                        off_errors |= (1 << byte);

                        ddr_print5("N%d.LMC%d.R%d: Bytelane %d DLL %s Offset Test %3d: Address 0x%012lx errors 0x%x\n",
                                   node, lmc, rankx, bytelane, mode_str,
                                   byte_offset, phys_addr, errors[rankx]);

                        if (rank_delay_count[rankx][byte] > 0) { // had started run
                            ddr_print5("N%d.LMC%d.R%d: Bytelane %d DLL %s Offset Test %3d: stopping a run here\n",
                                       node, lmc, rankx, bytelane, mode_str, byte_offset);
                            rank_delay_count[rankx][byte] = 0;   // stop now
                        }
                        // FIXME: else had not started run - nothing else to do?
                    } else { // no error in the byte lane
                        if (rank_delay_count[rankx][byte] == 0) { // first success, set run start
                            ddr_print5("N%d.LMC%d.R%d: Bytelane %d DLL %s Offset Test %3d: starting a run here\n",
                                       node, lmc, rankx, bytelane, mode_str, byte_offset);
                            rank_delay_start[rankx][byte] = byte_offset;
                        }
                        rank_delay_count[rankx][byte] += BYTE_OFFSET_INCR; // bump run length

                        // is this now the biggest window?
                        if (rank_delay_count[rankx][byte] > rank_delay_best_count[rankx][byte]) {
                            rank_delay_best_count[rankx][byte] = rank_delay_count[rankx][byte];
                            rank_delay_best_start[rankx][byte] = rank_delay_start[rankx][byte];
                            debug_print("N%d.LMC%d.R%d: Bytelane %d DLL %s Offset Test %3d: updating best to %d/%d\n",
                                        node, lmc, rankx, bytelane, mode_str, byte_offset,
                                        rank_delay_best_start[rankx][byte], rank_delay_best_count[rankx][byte]);
                        }
                    }
                } /* for (byte = byte_lo; byte <= byte_hi; byte++) */
	    } /* for (rankx = 0; rankx < 4; rankx++) */

	    tot_errors |= off_errors;

	} /* for (byte_offset = -63; byte_offset < 64; byte_offset += BYTE_OFFSET_INCR) */

	// now choose the best byte_offsets for this pattern according to the best windows of the tested ranks
        // calculate offset by constructing an average window from the rank windows
        for (byte = byte_lo; byte <= byte_hi; byte++) {

            pat_beg = -999;
            pat_end = 999;

            for (rankx = 0; rankx < 4; rankx++) {
                if (!(rank_mask & (1 << rankx)))
                    continue;

                rank_beg = rank_delay_best_start[rankx][byte];
                pat_beg = max(pat_beg, rank_beg);
                rank_end = rank_beg + rank_delay_best_count[rankx][byte] - BYTE_OFFSET_INCR;
                pat_end = min(pat_end, rank_end);

                ddr_print5("N%d.LMC%d.R%d: Bytelane %d DLL %s Offset Test:  Rank Window %3d:%3d\n",
                           node, lmc, rankx, bytelane, mode_str, rank_beg, rank_end);

            } /* for (rankx = 0; rankx < 4; rankx++) */

            pat_best_offset[byte] = (pat_end + pat_beg) / 2;
            ddr_print4("N%d.LMC%d: Bytelane %d DLL %s Offset Test:  Pattern %d Average %3d\n",
                       node, lmc, byte, mode_str, pattern, pat_best_offset[byte]);

#if 0
            // FIXME: next print the window counts
            sprintf(sbuffer, "N%d.LMC%d Pattern %d: DLL %s Offset Count ",
                    node, lmc, pattern, mode_str);
            printf("%-45s : ", sbuffer);
            printf(" %3d", byte_delay_best_count);
            printf("\n");
#endif

            new_best_offset[byte] += pat_best_offset[byte]; // sum the pattern averages
        } /* for (byte = byte_lo; byte <= byte_hi; byte++) */
    } /* for (pattern = 0; pattern < NUM_BYTE_PATTERNS; pattern++) */
    // end of pattern loop

    ddr_print("N%d.LMC%d: HW DLL %s Offset Amount   : ",
              node, lmc, mode_str);

    for (byte = byte_hi; byte >= byte_lo; --byte) { // print in decending byte index order
        new_best_offset[byte] = divide_nint(new_best_offset[byte], NUM_BYTE_PATTERNS); // create the new average NINT

        // print the best offsets from all patterns

        if (bytelane == 0x0A) // print just the offset of all the bytes
            ddr_print("%5d ", new_best_offset[byte]);
        else
            ddr_print("(byte %d) %5d ", byte, new_best_offset[byte]);
        

