aboutsummaryrefslogtreecommitdiff
path: root/src/vendorcode/amd/agesa/f14/Proc/Recovery/Mem/NB/mrndct.c
blob: 10bcbe3d5cada7f4d27c12e7bf876f3e3bf58fb0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
/* $NoKeywords:$ */
/**
 * @file
 *
 * mrndct.c
 *
 * Northbridge common DCT support for Recovery
 *
 * @xrefitem bom "File Content Label" "Release Content"
 * @e project: AGESA
 * @e sub-project: (Proc/Recovery/Mem/NB)
 * @e \$Revision: 48803 $ @e \$Date: 2011-03-10 20:18:28 -0700 (Thu, 10 Mar 2011) $
 *
 **/
/*
 *****************************************************************************
 *
 * Copyright (c) 2011, Advanced Micro Devices, Inc.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of Advanced Micro Devices, Inc. nor the names of
 *       its contributors may be used to endorse or promote products derived
 *       from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL ADVANCED MICRO DEVICES, INC. BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * ***************************************************************************
 *
 */


/*
 *----------------------------------------------------------------------------
 *                                MODULES USED
 *
 *----------------------------------------------------------------------------
 */



#include "AGESA.h"
#include "OptionMemory.h"
#include "PlatformMemoryConfiguration.h"
#include "Ids.h"
#include "mrport.h"
#include "cpuFamRegisters.h"
#include "mm.h"
#include "mn.h"
#include "mt.h"
#include "mru.h"
#include "ma.h"
#include "Filecode.h"
#define FILECODE PROC_RECOVERY_MEM_NB_MRNDCT_FILECODE
/*----------------------------------------------------------------------------
 *                          DEFINITIONS AND MACROS
 *
 *----------------------------------------------------------------------------
 */
#define RECDEF_DRAM_CONTROL_REG   0x320C2A06
#define RECDEF_DRAM_MRSREG        0x000400A4
#define RECDEF_DRAM_TIMING_LO     0x000A0092
#define RECDEF_DRAM_TIMING_HI     0xB6D218FF
#define RECDEF_CSMASK_REG         0x00083FE0
#define RECDEF_DRAM_CONFIG_LO_REG 0x00000000
#define RECDEF_DRAM_CONFIG_HI_REG 0x1F48010B
#define RECDEF_DRAM_BASE_REG      0x00000003


/*----------------------------------------------------------------------------
 *                           TYPEDEFS AND STRUCTURES
 *
 *----------------------------------------------------------------------------
 */
/// Type of an entry for processing phy init compensation for client NB
typedef struct {
  BIT_FIELD_NAME IndexBitField;          ///< Bit field on which the value is decided
  BIT_FIELD_NAME StartTargetBitField;    ///< First bit field to be modified
  BIT_FIELD_NAME EndTargetBitField;      ///< Last bit field to be modified
  UINT16 ExtraValue;                     ///< Extra value needed to be written to bit field
  CONST UINT16 (*TxPrePN)[4];         ///< Pointer to slew rate table
} REC_PHY_COMP_INIT_CLIENTNB;

/*----------------------------------------------------------------------------
 *                        PROTOTYPES OF LOCAL FUNCTIONS
 *
 *----------------------------------------------------------------------------
 */
VOID
STATIC
MemRecTCtlOnDimmMirrorNb (
  IN OUT   MEM_NB_BLOCK *NBPtr,
  IN       BOOLEAN SetFlag
  );

VOID
STATIC
MemRecNSwapBitsNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  );

VOID
STATIC
MemRecNProgNbPstateDependentRegClientNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  );

VOID
STATIC
MemRecNTrainPhyFenceNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  );

/*----------------------------------------------------------------------------
 *                            EXPORTED FUNCTIONS
 *
 *----------------------------------------------------------------------------
 */

/* -----------------------------------------------------------------------------*/
/**
 *
 *      This function programs the memory controller with configuration parameters
 *
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 *     @return          TRUE - An Error value lower than AGESA_ERROR may have occurred
 *     @return          FALSE - An Error value greater than or equal to AGESA_ERROR may have occurred
 */

BOOLEAN
MemRecNAutoConfigNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  UINT8 Dimm;
  UINT8 Dct;
  UINT32 RegValue;
  UINT8 ChipSel;
  UINT32 CSBase;
  DCT_STRUCT *DCTPtr;
  CH_DEF_STRUCT *ChannelPtr;

  Dct = NBPtr->Dct;
  DCTPtr = NBPtr->DCTPtr;
  ChannelPtr = NBPtr->ChannelPtr;

  //Prepare variables for future usage.
  for (Dimm = 0; Dimm < MAX_DIMMS_PER_CHANNEL; Dimm++) {
    if ((ChannelPtr->ChDimmValid & (UINT8) 1 << Dimm) != 0) {
      DCTPtr->Timings.CsPresent |= (UINT16) 1 << (Dimm * 2);
      if (((ChannelPtr->DimmDrPresent & (UINT8) 1 << Dimm) == 0) && ((ChannelPtr->DimmQrPresent & (UINT8) 1 << Dimm) == 0)) {
        continue;
      } else {
        DCTPtr->Timings.CsPresent |= (UINT16) 1 << (Dimm * 2 + 1);
      }
    }
  }

  Dimm = NBPtr->DimmToBeUsed;

  //Temporarily set all CS Base/Limit registers (corresponding to Dimms exist on a channel) with 256MB size for WL training.
  CSBase = 0;
  for (ChipSel = 0; ChipSel < MAX_CS_PER_CHANNEL; ChipSel++) {
    if (DCTPtr->Timings.CsPresent & (UINT8) 1 << ChipSel) {

      CSBase &= (UINT32) ~0x08; //Clear OnDimmMirror bit.
      if (((ChipSel & 1) != 0) && ((ChannelPtr->DimmMirrorPresent & (UINT8) 1 << (ChipSel >> 1)) != 0)) {
        CSBase |= (UINT32) 0x08; //Set OnDimmMirror bit.
      }
      MemRecNSetBitFieldNb (NBPtr, (BFCSBaseAddr0Reg + ChipSel), (CSBase | 0x01));
      CSBase += 0x100000;
      if ((ChipSel & 1) == 0) {
        MemRecNSetBitFieldNb (NBPtr, (BFCSMask0Reg + (ChipSel >> 1)), RECDEF_CSMASK_REG);
      }
    }
  }
  MemRecNSetBitFieldNb (NBPtr, BFDramBaseReg0, RECDEF_DRAM_BASE_REG);
  MemRecNSetBitFieldNb (NBPtr, BFDramLimitReg0, 0x70000);

  // Disable the other DCT
  NBPtr->MemRecNSwitchDctNb (NBPtr, Dct ^ 0x01);
  MemRecNSetBitFieldNb (NBPtr, BFDisDramInterface, 1);
  NBPtr->MemRecNSwitchDctNb (NBPtr, Dct);
  if (Dct != 0) {
    // If DCT 1, set DctSelBase registers
    MemRecNSetBitFieldNb (NBPtr, BFDctSelBaseAddrReg, 0x00000003);
    MemRecNSetBitFieldNb (NBPtr, BFDctSelBaseOffsetReg, 0x00000000);
  }

  MemRecNSetBitFieldNb (NBPtr, BFDramBankAddrReg, 0x00001111);

  // Set timing registers
  MemRecNSetBitFieldNb (NBPtr, BFDramTimingLoReg, RECDEF_DRAM_TIMING_LO);
  MemRecNSetBitFieldNb (NBPtr, BFDramTimingHiReg, RECDEF_DRAM_TIMING_HI);
  MemRecNSetBitFieldNb (NBPtr, BFDramMRSReg, RECDEF_DRAM_MRSREG);
  MemRecNSetBitFieldNb (NBPtr, BFDramControlReg, RECDEF_DRAM_CONTROL_REG);

  // Set DRAM Config Low Register
  RegValue = RECDEF_DRAM_CONFIG_LO_REG;
  // Set x4Dimm based on DIMM type
  if ((NBPtr->ChannelPtr->Dimmx4Present & ((UINT8) 1 << Dimm)) != 0) {
    RegValue |= ((UINT32) 1 << (Dimm + 12));
  }
  // If not registered, set unbuffered DIMM
  if (!(NBPtr->ChannelPtr->RegDimmPresent & ((UINT8) 1 << Dimm))) {
    RegValue |= ((UINT32) 1 << 16);
  }
  MemRecNSetBitFieldNb (NBPtr, BFDramConfigLoReg, RegValue);

