aboutsummaryrefslogtreecommitdiff
path: root/src/vendorcode/amd/agesa/f16kb/Proc/Mem/Main/mmMemRestore.c
blob: 248e98c12c20e5b0413f877ce973a1a1b317773c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
/* $NoKeywords:$ */
/**
 * @file
 *
 * mmMemRestore.c
 *
 * Main Memory Feature implementation file for Node Interleaving
 *
 * @xrefitem bom "File Content Label" "Release Content"
 * @e project: AGESA
 * @e sub-project: (Mem/Main)
 * @e \$Revision: 86704 $ @e \$Date: 2013-01-24 17:29:29 -0600 (Thu, 24 Jan 2013) $
 *
 **/
/*****************************************************************************
*
 * Copyright (c) 2008 - 2013, Advanced Micro Devices, Inc.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of Advanced Micro Devices, Inc. nor the names of
 *       its contributors may be used to endorse or promote products derived
 *       from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL ADVANCED MICRO DEVICES, INC. BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* ***************************************************************************
*
*/

/*
 *----------------------------------------------------------------------------
 *                                MODULES USED
 *
 *----------------------------------------------------------------------------
 */

#include "AGESA.h"
#include "amdlib.h"
#include "OptionMemory.h"
#include "GeneralServices.h"
#include "mm.h"
#include "mn.h"
#include "Ids.h"
#include "S3.h"
#include "mfs3.h"
#include "heapManager.h"
#include "cpuFeatures.h"
#include "cpuRegisters.h"
#include "cpuPostInit.h"
#include "cpuApicUtilities.h"
#include "Filecode.h"
CODE_GROUP (G1_PEICC)
RDATA_GROUP (G1_PEICC)

#define FILECODE PROC_MEM_MAIN_MMMEMRESTORE_FILECODE

#define ST_PRE_ESR  0
#define ST_POST_ESR 1
#define ST_DONE     2

/*----------------------------------------------------------------------------
 *                        PROTOTYPES OF LOCAL FUNCTIONS
 *
 *----------------------------------------------------------------------------
 */

VOID
STATIC
MemMCreateS3NbBlock (
  IN OUT   MEM_MAIN_DATA_BLOCK *MemMainPtr,
     OUT   S3_MEM_NB_BLOCK **S3NBPtr
  );

VOID
MemMContextSave (
  IN OUT   MEM_MAIN_DATA_BLOCK *MemMainPtr
  );

BOOLEAN
MemMContextRestore (
  IN OUT   MEM_MAIN_DATA_BLOCK *MemMainPtr
  );

BOOLEAN
STATIC
MemMDramInit (
  IN OUT   MEM_MAIN_DATA_BLOCK *MemMainPtr
  );

UINT32
GetReducedMemBlockSize (
  IN OUT   MEM_MAIN_DATA_BLOCK *MemMainPtr
  );

VOID
MemMReducedMemBlockSave (
  IN OUT   MEM_MAIN_DATA_BLOCK *MemMainPtr,
  IN       VOID                *Storage,
     OUT   UINT32              *ActualBufferSize
  );

VOID
MemMReducedMemBlockRestore (
  IN OUT   MEM_MAIN_DATA_BLOCK *MemMainPtr,
  IN       VOID                *Storage
  );

BOOLEAN
MemMS3Save (
  IN OUT   MEM_MAIN_DATA_BLOCK *MemMainPtr
  );

/*-----------------------------------------------------------------------------
*                                EXPORTED FUNCTIONS
*
*-----------------------------------------------------------------------------
*/
extern MEM_NB_SUPPORT memNBInstalled[];
extern MEM_FEAT_BLOCK_MAIN MemFeatMain;

/* -----------------------------------------------------------------------------*/
/**
 *
 *  Determines the maximum amount of space required to store all reduced NB block
 *  and DCT block.
 *
 *     @param[in,out]   *MemMainPtr   - Pointer to the MEM_MAIN_DATA_BLOCK
 *
 */
UINT32
GetReducedMemBlockSize (
  IN OUT   MEM_MAIN_DATA_BLOCK *MemMainPtr
  )
{
  UINT8 Node;
  UINT8 Dct;
  UINT32 MemBlockSize;
  MEM_NB_BLOCK  *NBPtr;

  MemBlockSize = sizeof (REDUCED_MEM_BLOCK_HEAP_HEADER);

  for (Node = 0; Node < MemMainPtr->DieCount; Node ++) {
    // Increase the size if the node is present
    MemBlockSize += sizeof (REDUCED_NB_BLOCK);
    NBPtr = &MemMainPtr->NBPtr[Node];

