1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
|
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2010 Advanced Micro Devices, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <console/console.h>
#include <arch/cpu.h>
#include <device/device.h>
#include <device/pci.h>
#include <device/pci_ops.h>
#include <cpu/x86/msr.h>
#include <cpu/amd/mtrr.h>
#include <delay.h>
#include "rs780.h"
static u32 nb_read_index(struct device *dev, u32 index_reg, u32 index)
{
pci_write_config32(dev, index_reg, index);
return pci_read_config32(dev, index_reg + 0x4);
}
static void nb_write_index(struct device *dev, u32 index_reg, u32 index, u32 data)
{
pci_write_config32(dev, index_reg, index);
pci_write_config32(dev, index_reg + 0x4, data);
}
/* extension registers */
u32 pci_ext_read_config32(struct device *nb_dev, struct device *dev, u32 reg)
{
/* get BAR3 base address for nbcfg0x1c */
u32 addr = pci_read_config32(nb_dev, 0x1c) & ~0xF;
printk(BIOS_DEBUG, "addr=%x,bus=%x,devfn=%x\n", addr, dev->bus->secondary,
dev->path.pci.devfn);
addr |= dev->bus->secondary << 20 | /* bus num */
dev->path.pci.devfn << 12 | reg;
return *((u32 *) addr);
}
void pci_ext_write_config32(struct device *nb_dev, struct device *dev, u32 reg_pos, u32 mask, u32 val)
{
u32 reg_old, reg;
/* get BAR3 base address for nbcfg0x1c */
u32 addr = pci_read_config32(nb_dev, 0x1c) & ~0xF;
/*printk(BIOS_DEBUG, "write: addr=%x,bus=%x,devfn=%x\n", addr, dev->bus->secondary,
dev->path.pci.devfn);*/
addr |= dev->bus->secondary << 20 | /* bus num */
dev->path.pci.devfn << 12 | reg_pos;
reg = reg_old = *((u32 *) addr);
reg &= ~mask;
reg |= val;
if (reg != reg_old) {
*((u32 *) addr) = reg;
}
}
u32 nbmisc_read_index(struct device *nb_dev, u32 index)
{
return nb_read_index((nb_dev), NBMISC_INDEX, (index));
}
void nbmisc_write_index(struct device *nb_dev, u32 index, u32 data)
{
nb_write_index((nb_dev), NBMISC_INDEX, ((index) | 0x80), (data));
}
u32 nbpcie_p_read_index(struct device *dev, u32 index)
{
return nb_read_index((dev), NBPCIE_INDEX, (index));
}
void nbpcie_p_write_index(struct device *dev, u32 index, u32 data)
{
nb_write_index((dev), NBPCIE_INDEX, (index), (data));
}
u32 nbpcie_ind_read_index(struct device *nb_dev, u32 index)
{
return nb_read_index((nb_dev), NBPCIE_INDEX, (index));
}
void nbpcie_ind_write_index(struct device *nb_dev, u32 index, u32 data)
{
nb_write_index((nb_dev), NBPCIE_INDEX, (index), (data));
}
u32 htiu_read_index(struct device *nb_dev, u32 index)
{
return nb_read_index((nb_dev), NBHTIU_INDEX, (index));
}
void htiu_write_index(struct device *nb_dev, u32 index, u32 data)
{
nb_write_index((nb_dev), NBHTIU_INDEX, ((index) | 0x100), (data));
}
u32 nbmc_read_index(struct device *nb_dev, u32 index)
{
return nb_read_index((nb_dev), NBMC_INDEX, (index));
}
void nbmc_write_index(struct device *nb_dev, u32 index, u32 data)
{
nb_write_index((nb_dev), NBMC_INDEX, ((index) | 1 << 9), (data));
}
void set_nbcfg_enable_bits(struct device *nb_dev, u32 reg_pos, u32 mask, u32 val)
{