  // Set DRAM Config High Register
  RegValue = RECDEF_DRAM_CONFIG_HI_REG;
  MemRecNSetBitFieldNb (NBPtr, BFDramConfigHiReg, RegValue);

  //======================================================================
  // Build Dram Config Misc Register Value
  //======================================================================
  //
  if ((NBPtr->ChannelPtr->RegDimmPresent != 0) && (NBPtr->ChannelPtr->TechType == DDR3_TECHNOLOGY)) {
    MemRecNSetBitFieldNb (NBPtr, BFSubMemclkRegDly, 1);
  }
  MemRecNSetBitFieldNb (NBPtr, BFOdtSwizzle, 1);

  return TRUE;
}


/* -----------------------------------------------------------------------------*/
/**
 *
 *   This function gets platform specific config/timing values from the interface layer and
 *   programs them into DCT.
 *
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 *     @return          TRUE - An Error value lower than AGESA_ERROR may have occurred
 *     @return          FALSE - An Error value greater than or equal to AGESA_ERROR may have occurred
 */

BOOLEAN
MemRecNPlatformSpecNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  UINT8 p;

  p = 0;
  for (p = 0; p < MAX_PLATFORM_TYPES; p++) {
    if (NBPtr->MemPtr->GetPlatformCfg[p] (NBPtr->MemPtr, NBPtr->MCTPtr->SocketId, NBPtr->ChannelPtr) == AGESA_SUCCESS) {
      MemRecNSetBitFieldNb (NBPtr, BFODCControl, NBPtr->ChannelPtr->DctOdcCtl);
      MemRecNSetBitFieldNb (NBPtr, BFAddrTmgControl, NBPtr->ChannelPtr->DctAddrTmg);
      return TRUE;
    }
  }
  return FALSE;
}


/* -----------------------------------------------------------------------------*/
/**
 *
 *   This function  reads MemClkFreqVal bit to see if the DIMMs are present in this node.
 *  If the DIMMs are present then set the DRAM Enable bit for this node.
 *
 *  Setting dram init starts up the DCT state machine, initializes the
 *  dram devices with MRS commands, and kicks off any
 *  HW memory clear process that the chip is capable of.  The sooner
 *  that dram init is set for all nodes, the faster the memory system
 *  initialization can complete.  Thus, the init loop is unrolled into
 *  two loops so as to start the processes for non BSP nodes sooner.
 *  This procedure will not wait for the process to finish.  Synchronization is
 *  handled elsewhere.
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 */

VOID
MemRecNStartupDCTNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  // 1. Ensure F2x[1, 0]9C_x08[DisAutoComp] = 1.
  // 2. BIOS waits 5 us for the disabling of the compensation engine to complete.
  // ------- Done in InitPhyComp_Nb -------
  //
  MemRecNSetBitFieldNb (NBPtr, BFDisAutoComp, 1);
  MemRecUWait10ns (500, NBPtr->MemPtr);

  //MemRecNSetBitFieldNb (NBPtr, BFInitDram, 1);    // HW Dram init
  AGESA_TESTPOINT (TpProcMemDramInit, &(NBPtr->MemPtr->StdHeader));
  NBPtr->TechPtr->DramInit (NBPtr->TechPtr);

  // 7. Program F2x[1, 0]9C_x08[DisAutoComp] = 0.
  // 8. BIOS must wait 750 us for the phy compensation engine
  //    to reinitialize.
  //
  MemRecNSetBitFieldNb (NBPtr, BFDisAutoComp, 0);
  MemRecUWait10ns (75000, NBPtr->MemPtr);

  while (MemRecNGetBitFieldNb (NBPtr, BFDramEnabled) == 0);
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *  This function initializes the DRAM devices on all DCTs at the same time
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 */

VOID
MemRecNStartupDCTClientNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  IDS_HDT_CONSOLE (MEM_STATUS, "\tDct %d\n", NBPtr->Dct);

  // Program D18F2x[1,0]9C_x0000_000B = 80000000h. #109999.
  MemRecNSetBitFieldNb (NBPtr, BFDramPhyStatusReg, 0x80000000);

  // Program D18F2x[1,0]9C_x0D0F_E013[PllRegWaitTime] = 0118h. #193770.
  MemRecNSetBitFieldNb (NBPtr, BFPllRegWaitTime, 0x118);

  // Phy Voltage Level Programming
  MemRecNPhyVoltageLevelNb (NBPtr);

  // Run frequency change sequence
  MemRecNSetBitFieldNb (NBPtr, BFPllLockTime, NBPtr->FreqChangeParam->PllLockTimeDefault);
  MemRecNSetBitFieldNb (NBPtr, BFMemClkFreq, 6);
  MemRecNProgNbPstateDependentRegClientNb (NBPtr);
  MemRecNSetBitFieldNb (NBPtr, BFMemClkFreqVal, 1);
  MemRecNSetBitFieldNb (NBPtr, BFPllLockTime, 0x000F);

  IDS_HDT_CONSOLE (MEM_FLOW, "\tMemClkAlign=0\n");
  IDS_HDT_CONSOLE (MEM_FLOW, "\tEnDramInit = 1 for DCT%d\n", NBPtr->Dct);
  MemRecNSetBitFieldNb (NBPtr, BFDbeGskMemClkAlignMode, 0);
  MemRecNSetBitFieldNb (NBPtr, BFEnDramInit, 1);

  // Run DramInit sequence
  AGESA_TESTPOINT (TpProcMemDramInit, &(NBPtr->MemPtr->StdHeader));
  NBPtr->TechPtr->DramInit (NBPtr->TechPtr);
  IDS_HDT_CONSOLE (MEM_FLOW, "\nMemClkFreq: %d MHz\n", DDR800_FREQUENCY);
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *   This function  sets the maximum round-trip latency in the system from the processor to the DRAM
 *   devices and back.

 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *     @param[in]     MaxRcvEnDly - Maximum receiver enable delay value
 *
 */

VOID
MemRecNSetMaxLatencyNb (
  IN OUT   MEM_NB_BLOCK *NBPtr,
  IN       UINT16 MaxRcvEnDly
  )
{
  UINT16 SubTotal;

  AGESA_TESTPOINT (TpProcMemRcvrCalcLatency, &(NBPtr->MemPtr->StdHeader));

  // Multiply the CAS Latency by two to get a number of 1/2 MEMCLKs UINTs.
  SubTotal = 6 * 2;

  // If registered DIMMs are being used then add 1 MEMCLK to the sub-total.
  if (MemRecNGetBitFieldNb (NBPtr, BFUnBuffDimm) == 0) {
    SubTotal += 2;
  }

  // if (AddrCmdSetup || CsOdtSetup || CkeSetup) then K := K + 2;
  SubTotal += 2;

  // If the F2x[1, 0]78[RdPtrInit] field is 4, 5, 6 or 7 MEMCLKs,
  // then add 4, 3, 2, or 1 MEMCLKs, respectively to the sub-total.
  //
  SubTotal += 8 - 5;

  // Add the maximum (worst case) delay value of DqsRcvEnGrossDelay
  // that exists across all DIMMs and byte lanes.
  //
  SubTotal += MaxRcvEnDly >> 5;

  // Add 5.5 to the sub-total. 5.5 represents part of the processor
  // specific constant delay value in the DRAM clock domain.
  //
  SubTotal += 5;             // add 5.5 1/2MemClk

  // Convert the sub-total (in 1/2 MEMCLKs) to northbridge clocks (NCLKs)
  // as follows (assuming DDR400 and assuming that no P-state or link speed
  // changes have occurred).
  //
  //     Simplified formula:
  //     SubTotal *= (Fn2xD4[NBFid]+4)/4
  //
  SubTotal = SubTotal * ((UINT16) MemRecNGetBitFieldNb (NBPtr, BFNbFid) + 4);
  SubTotal /= 4;

