1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
|
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2008 Advanced Micro Devices, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
* for rs690 internal graphics device
* device id of internal grphics:
* RS690M/T: 0x791f
* RS690: 0x791e
*/
#include <console/console.h>
#include <device/device.h>
#include <device/pci.h>
#include <device/pci_ids.h>
#include <device/pci_ops.h>
#include <delay.h>
#include "rs690.h"
#define CLK_CNTL_INDEX 0x8
#define CLK_CNTL_DATA 0xC
#ifdef UNUSED_CODE
static u32 clkind_read(device_t dev, u32 index)
{
u32 gfx_bar2 = pci_read_config32(dev, 0x18) & ~0xF;
*(u32*)(gfx_bar2+CLK_CNTL_INDEX) = index & 0x7F;
return *(u32*)(gfx_bar2+CLK_CNTL_DATA);
}
#endif
static void clkind_write(device_t dev, u32 index, u32 data)
{
u32 gfx_bar2 = pci_read_config32(dev, 0x18) & ~0xF;
/* printk(BIOS_INFO, "gfx bar 2 %02x\n", gfx_bar2); */
*(u32*)(gfx_bar2+CLK_CNTL_INDEX) = index | 1<<7;
*(u32*)(gfx_bar2+CLK_CNTL_DATA) = data;
}
/*
* pci_dev_read_resources thinks it is a IO type.
* We have to force it to mem type.
*/
static void rs690_gfx_read_resources(device_t dev)
{
printk(BIOS_INFO, "rs690_gfx_read_resources.\n");
/* The initial value of 0x24 is 0xFFFFFFFF, which is confusing.
Even if we write 0xFFFFFFFF into it, it will be 0xFFF00000,
which tells us it is a memory address base.
*/
pci_write_config32(dev, 0x24, 0x00000000);
/* Get the normal pci resources of this device */
pci_dev_read_resources(dev);
compact_resources(dev);
}
static void internal_gfx_pci_dev_init(struct device *dev)
{
u16 deviceid, vendorid;
deviceid = pci_read_config16(dev, PCI_DEVICE_ID);
vendorid = pci_read_config16(dev, PCI_VENDOR_ID);
printk(BIOS_INFO, "internal_gfx_pci_dev_init device=%x, vendor=%x.\n",
deviceid, vendorid);
pci_dev_init(dev);
/* clk ind */
clkind_write(dev, 0x08, 0x01);
clkind_write(dev, 0x0C, 0x22);
clkind_write(dev, 0x0F, 0x0);
clkind_write(dev, 0x11, 0x0);
clkind_write(dev, 0x12, 0x0);
clkind_write(dev, 0x14, 0x0);
clkind_write(dev, 0x15, 0x0);
clkind_write(dev, 0x16, 0x0);
clkind_write(dev, 0x17, 0x0);
clkind_write(dev, 0x18, 0x0);
clkind_write(dev, 0x19, 0x0);
clkind_write(dev, 0x1A, 0x0);
clkind_write(dev, 0x1B, 0x0);
clkind_write(dev, 0x1C, 0x0);
clkind_write(dev, 0x1D, 0x0);
clkind_write(dev, 0x1E, 0x0);
clkind_write(dev, 0x26, 0x0);
clkind_write(dev, 0x27, 0x0);
clkind_write(dev, 0x28, 0x0);
clkind_write(dev, 0x5C, 0x0);
}
/*
* Set registers in RS690 and CPU to enable the internal GFX.
* Please refer to CIM source code and BKDG.
