aboutsummaryrefslogtreecommitdiff
path: root/src/vendorcode/amd/agesa/f15/Proc/Mem/Tech/mttdimbt.c
blob: 1339bf586aa3e3fdce0bc35c4130b5bfb713946c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
/* $NoKeywords:$ */
/**
 * @file
 *
 * mttdimmbt.c
 *
 * Technology Dimm Based Training
 *
 * @xrefitem bom "File Content Label" "Release Content"
 * @e project: AGESA
 * @e sub-project: (Mem/Tech)
 * @e \$Revision: 56279 $ @e \$Date: 2011-07-11 13:11:28 -0600 (Mon, 11 Jul 2011) $
 *
 **/
/*****************************************************************************
*
* Copyright (C) 2012 Advanced Micro Devices, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*     * Redistributions of source code must retain the above copyright
*       notice, this list of conditions and the following disclaimer.
*     * Redistributions in binary form must reproduce the above copyright
*       notice, this list of conditions and the following disclaimer in the
*       documentation and/or other materials provided with the distribution.
*     * Neither the name of Advanced Micro Devices, Inc. nor the names of
*       its contributors may be used to endorse or promote products derived
*       from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL ADVANCED MICRO DEVICES, INC. BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* ***************************************************************************
*
*/

/*
 *----------------------------------------------------------------------------
 *                                MODULES USED
 *
 *----------------------------------------------------------------------------
 */



#include "AGESA.h"
#include "Ids.h"
#include "mm.h"
#include "mn.h"
#include "mt.h"
#include "GeneralServices.h"
#include "heapManager.h"
#include "Filecode.h"
CODE_GROUP (G1_PEICC)
RDATA_GROUP (G2_PEI)

#define FILECODE PROC_MEM_TECH_MTTDIMBT_FILECODE

/*----------------------------------------------------------------------------
 *                          DEFINITIONS AND MACROS
 *
 *----------------------------------------------------------------------------
 */

/*----------------------------------------------------------------------------
 *                           TYPEDEFS AND STRUCTURES
 *
 *----------------------------------------------------------------------------
 */

/*----------------------------------------------------------------------------
 *                        PROTOTYPES OF LOCAL FUNCTIONS
 *
 *----------------------------------------------------------------------------
 */

VOID
STATIC
MemTInitDqsPos4RcvrEnByte (
  IN OUT   MEM_TECH_BLOCK *TechPtr
  );

VOID
STATIC
MemTSetRcvrEnDlyByte (
  IN OUT   MEM_TECH_BLOCK *TechPtr,
  IN       UINT8 Receiver,
  IN       UINT16 RcvEnDly
  );

VOID
STATIC
MemTLoadRcvrEnDlyByte (
  IN OUT   MEM_TECH_BLOCK *TechPtr,
  IN       UINT8 Receiver
  );

BOOLEAN
STATIC
MemTSaveRcvrEnDlyByte (
  IN OUT   MEM_TECH_BLOCK *TechPtr,
  IN       UINT8 Receiver,
  IN       UINT16 RcvEnDly,
  IN       UINT16 CmpResultRank0,
  IN       UINT16 CmpResultRank1
  );

VOID
STATIC
MemTResetDctWrPtrByte (
  IN OUT   MEM_TECH_BLOCK *TechPtr,
  IN       UINT8 Receiver
  );

UINT16
STATIC
MemTCompare1ClPatternByte (
  IN OUT   MEM_TECH_BLOCK *TechPtr,
  IN       UINT8 Buffer[],
  IN       UINT8 Pattern[]
  );

VOID
STATIC
MemTSkipChipSelPass1Byte (
  IN OUT   MEM_TECH_BLOCK *TechPtr,
  IN OUT   UINT8 *ChipSelPtr
  );

VOID
STATIC
MemTSkipChipSelPass2Byte (
  IN OUT   MEM_TECH_BLOCK *TechPtr,
  IN OUT   UINT8 *ChipSelPtr
  );

UINT8
STATIC
MemTMaxByteLanesByte ( VOID );

UINT8
STATIC
MemTDlyTableWidthByte ( VOID );

VOID
STATIC
MemTSetDqsDelayCsrByte (
  IN OUT   MEM_TECH_BLOCK *TechPtr,
  IN       UINT8 ByteLane,
  IN       UINT8 Dly
  );

VOID
STATIC
MemTDqsWindowSaveByte (
  IN OUT   MEM_TECH_BLOCK *TechPtr,
  IN       UINT8 ByteLane,
  IN       UINT8 DlyMin,
  IN       UINT8 DlyMax
  );

BOOLEAN
STATIC
MemTFindMaxRcvrEnDlyByte (
  IN OUT   MEM_TECH_BLOCK *TechPtr,
     OUT   UINT8 *ChipSel
  );

UINT16
STATIC
MemTCompare1ClPatternOptByte (
  IN OUT   MEM_TECH_BLOCK *TechPtr,
  IN       UINT8 Buffer[],
  IN       UINT8 Pattern[],
  IN       UINT8 Side,
  IN       UINT8 Receiver,
  IN       BOOLEAN Side1En
  );

VOID
STATIC
MemTLoadRcvrEnDlyOptByte (
  IN OUT   MEM_TECH_BLOCK *TechPtr,
  IN       UINT8 Receiver
  );

VOID
STATIC
MemTSetRcvrEnDlyOptByte (
  IN OUT   MEM_TECH_BLOCK *TechPtr,
  IN       UINT8 Receiver,
  IN       UINT16 RcvEnDly
  );

VOID
STATIC
MemTLoadInitialRcvEnDlyOptByte (
  IN OUT   MEM_TECH_BLOCK *TechPtr,
  IN       UINT8 Receiver
  );

UINT8
STATIC
MemTFindMinMaxGrossDlyByte (
  IN OUT   MEM_TECH_BLOCK *TechPtr,
  IN       TRN_DLY_TYPE TrnDlyType,
  IN       BOOLEAN IfMax
  );
/*----------------------------------------------------------------------------
 *                            EXPORTED FUNCTIONS
 *
 *----------------------------------------------------------------------------
 */


/* -----------------------------------------------------------------------------*/
/**
 *
 *   This function enables byte based training if called
 *
 *     @param[in,out]   *TechPtr   - Pointer to the MEM_TECH_BLOCK
 *
 */

VOID
MemTDimmByteTrainInit (
  IN OUT   MEM_TECH_BLOCK *TechPtr
  )
{
  UINT8 Dct;
  UINT8 Channel;
  UINT8 DctCount;
  UINT8 ChannelCount;
  DIE_STRUCT *MCTPtr;
  ALLOCATE_HEAP_PARAMS AllocHeapParams;
  MEM_NB_BLOCK  *NBPtr;

  NBPtr = TechPtr->NBPtr;
  MCTPtr = NBPtr->MCTPtr;

