1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
|
/* SPDX-License-Identifier: GPL-2.0-only */
#include <arch/cache.h>
#include <console/console.h>
#include <device/mmio.h>
#include <device/device.h>
#include <soc/clk.h>
#include <soc/cpu.h>
#include <soc/dp-core.h>
#include <soc/fimd.h>
#include <stddef.h>
#include <string.h>
#include "chip.h"
static unsigned int cpu_id;
static unsigned int cpu_rev;
static void set_cpu_id(void)
{
cpu_id = read32((void *)EXYNOS5_PRO_ID);
cpu_id = (0xC000 | ((cpu_id & 0x00FFF000) >> 12));
/*
* 0xC200: EXYNOS4210 EVT0
* 0xC210: EXYNOS4210 EVT1
*/
if (cpu_id == 0xC200) {
cpu_id |= 0x10;
cpu_rev = 0;
} else if (cpu_id == 0xC210) {
cpu_rev = 1;
}
}
/* we distinguish a display port device from a raw graphics device
* because there are dramatic differences in startup depending on
* graphics usage. To make startup fast and easier to understand and
* debug we explicitly name this common case. The alternate approach,
* involving lots of machine and callbacks, is hard to debug and
* verify.
*/
static void exynos_displayport_init(struct device *dev, u32 lcdbase,
unsigned long fb_size)
{
struct soc_samsung_exynos5250_config *conf = dev->chip_info;
/* put these on the stack. If, at some point, we want to move
* this code to a pre-ram stage, it will be much easier.
*/
struct exynos5_fimd_panel panel;
memset(&panel, 0, sizeof(panel));
panel.is_dp = 1; /* Display I/F is eDP */
/* while it is true that we did a memset to zero,
* we leave some 'set to zero' entries here to make
* it clear what's going on. Graphics is confusing.
*/
panel.is_mipi = 0;
panel.fixvclk = 0;
panel.ivclk = 0;
panel.clkval_f = conf->clkval_f;
panel.upper_margin = conf->upper_margin;
panel.lower_margin = conf->lower_margin;
panel.vsync = conf->vsync;
panel.left_margin = conf->left_margin;
panel.right_margin = conf->right_margin;
panel.hsync = conf->hsync;
panel.xres = conf->xres;
panel.yres = conf->yres;
printk(BIOS_SPEW, "LCD framebuffer @%p\n", (void *)(lcdbase));
memset((void *)lcdbase, 0, fb_size); /* clear the framebuffer */
/*
* We need to clean and invalidate the framebuffer region and disable
* caching as well. We assume that our dcache <--> memory address
* space is identity-mapped in 1MB chunks, so align accordingly.
*
* Note: We may want to do something clever to ensure the framebuffer
* region is aligned such that we don't change dcache policy for other
* stuff inadvertently.
*/
uint32_t lower = ALIGN_DOWN(lcdbase, MiB);
uint32_t upper = ALIGN_UP(lcdbase + fb_size, MiB);
dcache_clean_invalidate_by_mva((void *)lower, upper - lower);
mmu_config_range(lower / MiB, (upper - lower) / MiB, DCACHE_OFF);
printk(BIOS_DEBUG, "Initializing Exynos LCD.\n");
lcd_ctrl_init(fb_size, &panel, (void *)lcdbase);
}
static void cpu_enable(struct device *dev)
{
unsigned long fb_size = FB_SIZE_KB * KiB;
u32 lcdbase = get_fb_base_kb() * KiB;
ram_resource(dev, 0, RAM_BASE_KB, RAM_SIZE_KB - FB_SIZE_KB);
mmio_resource(dev, 1, lcdbase / KiB, DIV_ROUND_UP(fb_size, KiB));
exynos_displayport_init(dev, lcdbase, fb_size);
set_cpu_id();
}
static void cpu_init(struct device *dev)
{
printk(BIOS_INFO, "CPU: S5P%X @ %ldMHz\n",
cpu_id, get_arm_clk() / (1024*1024));
}
static struct device_operations cpu_ops = {
.read_resources = noop_read_resources,
.set_resources = noop_set_resources,
.enable_resources = cpu_enable,
.init = cpu_init,
};
static void enable_exynos5250_dev(struct device *dev)
{
dev->ops = &cpu_ops;
}
struct chip_operations soc_samsung_exynos5250_ops = {
CHIP_NAME("SOC Samsung Exynos 5250")
.enable_dev = enable_exynos5250_dev,
};
void exynos5250_config_l2_cache(void)
{
uint32_t val;
/*
* Bit 9 - L2 tag RAM setup (1 cycle)
* Bits 8:6 - L2 tag RAM latency (3 cycles)
* Bit 5 - L2 data RAM setup (1 cycle)
* Bits 2:0 - L2 data RAM latency (3 cycles)
*/
val = (1 << 9) | (0x2 << 6) | (1 << 5) | (0x2);
write_l2ctlr(val);
}
|