u32 reg_old, reg;
reg = reg_old = pci_read_config32(nb_dev, reg_pos);
reg &= ~mask;
reg |= val;
if (reg != reg_old) {
pci_write_config32(nb_dev, reg_pos, reg);
}
}
void set_nbcfg_enable_bits_8(struct device *nb_dev, u32 reg_pos, u8 mask, u8 val)
{
u8 reg_old, reg;
reg = reg_old = pci_read_config8(nb_dev, reg_pos);
reg &= ~mask;
reg |= val;
if (reg != reg_old) {
pci_write_config8(nb_dev, reg_pos, reg);
}
}
void set_nbmc_enable_bits(struct device *nb_dev, u32 reg_pos, u32 mask, u32 val)
{
u32 reg_old, reg;
reg = reg_old = nbmc_read_index(nb_dev, reg_pos);
reg &= ~mask;
reg |= val;
if (reg != reg_old) {
nbmc_write_index(nb_dev, reg_pos, reg);
}
}
void set_htiu_enable_bits(struct device *nb_dev, u32 reg_pos, u32 mask, u32 val)
{
u32 reg_old, reg;
reg = reg_old = htiu_read_index(nb_dev, reg_pos);
reg &= ~mask;
reg |= val;
if (reg != reg_old) {
htiu_write_index(nb_dev, reg_pos, reg);
}
}
void set_nbmisc_enable_bits(struct device *nb_dev, u32 reg_pos, u32 mask, u32 val)
{
u32 reg_old, reg;
reg = reg_old = nbmisc_read_index(nb_dev, reg_pos);
reg &= ~mask;
reg |= val;
if (reg != reg_old) {
nbmisc_write_index(nb_dev, reg_pos, reg);
}
}
void set_pcie_enable_bits(struct device *dev, u32 reg_pos, u32 mask, u32 val)
{
u32 reg_old, reg;
reg = reg_old = nb_read_index(dev, NBPCIE_INDEX, reg_pos);
reg &= ~mask;
reg |= val;
if (reg != reg_old) {
nb_write_index(dev, NBPCIE_INDEX, reg_pos, reg);
}
}
/*
* To access bar3 we need to program PCI MMIO 7 in K8.
* in_out:
* 1: enable/enter k8 temp mmio base
* 0: disable/restore
*/
void ProgK8TempMmioBase(u8 in_out, u32 pcie_base_add, u32 mmio_base_add)
{
/* K8 Function1 is address map */
struct device *k8_f1 = pcidev_on_root(0x18, 1);
struct device *k8_f0 = pcidev_on_root(0x18, 0);
if (in_out) {
u32 dword, sblk;
/* Get SBLink value (HyperTransport I/O Hub Link ID). */
dword = pci_read_config32(k8_f0, 0x64);
sblk = (dword >> 8) & 0x3;
/* Fill MMIO limit/base pair. */
pci_write_config32(k8_f1, 0xbc,
(((pcie_base_add + 0x10000000 -
1) >> 8) & 0xffffff00) | 0x80 | (sblk << 4));
pci_write_config32(k8_f1, 0xb8, (pcie_base_add >> 8) | 0x3);
pci_write_config32(k8_f1, 0xb4,
(((mmio_base_add + 0x10000000 -
1) >> 8) & 0xffffff00) | (sblk << 4));
pci_write_config32(k8_f1, 0xb0, (mmio_base_add >> 8) | 0x3);
} else {
pci_write_config32(k8_f1, 0xb8, 0);
pci_write_config32(k8_f1, 0xbc, 0);
pci_write_config32(k8_f1, 0xb0, 0);
pci_write_config32(k8_f1, 0xb4, 0);
}
}
void PcieReleasePortTraining(struct device *nb_dev, struct device *dev, u32 port)
{
switch (port) {
case 2: /* GFX, bit4-5 */
case 3:
set_nbmisc_enable_bits(nb_dev, PCIE_LINK_CFG,
1 << (port + 2), 0 << (port + 2));
break;
case 4: /* GPPSB, bit20-24 */
case 5:
case 6:
case 7:
set_nbmisc_enable_bits(nb_dev, PCIE_LINK_CFG,
1 << (port + 17), 0 << (port + 17));
break;
case 9: /* GPP, bit 4,5 of miscind 0x2D */
case 10:
set_nbmisc_enable_bits(nb_dev, 0x2D,
1 << (port - 5), 0 << (port - 5));
break;
}
}
/*
* Output:
* 0: no device is present.
* 1: device is present and is trained.