  TechPtr->InitDQSPos4RcvrEn = MemTInitDqsPos4RcvrEnByte;
  TechPtr->SetRcvrEnDly = MemTSetRcvrEnDlyByte;
  TechPtr->LoadRcvrEnDly = MemTLoadRcvrEnDlyByte;
  TechPtr->SaveRcvrEnDly = MemTSaveRcvrEnDlyByte;
  TechPtr->SaveRcvrEnDlyFilter = MemTSaveRcvrEnDlyByteFilterOpt;
  TechPtr->ResetDCTWrPtr = MemTResetDctWrPtrByte;
  TechPtr->Compare1ClPattern = MemTCompare1ClPatternByte;
  TechPtr->SkipChipSelPass1 = MemTSkipChipSelPass1Byte;
  TechPtr->SkipChipSelPass2 = MemTSkipChipSelPass2Byte;
  TechPtr->MaxByteLanes = MemTMaxByteLanesByte;
  TechPtr->DlyTableWidth = MemTDlyTableWidthByte;
  TechPtr->SetDQSDelayCSR = MemTSetDqsDelayCsrByte;
  TechPtr->DQSWindowSave = MemTDqsWindowSaveByte;
  TechPtr->FindMaxDlyForMaxRdLat = MemTFindMaxRcvrEnDlyByte;
  TechPtr->Compare1ClPatternOpt = MemTCompare1ClPatternOptByte;
  TechPtr->LoadRcvrEnDlyOpt = MemTLoadRcvrEnDlyOptByte;
  TechPtr->SetRcvrEnDlyOpt = MemTSetRcvrEnDlyOptByte;
  TechPtr->InitializeVariablesOpt = MemTInitializeVariablesOptByte;
  TechPtr->GetMaxValueOpt = MemTGetMaxValueOptByte;
  TechPtr->SetSweepErrorOpt = MemTSetSweepErrorOptByte;
  TechPtr->CheckRcvrEnDlyLimitOpt = MemTCheckRcvrEnDlyLimitOptByte;
  TechPtr->LoadInitialRcvrEnDlyOpt = MemTLoadInitialRcvEnDlyOptByte;
  TechPtr->GetMinMaxGrossDly = MemTFindMinMaxGrossDlyByte;
  // Dynamically allocate buffers for storing trained timings.
  DctCount = MCTPtr->DctCount;
  ChannelCount = MCTPtr->DctData[0].ChannelCount;
  AllocHeapParams.RequestedBufferSize = ((DctCount * ChannelCount) *
                                         ((MAX_DIMMS * MAX_DELAYS * NUMBER_OF_DELAY_TABLES) +
                                          (MAX_DELAYS * MAX_CS_PER_CHANNEL * NUMBER_OF_FAILURE_MASK_TABLES) +
                                           (MAX_DIMMS * MAX_NUMBER_LANES)
                                          )
                                         );

  if (NBPtr->MemPstateStage == MEMORY_PSTATE_1ST_STAGE) {
    AllocHeapParams.RequestedBufferSize *= 2;
  }

  AllocHeapParams.BufferHandle = GENERATE_MEM_HANDLE (ALLOC_TRN_DATA_HANDLE, MCTPtr->NodeId, 0, 0);
  AllocHeapParams.Persist = HEAP_LOCAL_CACHE;
  if (HeapAllocateBuffer (&AllocHeapParams, &NBPtr->MemPtr->StdHeader) == AGESA_SUCCESS) {
    for (Dct = 0; Dct < DctCount; Dct++) {
      for (Channel = 0; Channel < ChannelCount; Channel++) {
        MCTPtr->DctData[Dct].ChData[Channel].RowCount = MAX_DIMMS;
        MCTPtr->DctData[Dct].ChData[Channel].ColumnCount = MAX_DELAYS;

        MCTPtr->DctData[Dct].ChData[Channel].RcvEnDlys = (UINT16 *) AllocHeapParams.BufferPtr;
        AllocHeapParams.BufferPtr += (MAX_DIMMS * MAX_DELAYS) * 2;
        MCTPtr->DctData[Dct].ChData[Channel].WrDqsDlys = AllocHeapParams.BufferPtr;
        AllocHeapParams.BufferPtr += (MAX_DIMMS * MAX_DELAYS);
        MCTPtr->DctData[Dct].ChData[Channel].RdDqsDlys = AllocHeapParams.BufferPtr;
        AllocHeapParams.BufferPtr += (MAX_DIMMS * MAX_DELAYS);
        MCTPtr->DctData[Dct].ChData[Channel].WrDatDlys = AllocHeapParams.BufferPtr;
        AllocHeapParams.BufferPtr += (MAX_DIMMS * MAX_DELAYS);
        MCTPtr->DctData[Dct].ChData[Channel].RdDqs__Dlys = AllocHeapParams.BufferPtr;
        AllocHeapParams.BufferPtr += (MAX_DIMMS * MAX_NUMBER_LANES);
        MCTPtr->DctData[Dct].ChData[Channel].RdDqsMinDlys = AllocHeapParams.BufferPtr;
        AllocHeapParams.BufferPtr += (MAX_DIMMS * MAX_DELAYS);
        MCTPtr->DctData[Dct].ChData[Channel].RdDqsMaxDlys = AllocHeapParams.BufferPtr;
        AllocHeapParams.BufferPtr += (MAX_DIMMS * MAX_DELAYS);
        MCTPtr->DctData[Dct].ChData[Channel].WrDatMinDlys = AllocHeapParams.BufferPtr;
        AllocHeapParams.BufferPtr += (MAX_DIMMS * MAX_DELAYS);
        MCTPtr->DctData[Dct].ChData[Channel].WrDatMaxDlys = AllocHeapParams.BufferPtr;
        AllocHeapParams.BufferPtr += (MAX_DIMMS * MAX_DELAYS);
        MCTPtr->DctData[Dct].ChData[Channel].FailingBitMask = AllocHeapParams.BufferPtr;
        AllocHeapParams.BufferPtr += (MAX_CS_PER_CHANNEL * MAX_DELAYS);
        if (NBPtr->MemPstateStage == MEMORY_PSTATE_1ST_STAGE) {
          MCTPtr->DctData[Dct].ChData[Channel].RcvEnDlysMemPs1 = (UINT16 *) AllocHeapParams.BufferPtr;
          AllocHeapParams.BufferPtr += (MAX_DIMMS * MAX_DELAYS) * 2;
          MCTPtr->DctData[Dct].ChData[Channel].WrDqsDlysMemPs1 = AllocHeapParams.BufferPtr;
          AllocHeapParams.BufferPtr += (MAX_DIMMS * MAX_DELAYS);
          MCTPtr->DctData[Dct].ChData[Channel].RdDqsDlysMemPs1 = AllocHeapParams.BufferPtr;
          AllocHeapParams.BufferPtr += (MAX_DIMMS * MAX_DELAYS);
          MCTPtr->DctData[Dct].ChData[Channel].WrDatDlysMemPs1 = AllocHeapParams.BufferPtr;
          AllocHeapParams.BufferPtr += (MAX_DIMMS * MAX_DELAYS);
          MCTPtr->DctData[Dct].ChData[Channel].RdDqs__DlysMemPs1 = AllocHeapParams.BufferPtr;
          AllocHeapParams.BufferPtr += (MAX_DIMMS * MAX_NUMBER_LANES);
          MCTPtr->DctData[Dct].ChData[Channel].RdDqsMinDlysMemPs1 = AllocHeapParams.BufferPtr;
          AllocHeapParams.BufferPtr += (MAX_DIMMS * MAX_DELAYS);
          MCTPtr->DctData[Dct].ChData[Channel].RdDqsMaxDlysMemPs1 = AllocHeapParams.BufferPtr;
          AllocHeapParams.BufferPtr += (MAX_DIMMS * MAX_DELAYS);
          MCTPtr->DctData[Dct].ChData[Channel].WrDatMinDlysMemPs1 = AllocHeapParams.BufferPtr;
          AllocHeapParams.BufferPtr += (MAX_DIMMS * MAX_DELAYS);
          MCTPtr->DctData[Dct].ChData[Channel].WrDatMaxDlysMemPs1 = AllocHeapParams.BufferPtr;
          AllocHeapParams.BufferPtr += (MAX_DIMMS * MAX_DELAYS);
          MCTPtr->DctData[Dct].ChData[Channel].FailingBitMaskMemPs1 = AllocHeapParams.BufferPtr;
          AllocHeapParams.BufferPtr += (MAX_CS_PER_CHANNEL * MAX_DELAYS);