    // Sync DCT Select bit with main NB block status
    NBPtr->Dct = 0;
    NBPtr->SetBitField (NBPtr, BFDctCfgSel, 0);
    for (Dct = 0; Dct < NBPtr->DctCount; Dct ++) {
      NBPtr->SwitchDCT (NBPtr, Dct);
      // Increase the size if memory is present on the DCT
      if (NBPtr->DCTPtr->Timings.DctMemSize != 0) {
        MemBlockSize += sizeof (REDUCED_DCT_BLOCK);
      }
      // Switch back to DCT 0
      NBPtr->SwitchDCT (NBPtr, 0);
    }
  }

  return MemBlockSize;
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *  Save all the required reduced NB blocks and DCT blocks.
 *
 *     @param[in,out]   *MemMainPtr       - Pointer to the MEM_MAIN_DATA_BLOCK
 *     @param[in]       Storage           - Beginning of the context buffer.
 *     @param[out]      ActualBufferSize  - Actual size used in saving the device list.
 *
 */
VOID
MemMReducedMemBlockSave (
  IN OUT   MEM_MAIN_DATA_BLOCK *MemMainPtr,
  IN       VOID                *Storage,
     OUT   UINT32              *ActualBufferSize
  )
{
  UINT8 Node;
  UINT8 Dct;
  MEM_NB_BLOCK  *NBPtr;
  REDUCED_MEM_BLOCK_HEAP_HEADER *MemBlockHeader;
  REDUCED_NB_BLOCK *ReducedNBPtr;
  REDUCED_DCT_BLOCK *ReducedDCTPtr;

  // Initialzie the block pointers
  MemBlockHeader = (REDUCED_MEM_BLOCK_HEAP_HEADER *)Storage;
  MemBlockHeader->NumNodes = MemMainPtr->DieCount;
  ReducedNBPtr = (REDUCED_NB_BLOCK *)&MemBlockHeader[1];
  ReducedDCTPtr = (REDUCED_DCT_BLOCK *)&ReducedNBPtr[MemBlockHeader->NumNodes];

  // Construct the reduced NB/DCT blocks
  for (Node = 0; Node < MemMainPtr->DieCount; Node ++) {
    NBPtr = &MemMainPtr->NBPtr[Node];
    ReducedNBPtr->NodeMemSize = NBPtr->MCTPtr->NodeMemSize;
    ReducedNBPtr->NodeSysBase = NBPtr->MCTPtr->NodeSysBase;
    ReducedNBPtr->NumDcts = 0;

    for (Dct = 0; Dct < NBPtr->DctCount; Dct ++) {
      // Sync DCT Select bit with main NB block status
      NBPtr->SetBitField (NBPtr, BFDctCfgSel, NBPtr->Dct);
      NBPtr->SwitchDCT (NBPtr, Dct);
      if (NBPtr->DCTPtr->Timings.DctMemSize != 0) {
        // Create a reduced block only if memory is present on the DCT
        ReducedNBPtr->NumDcts ++;
        ReducedDCTPtr->Dct = NBPtr->Dct;
        ReducedDCTPtr->DctMemSize = NBPtr->DCTPtr->Timings.DctMemSize;
        ReducedDCTPtr->EnabledChipSels = NBPtr->DCTPtr->EnabledChipSels;
        ReducedDCTPtr->BankAddrMap = NBPtr->DCTPtr->BankAddrMap;
        ReducedDCTPtr->BkIntDis = NBPtr->DCTPtr->BkIntDis;
        ReducedDCTPtr ++;
      }
      // Switch back to DCT 0
      NBPtr->SwitchDCT (NBPtr, 0);
    }
    ReducedNBPtr ++;
  }

  ASSERT ((UINT32) ((UINT8 *)ReducedDCTPtr - (UINT8 *)Storage) == GetReducedMemBlockSize (MemMainPtr));
  *ActualBufferSize += (UINT32) ((UINT8 *)ReducedDCTPtr - (UINT8 *)Storage);
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *  Restore all the required reduced NB blocks and DCT blocks.
 *
 *     @param[in,out]   *MemMainPtr   - Pointer to the MEM_MAIN_DATA_BLOCK
 *     @param[in]       Storage       - Beginning of the context buffer.
 *
 */
VOID
MemMReducedMemBlockRestore (
  IN OUT   MEM_MAIN_DATA_BLOCK *MemMainPtr,
  IN       VOID                *Storage
  )
{
  UINT8 Node;
  UINT8 Dct;
  UINT8 NumDcts;
  MEM_NB_BLOCK  *NBPtr;
  DEVICE_BLOCK_HEADER *DeviceList;
  REDUCED_MEM_BLOCK_HEAP_HEADER *MemBlockHeader;
  REDUCED_NB_BLOCK *ReducedNBPtr;
  REDUCED_DCT_BLOCK *ReducedDCTPtr;