*/
static void rs690_internal_gfx_enable(device_t dev)
{
u32 l_dword;
int i;
device_t k8_f0 = 0, k8_f2 = 0;
device_t nb_dev = dev_find_slot(0, 0);
printk(BIOS_INFO, "rs690_internal_gfx_enable dev=0x%p, nb_dev=0x%p.\n", dev,
nb_dev);
/* set APERTURE_SIZE, 128M. */
l_dword = pci_read_config32(nb_dev, 0x8c);
printk(BIOS_INFO, "nb_dev, 0x8c=0x%x\n", l_dword);
l_dword &= 0xffffff8f;
pci_write_config32(nb_dev, 0x8c, l_dword);
/* set TOM */
rs690_set_tom(nb_dev);
/* LPC DMA Deadlock workaround? */
k8_f0 = dev_find_slot(0, PCI_DEVFN(0x18, 0));
l_dword = pci_read_config32(k8_f0, 0x68);
l_dword &= ~(1 << 22);
l_dword |= (1 << 21);
pci_write_config32(k8_f0, 0x68, l_dword);
/* Enable 64bit mode. */
set_nbmc_enable_bits(nb_dev, 0x5f, 0, 1 << 9);
set_nbmc_enable_bits(nb_dev, 0xb0, 0, 1 << 8);
/* 64bit Latency. */
set_nbmc_enable_bits(nb_dev, 0x5f, 0x7c00, 0x800);
/* UMA dual channel control register. */
nbmc_write_index(nb_dev, 0x86, 0x3d);
/* check the setting later!! */
set_htiu_enable_bits(nb_dev, 0x07, 1 << 7, 0);
/* UMA mode, powerdown memory PLL. */
set_nbmc_enable_bits(nb_dev, 0x74, 0, 1 << 31);
/* Copy CPU DDR Controller to NB MC. */
/* Why K8_MC_REG80 is special? */
k8_f2 = dev_find_slot(0, PCI_DEVFN(0x18, 2));
for (i = 0; i <= (0x80 - 0x40) / 4; i++) {
l_dword = pci_read_config32(k8_f2, 0x40 + i * 4);
nbmc_write_index(nb_dev, 0x63 + i, l_dword);
}
/* Set K8 MC for UMA, Family F. */
l_dword = pci_read_config32(k8_f2, 0xa0);
l_dword |= 0x2c;
pci_write_config32(k8_f2, 0xa0, l_dword);
l_dword = pci_read_config32(k8_f2, 0x94);
l_dword &= 0xf0ffffff;
l_dword |= 0x07000000;
pci_write_config32(k8_f2, 0x94, l_dword);
/* set FB size and location. */
nbmc_write_index(nb_dev, 0x1b, 0x00);
l_dword = nbmc_read_index(nb_dev, 0x1c);
l_dword &= 0xffff0;
l_dword |= 0x400 << 20;
l_dword |= 0x4;
nbmc_write_index(nb_dev, 0x1c, l_dword);
l_dword = nbmc_read_index(nb_dev, 0x1d);
l_dword &= 0xfffff000;
l_dword |= 0x0400;
nbmc_write_index(nb_dev, 0x1d, l_dword);
nbmc_write_index(nb_dev, 0x100, 0x3fff3800);
/* Program MC table. */
set_nbmc_enable_bits(nb_dev, 0x00, 0, 1 << 31);
l_dword = nbmc_read_index(nb_dev, 0x91);
l_dword |= 0x5;
nbmc_write_index(nb_dev, 0x91, l_dword);
set_nbmc_enable_bits(nb_dev, 0xb1, 0, 1 << 6);
set_nbmc_enable_bits(nb_dev, 0xc3, 0, 1);
/* TODO: the optimization of voltage and frequency */
}
static void gfx_dev_set_subsystem(struct device *dev, unsigned vendor, unsigned device)
{
pci_write_config32(dev, 0x4c, ((device & 0xffff) << 16) | (vendor & 0xffff));
}
static struct pci_operations lops_pci = {
.set_subsystem = gfx_dev_set_subsystem,
};
static struct device_operations pcie_ops = {
.read_resources = rs690_gfx_read_resources,
.set_resources = pci_dev_set_resources,
.enable_resources = pci_dev_enable_resources,
.init = internal_gfx_pci_dev_init, /* The option ROM initializes the device. rs690_gfx_init, */
.scan_bus = 0,
.enable = rs690_internal_gfx_enable,
.ops_pci = &lops_pci,
};
/*
* The dev id of 690G is 791E, while the id of 690M, 690T is 791F.
* We should list both of them here.