        }
      }
    }
  } else {
    PutEventLog (AGESA_FATAL, MEM_ERROR_HEAP_ALLOCATE_DYN_STORING_OF_TRAINED_TIMINGS, NBPtr->Node, NBPtr->Dct, NBPtr->Channel, 0, &NBPtr->MemPtr->StdHeader);
    SetMemError (AGESA_FATAL, MCTPtr);
    ASSERT(FALSE);  // Could not dynamically allocate buffers for storing trained timings
  }
}


/* -----------------------------------------------------------------------------*/
/**
 *
 *  This function initializes the DQS Positions in preparation for Receiver Enable Training.
 *  Write Position is no delay, Read Position is 1/2 Memclock delay
 *
 *     @param[in,out]   *TechPtr   - Pointer to the MEM_TECH_BLOCK
 *
 */

VOID
STATIC
MemTInitDqsPos4RcvrEnByte (
  IN OUT   MEM_TECH_BLOCK *TechPtr
  )
{
  UINT8 Dimm;
  UINT8 ByteLane;
  UINT8 WrDqs;

  for (Dimm = 0; Dimm < MAX_DIMMS_PER_CHANNEL; Dimm++) {
    for (ByteLane = 0; ByteLane < MAX_DELAYS; ByteLane++) {
      WrDqs = TechPtr->NBPtr->ChannelPtr->WrDqsDlys[(Dimm * MAX_DELAYS) + ByteLane];
      TechPtr->NBPtr->SetTrainDly (TechPtr->NBPtr, AccessWrDatDly, DIMM_BYTE_ACCESS (Dimm, ByteLane), WrDqs);
      TechPtr->NBPtr->SetTrainDly (TechPtr->NBPtr, AccessRdDqsDly, DIMM_BYTE_ACCESS (Dimm, ByteLane), 0x3F);
    }
  }
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *  This function programs DqsRcvEnDly to additional index for DQS receiver enabled training
 *
 *     @param[in,out]   *TechPtr   - Pointer to the MEM_TECH_BLOCK
 *     @param[in]       Receiver  - Current Chip select value
 *     @param[in]       RcvEnDly  - receiver enable delay to be saved
 */

VOID
STATIC
MemTSetRcvrEnDlyByte (
  IN OUT   MEM_TECH_BLOCK *TechPtr,
  IN       UINT8 Receiver,
  IN       UINT16 RcvEnDly
  )
{
  UINT8 ByteLane;

  ASSERT (Receiver < MAX_CS_PER_CHANNEL);
  for (ByteLane = 0; ByteLane < MAX_BYTELANES; ByteLane++) {
    TechPtr->NBPtr->SetTrainDly (TechPtr->NBPtr, AccessRcvEnDly, DIMM_BYTE_ACCESS (Receiver >> 1, ByteLane), RcvEnDly);
  }
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *  This function loads the DqsRcvEnDly from saved data and program to additional index
 *  for DQS receiver enabled training
 *
 *     @param[in,out]   *TechPtr   - Pointer to the MEM_TECH_BLOCK
 *     @param[in]       Receiver  - Current Chip select value
 *
 */

VOID
STATIC
MemTLoadRcvrEnDlyByte (
  IN OUT   MEM_TECH_BLOCK *TechPtr,
  IN       UINT8 Receiver
  )
{
  UINT8 i;
  UINT8 Dimm;
  UINT16 Saved;
  CH_DEF_STRUCT *ChannelPtr;

  ASSERT (Receiver < MAX_CS_PER_CHANNEL);
  ChannelPtr = TechPtr->NBPtr->ChannelPtr;

  Dimm = Receiver >> 1;
  Saved = TechPtr->DqsRcvEnSaved;
  for (i = 0; i < MAX_BYTELANES; i++) {
    if (Saved & 1) {
      TechPtr->NBPtr->SetTrainDly (TechPtr->NBPtr, AccessRcvEnDly, DIMM_BYTE_ACCESS (Receiver >> 1, i),
      ChannelPtr->RcvEnDlys[Dimm * MAX_DELAYS + i]);
    }
    Saved >>= 1;
  }
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *  This function saves passing DqsRcvEnDly values to the stack
 *
 *     @param[in,out]   *TechPtr   - Pointer to the MEM_TECH_BLOCK
 *     @param[in]       Receiver  - Current Chip select value
 *     @param[in]       RcvEnDly  - receiver enable delay to be saved
 *     @param[in]       CmpResultRank0 - compare result for Rank 0
 *     @param[in]       CmpResultRank1 - compare result for Rank 1
 *
 *     @return  TRUE - All bytelanes pass
 *     @return  FALSE - Some bytelanes fail
 */

BOOLEAN
STATIC
MemTSaveRcvrEnDlyByte (
  IN OUT   MEM_TECH_BLOCK *TechPtr,
  IN       UINT8 Receiver,
  IN       UINT16 RcvEnDly,
  IN       UINT16 CmpResultRank0,
  IN       UINT16 CmpResultRank1
  )
{
  UINT8 i;
  UINT8 Passed;
  UINT8 Saved;
  UINT8 Mask;
  UINT8 Dimm;
  CH_DEF_STRUCT *ChannelPtr;

  ASSERT (Receiver < MAX_CS_PER_CHANNEL);
  ChannelPtr = TechPtr->NBPtr->ChannelPtr;

  Passed = (UINT8) ((CmpResultRank0 & CmpResultRank1) & 0xFF);

  Saved = (UINT8) (TechPtr->DqsRcvEnSaved & Passed); //@attention - false passes filter (subject to be replaced with a better solution)
  Dimm = Receiver >> 1;
  Mask = 1;
  for (i = 0; i < MAX_BYTELANES; i++) {
    if (Passed & Mask) {
      if (!(Saved & Mask)) {
        ChannelPtr->RcvEnDlys[Dimm * MAX_DELAYS + i] = RcvEnDly + 0x20;     // @attention -1 pass only
        IDS_HDT_CONSOLE (MEM_FLOW, "\t\t\tBL %d = %02x", i, RcvEnDly + 0x20);
      }
      Saved |= Mask;
    }
    Mask <<= 1;
  }
  TechPtr->DqsRcvEnSaved = Saved;

  if (Saved == 0xFF) {
    return TRUE;
  } else {
    return FALSE;
  }
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *  This function performs a filtering functionality and saves passing DqsRcvEnDly
 *  values to the stack
 *
 *     @param[in,out]   *TechPtr   - Pointer to the MEM_TECH_BLOCK
 *     @param[in]       Receiver  - Current Chip select value
 *     @param[in]       RcvEnDly  - receiver enable delay to be saved
 *     @param[in]       CmpResultRank0 - compare result for Rank 0
 *     @param[in]       CmpResultRank1 - compare result for Rank 1
 *
 *     @return  TRUE - All bytelanes pass
 *     @return  FALSE - Some bytelanes fail
 */