  // Initialzie the block pointers
  DeviceList = (DEVICE_BLOCK_HEADER *) Storage;
  MemBlockHeader = (REDUCED_MEM_BLOCK_HEAP_HEADER *) ((UINT8 *) DeviceList + DeviceList->NextBlockOffset);
  ReducedNBPtr = (REDUCED_NB_BLOCK *)&MemBlockHeader[1];
  ReducedDCTPtr = (REDUCED_DCT_BLOCK *)&ReducedNBPtr[MemBlockHeader->NumNodes];

  // Restore the memory data from the reduced NB/DCT blocks
  for (Node = 0; Node < MemMainPtr->DieCount; Node ++) {
    NBPtr = &MemMainPtr->NBPtr[Node];
    NBPtr->MCTPtr->NodeMemSize = ReducedNBPtr->NodeMemSize;
    NBPtr->MCTPtr->NodeSysBase = ReducedNBPtr->NodeSysBase;
    NumDcts = ReducedNBPtr->NumDcts;
    ASSERT (NumDcts <= NBPtr->DctCount);

    for (Dct = 0; Dct < NBPtr->DctCount; Dct ++) {
      // Sync DCT Select bit with main NB block status
      NBPtr->SetBitField (NBPtr, BFDctCfgSel, NBPtr->Dct);
      NBPtr->SwitchDCT (NBPtr, Dct);

      if (NumDcts > 0 && NBPtr->Dct == ReducedDCTPtr->Dct) {
        NBPtr->DCTPtr->Timings.DctMemSize = ReducedDCTPtr->DctMemSize;
        NBPtr->DCTPtr->EnabledChipSels = ReducedDCTPtr->EnabledChipSels;
        NBPtr->DCTPtr->BankAddrMap = ReducedDCTPtr->BankAddrMap;
        NBPtr->DCTPtr->BkIntDis = ReducedDCTPtr->BkIntDis;
        ReducedDCTPtr ++;
        NumDcts --;
      } else {
        NBPtr->DCTPtr->Timings.DctMemSize = 0;
        NBPtr->DCTPtr->EnabledChipSels = 0;
        NBPtr->DCTPtr->BankAddrMap = 0;
        NBPtr->DCTPtr->BkIntDis = FALSE;
      }
      // Switch back to DCT 0
      NBPtr->SwitchDCT (NBPtr, 0);
    }
    ReducedNBPtr ++;
  }
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *  Check and save memory context if possible.
 *
 *     @param[in,out]   *MemMainPtr   - Pointer to the MEM_MAIN_DATA_BLOCK
 *
 */
VOID
MemMContextSave (
  IN OUT   MEM_MAIN_DATA_BLOCK *MemMainPtr
  )
{
  UINT8 Node;
  UINT8 i;
  MEM_PARAMETER_STRUCT *RefPtr;
  LOCATE_HEAP_PTR LocHeap;
  ALLOCATE_HEAP_PARAMS AllocHeapParams;
  DEVICE_BLOCK_HEADER *DeviceList;
  AMD_CONFIG_PARAMS *StdHeader;
  UINT32 BufferSize;
  VOID *BufferOffset;
  MEM_NB_BLOCK  *NBArray;
  S3_MEM_NB_BLOCK *S3NBPtr;
  DESCRIPTOR_GROUP DeviceDescript[MAX_NODES_SUPPORTED];

  NBArray = MemMainPtr->NBPtr;
  RefPtr = NBArray[BSP_DIE].RefPtr;

  if (RefPtr->SaveMemContextCtl) {
    MemMDisableScrubber (MemMainPtr);

    RefPtr->MemContext.NvStorage = NULL;
    RefPtr->MemContext.NvStorageSize = 0;

    // Make sure DQS training has occurred before saving memory context
    if (!RefPtr->MemRestoreCtl) {
      StdHeader = &MemMainPtr->MemPtr->StdHeader;

      MemMCreateS3NbBlock (MemMainPtr, &S3NBPtr);
      if (S3NBPtr != NULL) {
        // Get the mask bit and the register list for node that presents
        BufferSize = 0;
        for (Node = 0; Node < MemMainPtr->DieCount; Node ++) {
          S3NBPtr->MemS3GetConPCIMask (S3NBPtr[Node].NBPtr, (VOID *)&DeviceDescript[Node]);
          S3NBPtr->MemS3GetConMSRMask (S3NBPtr[Node].NBPtr, (VOID *)&DeviceDescript[Node]);
          BufferSize += S3NBPtr->MemS3GetRegLstPtr (S3NBPtr[Node].NBPtr, (VOID *)&DeviceDescript[Node]);
        }