*/
u8 PcieTrainPort(struct device *nb_dev, struct device *dev, u32 port)
{
u16 count = 5000;
u32 lc_state, reg, current_link_width, lane_mask;
int8_t current, res = 0;
u32 gfx_gpp_sb_sel;
switch (port) {
case 2 ... 3:
gfx_gpp_sb_sel = PCIE_CORE_INDEX_GFX;
break;
case 4 ... 7:
gfx_gpp_sb_sel = PCIE_CORE_INDEX_GPPSB;
break;
case 9 ... 10:
gfx_gpp_sb_sel = PCIE_CORE_INDEX_GPP;
break;
default:
gfx_gpp_sb_sel = -1;
return 0;
}
while (count--) {
mdelay(40);
udelay(200);
lc_state = nbpcie_p_read_index(dev, 0xa5); /* lc_state */
printk(BIOS_DEBUG, "PcieLinkTraining port=%x:lc current state=%x\n",
port, lc_state);
current = lc_state & 0x3f; /* get LC_CURRENT_STATE, bit0-5 */
switch (current) {
case 0x00: /* 0x00-0x04 means no device is present */
case 0x01:
case 0x02:
case 0x03:
case 0x04:
res = 0;
count = 0;
break;
case 0x06:
/* read back current link width [6:4]. */
current_link_width = (nbpcie_p_read_index(dev, 0xA2) >> 4) & 0x7;
/* 4 means 7:4 and 15:12
* 3 means 7:2 and 15:10
* 2 means 7:1 and 15:9
* ignoring the reversal case
*/
lane_mask = (0xFF << (current_link_width - 2) * 2) & 0xFF;
reg = nbpcie_ind_read_index(nb_dev, 0x65 | gfx_gpp_sb_sel);
reg |= lane_mask << 8 | lane_mask;
reg = 0xE0E0; /* TODO: See the comments in rs780_pcie.c, at about line 145. */
nbpcie_ind_write_index(nb_dev, 0x65 | gfx_gpp_sb_sel, reg);
printk(BIOS_DEBUG, "link_width=%x, lane_mask=%x",
current_link_width, lane_mask);
set_pcie_reset();
mdelay(1);
set_pcie_dereset();
break;
case 0x07: /* device is in compliance state (training sequence is done). Move to train the next device */
res = 0;
count = 0;
break;
case 0x10:
reg = pci_ext_read_config32(nb_dev, dev, PCIE_VC0_RESOURCE_STATUS);
printk(BIOS_DEBUG, "PcieTrainPort reg=0x%x\n", reg);
/* check bit1 */
if (reg & VC_NEGOTIATION_PENDING) { /* bit1=1 means the link needs to be re-trained. */
/* set bit8=1, bit0-2=bit4-6 */
u32 tmp;
reg = nbpcie_p_read_index(dev, PCIE_LC_LINK_WIDTH);
tmp = (reg >> 4) & 0x07; /* get bit4-6 */
reg &= 0xfff8; /* clear bit0-2 */
reg += tmp; /* merge */
reg |= 1 << 8;
nbpcie_p_write_index(dev, PCIE_LC_LINK_WIDTH, reg);
count++; /* CIM said "keep in loop"? */
} else {
res = 1;
count = 0;
}
break;
default: /* reset pcie */
res = 0;
count = 0; /* break loop */
break;
}
}
return res;
}
/*
* Compliant with CIM_33's ATINB_SetToms.
* Set Top Of Memory below and above 4G.
*/
void rs780_set_tom(struct device *nb_dev)
{
/* set TOM */
#if IS_ENABLED(CONFIG_GFXUMA)
pci_write_config32(nb_dev, 0x90, uma_memory_base);
//nbmc_write_index(nb_dev, 0x1e, uma_memory_base);
#else
/* 1GB system memory supposed */
pci_write_config32(nb_dev, 0x90, 0x38000000);
//nbmc_write_index(nb_dev, 0x1e, 0x38000000);
#endif
}
// extract single bit
u32 extractbit(u32 data, int bit_number)
{
return (data >> bit_number) & 1;
}
// extract bit field
u32 extractbits(u32 source, int lsb, int msb)
{
int field_width = msb - lsb + 1;
u32 mask = 0xFFFFFFFF >> (32 - field_width);
return (source >> lsb) & mask;
}
// return AMD cpuid family
int cpuidFamily(void)
{
u32 baseFamily, extendedFamily, fms;
fms = cpuid_eax (1);
baseFamily = extractbits (fms, 8, 11);
extendedFamily = extractbits (fms, 20, 27);
return baseFamily + extendedFamily;
}
// return non-zero for AMD family 0Fh processor found
int is_family0Fh(void)
{
return cpuidFamily() == 0x0F;
}
// return non-zero for AMD family 10h processor found
int is_family10h(void)
{
return cpuidFamily() == 0x10;
}
__weak void set_pcie_reset(void)
{
}
__weak void set_pcie_dereset(void)
{
}
|