  // Add 5 NCLKs to the sub-total. 5 represents part of the processor
  // specific constant value in the northbridge clock domain.
  //
  SubTotal += 5;

  // Program the F2x[1, 0]78[MaxRdLatency] register with the total delay value
  MemRecNSetBitFieldNb (NBPtr, BFMaxLatency, SubTotal);
}


/* -----------------------------------------------------------------------------*/
/**
 *
 *   Set Dram ODT for mission mode and write leveling mode.
 *
 *     @param[in,out]   *NBPtr     - Pointer to the MEM_NB_BLOCK
 *     @param[in]       OdtMode    - Mission mode or write leveling mode
 *     @param[in]       ChipSelect - Chip select number
 *     @param[in]       TargetCS   - Chip select number that is being trained
 *
 */

VOID
MemRecNSetDramOdtNb (
  IN OUT   MEM_NB_BLOCK *NBPtr,
  IN       ODT_MODE OdtMode,
  IN       UINT8 ChipSelect,
  IN       UINT8 TargetCS
  )
{
  UINT8 DramTerm;
  UINT8 DramTermDyn;

  DramTerm = NBPtr->ChannelPtr->Reserved[0];
  DramTermDyn = NBPtr->ChannelPtr->Reserved[1];

  if (OdtMode == WRITE_LEVELING_MODE) {
    if (ChipSelect == TargetCS) {
      DramTerm = DramTermDyn;
      MemRecNSetBitFieldNb (NBPtr, BFWrLvOdt, NBPtr->ChannelPtr->PhyWLODT[TargetCS >> 1]);
    }
  }
  MemRecNSetBitFieldNb (NBPtr, BFDramTerm, DramTerm);
  MemRecNSetBitFieldNb (NBPtr, BFDramTermDyn, DramTermDyn);
}

/*----------------------------------------------------------------------------
 *                              LOCAL FUNCTIONS
 *
 *----------------------------------------------------------------------------
 */

/* -----------------------------------------------------------------------------*/
/**
 *
 *   This function sends an MRS command
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 */

VOID
MemRecNSendMrsCmdNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  BOOLEAN ClearODM;
  ClearODM = FALSE;
  if (NBPtr->IsSupported[CheckClearOnDimmMirror]) {
    ClearODM = FALSE;
    if ((NBPtr->MCTPtr->LogicalCpuid.Revision & AMD_F10_C0) != 0) {
      if (NBPtr->IsSupported[CheckClearOnDimmMirror]) {
        if (MemRecNGetBitFieldNb (NBPtr, BFEnDramInit) == 0) {
          // For C0, if EnDramInit bit is cleared, ODM needs to be cleared before sending MRS
          MemRecTCtlOnDimmMirrorNb (NBPtr, FALSE);
          ClearODM = TRUE;
        }
      }
    }
  }

  MemRecNSwapBitsNb (NBPtr);

  IDS_HDT_CONSOLE (MEM_FLOW, "\t\t\tCS%d MR%d %04x\n",
              (MemRecNGetBitFieldNb (NBPtr, BFDramInitRegReg) >> 20) & 0xF,
              (MemRecNGetBitFieldNb (NBPtr, BFDramInitRegReg) >> 16) & 0xF,
              (MemRecNGetBitFieldNb (NBPtr, BFDramInitRegReg) & 0xFFFF));

  // 1.Set SendMrsCmd=1
  MemRecNSetBitFieldNb (NBPtr, BFSendMrsCmd, 1);

  // 2.Wait for SendMrsCmd=0
  while (MemRecNGetBitFieldNb (NBPtr, BFSendMrsCmd)) {}

  if (NBPtr->IsSupported[CheckClearOnDimmMirror]) {
    if (ClearODM) {
      // Restore ODM if necessary
      MemRecTCtlOnDimmMirrorNb (NBPtr, TRUE);
    }
  }
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *   This function sends the ZQCL command
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 */

VOID
MemRecNSendZQCmdNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  // 1.Program MrsAddress[10]=1
  MemRecNSetBitFieldNb (NBPtr, BFMrsAddress, (UINT32) 1 << 10);

  // 2.Set SendZQCmd=1
  MemRecNSetBitFieldNb (NBPtr, BFSendZQCmd, 1);

  // 3.Wait for SendZQCmd=0
  while (MemRecNGetBitFieldNb (NBPtr, BFSendZQCmd)) {}

  // 4.Wait 512 MEMCLKs
  MemRecUWait10ns (128, NBPtr->MemPtr);   // 512*2.5ns=1280, wait 1280ns
}


/* -----------------------------------------------------------------------------*/
/**
 *
 *      This function disables/enables F2x[1, 0][5C:40][OnDimmMirror]
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *     @param[in]   SetFlag   - Enable or disable flag - TRUE - Enable, FALSE - DISABLE
 *
 */

VOID
STATIC
MemRecTCtlOnDimmMirrorNb (
  IN OUT   MEM_NB_BLOCK *NBPtr,
  IN       BOOLEAN SetFlag
  )
{
  UINT8 Chipsel;
  UINT32 CSBaseAddrReg;

  for (Chipsel = 0; Chipsel < MAX_CS_PER_CHANNEL; Chipsel += 2) {
    CSBaseAddrReg = MemRecNGetBitFieldNb (NBPtr, BFCSBaseAddr1Reg + Chipsel);
    if ((CSBaseAddrReg & 1) == 1) {
      if (SetFlag && ((NBPtr->ChannelPtr->DimmMirrorPresent & ((UINT8) 1 << (Chipsel >> 1))) != 0)) {
        CSBaseAddrReg |= ((UINT32) 1 << BFOnDimmMirror);
      } else {
        CSBaseAddrReg &= ~((UINT32) 1 << BFOnDimmMirror);
      }
      MemRecNSetBitFieldNb (NBPtr, BFCSBaseAddr1Reg + Chipsel, CSBaseAddrReg);
    }
  }
}
/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function swaps bits for OnDimmMirror support
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 */

VOID
STATIC
MemRecNSwapBitsNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  UINT8 ChipSel;
  UINT32 MRSReg;

  ChipSel = (UINT8) MemRecNGetBitFieldNb (NBPtr, BFMrsChipSel);
  if ((ChipSel & 1) != 0) {
    MRSReg = MemRecNGetBitFieldNb (NBPtr, BFDramInitRegReg);
    if ((NBPtr->ChannelPtr->DimmMirrorPresent & (UINT8) 1 << (ChipSel >> 1)) != 0) {
      MRSReg = (MRSReg & 0xFFFCFE07) | ((MRSReg&0x100A8) << 1) | ((MRSReg&0x20150) >> 1);
      MemRecNSetBitFieldNb (NBPtr, BFDramInitRegReg, MRSReg);
    }
  }
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function gets the total of sync components for Max Read Latency calculation
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 *     @return      Total in 1/2 MEMCLKs
 */

UINT32
MemRecNTotalSyncComponentsClientNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  UINT32 T;
  UINT32 P;
  UINT32 AddrTmgCtl;
  UINT32 MemClkPeriod;

  AGESA_TESTPOINT (TpProcMemRcvrCalcLatency , &(NBPtr->MemPtr->StdHeader));

  // P = P + ((16 + RdPtrInitMin - D18F2x[1,0]78[RdPtrInit]) MOD 16) where RdPtrInitMin = RdPtrInit
  P = 0;

  AddrTmgCtl = MemRecNGetBitFieldNb (NBPtr, BFAddrTmgControl);
  if (((AddrTmgCtl >> 16) & 0x20) != (AddrTmgCtl & 0x20)) {
    P += 1;
  }

  // IF (DbeGskMemClkAlignMode==01b || (DbeGskMemClkAlignMode==00b && !(AddrCmdSetup==CsOdtSetup==CkeSetup)))
  // THEN P = P + 1

  // IF (SlowAccessMode==1) THEN P = P + 2

  // T = T + (0.5 * MemClkPeriod) - 786 ps
  MemClkPeriod = 1000000 / DDR800_FREQUENCY;
  T = MemClkPeriod / 2 - 768;

  // If (AddrCmdSetup==0 && CsOdtSetup==0 && CkeSetup==0)
  // then P = P + 1
  // else P = P + 2
  if ((AddrTmgCtl & 0x0202020) == 0) {
    P += 1;
  } else {
    P += 2;
  }