* */
static const struct pci_driver pcie_driver_690t __pci_driver = {
.ops = &pcie_ops,
.vendor = PCI_VENDOR_ID_ATI,
.device = PCI_DEVICE_ID_ATI_RS690MT_INT_GFX,
};
static const struct pci_driver pcie_driver_690 __pci_driver = {
.ops = &pcie_ops,
.vendor = PCI_VENDOR_ID_ATI,
.device = PCI_DEVICE_ID_ATI_RS690_INT_GFX,
};
/* step 12 ~ step 14 from rpr */
static void single_port_configuration(device_t nb_dev, device_t dev)
{
u8 result, width;
u32 reg32;
struct southbridge_amd_rs690_config *cfg =
(struct southbridge_amd_rs690_config *)nb_dev->chip_info;
printk(BIOS_INFO, "rs690_gfx_init single_port_configuration.\n");
/* step 12 training, releases hold training for GFX port 0 (device 2) */
set_nbmisc_enable_bits(nb_dev, 0x8, 1 << 4, 0<<4);
PcieReleasePortTraining(nb_dev, dev, 2);
result = PcieTrainPort(nb_dev, dev, 2);
printk(BIOS_INFO, "rs690_gfx_init single_port_configuration step12.\n");
/* step 13 Power Down Control */
/* step 13.1 Enables powering down transmitter and receiver pads along with PLL macros. */
set_pcie_enable_bits(nb_dev, 0x40, 1 << 0, 1 << 0);
/* step 13.a Link Training was NOT successful */
if (!result) {
set_nbmisc_enable_bits(nb_dev, 0x8, 0, 0x3 << 4); /* prevent from training. */
set_nbmisc_enable_bits(nb_dev, 0xc, 0, 0x3 << 2); /* hide the GFX bridge. */
if (cfg->gfx_tmds)
nbpcie_ind_write_index(nb_dev, 0x65, 0xccf0f0);
else {
nbpcie_ind_write_index(nb_dev, 0x65, 0xffffffff);
set_nbmisc_enable_bits(nb_dev, 0x7, 1 << 3, 1 << 3);
}
} else { /* step 13.b Link Training was successful */
reg32 = nbpcie_p_read_index(dev, 0xa2);
width = (reg32 >> 4) & 0x7;
printk(BIOS_DEBUG, "GFX LC_LINK_WIDTH = 0x%x.\n", width);
switch (width) {
case 1:
case 2:
nbpcie_ind_write_index(nb_dev, 0x65,
cfg->gfx_lane_reversal ? 0x7f7f : 0xccfefe);
break;
case 4:
nbpcie_ind_write_index(nb_dev, 0x65,
cfg->gfx_lane_reversal ? 0x3f3f : 0xccfcfc);
break;
case 8:
nbpcie_ind_write_index(nb_dev, 0x65,
cfg->gfx_lane_reversal ? 0x0f0f : 0xccf0f0);
break;
}
}
printk(BIOS_INFO, "rs690_gfx_init single_port_configuration step13.\n");
/* step 14 Reset Enumeration Timer, disables the shortening of the enumeration timer */
set_pcie_enable_bits(dev, 0x70, 1 << 19, 0 << 19);
printk(BIOS_INFO, "rs690_gfx_init single_port_configuration step14.\n");
}
/* step 15 ~ step 18 from rpr */
static void dual_port_configuration(device_t nb_dev, device_t dev)
{
u8 result, width;
u32 reg32;
struct southbridge_amd_rs690_config *cfg =
(struct southbridge_amd_rs690_config *)nb_dev->chip_info;
/* step 15: Training for Device 2 */
set_nbmisc_enable_bits(nb_dev, 0x8, 1 << 4, 0 << 4);
/* Releases hold training for GFX port 0 (device 2) */
PcieReleasePortTraining(nb_dev, dev, 2);
/* PCIE Link Training Sequence */
result = PcieTrainPort(nb_dev, dev, 2);
/* step 16: Power Down Control for Device 2 */
/* step 16.a Link Training was NOT successful */
if (!result) {
/* Powers down all lanes for port A */
nbpcie_ind_write_index(nb_dev, 0x65, 0x0f0f);
} else { /* step 16.b Link Training was successful */
reg32 = nbpcie_p_read_index(dev, 0xa2);
width = (reg32 >> 4) & 0x7;
printk(BIOS_DEBUG, "GFX LC_LINK_WIDTH = 0x%x.\n", width);
switch (width) {
case 1:
case 2:
nbpcie_ind_write_index(nb_dev, 0x65,
cfg->gfx_lane_reversal ? 0x0707 : 0x0e0e);
break;
case 4:
nbpcie_ind_write_index(nb_dev, 0x65,
cfg->gfx_lane_reversal ? 0x0303 : 0x0c0c);
break;
}
}
/* step 17: Training for Device 3 */
set_nbmisc_enable_bits(nb_dev, 0x8, 1 << 5, 0 << 5);