        // Base on the size of the device list, apply for a buffer for it.
        AllocHeapParams.RequestedBufferSize = (UINT32) (BufferSize + sizeof (DEVICE_BLOCK_HEADER));
        AllocHeapParams.BufferHandle = AMD_MEM_S3_DATA_HANDLE;
        AllocHeapParams.Persist = HEAP_LOCAL_CACHE;
        if (HeapAllocateBuffer (&AllocHeapParams, StdHeader) == AGESA_SUCCESS) {
          DeviceList = (DEVICE_BLOCK_HEADER *) AllocHeapParams.BufferPtr;
          DeviceList->RelativeOrMaskOffset = (UINT16) AllocHeapParams.RequestedBufferSize;

          // Copy device list on the stack to the heap.
          BufferOffset = sizeof (DEVICE_BLOCK_HEADER) + AllocHeapParams.BufferPtr;
          for (Node = 0; Node < MemMainPtr->DieCount; Node ++) {
            for (i = PRESELFREF; i <= POSTSELFREF; i ++) {
              // Copy PCI device descriptor to the heap if it exists.
              if (DeviceDescript[Node].PCIDevice[i].RegisterListID != 0xFFFFFFFF) {
                LibAmdMemCopy (BufferOffset, &(DeviceDescript[Node].PCIDevice[i]), sizeof (PCI_DEVICE_DESCRIPTOR), StdHeader);
                DeviceList->NumDevices ++;
                BufferOffset = sizeof (PCI_DEVICE_DESCRIPTOR) + (UINT8 *)BufferOffset;
              }
              // Copy conditional PCI device descriptor to the heap if it exists.
              if (DeviceDescript[Node].CPCIDevice[i].RegisterListID != 0xFFFFFFFF) {
                LibAmdMemCopy (BufferOffset, &(DeviceDescript[Node].CPCIDevice[i]), sizeof (CONDITIONAL_PCI_DEVICE_DESCRIPTOR), StdHeader);
                DeviceList->NumDevices ++;
                BufferOffset = sizeof (CONDITIONAL_PCI_DEVICE_DESCRIPTOR) + (UINT8 *)BufferOffset;
              }
              // Copy MSR device descriptor to the heap if it exists.
              if (DeviceDescript[Node].MSRDevice[i].RegisterListID != 0xFFFFFFFF) {
                LibAmdMemCopy (BufferOffset, &(DeviceDescript[Node].MSRDevice[i]), sizeof (MSR_DEVICE_DESCRIPTOR), StdHeader);
                DeviceList->NumDevices ++;
                BufferOffset = sizeof (MSR_DEVICE_DESCRIPTOR) + (UINT8 *)BufferOffset;
              }
              // Copy conditional MSR device descriptor to the heap if it exists.
              if (DeviceDescript[Node].CMSRDevice[i].RegisterListID != 0xFFFFFFFF) {
                LibAmdMemCopy (BufferOffset, &(DeviceDescript[Node].PCIDevice[i]), sizeof (CONDITIONAL_MSR_DEVICE_DESCRIPTOR), StdHeader);
                DeviceList->NumDevices ++;
                BufferOffset = sizeof (CONDITIONAL_MSR_DEVICE_DESCRIPTOR) + (UINT8 *)BufferOffset;
              }
            }
          }

          // Determine size needed
          BufferSize = GetWorstCaseContextSize (DeviceList, INIT_RESUME, StdHeader);
          BufferSize += GetReducedMemBlockSize (MemMainPtr);
          AllocHeapParams.RequestedBufferSize = BufferSize;
          AllocHeapParams.BufferHandle = AMD_S3_SAVE_HANDLE;
          AllocHeapParams.Persist = HEAP_LOCAL_CACHE;
          if (HeapAllocateBuffer (&AllocHeapParams, StdHeader) == AGESA_SUCCESS) {
            // Save memory context
            SaveDeviceListContext (DeviceList, AllocHeapParams.BufferPtr, INIT_RESUME, &BufferSize, StdHeader);
            // Save pointer to the next block, namely the reduced memory block
            DeviceList = (DEVICE_BLOCK_HEADER *)AllocHeapParams.BufferPtr;
            DeviceList->NextBlockOffset = BufferSize;
            // Save reduced memory block
            MemMReducedMemBlockSave (MemMainPtr, AllocHeapParams.BufferPtr + BufferSize, &BufferSize);
            RefPtr->MemContext.NvStorageSize = BufferSize;
          }