  // P = P + (2 * (D18F2x[1,0]88[Tcl] clocks - 1))
  P += 2 * 5;  // Tcl = 6 clocks

  // (DisCutThroughMode = 0), so P = P + 3
  P += 3;

  return ((P * MemClkPeriod + 1) / 2) + T;
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *     This function programs the phy registers according to the desired phy VDDIO voltage level
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 */

VOID
MemRecNPhyVoltageLevelNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  BIT_FIELD_NAME BitField;
  UINT16 Value;
  UINT16 Mask;

  Mask = 0xFFE7;
  Value = (UINT16) NBPtr->RefPtr->DDR3Voltage << 3;

  for (BitField = BFDataRxVioLvl; BitField <= BFCmpVioLvl; BitField++) {
    if (BitField == BFCmpVioLvl) {
      Mask = 0x3FFF;
      Value <<= (14 - 3);
    }
    MemRecNSetBitFieldNb (NBPtr, BitField, ((MemRecNGetBitFieldNb (NBPtr, BitField) & Mask)) | Value);
  }
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function executes prototypical Phy fence training function.
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 */

VOID
MemRecNPhyFenceTrainingNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  UINT8 FenceThresholdTxDll;
  UINT8 FenceThresholdRxDll;
  UINT8 FenceThresholdTxPad;
  UINT16 Fence2Data;

  // 1. Program D18F2x[1,0]9C_x0000_0008[FenceTrSel]=10b.
  // 2. Perform phy fence training. See 2.10.3.2.3.1 [Phy Fence Training].
  // 3. Write the calculated fence value to D18F2x[1,0]9C_x0000_000C[FenceThresholdTxDll].
  MemRecNSetBitFieldNb (NBPtr, BFFenceTrSel, 2);
  MAKE_TSEFO (NBPtr->NBRegTable, DCT_PHY_ACCESS, 0x0C, 30, 26, BFPhyFence);
  IDS_HDT_CONSOLE (MEM_FLOW, "\t\tFenceThresholdTxDll\n");
  MemRecNTrainPhyFenceNb (NBPtr);
  FenceThresholdTxDll = (UINT8) MemRecNGetBitFieldNb (NBPtr, BFPhyFence);

  // 4. Program D18F2x[1,0]9C_x0D0F_0[F,7:0]0F[AlwaysEnDllClks]=001b.
  MemRecNSetBitFieldNb (NBPtr, BFAlwaysEnDllClks, 0x1000);

  // 5. Program D18F2x[1,0]9C_x0000_0008[FenceTrSel]=01b.
  // 6. Perform phy fence training. See 2.10.3.2.3.1 [Phy Fence Training].
  // 7. Write the calculated fence value to D18F2x[1,0]9C_x0000_000C[FenceThresholdRxDll].
  MemRecNSetBitFieldNb (NBPtr, BFFenceTrSel, 1);
  MAKE_TSEFO (NBPtr->NBRegTable, DCT_PHY_ACCESS, 0x0C, 25, 21, BFPhyFence);
  IDS_HDT_CONSOLE (MEM_FLOW, "\n\t\tFenceThresholdRxDll\n");
  MemRecNTrainPhyFenceNb (NBPtr);
  FenceThresholdRxDll = (UINT8) MemRecNGetBitFieldNb (NBPtr, BFPhyFence);

  // 8. Program D18F2x[1,0]9C_x0D0F_0[F,7:0]0F[AlwaysEnDllClks]=000b.
  MemRecNSetBitFieldNb (NBPtr, BFAlwaysEnDllClks, 0x0000);

  // 9. Program D18F2x[1,0]9C_x0000_0008[FenceTrSel]=11b.
  // 10. Perform phy fence training. See 2.10.3.2.3.1 [Phy Fence Training].
  // 11. Write the calculated fence value to D18F2x[1,0]9C_x0000_000C[FenceThresholdTxPad].
  MemRecNSetBitFieldNb (NBPtr, BFFenceTrSel, 3);
  MAKE_TSEFO (NBPtr->NBRegTable, DCT_PHY_ACCESS, 0x0C, 20, 16, BFPhyFence);
  IDS_HDT_CONSOLE (MEM_FLOW, "\n\t\tFenceThresholdTxPad\n");
  MemRecNTrainPhyFenceNb (NBPtr);
  FenceThresholdTxPad = (UINT8) MemRecNGetBitFieldNb (NBPtr, BFPhyFence);

  // Program Fence2 threshold for Clk, Cmd, and Addr
  if (FenceThresholdTxPad < 16) {
    MemRecNSetBitFieldNb (NBPtr, BFClkFence2, FenceThresholdTxPad | 0x10);
    MemRecNSetBitFieldNb (NBPtr, BFCmdFence2, FenceThresholdTxPad | 0x10);
    MemRecNSetBitFieldNb (NBPtr, BFAddrFence2, FenceThresholdTxPad | 0x10);
  } else {
    MemRecNSetBitFieldNb (NBPtr, BFClkFence2, 0);
    MemRecNSetBitFieldNb (NBPtr, BFCmdFence2, 0);
    MemRecNSetBitFieldNb (NBPtr, BFAddrFence2, 0);
  }

  // Program Fence2 threshold for data
  Fence2Data = 0;
  if (FenceThresholdTxPad < 16) {
    Fence2Data |= FenceThresholdTxPad | 0x10;
  }
  if (FenceThresholdRxDll < 16) {
    Fence2Data |= (FenceThresholdRxDll | 0x10) << 10;
  }
  if (FenceThresholdTxDll < 16) {
    Fence2Data |= (FenceThresholdTxDll | 0x10) << 5;
  }
  MemRecNSetBitFieldNb (NBPtr, BFDataFence2, Fence2Data);

  // Reprogram F2x9C_04.
  MemRecNSetBitFieldNb (NBPtr, BFAddrTmgControl, MemRecNGetBitFieldNb (NBPtr, BFAddrTmgControl));
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *   This function executes Phy fence training
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 */

VOID
STATIC
MemRecNTrainPhyFenceNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  UINT8 Byte;
  UINT16 Avg;
  UINT8 PREvalue;

  if (MemRecNGetBitFieldNb (NBPtr, BFDisDramInterface)) {
    return;
  }

  // 1. BIOS first programs a seed value to the phase recovery
  //    engine registers.
  //
  IDS_HDT_CONSOLE (MEM_FLOW, "\t\tSeeds: ");
  for (Byte = 0; Byte < 9; Byte++) {
    // This includes ECC as byte 8
    MemRecNSetTrainDlyNb (NBPtr, AccessPhRecDly, DIMM_BYTE_ACCESS (0, Byte), 19);
    IDS_HDT_CONSOLE (MEM_FLOW, "%02x ", 19);
  }

  IDS_HDT_CONSOLE (MEM_FLOW, "\n\t\tPhyFenceTrEn = 1");
  // 2. Set F2x[1, 0]9C_x08[PhyFenceTrEn]=1.
  MemRecNSetBitFieldNb (NBPtr, BFPhyFenceTrEn, 1);

  MemRecUWait10ns (5000, NBPtr->MemPtr);

  // 4. Clear F2x[1, 0]9C_x08[PhyFenceTrEn]=0.
  MemRecNSetBitFieldNb (NBPtr, BFPhyFenceTrEn, 0);

  // 5. BIOS reads the phase recovery engine registers
  //    F2x[1, 0]9C_x[51:50] and F2x[1, 0]9C_x52.
  // 6. Calculate the average value of the fine delay and subtract 8.
  //
  Avg = 0;
  for (Byte = 0; Byte < 9; Byte++) {
    // This includes ECC as byte 8
    PREvalue = (UINT8) (0x1F & MemRecNGetTrainDlyNb (NBPtr, AccessPhRecDly, DIMM_BYTE_ACCESS (0, Byte)));
    Avg = Avg + ((UINT16) PREvalue);
  }
  Avg = ((Avg + 8) / 9);    // round up
  Avg -= 6;

  // 7. Write the value to F2x[1, 0]9C_x0C[PhyFence].
  MemRecNSetBitFieldNb (NBPtr, BFPhyFence, Avg);