/* Releases hold training for GFX port 0 (device 3) */
PcieReleasePortTraining(nb_dev, dev, 3);
/* PCIE Link Training Sequence */
result = PcieTrainPort(nb_dev, dev, 3);
/*step 18: Power Down Control for Device 3 */
/* step 18.a Link Training was NOT successful */
if (!result) {
/* Powers down all lanes for port B and PLL1 */
nbpcie_ind_write_index(nb_dev, 0x65, 0xccf0f0);
} else { /* step 18.b Link Training was successful */
reg32 = nbpcie_p_read_index(dev, 0xa2);
width = (reg32 >> 4) & 0x7;
printk(BIOS_DEBUG, "GFX LC_LINK_WIDTH = 0x%x.\n", width);
switch (width) {
case 1:
case 2:
nbpcie_ind_write_index(nb_dev, 0x65,
cfg->gfx_lane_reversal ? 0x7070 : 0xe0e0);
break;
case 4:
nbpcie_ind_write_index(nb_dev, 0x65,
cfg->gfx_lane_reversal ? 0x3030 : 0xc0c0);
break;
}
}
}
/* For single port GFX configuration Only
* width:
* 000 = x16
* 001 = x1
* 010 = x2
* 011 = x4
* 100 = x8
* 101 = x12 (not supported)
* 110 = x16
*/
static void dynamic_link_width_control(device_t nb_dev, device_t dev, u8 width)
{
u32 reg32;
device_t sb_dev;
struct southbridge_amd_rs690_config *cfg =
(struct southbridge_amd_rs690_config *)nb_dev->chip_info;
/* step 5.9.1.1 */
reg32 = nbpcie_p_read_index(dev, 0xa2);
/* step 5.9.1.2 */
set_pcie_enable_bits(nb_dev, 0x40, 1 << 0, 1 << 0);
/* step 5.9.1.3 */
set_pcie_enable_bits(dev, 0xa2, 3 << 0, width << 0);
/* step 5.9.1.4 */
set_pcie_enable_bits(dev, 0xa2, 1 << 8, 1 << 8);
/* step 5.9.2.4 */
if (0 == cfg->gfx_reconfiguration)
set_pcie_enable_bits(dev, 0xa2, 1 << 11, 1 << 11);
/* step 5.9.1.5 */
do {
reg32 = nbpcie_p_read_index(dev, 0xa2);
}
while (reg32 & 0x100);
/* step 5.9.1.6 */
sb_dev = dev_find_slot(0, PCI_DEVFN(8, 0));
do {
reg32 = pci_ext_read_config32(nb_dev, sb_dev,
PCIE_VC0_RESOURCE_STATUS);
} while (reg32 & VC_NEGOTIATION_PENDING);
/* step 5.9.1.7 */
reg32 = nbpcie_p_read_index(dev, 0xa2);
if (((reg32 & 0x70) >> 4) != 0x6) {
/* the unused lanes should be powered off. */
}
/* step 5.9.1.8 */
set_pcie_enable_bits(nb_dev, 0x40, 1 << 0, 0 << 0);
}
/*
* GFX Core initialization, dev2, dev3
*/
void rs690_gfx_init(device_t nb_dev, device_t dev, u32 port)
{
u16 reg16;
struct southbridge_amd_rs690_config *cfg =
(struct southbridge_amd_rs690_config *)nb_dev->chip_info;
printk(BIOS_INFO, "rs690_gfx_init, nb_dev=0x%p, dev=0x%p, port=0x%x.\n",
nb_dev, dev, port);
/* step 0, REFCLK_SEL, skip A11 revision */
set_nbmisc_enable_bits(nb_dev, 0x6a, 1 << 9,
cfg->gfx_dev2_dev3 ? 1 << 9 : 0 << 9);
printk(BIOS_INFO, "rs690_gfx_init step0.\n");
/* step 1, lane reversal (only need if CMOS option is enabled) */
if (cfg->gfx_lane_reversal) {
set_nbmisc_enable_bits(nb_dev, 0x33, 1 << 2, 1 << 2);
if (cfg->gfx_dual_slot)
set_nbmisc_enable_bits(nb_dev, 0x33, 1 << 3, 1 << 3);
}
printk(BIOS_INFO, "rs690_gfx_init step1.\n");
/* step 1.1, dual-slot gfx configuration (only need if CMOS option is enabled) */
/* AMD calls the configuration CrossFire */
if (cfg->gfx_dual_slot)
set_nbmisc_enable_bits(nb_dev, 0x0, 0xf << 8, 5 << 8);
printk(BIOS_INFO, "rs690_gfx_init step2.\n");
/* step 2, TMDS, (only need if CMOS option is enabled) */
if (cfg->gfx_tmds) {
}
/* step 3, GFX overclocking, (only need if CMOS option is enabled) */
/* skip */
/* step 4, reset the GFX link */
/* step 4.1 asserts both calibration reset and global reset */
set_nbmisc_enable_bits(nb_dev, 0x8, 0x3 << 14, 0x3 << 14);
/* step 4.2 de-asserts calibration reset */
set_nbmisc_enable_bits(nb_dev, 0x8, 1 << 14, 0 << 14);
/* step 4.3 wait for at least 200us */
udelay(200);