BOOLEAN
MemTSaveRcvrEnDlyByteFilter (
  IN OUT   MEM_TECH_BLOCK *TechPtr,
  IN       UINT8 Receiver,
  IN       UINT16 RcvEnDly,
  IN       UINT16 CmpResultRank0,
  IN       UINT16 CmpResultRank1
  )
{
  UINT8 i;
  UINT8 Passed;
  UINT8 Saved;
  UINT8 Mask;
  UINT8 Dimm;
  UINT8 MaxFilterDly;
  CH_DEF_STRUCT *ChannelPtr;
  MEM_DCT_CACHE *DctCachePtr;

  ASSERT (Receiver < MAX_CS_PER_CHANNEL);
  ChannelPtr = TechPtr->NBPtr->ChannelPtr;
  DctCachePtr = TechPtr->NBPtr->DctCachePtr;

  MaxFilterDly = TechPtr->MaxFilterDly;
  Passed = (UINT8) ((CmpResultRank0 & CmpResultRank1) & 0xFF);

  Dimm = Receiver >> 1;
  Saved = (UINT8) TechPtr->DqsRcvEnSaved;
  Mask = 1;
  for (i = 0; i < MAX_BYTELANES; i++) {
    if ((Passed & Mask) != 0) {
      DctCachePtr->RcvEnDlyCounts [i] += 1;
      if ((Saved & Mask) == 0) {
        ChannelPtr->RcvEnDlys[Dimm * MAX_DELAYS + i] = RcvEnDly + 0x20;
        Saved |= Mask;
        IDS_HDT_CONSOLE (MEM_FLOW, "\t\t\tBL %d = %02x", i, RcvEnDly + 0x20);
      }
    } else {
      if (DctCachePtr->RcvEnDlyCounts [i] <= MaxFilterDly) {
        DctCachePtr->RcvEnDlyCounts [i] = 0;
        Saved &= ~Mask;
      }
    }
    Mask <<= 1;
  }

  //-----------------------
  TechPtr->DqsRcvEnSaved = (UINT16) Saved;

  Saved = 0;
  for (i = 0; i < MAX_BYTELANES; i++) {
    if (DctCachePtr->RcvEnDlyCounts [i] >= MaxFilterDly) {
      Saved |= (UINT8) 1 << i;
    }
  }

  if (Saved == 0xFF) {
    return TRUE;
  } else {
    return FALSE;
  }
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *       This function compares test pattern with data in buffer and return a pass/fail bitmap
 *       for 8 Bytes
 *
 *     @param[in,out]   *TechPtr   - Pointer to the MEM_TECH_BLOCK
 *     @param[in]       Buffer[]  -  Buffer data from DRAM (Measured data from DRAM) to compare
 *     @param[in]       Pattern[]  - Pattern (Expected data in ROM/CACHE) to compare against
 *
 *     @return  PASS - Bit map of results of comparison
 */

UINT16
STATIC
MemTCompare1ClPatternByte (
  IN OUT   MEM_TECH_BLOCK *TechPtr,
  IN       UINT8 Buffer[],
  IN       UINT8 Pattern[]
  )
{
  UINT16 i;
  UINT16 j;
  UINT16 Pass;
  DIE_STRUCT *MCTPtr;

  MCTPtr = TechPtr->NBPtr->MCTPtr;
  if (MCTPtr->GangedMode && MCTPtr->Dct) {
    j = 8;
  } else {
    j = 0;
  }

  Pass = 0xFFFF;
  IDS_HDT_CONSOLE (MEM_FLOW, " -");
  for (i = 0; i < 8; i++) {
    if (Buffer[j] != Pattern[j]) {
      // if bytelane n fails
      Pass &= ~((UINT16)1 << (j % 8));    // clear bit n
    }
    IDS_HDT_CONSOLE (MEM_FLOW, "  %c", (Buffer[j] == Pattern[j]) ? 'P' : '.');
    j++;
  }

  IDS_HDT_CONSOLE_DEBUG_CODE (
    IDS_HDT_CONSOLE (MEM_FLOW, "\n\t\t\t        -");
    for (i = 0, j -= 8; i < 8; i++, j++) {
      IDS_HDT_CONSOLE (MEM_FLOW, " %02x", Buffer[j]);
    }
    IDS_HDT_CONSOLE (MEM_FLOW, "\n\t\t\t        -");
    for (i = 0, j -= 8; i < 8; i++, j++) {
      IDS_HDT_CONSOLE (MEM_FLOW, " %02x", Pattern[j]);
    }
    IDS_HDT_CONSOLE (MEM_FLOW, "\n\n");
  );

  return Pass;
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *       The function resets the DCT input buffer write pointer.
 *
 *     @param[in,out]   *TechPtr   - Pointer to the MEM_TECH_BLOCK
 *     @param[in]       Receiver - Chip select
 *
 */

VOID
STATIC
MemTResetDctWrPtrByte (
  IN OUT   MEM_TECH_BLOCK *TechPtr,
  IN       UINT8 Receiver
  )
{
  UINT8 i;
  UINT16 RcvEnDly;

  ASSERT (Receiver < MAX_CS_PER_CHANNEL);
  for (i = 0; i < MAX_BYTELANES; i++) {
    RcvEnDly = (UINT16) TechPtr->NBPtr->GetTrainDly (TechPtr->NBPtr, AccessRcvEnDly, DIMM_BYTE_ACCESS (Receiver / 2, i));
    TechPtr->NBPtr->SetTrainDly (TechPtr->NBPtr, AccessRcvEnDly, DIMM_BYTE_ACCESS (Receiver / 2, i), RcvEnDly);
  }
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *       This function skips odd chip select if training at 800MT or above.
 *
 *     @param[in,out]   *TechPtr   - Pointer to the MEM_TECH_BLOCK
 *     @param[in]       *ChipSelPtr - Pointer to variable contains Chip select index
 *
 */

VOID
STATIC
MemTSkipChipSelPass1Byte (
  IN OUT   MEM_TECH_BLOCK *TechPtr,
  IN OUT   UINT8 *ChipSelPtr
  )
{
  MEM_NB_BLOCK *NBPtr;

  NBPtr = TechPtr->NBPtr;
  // if the even chip select failed training, need to set CsTrainFail for odd chip select if present.
  if (NBPtr->DCTPtr->Timings.CsPresent & ((UINT16)1 << ((*ChipSelPtr) + 1))) {
    if (NBPtr->DCTPtr->Timings.CsTrainFail & ((UINT16)1 << *ChipSelPtr)) {
      NBPtr->DCTPtr->Timings.CsTrainFail |= (UINT16)1 << ((*ChipSelPtr) + 1);
      if (!NBPtr->MemPtr->ErrorHandling (NBPtr->MCTPtr, NBPtr->Dct, NBPtr->DCTPtr->Timings.CsTrainFail, &NBPtr->MemPtr->StdHeader)) {
        ASSERT (FALSE);
      }
    }
  }
  (*ChipSelPtr)++;
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *  MemTSkipChipSelPass2Byte:
 *
 *       This function skips odd chip select if training at 800MT or above.
 *
 *     @param[in,out]   *TechPtr   - Pointer to the MEM_TECH_BLOCK
 *     @param[in,out]   *ChipSelPtr - Pointer to variable contains Chip select index
 *
 */

VOID
STATIC
MemTSkipChipSelPass2Byte (
  IN OUT   MEM_TECH_BLOCK *TechPtr,
  IN OUT   UINT8 *ChipSelPtr
  )
{
  if (*ChipSelPtr & 1) {
    *ChipSelPtr = MAX_CS_PER_CHANNEL;    // skip all successions
  }
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *       This function determines the maximum number of byte lanes
 *
 *     @return  Max number of Bytelanes
 */