  // 8. BIOS rewrites F2x[1, 0]9C_x04, DRAM Address/Command Timing Control
  //    Register delays for both channels. This forces the phy to recompute
  //    the fence.
  //
  MemRecNSetBitFieldNb (NBPtr, BFAddrTmgControl, MemRecNGetBitFieldNb (NBPtr, BFAddrTmgControl));
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *  This function calculates and programs NB P-state dependent registers
 *
 *     @param[in,out]   *NBPtr   - Pointer to the MEM_NB_BLOCK
 *
 */

VOID
STATIC
MemRecNProgNbPstateDependentRegClientNb (
  IN OUT   MEM_NB_BLOCK *NBPtr
  )
{
  UINT8 i;
  UINT8 NclkFid;
  UINT16 MemClkDid;
  UINT8 PllMult;
  UINT8 NclkDiv;
  UINT8 RdPtrInit;
  UINT32 NclkPeriod;
  UINT32 MemClkPeriod;
  INT32 PartialSum2x;
  INT32 PartialSumSlotI2x;
  INT32 RdPtrInitRmdr2x;

  NclkFid = (UINT8) (MemRecNGetBitFieldNb (NBPtr, BFMainPllOpFreqId) + 0x10);
  MemClkDid = 2; //BKDG recommended value for DDR800
  PllMult = 16;  //BKDG recommended value for DDR800
  NclkDiv = (UINT8) MemRecNGetBitFieldNb (NBPtr, BFNbPs0NclkDiv);

  NclkPeriod = (2500 * NclkDiv) / NclkFid;
  MemClkPeriod = 1000000 / DDR800_FREQUENCY;
  NBPtr->NBClkFreq = ((UINT32) NclkFid * 400) / NclkDiv;

  IDS_HDT_CONSOLE (MEM_FLOW, "\n\tNB P%d  Freq: %dMHz\n", 0, NBPtr->NBClkFreq);
  IDS_HDT_CONSOLE (MEM_FLOW, "\tMemClk Freq: %dMHz\n", DDR800_FREQUENCY);

  // D18F2x[1,0]78[RdPtrInit] = IF (D18F2x[1,0]94[MemClkFreq] >= 667 MHz) THEN 7 ELSE 8 ENDIF (Llano)
  //                                                                      THEN 2 ELSE 3 ENDIF (Ontario)
  RdPtrInit = NBPtr->FreqChangeParam->RdPtrInitLower667;
  MemRecNSetBitFieldNb (NBPtr, BFRdPtrInit, RdPtrInit);
  IDS_HDT_CONSOLE (MEM_FLOW, "\t\tRdPtr: %d\n", RdPtrInit);

  // Program D18F2x[1,0]F4_x30[DbeGskFifoNumerator] and D18F2x[1,0]F4_x31[DbeGskFifoDenominator].
  MemRecNSetBitFieldNb (NBPtr, BFDbeGskFifoNumerator, NclkFid * MemClkDid * 16);
  MemRecNSetBitFieldNb (NBPtr, BFDbeGskFifoDenominator, PllMult * NclkDiv);

  IDS_HDT_CONSOLE (MEM_FLOW, "\t\tDbeGskFifoNumerator: %d\n", NclkFid * MemClkDid * 16);
  IDS_HDT_CONSOLE (MEM_FLOW, "\t\tDbeGskFifoDenominator: %d\n", PllMult * NclkDiv);

  // Program D18F2x[1,0]F4_x32[DataTxFifoSchedDlyNegSlot1, DataTxFifoSchedDlySlot1,
  // DataTxFifoSchedDlyNegSlot0, DataTxFifoSchedDlySlot0].
  //   PartialSum = ((7 * NclkPeriod) + (1.5 * MemClkPeriod) + 520ps)*MemClkFrequency - tCWL -
  //   CmdSetup - PtrSeparation - 1. (Llano)
  //   PartialSum = ((5 * NclkPeriod) + MemClkPeriod) + 520ps)*MemClkFrequency - tCWL -
  //   CmdSetup - PtrSeparation - 1. (Ontario)
  PartialSum2x = NBPtr->FreqChangeParam->NclkPeriodMul2x * NclkPeriod;
  PartialSum2x += NBPtr->FreqChangeParam->MemClkPeriodMul2x * MemClkPeriod;
  PartialSum2x += 520 * 2;
  RdPtrInitRmdr2x = ((NBPtr->FreqChangeParam->SyncTimeMul4x * MemClkPeriod) / 2) - 2 * (NBPtr->FreqChangeParam->TDataPropLower800 + 520);
  RdPtrInitRmdr2x %= MemClkPeriod;
  PartialSum2x -= RdPtrInitRmdr2x;
  PartialSum2x = (PartialSum2x + MemClkPeriod - 1) / MemClkPeriod;  // round-up here
  PartialSum2x -= 2 * 5;  //Tcwl + 5
  if ((MemRecNGetBitFieldNb (NBPtr, BFAddrTmgControl) & 0x0202020) == 0) {
    PartialSum2x -= 1;
  } else {
    PartialSum2x -= 2;
  }
  PartialSum2x -= 2;

  // If PartialSumSlotN is positive:
  //   DataTxFifoSchedDlySlotN=CEIL(PartialSumSlotN).
  //   DataTxFifoSchedDlyNegSlotN=0.
  // Else if PartialSumSlotN is negative:
  //   DataTxFifoSchedDlySlotN=ABS(CEIL(PartialSumSlotN*MemClkPeriod/NclkPeriod)).
  //   DataTxFifoSchedDlyNegSlotN=1.
  for (i = 0; i < 2; i++) {
    PartialSumSlotI2x = PartialSum2x;
    if (i == 0) {
    PartialSumSlotI2x += 2;
    }
    if (PartialSumSlotI2x > 0) {
      MemRecNSetBitFieldNb (NBPtr, BFDataTxFifoSchedDlyNegSlot0 + i, 0);
      MemRecNSetBitFieldNb (NBPtr, BFDataTxFifoSchedDlySlot0 + i, (PartialSumSlotI2x + 1) / 2);
      IDS_HDT_CONSOLE (MEM_FLOW, "\t\tDataTxFifoSchedDlySlot%d: %d\n", i, (PartialSumSlotI2x + 1) / 2);
    } else {
      MemRecNSetBitFieldNb (NBPtr, BFDataTxFifoSchedDlyNegSlot0 + i, 1);
      PartialSumSlotI2x = ((-PartialSumSlotI2x) * MemClkPeriod) / (2 * NclkPeriod);
      MemRecNSetBitFieldNb (NBPtr, BFDataTxFifoSchedDlySlot0 + i, PartialSumSlotI2x);
      IDS_HDT_CONSOLE (MEM_FLOW, "\t\tDataTxFifoSchedDlySlot%d: -%d\n", i, PartialSumSlotI2x);
    }
  }
  // Program ProcOdtAdv
  MemRecNSetBitFieldNb (NBPtr, BFProcOdtAdv, 0);
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *      This function reads cache lines continuously using TCB CPG engine
 *
 *     @param[in,out] NBPtr  - Pointer to the MEM_NB_BLOCK
 *     @param[in,out] Buffer - Array of bytes to be filled with data read from DRAM
 *     @param[in]     Address - System Address [47:16]
 *     @param[in] ClCount - Number of cache lines
 *
 */

VOID
MemRecNContReadPatternClientNb (
  IN OUT   MEM_NB_BLOCK *NBPtr,
  IN       UINT8 Buffer[],
  IN       UINT32 Address,
  IN       UINT16 ClCount
  )
{
  // 1. Program D18F2x1C0[RdDramTrainMode]=1.
  MemRecNSetBitFieldNb (NBPtr, BFRdDramTrainMode, 1);

  // 2. Program D18F2x1C0[TrainLength] to the appropriate number of cache lines.
  MemRecNSetBitFieldNb (NBPtr, BFTrainLength, ClCount);

  // 3. Program the DRAM training address as follows:
  MemRecNSetBitFieldNb (NBPtr, BFWrTrainAdrPtrLo, (Address >> 6));

  // 4. Program D18F2x1D0[WrTrainBufAddr]=000h
  MemRecNSetBitFieldNb (NBPtr, BFWrTrainBufAddr, 0);

  // 5. Program D18F2x1C0[RdTrainGo]=1.
  MemRecNSetBitFieldNb (NBPtr, BFRdTrainGo, 1);

  // 6. Wait for D18F2x1C0[RdTrainGo]=0.
  while (MemRecNGetBitFieldNb (NBPtr, BFRdTrainGo) != 0) {}

  // 7. Read D18F2x1E8[TrainCmpSts] and D18F2x1E8[TrainCmpSts2].