/* step 4.4 de-asserts global reset */
set_nbmisc_enable_bits(nb_dev, 0x8, 1 << 15, 0 << 15);
/* step 4.5 asserts both calibration reset and global reset */
/* a weird step in RPR, don't do that */
/* set_nbmisc_enable_bits(nb_dev, 0x8, 0x3 << 14, 0x3 << 14); */
/* step 4.6 bring external GFX device out of reset, wait for 1ms */
mdelay(1);
printk(BIOS_INFO, "rs690_gfx_init step4.\n");
/* step 5 program PCIE memory mapped configuration space */
/* done by enable_pci_bar3() before */
/* step 6 SBIOS compile flags */
if (cfg->gfx_tmds) {
/* step 6.2.2 Clock-Muxing Control */
/* step 6.2.2.1 */
set_nbmisc_enable_bits(nb_dev, 0x7, 1 << 16, 1 << 16);
/* step 6.2.2.2 */
set_nbmisc_enable_bits(nb_dev, 0x7, 1 << 8, 1 << 8);
set_nbmisc_enable_bits(nb_dev, 0x7, 1 << 10, 1 << 10);
/* step 6.2.2.3 */
set_nbmisc_enable_bits(nb_dev, 0x7, 1 << 26, 1 << 26);
/* step 6.2.3 Lane-Muxing Control */
/* step 6.2.3.1 */
set_nbmisc_enable_bits(nb_dev, 0x37, 0x3 << 8, 0x2 << 8);
/* step 6.2.4 Received Data Control */
/* step 6.2.4.1 */
set_pcie_enable_bits(nb_dev, 0x40, 0x3 << 16, 0x2 << 16);
/* step 6.2.4.2 */
set_pcie_enable_bits(nb_dev, 0x40, 0x3 << 18, 0x3 << 18);
/* step 6.2.4.3 */
set_pcie_enable_bits(nb_dev, 0x40, 0x3 << 20, 0x0 << 20);
/* step 6.2.4.4 */
set_pcie_enable_bits(nb_dev, 0x40, 0x3 << 22, 0x1 << 22);
/* step 6.2.5 PLL Power Down Control */
/* step 6.2.5.1 */
set_nbmisc_enable_bits(nb_dev, 0x35, 0x3 << 6, 0x0 << 6);
/* step 6.2.6 Driving Strength Control */
/* step 6.2.6.1 */
set_nbmisc_enable_bits(nb_dev, 0x34, 0x1 << 24, 0x0 << 24);
/* step 6.2.6.2 */
set_nbmisc_enable_bits(nb_dev, 0x35, 0x3 << 2, 0x3 << 2);
}
printk(BIOS_INFO, "rs690_gfx_init step6.\n");
/* step 7 compliance state, (only need if CMOS option is enabled) */
/* the compliance stete is just for test. refer to 4.2.5.2 of PCIe specification */
if (cfg->gfx_compliance) {
/* force compliance */
set_nbmisc_enable_bits(nb_dev, 0x32, 1 << 6, 1 << 6);
/* release hold training for device 2. GFX initialization is done. */
set_nbmisc_enable_bits(nb_dev, 0x8, 1 << 4, 0 << 4);
dynamic_link_width_control(nb_dev, dev, cfg->gfx_link_width);
printk(BIOS_INFO, "rs690_gfx_init step7.\n");
return;
}
/* step 8 common initialization */
/* step 8.1 sets RCB timeout to be 25ms */
set_pcie_enable_bits(dev, 0x70, 7 << 16, 3 << 16);
printk(BIOS_INFO, "rs690_gfx_init step8.1.\n");
/* step 8.2 disables slave ordering logic */
set_pcie_enable_bits(nb_dev, 0x20, 1 << 8, 1 << 8);
printk(BIOS_INFO, "rs690_gfx_init step8.2.\n");
/* step 8.3 sets DMA payload size to 64 bytes */
set_pcie_enable_bits(nb_dev, 0x10, 7 << 10, 4 << 10);
printk(BIOS_INFO, "rs690_gfx_init step8.3.\n");
/* step 8.4 if the LTSSM could not see all 8 TS1 during Polling Active, it can still
* time out and go back to Detect Idle.*/
set_pcie_enable_bits(dev, 0x02, 1 << 14, 1 << 14);
printk(BIOS_INFO, "rs690_gfx_init step8.4.\n");
/* step 8.5 shortens the enumeration timer */
set_pcie_enable_bits(dev, 0x70, 1 << 19, 1 << 19);
printk(BIOS_INFO, "rs690_gfx_init step8.5.\n");
/* step 8.6 blocks DMA traffic during C3 state */
set_pcie_enable_bits(dev, 0x10, 1 << 0, 0 << 0);
printk(BIOS_INFO, "rs690_gfx_init step8.6.\n");
/* step 8.7 Do not gate the electrical idle form the PHY
* step 8.8 Enables the escape from L1L23 */
set_pcie_enable_bits(dev, 0xa0, 3 << 30, 3 << 30);
printk(BIOS_INFO, "rs690_gfx_init step8.8.\n");
/* step 8.9 Setting this register to 0x1 will workaround a PCI Compliance failure reported by Vista DTM.