UINT8
STATIC
MemTMaxByteLanesByte ( VOID )
{
  return MAX_BYTELANES;
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *       This function determines the width of the delay tables (eg. RcvEnDlys, WrDqsDlys,...)
 *
 *     @return  Delay table width in bytes
 */

UINT8
STATIC
MemTDlyTableWidthByte ( VOID )
{
  return MAX_DELAYS;
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *       This function writes the Delay value to a certain byte lane
 *
 *     @param[in,out]   *TechPtr   - Pointer to the MEM_TECH_BLOCK
 *     @param[in]       ByteLane  -  Bytelane number being targeted
 *     @param[in]       Dly - Delay value
 *
 */

VOID
STATIC
MemTSetDqsDelayCsrByte (
  IN OUT   MEM_TECH_BLOCK *TechPtr,
  IN       UINT8 ByteLane,
  IN       UINT8 Dly
  )
{
  UINT8 Reg;
  UINT8 Dimm;

  ASSERT (ByteLane <= MAX_BYTELANES);

  if (!(TechPtr->DqsRdWrPosSaved & ((UINT8)1 << ByteLane))) {
    Dimm = (TechPtr->ChipSel >> 1);

    if (TechPtr->Direction == DQS_WRITE_DIR) {
      Dly = Dly + ((UINT8) TechPtr->NBPtr->ChannelPtr->WrDqsDlys[(Dimm * MAX_DELAYS) + ByteLane]);
      Reg = AccessWrDatDly;
    } else {
      Reg = AccessRdDqsDly;
    }

    TechPtr->NBPtr->SetTrainDly (TechPtr->NBPtr, Reg, DIMM_BYTE_ACCESS (Dimm, ByteLane), Dly);
  }
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *       This function programs the trained DQS delay for the specified byte lane
 *       and stores its DQS window for reference.
 *
 *     @param[in,out]   *TechPtr   - Pointer to the MEM_TECH_BLOCK
 *     @param[in]       ByteLane  -  Bytelane number being targeted
 *     @param[in]       DlyMin - Minimum delay value
 *     @param[in]       DlyMax- Maximum delay value
 *
 */

VOID
STATIC
MemTDqsWindowSaveByte (
  IN OUT   MEM_TECH_BLOCK *TechPtr,
  IN       UINT8 ByteLane,
  IN       UINT8 DlyMin,
  IN       UINT8 DlyMax
  )
{
  UINT8 DqsDelay;
  UINT8 Dimm;
  CH_DEF_STRUCT *ChanPtr;

  ASSERT (ByteLane <= MAX_BYTELANES);
  ChanPtr = TechPtr->NBPtr->ChannelPtr;

  DqsDelay = ((DlyMin + DlyMax + 1) / 2) & 0x3F;
  MemTSetDqsDelayCsrByte (TechPtr, ByteLane, DqsDelay);
  TechPtr->DqsRdWrPosSaved |= (UINT8)1 << ByteLane;
  TechPtr->DqsRdWrPosSaved |= 0xFF00;

  Dimm = (TechPtr->ChipSel / 2) * MAX_DELAYS + ByteLane;
  if (TechPtr->Direction == DQS_READ_DIR) {
    ChanPtr->RdDqsDlys[Dimm] = DqsDelay;
  } else {
    ChanPtr->WrDatDlys[Dimm] = DqsDelay + ChanPtr->WrDqsDlys[Dimm];
  }

  if (TechPtr->Direction == DQS_READ_DIR) {
    ChanPtr->RdDqsMinDlys[ByteLane] = DlyMin;
    ChanPtr->RdDqsMaxDlys[ByteLane] = DlyMax;
  } else {
    ChanPtr->WrDatMinDlys[ByteLane] = DlyMin;
    ChanPtr->WrDatMaxDlys[ByteLane] = DlyMax;
  }

}


/* -----------------------------------------------------------------------------*/
/**
 *
 *      This function finds the DIMM that has the largest receiver enable delay.
 *
 *     @param[in,out]   *TechPtr   - Pointer to the MEM_TECH_BLOCK
 *     @param[out]      *ChipSel   - Pointer to the Chip select that has the largest receiver enable delay.
 *
 *     @return   TRUE - A chip select can be found.
 *     @return   FALSE - A chip select cannot be found.
 */

BOOLEAN
STATIC
MemTFindMaxRcvrEnDlyByte (
  IN OUT   MEM_TECH_BLOCK *TechPtr,
     OUT   UINT8 *ChipSel
  )
{
  UINT8  Dimm;
  UINT8  ByteLane;
  UINT16 RcvEnDly;
  UINT16 MaxDly;
  UINT8  MaxDlyDimm;
  BOOLEAN RetVal;

  MEM_NB_BLOCK  *NBPtr;
  CH_DEF_STRUCT *ChannelPtr;

  NBPtr = TechPtr->NBPtr;
  ChannelPtr = NBPtr->ChannelPtr;

  RetVal = FALSE;
  MaxDly = 0;
  MaxDlyDimm = 0;
  for (Dimm = 0; Dimm < MAX_DIMMS_PER_CHANNEL; Dimm++) {
    if ((NBPtr->DCTPtr->Timings.CsEnabled & ((UINT16) 1 << (Dimm << 1))) != 0) {
      if ((NBPtr->DCTPtr->Timings.CsTrainFail & ((UINT16) 3 << (Dimm << 1))) == 0) {
        // Only choose the dimm that does not fail training
        for (ByteLane = 0; ByteLane < ((NBPtr->MCTPtr->Status[SbEccDimms] && NBPtr->IsSupported[EccByteTraining]) ? 9 : 8); ByteLane++) {
          RcvEnDly = ChannelPtr->RcvEnDlys[Dimm * MAX_DELAYS + ByteLane];
          if (RcvEnDly > MaxDly) {
            MaxDly = RcvEnDly;
            MaxDlyDimm = Dimm;
            RetVal = TRUE;
          }
        }
      }
    }
  }

  if (NBPtr->MCTPtr->Status[Sb128bitmode] != 0) {
    //The RcvrEnDlys of DCT1 DIMMs should also be considered while ganging.
    NBPtr->SwitchDCT (NBPtr, 1);
    ChannelPtr = NBPtr->ChannelPtr;
    for (Dimm = 0; Dimm < MAX_DIMMS_PER_CHANNEL; Dimm++) {
      for (ByteLane = 0; ByteLane < ((NBPtr->MCTPtr->Status[SbEccDimms] && NBPtr->IsSupported[EccByteTraining]) ? 9 : 8); ByteLane++) {
        RcvEnDly = ChannelPtr->RcvEnDlys[Dimm * MAX_DELAYS + ByteLane];
        if (RcvEnDly > MaxDly) {
          MaxDly = RcvEnDly;
          MaxDlyDimm = Dimm;
        }
      }
    }
    NBPtr->SwitchDCT (NBPtr, 0);
  }

  TechPtr->MaxDlyForMaxRdLat = MaxDly;
  *ChipSel = (MaxDlyDimm * 2);
  return RetVal;
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *      This function finds the DIMM that has the largest receiver enable delay + Read DQS Delay.
 *
 *     @param[in,out]   *TechPtr   - Pointer to the MEM_TECH_BLOCK
 *     @param[out]      *ChipSel   - Pointer to the Chip select that has the largest receiver enable delay
 *                                   + Read DQS Delay.
 *
 *     @return   TRUE - A chip select can be found.
 *     @return   FALSE - A chip select cannot be found.
 */