  // 8. Program D18F2x1C0[RdDramTrainMode]=0.
  MemRecNSetBitFieldNb (NBPtr, BFRdDramTrainMode, 0);
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *     This is function sets the platform specific settings for the systems with UDIMMs configuration
 *
 *     @param[in,out]   *MemData           Pointer to MEM_DATA_STRUCTURE
 *     @param[in]       SocketID        Socket number
 *     @param[in]       *CurrentChannel       Pointer to CH_DEF_STRUCT
 *
 *     @return          AGESA_SUCCESS
 *     @return          CurrentChannel->DctAddrTmg        Address Command Timing Settings for specified channel
 *     @return          CurrentChannel->DctOdcCtl         Drive Strength settings for specified channel
 *     @return          CurrentChannel->Reserved[0]       Dram Term for specified channel
 *     @return          CurrentChannel->Reserved[1]       Dynamic Dram Term for specified channel
 *     @return          CurrentChannel->PhyWLODT[0]       WL ODT for DIMM0
 *     @return          CurrentChannel->PhyWLODT[1]       WL ODT for DIMM1
 *     @return          CurrentChannel->PhyWLODT[2]       WL ODT for DIMM2
 *     @return          CurrentChannel->PhyWLODT[3]       WL ODT for DIMM3
 *
 */
AGESA_STATUS
MemRecNGetPsCfgUDIMM3Nb (
  IN OUT   MEM_DATA_STRUCT *MemData,
  IN       UINT8 SocketID,
  IN OUT   CH_DEF_STRUCT *CurrentChannel
  )
{
  UINT32 AddrTmgCTL;
  UINT32 DctOdcCtl;
  UINT8 Dimms;
  UINT8  MaxDimmPerCH;
  UINT8 DramTerm;
  UINT8 DramTermDyn;

  if ((CurrentChannel->RegDimmPresent != 0) || (CurrentChannel->SODimmPresent != 0)) {
    return AGESA_UNSUPPORTED;
  }

  Dimms = CurrentChannel->Dimms;
  MaxDimmPerCH = RecGetMaxDimmsPerChannel (MemData->ParameterListPtr->PlatformMemoryConfiguration, 0, CurrentChannel->ChannelID);

  if (MaxDimmPerCH == 1) {
    return AGESA_UNSUPPORTED;
  } else {
    DctOdcCtl = 0x20223323;
    AddrTmgCTL = 0x00390039;
    if (Dimms == 1) {
      DctOdcCtl = 0x20113222;
      AddrTmgCTL = 0x00390039;
      if (CurrentChannel->Loads == 16) {
        AddrTmgCTL = 0x003B0000;
      }
    }
  }
  CurrentChannel->DctAddrTmg = AddrTmgCTL;
  CurrentChannel->DctOdcCtl = DctOdcCtl;

  // ODT
  if (Dimms == 1) {
    DramTerm = 1; // 60 ohms
    DramTermDyn = 0; // Disable
    if ((MaxDimmPerCH == 3) && (CurrentChannel->DimmDrPresent != 0)) {
      DramTermDyn = 1; // 60 ohms
    }
  } else {
    DramTerm = 3; // 40 ohms
    DramTermDyn = 2; // 120 ohms
  }
  CurrentChannel->Reserved[0] = DramTerm;
  CurrentChannel->Reserved[1] = DramTermDyn;

  // WL ODT
  if (Dimms == 1) {
    CurrentChannel->PhyWLODT[0] = 0;
    CurrentChannel->PhyWLODT[1] = (CurrentChannel->DimmDrPresent != 0) ? 8 : 2;
  } else {
    CurrentChannel->PhyWLODT[0] = 3;
    CurrentChannel->PhyWLODT[1] = 3;
  }
  CurrentChannel->PhyWLODT[2] = 0;
  CurrentChannel->PhyWLODT[3] = 0;

  return AGESA_SUCCESS;
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *     This is function sets the platform specific settings for the systems with SODIMMs configuration
 *
 *     @param[in,out]   *MemData           Pointer to MEM_DATA_STRUCTURE
 *     @param[in]       SocketID        Socket number
 *     @param[in]       *CurrentChannel       Pointer to CH_DEF_STRUCT
 *
 *     @return          AGESA_SUCCESS
 *     @return          CurrentChannel->DctAddrTmg        Address Command Timing Settings for specified channel
 *     @return          CurrentChannel->DctOdcCtl         Drive Strength settings for specified channel
 *     @return          CurrentChannel->Reserved[0]       Dram Term for specified channel
 *     @return          CurrentChannel->Reserved[1]       Dynamic Dram Term for specified channel
 *     @return          CurrentChannel->PhyWLODT[0]       WL ODT for DIMM0
 *     @return          CurrentChannel->PhyWLODT[1]       WL ODT for DIMM1
 *     @return          CurrentChannel->PhyWLODT[2]       WL ODT for DIMM2
 *     @return          CurrentChannel->PhyWLODT[3]       WL ODT for DIMM3
 *
 */
AGESA_STATUS
MemRecNGetPsCfgSODIMM3Nb (
  IN OUT   MEM_DATA_STRUCT *MemData,
  IN       UINT8 SocketID,
  IN OUT   CH_DEF_STRUCT *CurrentChannel
  )
{
  UINT32 AddrTmgCTL;
  UINT32 DctOdcCtl;
  UINT8  MaxDimmPerCH;
  UINT8 Dimms;
  UINT8 DramTerm;
  UINT8 DramTermDyn;

  if (CurrentChannel->SODimmPresent != CurrentChannel->ChDimmValid) {
    return AGESA_UNSUPPORTED;
  }

  Dimms = CurrentChannel->Dimms;
  MaxDimmPerCH = RecGetMaxDimmsPerChannel (MemData->ParameterListPtr->PlatformMemoryConfiguration, 0, CurrentChannel->ChannelID);

  if (MaxDimmPerCH == 1) {
    DctOdcCtl = 0x00113222;
    AddrTmgCTL = 0;
  } else {
    DctOdcCtl = 0x00223323;
    AddrTmgCTL = 0x00000039;
    if (Dimms == 1) {
      DctOdcCtl = 0x00113222;
      AddrTmgCTL = 0;
    }
  }
  CurrentChannel->DctAddrTmg = AddrTmgCTL;
  CurrentChannel->DctOdcCtl = DctOdcCtl;

  // ODT
  if (Dimms == 1) {
    DramTerm = 2; // 120 ohms
    DramTermDyn = 0; // Disable
    if (MaxDimmPerCH == 2) {
      DramTerm = 1; // 60 ohms
    }
  } else {
    DramTerm = 3; // 40 ohms
    DramTermDyn = 2; // 120 ohms
  }
  CurrentChannel->Reserved[0] = DramTerm;
  CurrentChannel->Reserved[1] = DramTermDyn;

  // WL ODT
  if (Dimms == 1) {
    if (MaxDimmPerCH == 1) {
      CurrentChannel->PhyWLODT[0] = (CurrentChannel->DimmDrPresent != 0) ? 4 : 1;
      CurrentChannel->PhyWLODT[1] = 0;
    } else {
      CurrentChannel->PhyWLODT[0] = 0;
      CurrentChannel->PhyWLODT[1] = (CurrentChannel->DimmDrPresent != 0) ? 8 : 2;
    }
  } else {
    CurrentChannel->PhyWLODT[0] = 3;
    CurrentChannel->PhyWLODT[1] = 3;
  }
  CurrentChannel->PhyWLODT[2] = 0;
  CurrentChannel->PhyWLODT[3] = 0;

  return AGESA_SUCCESS;
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *     This is function sets the platform specific settings for the systems with RDIMMs configuration
 *
 *     @param[in,out]   *MemData           Pointer to MEM_DATA_STRUCTURE
 *     @param[in]       SocketID        Socket number
 *     @param[in]       *CurrentChannel       Pointer to CH_DEF_STRUCT
 *
 *     @return          AGESA_SUCCESS
 *     @return          CurrentChannel->DctAddrTmg        Address Command Timing Settings for specified channel
 *     @return          CurrentChannel->DctOdcCtl         Drive Strength settings for specified channel
 *     @return          CurrentChannel->Reserved[0]       Dram Term for specified channel
 *     @return          CurrentChannel->Reserved[1]       Dynamic Dram Term for specified channel
 *     @return          CurrentChannel->PhyWLODT[0]       WL ODT for DIMM0
 *     @return          CurrentChannel->PhyWLODT[1]       WL ODT for DIMM1
 *     @return          CurrentChannel->PhyWLODT[2]       WL ODT for DIMM2
 *     @return          CurrentChannel->PhyWLODT[3]       WL ODT for DIMM3
 *
 */