#if 1
        // done with testing, load up the best offsets we found...
        change_dll_offset_enable(node, lmc, 0); // disable offsets while we load...
        load_dll_offset(node, lmc, dll_offset_mode, new_best_offset[byte], byte);
        change_dll_offset_enable(node, lmc, 1); // re-enable the offsets now that we are done loading
#endif
    } /* for (byte = byte_hi; byte >= byte_lo; --byte) */

    ddr_print("\n");

#if 0
    // run the test one last time 
    // print whether there are errors or not, but only when verbose...
    tot_errors = run_test_dram_byte_threads(node, num_lmcs, bytemask);
    printf("N%d.LMC%d: Bytelane %d DLL %s Offset Final Test: errors 0x%x\n",
	   node, lmc, bytelane, mode_str, tot_errors);
#endif
}

/*
 * Automatically adjust the DLL offset for the selected bytelane using hardware-assist
 */
int perform_HW_dll_offset_tuning(bdk_node_t node, int dll_offset_mode, int bytelane)
{
    int save_ecc_ena[4];
    bdk_lmcx_config_t lmc_config;
    int lmc, num_lmcs = __bdk_dram_get_num_lmc(node);
    const char *s;
    //bdk_lmcx_comp_ctl2_t comp_ctl2;
    int loops = 1, loop;

    // see if we want to do the tuning more than once per LMC...
    if ((s = getenv("ddr_tune_ecc_loops"))) {
	loops = strtoul(s, NULL, 0);
    }

    // allow override of the test repeats (bursts)
    if ((s = getenv("ddr_tune_byte_bursts")) != NULL) {
        dram_tune_byte_bursts = strtoul(s, NULL, 10);
    }

    // print current working values
    ddr_print2("N%d: H/W Tuning for bytelane %d will use %d loops, %d bursts, and %d patterns.\n",
	      node, bytelane, loops, dram_tune_byte_bursts,
	      NUM_BYTE_PATTERNS);

    // FIXME? get flag from LMC0 only
    lmc_config.u = BDK_CSR_READ(node, BDK_LMCX_CONFIG(0));

    // do once for each active LMC

    for (lmc = 0; lmc < num_lmcs; lmc++) {

	ddr_print4("N%d: H/W Tuning: starting LMC%d bytelane %d tune.\n", node, lmc, bytelane);

	/* Enable ECC for the HW tests */
	// NOTE: we do enable ECC, but the HW tests used will not generate "visible" errors
	lmc_config.u = BDK_CSR_READ(node, BDK_LMCX_CONFIG(lmc));
	save_ecc_ena[lmc] = lmc_config.s.ecc_ena;
	lmc_config.s.ecc_ena = 1;
	DRAM_CSR_WRITE(node, BDK_LMCX_CONFIG(lmc), lmc_config.u);
	lmc_config.u = BDK_CSR_READ(node, BDK_LMCX_CONFIG(lmc));

	// testing is done on a single LMC at a time
	// FIXME: for now, loop here to show what happens multiple times
	for (loop = 0; loop < loops; loop++) {
	    /* Perform DLL offset tuning */
	    //auto_set_dll_offset(node,  1 /* 1=write */, lmc, bytelane);
	    hw_assist_test_dll_offset(node,  2 /* 2=read */, lmc, bytelane);
	}

	// perform cleanup on active LMC   
	ddr_print4("N%d: H/W Tuning: finishing LMC%d bytelane %d tune.\n", node, lmc, bytelane);

	/* Restore ECC for DRAM tests */
	lmc_config.u = BDK_CSR_READ(node, BDK_LMCX_CONFIG(lmc));
	lmc_config.s.ecc_ena = save_ecc_ena[lmc];
	DRAM_CSR_WRITE(node, BDK_LMCX_CONFIG(lmc), lmc_config.u);
	lmc_config.u = BDK_CSR_READ(node, BDK_LMCX_CONFIG(lmc));

	// finally, see if there are any read offset overrides after tuning
	for (int by = 0; by < 9; by++) {
	    if ((s = lookup_env_parameter("ddr%d_tune_byte%d", lmc, by)) != NULL) {
		int dllro = strtoul(s, NULL, 10);
		change_dll_offset_enable(node, lmc, 0);
		load_dll_offset(node, lmc, 2 /* 2=read */, dllro, by);
		change_dll_offset_enable(node, lmc, 1);
	    }
	}

    } /* for (lmc = 0; lmc < num_lmcs; lmc++) */

    // finish up...

    return 0;

} /* perform_HW_dll_offset_tuning */