BOOLEAN
MemTFindMaxRcvrEnDlyRdDqsDlyByte (
  IN OUT   MEM_TECH_BLOCK *TechPtr,
     OUT   UINT8 *ChipSel
  )
{
  UINT8  Dimm;
  UINT8  ByteLane;
  UINT16 RcvEnDly;
  UINT16 RdDqsDly;
  UINT16 TotalDly;
  UINT16 MaxDly;
  UINT8  MaxDlyDimm;
  BOOLEAN RetVal;

  MEM_NB_BLOCK  *NBPtr;
  CH_DEF_STRUCT *ChannelPtr;

  NBPtr = TechPtr->NBPtr;
  ChannelPtr = NBPtr->ChannelPtr;

  RetVal = FALSE;
  MaxDly = 0;
  MaxDlyDimm = 0;
  for (Dimm = 0; Dimm < MAX_DIMMS_PER_CHANNEL; Dimm++) {
    if ((NBPtr->DCTPtr->Timings.CsTrainFail & ((UINT16) 3 << (Dimm << 1))) == 0) {
      // Only choose the dimm that does not fail training
      for (ByteLane = 0; ByteLane < MAX_BYTELANES; ByteLane++) {
        RcvEnDly = ChannelPtr->RcvEnDlys[Dimm * MAX_DELAYS + ByteLane];
        // Before Dqs Position Training, this value is 0. So the maximum value for
        // RdDqsDly needs to be added later when calculating the MaxRdLatency value
        // after RcvEnDly training but before DQS Position Training.
        RdDqsDly = ChannelPtr->RdDqsDlys[Dimm * MAX_DELAYS + ByteLane];
        TotalDly = RcvEnDly + (RdDqsDly >> 1);
        if (TotalDly > MaxDly) {
          MaxDly = TotalDly;
          MaxDlyDimm = Dimm;
          RetVal = TRUE;
        }
      }
    }
  }

  TechPtr->MaxDlyForMaxRdLat = MaxDly;
  *ChipSel = (MaxDlyDimm * 2);
  return RetVal;
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *      This function finds the DIMM that has the largest receiver enable delay + Read DQS Delay for UNB
 *
 *     @param[in,out]   *TechPtr   - Pointer to the MEM_TECH_BLOCK
 *     @param[out]      *ChipSel   - Pointer to the Chip select that has the largest receiver enable delay
 *                                   + Read DQS Delay.
 *
 *     @return   TRUE - A chip select can be found.
 *     @return   FALSE - A chip select cannot be found.
 */

BOOLEAN
MemTFindMaxRcvrEnDlyRdDqsDlyByteUnb (
  IN OUT   MEM_TECH_BLOCK *TechPtr,
     OUT   UINT8 *ChipSel
  )
{
  UINT8  Dimm;
  UINT8  ByteLane;
  UINT16 RcvEnDly;
  UINT16 RdDqsDly;
  UINT16 TotalDly;
  UINT16 MaxDly;
  UINT8  MaxDlyDimm;
  BOOLEAN RetVal;

  MEM_NB_BLOCK  *NBPtr;
  CH_DEF_STRUCT *ChannelPtr;

  NBPtr = TechPtr->NBPtr;
  ChannelPtr = NBPtr->ChannelPtr;

  RetVal = FALSE;
  MaxDly = 0;
  MaxDlyDimm = 0;
  for (Dimm = 0; Dimm < MAX_DIMMS_PER_CHANNEL; Dimm++) {
    if ((NBPtr->DCTPtr->Timings.CsTrainFail & ((UINT16) 3 << (Dimm << 1))) == 0) {
      // Only choose the dimm that does not fail training
      for (ByteLane = 0; ByteLane < ((NBPtr->MCTPtr->Status[SbEccDimms] && NBPtr->IsSupported[EccByteTraining]) ? 9 : 8); ByteLane++) {
        RcvEnDly = ChannelPtr->RcvEnDlys[Dimm * MAX_DELAYS + ByteLane];
        // Before Dqs Position Training, this value is 0. So the maximum value for
        // RdDqsDly needs to be added later when calculating the MaxRdLatency value
        // after RcvEnDly training but before DQS Position Training.
        RdDqsDly = ChannelPtr->RdDqsDlys[Dimm * MAX_DELAYS + ByteLane];
        TotalDly = RcvEnDly + RdDqsDly;
        if (TotalDly > MaxDly) {
          MaxDly = TotalDly;
          MaxDlyDimm = Dimm;
          RetVal = TRUE;
        }
      }
    }
  }

  TechPtr->MaxDlyForMaxRdLat = MaxDly;
  *ChipSel = (MaxDlyDimm * 2);
  return RetVal;
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *      This function finds the minimum or maximum gross dly among all the bytes.
 *
 *     @param[in,out]   *TechPtr   - Pointer to the MEM_TECH_BLOCK
 *     @param[in]       TrnDlyType - Target Dly type
 *     @param[in]       IfMax - If this is for maximum value or minimum
 *
 *     @return   minimum gross dly
 */
UINT8
STATIC
MemTFindMinMaxGrossDlyByte (
  IN OUT   MEM_TECH_BLOCK *TechPtr,
  IN       TRN_DLY_TYPE TrnDlyType,
  IN       BOOLEAN IfMax
  )
{
  UINT8 i;
  UINT8 ByteLane;
  UINT16 CsEnabled;
  UINT8 MinMaxGrossDly;
  UINT8 TrnDly;
  MEM_NB_BLOCK *NBPtr;

  NBPtr = TechPtr->NBPtr;
  CsEnabled = NBPtr->DCTPtr->Timings.CsEnabled;
  MinMaxGrossDly = IfMax ? 0 : 0xFF;

  for (i = 0; i < MAX_DIMMS_PER_CHANNEL; i++) {
    if ((CsEnabled & (UINT16) (3 << (i << 1))) != 0) {
      for (ByteLane = 0; ByteLane < ((NBPtr->MCTPtr->Status[SbEccDimms] && NBPtr->IsSupported[EccByteTraining]) ? 9 : 8); ByteLane++) {
        TrnDly = (UINT8) (GetTrainDlyFromHeapNb (NBPtr, TrnDlyType, DIMM_BYTE_ACCESS (i, ByteLane)) >> 5);
        if ((IfMax && (TrnDly > MinMaxGrossDly)) || (!IfMax && (TrnDly < MinMaxGrossDly))) {
          MinMaxGrossDly = TrnDly;
        }
      }
    }
  }

  return MinMaxGrossDly;
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *       This function compares test pattern with data in buffer and return a pass/fail bitmap
 *       for 8 Bytes for optimized receiver enable training
 *
 *     @param[in,out]   *TechPtr   - Pointer to the MEM_TECH_BLOCK
 *     @param[in]       Buffer[]  -  Buffer data from DRAM (Measured data from DRAM) to compare
 *     @param[in]       Pattern[]  - Pattern (Expected data in ROM/CACHE) to compare against
 *     @param[in]       Side - current side being targeted
 *     @param[in]       Receiver - Current receiver value
 *     @param[in]       Side1En - Indicates if the second side of the DIMM is being used
 *     @return  PASS - Bit map of results of comparison
 */

UINT16
STATIC
MemTCompare1ClPatternOptByte (
  IN OUT   MEM_TECH_BLOCK *TechPtr,
  IN       UINT8 Buffer[],
  IN       UINT8 Pattern[],
  IN       UINT8 Side,
  IN       UINT8 Receiver,
  IN       BOOLEAN  Side1En
  )
{
  UINT16 i;
  UINT16 j;
  UINT16 Pass;
  DIE_STRUCT *MCTPtr;
  CH_DEF_STRUCT *ChannelPtr;