AGESA_STATUS
MemRecNGetPsCfgRDIMM3Nb (
  IN OUT   MEM_DATA_STRUCT *MemData,
  IN       UINT8 SocketID,
  IN OUT   CH_DEF_STRUCT *CurrentChannel
  )
{
  STATIC CONST ADV_R_PSCFG_WL_ODT_ENTRY RecPSCfg2DIMMsWlODT[] = {
    {SR_DIMM0,            {0x01, 0x00, 0x00, 0x00}, 1},
    {DR_DIMM0,            {0x04, 0x00, 0x00, 0x00}, 1},
    {QR_DIMM0,            {0x05, 0x00, 0x00, 0x00}, 1},
    {SR_DIMM1,            {0x00, 0x02, 0x00, 0x00}, 1},
    {DR_DIMM1,            {0x00, 0x08, 0x00, 0x00}, 1},
    {QR_DIMM1,            {0x00, 0x0A, 0x00, 0x00}, 1},
    {SR_DIMM0 + DR_DIMM0 + SR_DIMM1 + DR_DIMM1, {0x03, 0x03, 0x00, 0x00}, 2},
    {SR_DIMM0 + QR_DIMM1, {0x0B, 0x03, 0x00, 0x09}, 2},
    {DR_DIMM0 + QR_DIMM1, {0x0B, 0x03, 0x00, 0x09}, 2},
    {QR_DIMM0 + SR_DIMM1, {0x03, 0x07, 0x06, 0x00}, 2},
    {QR_DIMM0 + DR_DIMM1, {0x03, 0x07, 0x06, 0x00}, 2},
    {QR_DIMM0 + QR_DIMM1, {0x0B, 0x07, 0x0E, 0x0D}, 2}
  };
  STATIC CONST ADV_R_PSCFG_WL_ODT_ENTRY RecPSCfg3DIMMsWlODT[] = {
    {SR_DIMM2 + DR_DIMM2, {0x00, 0x00, 0x04, 0x00}, 1},
    {SR_DIMM0 + DR_DIMM0, {0x01, 0x02, 0x00, 0x00}, 1},
    {SR_DIMM0 + DR_DIMM0 + SR_DIMM2 + DR_DIMM2, {0x05, 0x00, 0x05, 0x00}, 2},
    {SR_DIMM0 + DR_DIMM0 + SR_DIMM1 + DR_DIMM1 + SR_DIMM2 + DR_DIMM2, {0x07, 0x07, 0x07, 0x00}, 3},
    {QR_DIMM1, {0x00, 0x0A, 0x00, 0x0A}, 1},
    {QR_DIMM1 + SR_DIMM2 + DR_DIMM2, {0x00, 0x06, 0x0E, 0x0C}, 2},
    {SR_DIMM0 + DR_DIMM0 + QR_DIMM1, {0x0B, 0x03, 0x00, 0x09}, 2},
    {SR_DIMM0 + DR_DIMM0 + QR_DIMM1 + SR_DIMM2 + DR_DIMM2, {0x0F, 0x07, 0x0F, 0x0D}, 3}
  };
  STATIC CONST ADV_R_PSCFG_WL_ODT_ENTRY RecPSCfg4DIMMsWlODT[] = {
    {ANY_DIMM3, {0x00, 0x00, 0x00, 0x08}, 1},
    {ANY_DIMM2 + ANY_DIMM3, {0x00, 0x00, 0x0C, 0x0C}, 2},
    {ANY_DIMM1 + ANY_DIMM2 + ANY_DIMM3, {0x00, 0x0E, 0x0E, 0x0E}, 3},
    {ANY_DIMM0 + ANY_DIMM1 + ANY_DIMM2 + ANY_DIMM3, {0x0F, 0x0F, 0x0F, 0x0F}, 4}
  };

  UINT8 i;
  UINT8 j;
  UINT8 Dimms;
  UINT8 DimmQrPresent;
  UINT32 AddrTmgCTL;
  UINT32 DctOdcCtl;
  UINT8 PhyWLODT[4];
  UINT8 DramTerm;
  UINT8 DramTermDyn;
  UINT16 DIMMRankType;
  UINT16 _DIMMRankType_;
  UINT8 DimmTpMatch;
  UINT8  MaxDimmPerCH;
  UINT8 PSCfgWlODTSize;
  CONST ADV_R_PSCFG_WL_ODT_ENTRY *PSCfgWlODTPtr;

  if (CurrentChannel->RegDimmPresent != CurrentChannel->ChDimmValid) {
    return AGESA_UNSUPPORTED;
  }

  DIMMRankType = MemRecNGetPsRankType (CurrentChannel);
  MaxDimmPerCH = RecGetMaxDimmsPerChannel (MemData->ParameterListPtr->PlatformMemoryConfiguration, 0, CurrentChannel->ChannelID);
  Dimms = CurrentChannel->Dimms;
  PSCfgWlODTPtr = RecPSCfg2DIMMsWlODT;
  PSCfgWlODTSize = GET_SIZE_OF (RecPSCfg2DIMMsWlODT);
  PhyWLODT[0] = PhyWLODT[1] = PhyWLODT[2] = PhyWLODT[3] = 0xFF;
  DimmQrPresent = CurrentChannel->DimmQrPresent;

  if (MaxDimmPerCH == 4) {
    AddrTmgCTL = (Dimms > 2) ? 0x002F0000 : 0;
    DctOdcCtl = (Dimms == 1) ? 0x20113222 : 0x20223222;
    PSCfgWlODTPtr = RecPSCfg4DIMMsWlODT;
    PSCfgWlODTSize = GET_SIZE_OF (RecPSCfg4DIMMsWlODT);
  } else  if (MaxDimmPerCH == 3) {
    AddrTmgCTL = 0;
    DctOdcCtl = 0x20223222;
    if (Dimms == 3) {
      AddrTmgCTL = 0x00380038;
      DctOdcCtl = 0x20113222;
    }
    if (Dimms == 1) {
      DctOdcCtl = 0x20113222;
    }
    PSCfgWlODTPtr = RecPSCfg3DIMMsWlODT;
    PSCfgWlODTSize = GET_SIZE_OF (RecPSCfg3DIMMsWlODT);
  } else if (MaxDimmPerCH == 2) {
    AddrTmgCTL = 0;
    DctOdcCtl = 0x20223222;
    if ((Dimms == 1) && (DimmQrPresent == 0)) {
      DctOdcCtl = 0x20113222;
    }
  } else {
    AddrTmgCTL = 0;
    DctOdcCtl = (DimmQrPresent == 0) ? 0x20113222 : 0x20223222;
  }
  CurrentChannel->DctAddrTmg = AddrTmgCTL;
  CurrentChannel->DctOdcCtl = DctOdcCtl;

  // ODT
  if (Dimms == 1) {
    DramTerm = 1; // 60 ohms
    DramTermDyn = 0; // Disable
    if (DimmQrPresent != 0) {
      DramTermDyn = 2; // 120 ohms
    }
  } else {
    DramTerm = 3; // 40 ohms
    DramTermDyn = 2; // 120 ohms
    if (DimmQrPresent != 0) {
      DramTerm = 1; // 60 ohms
    }
  }
  CurrentChannel->Reserved[0] = DramTerm;
  CurrentChannel->Reserved[1] = DramTermDyn;