          HeapDeallocateBuffer (AMD_MEM_S3_DATA_HANDLE, StdHeader);
        }
      }
      HeapDeallocateBuffer (AMD_MEM_S3_NB_HANDLE, StdHeader);

      // Locate MemContext since it might have been shifted after deallocating
      LocHeap.BufferHandle = AMD_S3_SAVE_HANDLE;
      if (HeapLocateBuffer (&LocHeap, StdHeader) == AGESA_SUCCESS) {
        RefPtr->MemContext.NvStorage = LocHeap.BufferPtr;
      }
    }
    MemMRestoreScrubber (MemMainPtr);
  }

  for (Node = 0; Node < MemMainPtr->DieCount; Node++) {
    NBArray[Node].FamilySpecificHook[AfterSaveRestore] (&NBArray[Node], &NBArray[Node]);
  }
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *  Check and restore memory context if possible.
 *
 *     @param[in,out]   *MemMainPtr   - Pointer to the MEM_MAIN_DATA_BLOCK
 *
 *     @return          TRUE -  DQS timing restore succeeds.
 *     @return          FALSE - DQS timing restore fails.
 */
BOOLEAN
MemMContextRestore (
  IN OUT   MEM_MAIN_DATA_BLOCK *MemMainPtr
  )
{
  UINT8 Node;
  UINT8 Mode;
  MEM_NB_BLOCK  *NBArray;
  MEM_PARAMETER_STRUCT *RefPtr;
  MEM_DATA_STRUCT *MemPtr;
  S3_MEM_NB_BLOCK *S3NBPtr;
  VOID   *OrMaskPtr;
  ALLOCATE_HEAP_PARAMS AllocHeapParams;

  NBArray = MemMainPtr->NBPtr;
  RefPtr = NBArray[BSP_DIE].RefPtr;
  MemPtr = MemMainPtr->MemPtr;
  Mode = 0;

  IDS_HDT_CONSOLE (MEM_FLOW, "\nMemRestoreCtl: %d\n", RefPtr->MemRestoreCtl);
  IDS_HDT_CONSOLE (MEM_FLOW, "\nSaveMemContextCtl : %d\n", RefPtr->SaveMemContextCtl);

  if (RefPtr->MemRestoreCtl) {
    if (RefPtr->MemContext.NvStorage != NULL) {
      IDS_HDT_CONSOLE (MEM_STATUS, "\nStart Mem Restore\n");
      MemMCreateS3NbBlock (MemMainPtr, &S3NBPtr);
      if (S3NBPtr != NULL) {
        // Restore registers before exiting self refresh
        RestorePreESRContext (&OrMaskPtr,
                              RefPtr->MemContext.NvStorage,
                              INIT_RESUME,
                              &(MemPtr->StdHeader));
        MemMReducedMemBlockRestore (MemMainPtr, RefPtr->MemContext.NvStorage);
        // Exit self refresh
        for (Node = 0; Node < MemMainPtr->DieCount; Node++) {
          // Call this function to sync DctSelCfg and NBPtr->Dct to avoid assert.
          NBArray[Node].FamilySpecificHook[AfterSaveRestore] (&NBArray[Node], &NBArray[Node]);
        }
        if ((RefPtr->IsCapsuleMode && (AmdMemS3Resume (&(MemPtr->StdHeader)) == AGESA_SUCCESS)) ||
            (!RefPtr->IsCapsuleMode && (MemMDramInit (MemMainPtr) == TRUE))) {
          // Restore registers after exiting self refresh
          RestorePostESRContext (OrMaskPtr,
                                RefPtr->MemContext.NvStorage,
                                INIT_RESUME,
                                &(MemPtr->StdHeader));