* SLOT_IMPLEMENTED@PCIE_CAP */
reg16 = pci_read_config16(dev, 0x5a);
reg16 |= 0x100;
pci_write_config16(dev, 0x5a, reg16);
printk(BIOS_INFO, "rs690_gfx_init step8.9.\n");
/* step 8.10 Setting this register to 0x1 will hide the Advanced Error Rporting Capabilities in the PCIE Brider.
* This will workaround several failures reported by the PCI Compliance test under Vista DTM. */
set_nbmisc_enable_bits(nb_dev, 0x33, 1 << 31, 0 << 31);
printk(BIOS_INFO, "rs690_gfx_init step8.10.\n");
/* step 8.11 Sets REGS_DLP_IGNORE_IN_L1_EN to ignore DLLPs during L1 so that txclk can be turned off. */
set_pcie_enable_bits(nb_dev, 0x02, 1 << 0, 1 << 0);
printk(BIOS_INFO, "rs690_gfx_init step8.11.\n");
/* step 8.12 Sets REGS_LC_DONT_GO_TO_L0S_IF_L1_ARMED to prevent lc to go to from L0 to Rcv_L0s if L1 is armed. */
set_pcie_enable_bits(nb_dev, 0x02, 1 << 6, 1 << 6);
printk(BIOS_INFO, "rs690_gfx_init step8.12.\n");
/* step 8.13 Sets CMGOOD_OVERRIDE. */
set_nbmisc_enable_bits(nb_dev, 0x6a, 1 << 17, 1 << 17);
printk(BIOS_INFO, "rs690_gfx_init step8.13.\n");
/* step 9 Enable TLP Flushing, for non-AMD GFX devices and Hot-Plug devices only. */
/* skip */
/* step 10 Optional Features, only needed if CMOS option is enabled. */
/* step 10.a: L0s */
/* enabling L0s in the RS690 GFX port(s) */
set_pcie_enable_bits(nb_dev, 0xF9, 3 << 13, 2 << 13);
set_pcie_enable_bits(dev, 0xA0, 0xf << 8, 8 << 8);
reg16 = pci_read_config16(dev, 0x68);
reg16 |= 1 << 0;
/* L0s is intended as a power saving state */
/* pci_write_config16(dev, 0x68, reg16); */
/* enabling L0s in the External GFX Device(s) */
/* step 10.b: active state power management (ASPM L1) */
/* TO DO */
/* step 10.c: turning off PLL During L1/L23 */
set_pcie_enable_bits(nb_dev, 0x40, 1 << 3, 1 << 3);
set_pcie_enable_bits(nb_dev, 0x40, 1 << 9, 1 << 9);
/* step 10.d: TXCLK clock gating */
set_nbmisc_enable_bits(nb_dev, 0x7, 3, 3);
set_nbmisc_enable_bits(nb_dev, 0x7, 1 << 22, 1 << 22);
set_pcie_enable_bits(nb_dev, 0x11, 0xf << 4, 0xc << 4);
/* step 10.e: LCLK clock gating, done in rs690_config_misc_clk() */
/* step 11 Poll GPIO to determine whether it is single-port or dual-port configuration.
* While details will be added later in the document, for now assue the single-port configuration. */
/* skip */
/* Single-port/Dual-port configureation. */
switch (cfg->gfx_dual_slot) {
case 0:
single_port_configuration(nb_dev, dev);
break;
case 1:
dual_port_configuration(nb_dev, dev);
break;
default:
printk(BIOS_INFO, "Incorrect configuration of external gfx slot.\n");
break;
}
}
|