  ASSERT (Receiver < MAX_CS_PER_CHANNEL);
  ChannelPtr = TechPtr->NBPtr->ChannelPtr;
  MCTPtr = TechPtr->NBPtr->MCTPtr;

  if (MCTPtr->GangedMode && MCTPtr->Dct) {
    j = 8;
  } else {
    j = 0;
  }

  Pass = 0xFFFF;
  IDS_HDT_CONSOLE (MEM_FLOW, "\t\t\tDelay[BL] -");
  for (i = 0; i < 8; i++) {
    IDS_HDT_CONSOLE (MEM_FLOW, " %02x", TechPtr->RcvrEnDlyOpt[i] & 0xFF);
    if (Buffer[j] != Pattern[j]) {
      // if bytelane n fails
      Pass &= ~((UINT16)1 << (j % 8));    // clear bit n
      TechPtr->DqsRcvEnFirstPassValOpt[i] = 0;
      TechPtr->GetFirstPassValOpt[i] = FALSE;
      TechPtr->IncBy1ForNextCountOpt[i] = FALSE;
      TechPtr->DqsRcvEnSavedOpt[i] = FALSE;
      if (TechPtr->FilterStatusOpt[i] != DONE_FILTER) {
        if (Side == ((Side1En ? 4 : 2) - 1)) {
          TechPtr->RcvrEnDlyOpt[i] += FILTER_FIRST_STAGE_COUNT;
        }
      }
    } else {
      if (TechPtr->FilterSidePassCountOpt[i] == ((Side1En ? 4 : 2) - 1)) {
        //Only apply filter if all sides have passed
        if (TechPtr->FilterStatusOpt[i] != DONE_FILTER) {
          if (TechPtr->GetFirstPassValOpt[i] == FALSE) {
            // This is the first Pass, mark the start of filter check
            TechPtr->DqsRcvEnFirstPassValOpt[i] = TechPtr->RcvrEnDlyOpt[i];
            TechPtr->GetFirstPassValOpt[i] = TRUE;
            TechPtr->IncBy1ForNextCountOpt[i] = FALSE;
            TechPtr->RcvrEnDlyOpt[i]++;
          } else {
            if ((TechPtr->RcvrEnDlyOpt[i] - TechPtr->DqsRcvEnFirstPassValOpt[i]) < FILTER_WINDOW_SIZE) {
              if (TechPtr->IncBy1ForNextCountOpt[i] == FALSE) {
                TechPtr->RcvrEnDlyOpt[i] += FILTER_SECOND_STAGE_COUNT;
                TechPtr->IncBy1ForNextCountOpt[i] = TRUE;
              } else {
                TechPtr->RcvrEnDlyOpt[i]++;
                TechPtr->IncBy1ForNextCountOpt[i] = FALSE;
              }
            } else {
              // End sweep and add offset to first pass
              TechPtr->MaxRcvrEnDlyBlOpt[i] = TechPtr->DqsRcvEnFirstPassValOpt[i];
              TechPtr->RcvrEnDlyOpt[i] = TechPtr->DqsRcvEnFirstPassValOpt[i] + FILTER_OFFSET_VALUE;
              TechPtr->FilterStatusOpt[i] = DONE_FILTER;
              TechPtr->FilterCountOpt++;
            }
          }
        } else {
          TechPtr->FilterSidePassCountOpt[i]++;
        }
      } else {
        if (TechPtr->GetFirstPassValOpt[i] == FALSE) {
          if (Side == ((Side1En ? 4 : 2) - 1)) {
            TechPtr->RcvrEnDlyOpt[i] += FILTER_FIRST_STAGE_COUNT;
          }
        }
        TechPtr->FilterSidePassCountOpt[i]++;
      }
      TechPtr->DqsRcvEnSavedOpt[i] = TRUE;
      ChannelPtr->RcvEnDlys[(Receiver >> 1) * MAX_DELAYS + i] = TechPtr->RcvrEnDlyOpt[i];
    }
    if (Side == ((Side1En ? 4 : 2) - 1)) {
      TechPtr->FilterSidePassCountOpt[i] = 0;
    }
    if (TechPtr->RcvrEnDlyOpt[i] >= TechPtr->RcvrEnDlyLimitOpt[i]) {
      TechPtr->FilterCountOpt++;
    }

    j++;
  }

  IDS_HDT_CONSOLE_DEBUG_CODE (
    IDS_HDT_CONSOLE (MEM_FLOW, "\n\t\t\tPass/Fail -");
    for (i = 0, j -= 8; i < 8; i++, j++) {
      IDS_HDT_CONSOLE (MEM_FLOW, "  %c", (Buffer[j] == Pattern[j]) ? 'P' : '.');
    }
    IDS_HDT_CONSOLE (MEM_FLOW, "\n\t\t\t Measured -");
    for (i = 0, j -= 8; i < 8; i++, j++) {
      IDS_HDT_CONSOLE (MEM_FLOW, " %02x", Buffer[j]);
    }
    IDS_HDT_CONSOLE (MEM_FLOW, "\n\t\t\t Expected -");
    for (i = 0, j -= 8; i < 8; i++, j++) {
      IDS_HDT_CONSOLE (MEM_FLOW, " %02x", Pattern[j]);
    }
    IDS_HDT_CONSOLE (MEM_FLOW, "\n\n");
  );

  return Pass;
}
/*-----------------------------------------------------------------------------
 *
 *  This function initializes variables for optimized training.
 *
 *     @param[in,out]   *TechPtr   - Pointer to the MEM_TECH_BLOCK
 *
 * ----------------------------------------------------------------------------
 */
VOID
MemTInitializeVariablesOptByte (
  IN OUT   MEM_TECH_BLOCK *TechPtr
  )
{
  UINT8 ByteLane;
  for (ByteLane = 0; ByteLane < MAX_BYTELANES_PER_CHANNEL; ByteLane++) {
    TechPtr->RcvrEnDlyLimitOpt[ByteLane] = FILTER_MAX_REC_EN_DLY_VALUE;      // @attention - limit depends on proc type
    TechPtr->DqsRcvEnSavedOpt[ByteLane] = FALSE;
    TechPtr->RcvrEnDlyOpt[ByteLane] = FILTER_NEW_RECEIVER_START_VALUE;
    TechPtr->GetFirstPassValOpt[ByteLane] = FALSE;
    TechPtr->DqsRcvEnFirstPassValOpt[ByteLane] = 0;
    TechPtr->RevertPassValOpt[ByteLane] = FALSE;
    TechPtr->MaxRcvrEnDlyBlOpt[ByteLane] = 0;
    TechPtr->FilterStatusOpt[ByteLane] = START_FILTER;
    TechPtr->FilterCountOpt = 0;
    TechPtr->FilterSidePassCountOpt[ByteLane] = 0;
    TechPtr->IncBy1ForNextCountOpt[ByteLane] = FALSE;
  }
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *  This function loads the DqsRcvEnDly from saved data and program to additional index
 *  for optimized DQS receiver enabled training
 *
 *     @param[in,out]   *TechPtr   - Pointer to the MEM_TECH_BLOCK
 *     @param[in]       Receiver  - Current Chip select value
 *
 */