  // WL ODT
  for (i = 0; i  < PSCfgWlODTSize; i++, PSCfgWlODTPtr++) {
    if (Dimms != PSCfgWlODTPtr->Dimms) {
      continue;
    }
    DimmTpMatch = 0;
    _DIMMRankType_ = DIMMRankType & PSCfgWlODTPtr->DIMMRankType;
    for (j = 0; j < MAX_DIMMS_PER_CHANNEL; j++) {
      if ((_DIMMRankType_ & (UINT16) 0x0F << (j << 2)) != 0) {
        DimmTpMatch++;
      }
    }
    if (DimmTpMatch == PSCfgWlODTPtr->Dimms) {
      PhyWLODT[0] = PSCfgWlODTPtr->PhyWrLvOdt[0];
      PhyWLODT[1] = PSCfgWlODTPtr->PhyWrLvOdt[1];
      PhyWLODT[2] = PSCfgWlODTPtr->PhyWrLvOdt[2];
      PhyWLODT[3] = PSCfgWlODTPtr->PhyWrLvOdt[3];
      break;
    }
  }
  CurrentChannel->PhyWLODT[0] = PhyWLODT[0];
  CurrentChannel->PhyWLODT[1] = PhyWLODT[1];
  CurrentChannel->PhyWLODT[2] = PhyWLODT[2];
  CurrentChannel->PhyWLODT[3] = PhyWLODT[3];

  return AGESA_SUCCESS;
}


/* -----------------------------------------------------------------------------*/
/**
 *
 *
 *      This function returns the max dimms for a given memory channel on a given
 *  processor.  It first searches the platform override table for the max dimms
 *  value.  If it is not provided, the AGESA default value is returned. The target
 *  socket must be a valid present socket.
 *
 *     @param[in] PlatformMemoryConfiguration - Platform config table
 *     @param[in] SocketID  - ID of the processor that owns the channel
 *     @param[in] ChannelID - Channel to get max dimms for
 *
 *
 *     @return UINT8 - Max Number of Dimms for that channel
 */
UINT8
RecGetMaxDimmsPerChannel (
  IN       PSO_TABLE *PlatformMemoryConfiguration,
  IN       UINT8 SocketID,
  IN       UINT8 ChannelID
  )
{
  UINT8  *DimmsPerChPtr;
  UINT8  MaxDimmPerCH;

  DimmsPerChPtr = MemRecFindPSOverrideEntry (PlatformMemoryConfiguration, PSO_MAX_DIMMS, SocketID, ChannelID);
  if (DimmsPerChPtr != NULL) {
    MaxDimmPerCH = *DimmsPerChPtr;
  } else {
    MaxDimmPerCH = 2;
  }

  return MaxDimmPerCH;
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *    This is the default return function of the ARDK block. The function always
 *    returns   AGESA_UNSUPPORTED
 *
 *     @param[in,out]   *MemData           Pointer to MEM_DATA_STRUCTURE
 *     @param[in]       SocketID        Socket number
 *     @param[in]       *CurrentChannel       Pointer to CH_DEF_STRUCT
 *
 *     @return          AGESA_UNSUPPORTED  AGESA status indicating that default is unsupported
 *
 */

AGESA_STATUS
MemRecNGetPsCfgDef (
  IN OUT   MEM_DATA_STRUCT *MemData,
  IN       UINT8 SocketID,
  IN OUT   CH_DEF_STRUCT *CurrentChannel
  )
{
  return AGESA_UNSUPPORTED;
}

/* -----------------------------------------------------------------------------*/
/**
 *
 *    This function returns the rank type map of a channel.
 *
 *     @param[in]       *CurrentChannel       Pointer to CH_DEF_STRUCT
 *
 *     @return          UINT16 - The map of rank type.
 *
 */
UINT16
MemRecNGetPsRankType (
  IN       CH_DEF_STRUCT *CurrentChannel
  )
{
  UINT8 i;
  UINT16 DIMMRankType;

  DIMMRankType = 0;
  for (i = 0; i < MAX_DIMMS_PER_CHANNEL; i++) {
    if ((CurrentChannel->DimmQrPresent & (UINT8) 1 << i) != 0) {
      if (i < 2) {
        DIMMRankType |= (UINT16) 4 << (i << 2);
      }
    } else if ((CurrentChannel->DimmDrPresent & (UINT8) 1 << i) != 0) {
      DIMMRankType |= (UINT16) 2 << (i << 2);
    } else if ((CurrentChannel->DimmSRPresent & (UINT8) 1 << i) != 0) {
      DIMMRankType |= (UINT16) 1 << (i << 2);
    }
  }
  return DIMMRankType;
}

UINT32
MemRecNcmnGetSetTrainDlyClientNb (
  IN OUT   MEM_NB_BLOCK *NBPtr,
  IN       UINT8 IsSet,
  IN       TRN_DLY_TYPE TrnDly,
  IN       DRBN DrbnVar,
  IN       UINT16 Field
  )
{
  UINT16 Index;
  UINT16 Offset;
  UINT32 Value;
  UINT32 Address;
  UINT8 Dimm;
  UINT8 Byte;

  Dimm = DRBN_DIMM (DrbnVar);
  Byte = DRBN_BYTE (DrbnVar);

  ASSERT (Dimm < 2);
  ASSERT (Byte <= ECC_DLY);

  if ((Byte > 7)) {
    // LN and ON do not support ECC delay, so:
    if (IsSet) {
      // On write, ignore
      return 0;
    } else {
      // On read, redirect to byte 0 to correct fence averaging
      Byte = 0;
    }
  }

  switch (TrnDly) {
  case AccessRcvEnDly:
    Index = 0x10;
    break;
  case AccessWrDqsDly:
    Index = 0x30;
    break;
  case AccessWrDatDly:
    Index = 0x01;
    break;
  case AccessRdDqsDly:
    Index = 0x05;
    break;
  case AccessPhRecDly:
    Index = 0x50;
    break;
  default:
    Index = 0;
    IDS_ERROR_TRAP;
  }

  switch (TrnDly) {
  case AccessRcvEnDly:
  case AccessWrDqsDly:
    Index += (Dimm * 3);
    if (Byte & 0x04) {
      // if byte 4,5,6,7
      Index += 0x10;
    }
    if (Byte & 0x02) {
      // if byte 2,3,6,7
      Index++;
    }
    Offset = 16 * (Byte % 2);
    break;

  case AccessRdDqsDly:
  case AccessWrDatDly:
    Index += (Dimm * 0x100);
    // break is not being used here because AccessRdDqsDly and AccessWrDatDly also need
    // to run AccessPhRecDly sequence.
  case AccessPhRecDly:
    Index += (Byte / 4);
    Offset = 8 * (Byte % 4);
    break;
  default:
    Offset = 0;
    IDS_ERROR_TRAP;
  }

  Address = Index;
  MemRecNSetBitFieldNb (NBPtr, BFDctAddlOffsetReg, Address);
  Value = MemRecNGetBitFieldNb (NBPtr, BFDctAddlDataReg);

  if (IsSet) {
    if (TrnDly == AccessPhRecDly) {
      Value = NBPtr->DctCachePtr->PhRecReg[Index & 0x03];
    }

    Value = ((UINT32)Field << Offset) | (Value & (~((UINT32) ((TrnDly == AccessRcvEnDly) ? 0x1FF : 0xFF) << Offset)));
    MemRecNSetBitFieldNb (NBPtr, BFDctAddlDataReg, Value);
    Address |= DCT_ACCESS_WRITE;
    MemRecNSetBitFieldNb (NBPtr, BFDctAddlOffsetReg, Address);

    if (TrnDly == AccessPhRecDly) {
      NBPtr->DctCachePtr->PhRecReg[Index & 0x03] = Value;
    }
    // Gross WrDatDly and WrDqsDly cannot be larger than 4
    ASSERT (((TrnDly == AccessWrDatDly) || (TrnDly == AccessWrDqsDly)) ? (NBPtr->IsSupported[WLNegativeDelay] || (Field < 0xA0)) : TRUE);
  } else {
    Value = (Value >> Offset) & (UINT32) ((TrnDly == AccessRcvEnDly) ? 0x1FF : 0xFF);
  }

  return Value;
}