          // If context restore is enabled, do memclr if ECC is enabled
          if (!RefPtr->IsCapsuleMode && RefPtr->EnableEccFeature) {
            for (Node = 0; Node < MemMainPtr->DieCount; Node ++) {
              if ((NBArray[Node].MCTPtr->NodeMemSize != 0) && (NBArray[Node].GetBitField (&NBArray[Node], BFDramEccEn) == 0)) {
                break;
              }
            }
            if (Node == MemMainPtr->DieCount) {
              AGESA_TESTPOINT (TpProcMemMemClr, &(MemMainPtr->MemPtr->StdHeader));
              MemFeatMain.MemClr (MemMainPtr);
            }
          }
          // Set LockDramCfg, which must be done after Memory Clear
          for (Node = 0; Node < MemMainPtr->DieCount; Node ++) {
            if (IsFeatureEnabled (C6Cstate, MemMainPtr->MemPtr->PlatFormConfig, &(MemMainPtr->MemPtr->StdHeader))) {
              IDS_SKIP_HOOK (IDS_LOCK_DRAM_CFG, &NBArray[Node], &MemMainPtr->MemPtr->StdHeader) {
                NBArray[Node].SetBitField (&NBArray[Node], BFLockDramCfg, 1);
              }
            }
          }
        } else {
          RefPtr->MemRestoreCtl = FALSE;
        }
      } else {
        RefPtr->MemRestoreCtl = FALSE;
      }
      HeapDeallocateBuffer (AMD_MEM_S3_NB_HANDLE, &(MemPtr->StdHeader));
    } else {
      IEM_SKIP_CODE (IEM_MEM_RESTORE) {
        RefPtr->MemRestoreCtl = FALSE;
      }
    }
  }

  // Set the flag to skip memory S3 save when memory data is being restored
  if (RefPtr->MemRestoreCtl) {
    AllocHeapParams.RequestedBufferSize = 1;
    AllocHeapParams.BufferHandle = AMD_SKIP_MEM_S3_SAVE;
    AllocHeapParams.Persist = HEAP_SYSTEM_MEM;

    if (HeapAllocateBuffer (&AllocHeapParams, &(MemPtr->StdHeader)) != AGESA_SUCCESS) {
      ASSERT (FALSE);
    }

    if (RefPtr->IsCapsuleMode) {
      PutEventLog (AGESA_SUCCESS, MEM_EVENT_CAPSULE_IN_EFFECT, 0, 0, 0, 0, &(MemPtr->StdHeader));
    } else {
      PutEventLog (AGESA_SUCCESS, MEM_EVENT_CONTEXT_RESTORE_IN_EFFECT, 0, 0, 0, 0, &(MemPtr->StdHeader));
    }
  }

  for (Node = 0; Node < MemMainPtr->DieCount; Node++) {
    NBArray[Node].FamilySpecificHook[AfterSaveRestore] (&NBArray[Node], &NBArray[Node]);
  }
  IDS_HDT_CONSOLE (MEM_FLOW, RefPtr->MemRestoreCtl ? "Mem Restore Succeeds!\n" : "Mem Restore Fails!\n");
  return RefPtr->MemRestoreCtl;
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *  Save all memory related data for S3.
 *
 *     @param[in,out]   *MemMainPtr   - Pointer to the MEM_MAIN_DATA_BLOCK
 *
 *     @return          TRUE -  No fatal error occurs.
 *     @return          FALSE - Fatal error occurs.
 */
BOOLEAN
MemMS3Save (
  IN OUT   MEM_MAIN_DATA_BLOCK *MemMainPtr
  )
{
  ALLOCATE_HEAP_PARAMS AllocHeapParams;
  MEM_PARAMETER_STRUCT *RefPtr;
  BOOLEAN SaveMemContextCtl;
  BOOLEAN MemRestoreCtl;

  RefPtr = MemMainPtr->NBPtr[BSP_DIE].RefPtr;

  // If memory context has not been saved
  if (RefPtr->MemContext.NvStorage == NULL) {
    // Change memory context save and restore control to allow memory context to happen
    SaveMemContextCtl = RefPtr->SaveMemContextCtl;
    MemRestoreCtl = RefPtr->MemRestoreCtl;
    RefPtr->SaveMemContextCtl = TRUE;
    RefPtr->MemRestoreCtl = FALSE;

    MemMContextSave (MemMainPtr);

    // Restore the original control
    RefPtr->SaveMemContextCtl = SaveMemContextCtl;
    RefPtr->MemRestoreCtl = MemRestoreCtl;

    if (RefPtr->MemContext.NvStorage == NULL) {
      // Memory context cannot be saved succesfully
      return FALSE;
    }
  }