VOID
STATIC
MemTLoadRcvrEnDlyOptByte (
  IN OUT   MEM_TECH_BLOCK *TechPtr,
  IN       UINT8 Receiver
  )
{
  UINT8 i;
  UINT8 Dimm;
  CH_DEF_STRUCT *ChannelPtr;

  ASSERT (Receiver < MAX_CS_PER_CHANNEL);
  ChannelPtr = TechPtr->NBPtr->ChannelPtr;

  Dimm = Receiver >> 1;
  for (i = 0; i < 8; i++) {
    if (TechPtr->DqsRcvEnSavedOpt[i]) {
      TechPtr->NBPtr->SetTrainDly (TechPtr->NBPtr, AccessRcvEnDly, DIMM_BYTE_ACCESS (Receiver >> 1, i),
      ChannelPtr->RcvEnDlys[Dimm * MAX_DELAYS + i]);
    }
  }
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *  This function programs DqsRcvEnDly to additional index for DQS receiver enabled training
 *
 *     @param[in,out]   *TechPtr   - Pointer to the MEM_TECH_BLOCK
 *     @param[in]       Receiver  - Current Chip select value
 *     @param[in]       RcvEnDly  - receiver enable delay to be saved
 */

VOID
STATIC
MemTSetRcvrEnDlyOptByte (
  IN OUT   MEM_TECH_BLOCK *TechPtr,
  IN       UINT8 Receiver,
  IN       UINT16 RcvEnDly
  )
{
  UINT8 ByteLane;

  ASSERT (Receiver < MAX_CS_PER_CHANNEL);

  for (ByteLane = 0; ByteLane < 8; ByteLane++) {
    if (TechPtr->FilterStatusOpt[ByteLane] != DONE_FILTER) {
      TechPtr->NBPtr->SetTrainDly (TechPtr->NBPtr, AccessRcvEnDly, DIMM_BYTE_ACCESS (Receiver >> 1, ByteLane), TechPtr->RcvrEnDlyOpt[ByteLane]);
    }
  }
}
/*-----------------------------------------------------------------------------
 *
 *  This sets any Errors generated from Dly sweep
 *
 *     @param[in,out]   *TechPtr   - Pointer to the MEM_TECH_BLOCK
 *     @param[in]   DCT   - current DCT
 *     @param[in]   Receiver   - current receiver
 *
 *     @return     FALSE - Fatal error occurs.
 *     @return     TRUE  - No fatal error occurs.
 * ----------------------------------------------------------------------------
 */
BOOLEAN
MemTSetSweepErrorOptByte (
  IN OUT   MEM_TECH_BLOCK *TechPtr,
  IN       UINT8 Receiver,
  IN       UINT8 Dct,
  IN       BOOLEAN ErrorCheck
  )
{
  UINT8 ByteLane;
  MEM_DATA_STRUCT *MemPtr;
  DIE_STRUCT *MCTPtr;
  DCT_STRUCT *DCTPtr;
  MEM_NB_BLOCK  *NBPtr;

  NBPtr = TechPtr->NBPtr;
  MemPtr = NBPtr->MemPtr;
  MCTPtr = NBPtr->MCTPtr;
  DCTPtr = NBPtr->DCTPtr;
  for (ByteLane = 0; ByteLane < MAX_BYTELANES_PER_CHANNEL; ByteLane++) {
    if (TechPtr->RcvrEnDlyOpt[ByteLane] == TechPtr->RcvrEnDlyLimitOpt[ByteLane]) {
      // no passing window
      if (ErrorCheck) {
        return FALSE;
      }
      PutEventLog (AGESA_ERROR, MEM_ERROR_RCVR_EN_NO_PASSING_WINDOW, NBPtr->Node, NBPtr->Dct, NBPtr->Channel, ByteLane, &NBPtr->MemPtr->StdHeader);
      SetMemError (AGESA_ERROR, MCTPtr);
    }
    if (TechPtr->RcvrEnDlyOpt[ByteLane] > (TechPtr->RcvrEnDlyLimitOpt[ByteLane] - 1)) {
      // passing window too narrow, too far delayed
      if (ErrorCheck) {
        return FALSE;
      }
      PutEventLog (AGESA_ERROR, MEM_ERROR_RCVR_EN_VALUE_TOO_LARGE, NBPtr->Node, NBPtr->Dct, NBPtr->Channel, ByteLane, &NBPtr->MemPtr->StdHeader);
      SetMemError (AGESA_ERROR, MCTPtr);
      DCTPtr->Timings.CsTrainFail |= (UINT16) (3 << Receiver) & DCTPtr->Timings.CsPresent;
      MCTPtr->ChannelTrainFail |= (UINT32)1 << Dct;
      if (!NBPtr->MemPtr->ErrorHandling (MCTPtr, NBPtr->Dct, DCTPtr->Timings.CsTrainFail, &MemPtr->StdHeader)) {
        ASSERT (FALSE);
        return FALSE;
      }
    }
  }
  return TRUE;
}

/*-----------------------------------------------------------------------------
 *
 *  This function determines the maximum receiver delay value
 *
 *     @param[in,out]   *TechPtr   - Pointer to the MEM_TECH_BLOCK
 *
 *     @retval  MaxRcvrValue - Maximum receiver delay value for all bytelanes
 * ----------------------------------------------------------------------------
 */

UINT16
MemTGetMaxValueOptByte (
  IN OUT   MEM_TECH_BLOCK *TechPtr
  )
{
  UINT8 ByteLane;
  UINT16 MaxRcvrValue;
  MaxRcvrValue = 0;
  for (ByteLane = 0; ByteLane < MAX_BYTELANES_PER_CHANNEL; ByteLane++) {
    if (TechPtr->MaxRcvrEnDlyBlOpt[ByteLane] > MaxRcvrValue) {
      MaxRcvrValue = TechPtr->MaxRcvrEnDlyBlOpt[ByteLane];
    }
  }
  MaxRcvrValue += FILTER_OFFSET_VALUE;
  return MaxRcvrValue;
}
/*-----------------------------------------------------------------------------
 *
 *  This function determines if the sweep loop should complete.
 *
 *     @param[in,out]   *TechPtr   - Pointer to the MEM_TECH_BLOCK
 *
 *     @retval  TRUE - All bytelanes pass
 *              FALSE - Some bytelanes fail
 * ----------------------------------------------------------------------------
 */

BOOLEAN
MemTCheckRcvrEnDlyLimitOptByte (
  IN OUT   MEM_TECH_BLOCK *TechPtr
  )
{
  if (TechPtr->FilterCountOpt >= (UINT16)MAX_CS_PER_CHANNEL) {
    return TRUE;
  } else {
    return FALSE;
  }
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *  This function load the result of write levelization training into RcvrEnDlyOpt,
 *  using it as the initial value for Receiver DQS training.
 *
 *     @param[in,out]   *TechPtr   - Pointer to the MEM_TECH_BLOCK
 *     @param[in]       Receiver  - Current Chip select value
 */
VOID
STATIC
MemTLoadInitialRcvEnDlyOptByte (
  IN OUT   MEM_TECH_BLOCK *TechPtr,
  IN       UINT8 Receiver
  )
{
  UINT8 ByteLane;
  MEM_NB_BLOCK *NBPtr;

  NBPtr = TechPtr->NBPtr;
  for (ByteLane = 0; ByteLane < MAX_BYTELANES_PER_CHANNEL; ByteLane++) {
    TechPtr->RcvrEnDlyOpt[ByteLane] = NBPtr->ChannelPtr->WrDqsDlys[((Receiver >> 1) * TechPtr->DlyTableWidth ()) + ByteLane];
  }
}