  // Allocate heap for memory S3 data to pass to main AMDS3Save
  // Apply for 4 bytes more than the size of the data buffer to store the size of data buffer
  IDS_HDT_CONSOLE (MEM_FLOW, "\nSave memory S3 data in heap\n");
  AllocHeapParams.RequestedBufferSize = RefPtr->MemContext.NvStorageSize + 4;
  AllocHeapParams.BufferHandle = AMD_MEM_S3_SAVE_HANDLE;
  AllocHeapParams.Persist = HEAP_SYSTEM_MEM;

  if (HeapAllocateBuffer (&AllocHeapParams, &(MemMainPtr->MemPtr->StdHeader)) == AGESA_SUCCESS) {
    LibAmdMemCopy (AllocHeapParams.BufferPtr + 4, RefPtr->MemContext.NvStorage, RefPtr->MemContext.NvStorageSize, &(MemMainPtr->MemPtr->StdHeader));
    *(UINT32 *) AllocHeapParams.BufferPtr = RefPtr->MemContext.NvStorageSize;
    return TRUE;
  } else {
    ASSERT (FALSE);
    return FALSE;
  }
}

/*----------------------------------------------------------------------------
 *                              LOCAL FUNCTIONS
 *
 *----------------------------------------------------------------------------
 */

/*---------------------------------------------------------------------------------------*/
/**
 * This function does dram init based on register value
 *
 *     @param[in,out]   *MemMainPtr   - Pointer to the MEM_MAIN_DATA_BLOCK
 *
 *     @return          TRUE -  No fatal error occurs.
 *     @return          FALSE - Fatal error occurs.
 *
 */
BOOLEAN
STATIC
MemMDramInit (
  IN OUT   MEM_MAIN_DATA_BLOCK *MemMainPtr
  )
{
  UINT8 Node;
  UINT8 Dct;
  MEM_NB_BLOCK  *NBArray;
  MEM_NB_BLOCK  *NBPtr;
  MEM_PARAMETER_STRUCT *RefPtr;
  BIT_FIELD_NAME CsBitField;
  ID_INFO CallOutIdInfo;
  BOOLEAN RetVal;

  RefPtr = MemMainPtr->NBPtr[BSP_DIE].RefPtr;
  NBArray = MemMainPtr->NBPtr;
  RetVal = TRUE;

  for (Node = 0; Node < MemMainPtr->DieCount; Node ++) {
    NBPtr = &NBArray[Node];

    // When memory pstate is enabled, change MemPstateStage flag so registers won't be programmed twice
    if (NBPtr->MemPstateStage == MEMORY_PSTATE_1ST_STAGE) {
      NBPtr->MemPstateStage = MEMORY_PSTATE_S3_STAGE;
    }

    // Get dimm population info
    NBPtr->TechPtr->DimmPresence (NBPtr->TechPtr);
    NBPtr->MemNPlatformSpecificFormFactorInitNb (NBPtr);

    for (Dct = 0; Dct < NBPtr->DctCount; Dct ++) {
      NBPtr->SwitchDCT (NBPtr, Dct);
      for (CsBitField = BFCSBaseAddr0Reg; CsBitField <= BFCSBaseAddr7Reg; CsBitField ++) {
        if ((NBPtr->GetBitField (NBPtr, CsBitField) & 5) != 0) {
          // Need this variable for Dram init
          NBPtr->DCTPtr->Timings.CsPresent |= (UINT16)1 << (CsBitField - BFCSBaseAddr0Reg);
        }
      }

      // Enable memory clock
      if (NBPtr->GetBitField (NBPtr, BFDisDramInterface) == 0) {
        NBPtr->SetBitField (NBPtr, BFMemClkFreqVal, 1);
        while (NBPtr->GetBitField (NBPtr, BFFreqChgInProg) != 0) {}
      }

      // Get memory clock speed
      NBPtr->DCTPtr->Timings.Speed = MemNGetMemClkFreqUnb (NBPtr, (UINT8) NBPtr->GetBitField (NBPtr, BFMemClkFreq));
      NBPtr->DCTPtr->Timings.TargetSpeed = NBPtr->DCTPtr->Timings.Speed;

      // Call platform specific parameter processing function as lots of variable populated here
      // will be used during dram init
      if (NBPtr->GetBitField (NBPtr, BFDisDramInterface) == 0) {
        if (!NBPtr->PsPtr->MemPDoPs (NBPtr)) {
          IDS_ERROR_TRAP;
        }
      }
    }

    // Callout before Dram Init
    AGESA_TESTPOINT (TpProcMemBeforeAgesaHookBeforeDramInit, &(MemMainPtr->MemPtr->StdHeader));
    CallOutIdInfo.IdField.SocketId = NBPtr->MCTPtr->SocketId;
    CallOutIdInfo.IdField.ModuleId = NBPtr->MCTPtr->DieId;
    IDS_HDT_CONSOLE (MEM_FLOW, "\nCalling out to Platform BIOS on Socket %d, Module %d...\n", CallOutIdInfo.IdField.SocketId, CallOutIdInfo.IdField.ModuleId);
    AgesaHookBeforeDramInit ((UINTN) CallOutIdInfo.IdInformation, MemMainPtr->MemPtr);
    NBPtr->FamilySpecificHook[AmpVoltageDisp] (NBPtr, NULL);
    IDS_HDT_CONSOLE (MEM_FLOW, "\nVDDIO = 1.%dV\n", (NBPtr->RefPtr->DDR3Voltage == VOLT1_5) ? 5 :
                                          (NBPtr->RefPtr->DDR3Voltage == VOLT1_35) ? 35 :
                                          (NBPtr->RefPtr->DDR3Voltage == VOLT1_25) ? 25 : 999);
    AGESA_TESTPOINT (TpProcMemAfterAgesaHookBeforeDramInit, &(NBPtr->MemPtr->StdHeader));

    // Do Dram init
    AGESA_TESTPOINT (TpProcMemDramInit, &(NBPtr->MemPtr->StdHeader));
    IDS_HDT_CONSOLE (MEM_FLOW, "\nMemClkFreq: %d MHz\n", NBPtr->DCTPtr->Timings.Speed);
    NBPtr->FeatPtr->DramInit (NBPtr->TechPtr);

    // Print out hob info
    IDS_HDT_CONSOLE (MEM_FLOW, "UmaSize: %x\n", NBPtr->RefPtr->UmaSize);
    IDS_HDT_CONSOLE (MEM_FLOW, "UmaBase: %x\n", NBPtr->RefPtr->UmaBase);
    IDS_HDT_CONSOLE (MEM_FLOW, "UmaMode: %x\n", NBPtr->RefPtr->UmaMode);
    IDS_HDT_CONSOLE (MEM_FLOW, "Sub4GCacheTop: %x\n", NBPtr->RefPtr->Sub4GCacheTop);
    IDS_HDT_CONSOLE (MEM_FLOW, "SysLimit: %x\n\n", NBPtr->RefPtr->SysLimit);

    if (NBPtr->MCTPtr->ErrCode == AGESA_FATAL) {
      RetVal = FALSE;
    }
  }

  return RetVal;
}


/* -----------------------------------------------------------------------------*/
/**
 *
 *  Create S3 NB Block.
 *
 *     @param[in,out]   MemMainPtr   - Pointer to the MEM_MAIN_DATA_BLOCK
 *     @param[out]      S3NBPtr   - Pointer to the S3 NB Block pointer
 *
 */
VOID
STATIC
MemMCreateS3NbBlock (
  IN OUT   MEM_MAIN_DATA_BLOCK *MemMainPtr,
     OUT   S3_MEM_NB_BLOCK **S3NBPtr
  )
{
  UINT8 Node;
  UINT8 i;
  MEM_NB_BLOCK  *NBArray;
  MEM_NB_BLOCK  *DummyNBs;
  ALLOCATE_HEAP_PARAMS AllocHeapParams;

  NBArray = MemMainPtr->NBPtr;

  *S3NBPtr = NULL;

  // Allocate heap for S3 NB Blocks
  AllocHeapParams.RequestedBufferSize = (MemMainPtr->DieCount * (sizeof (S3_MEM_NB_BLOCK) + sizeof (MEM_NB_BLOCK)));
  AllocHeapParams.BufferHandle = AMD_MEM_S3_NB_HANDLE;
  AllocHeapParams.Persist = HEAP_LOCAL_CACHE;
  if (HeapAllocateBuffer (&AllocHeapParams, &(MemMainPtr->MemPtr->StdHeader)) == AGESA_SUCCESS) {
    *S3NBPtr = (S3_MEM_NB_BLOCK *) AllocHeapParams.BufferPtr;
    DummyNBs = (MEM_NB_BLOCK *) (AllocHeapParams.BufferPtr + MemMainPtr->DieCount * sizeof (S3_MEM_NB_BLOCK));

    // Initialize S3 NB Blocks
    for (Node = 0; Node < MemMainPtr->DieCount; Node ++) {
      (*S3NBPtr)[Node].NBPtr = &DummyNBs[Node];

      for (i = 0; memNBInstalled[i].MemS3ResumeConstructNBBlock != 0; i++) {
        if (memNBInstalled[i].MemS3ResumeConstructNBBlock (&(*S3NBPtr)[Node], NBArray[BSP_DIE].MemPtr, Node)) {
          (*S3NBPtr)[Node].NBPtr->RefPtr = NBArray[Node].RefPtr;
          break;
        }
      };
      if (memNBInstalled[i].MemS3ResumeConstructNBBlock == 0) {
        *S3NBPtr = NULL;
        break;
      }
    }
  }
}