1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
|
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2010 Samsung Electronics
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <assert.h>
#include <stdlib.h>
#include <timer.h>
#include <arch/io.h>
#include <console/console.h>
#include "clk.h"
#include "periph.h"
/* input clock of PLL: SMDK5250 has 24MHz input clock */
#define CONFIG_SYS_CLK_FREQ 24000000
static struct arm_clk_ratios arm_clk_ratios[] = {
{
.arm_freq_mhz = 600,
.apll_mdiv = 0xc8,
.apll_pdiv = 0x4,
.apll_sdiv = 0x1,
.arm2_ratio = 0x0,
.apll_ratio = 0x1,
.pclk_dbg_ratio = 0x1,
.atb_ratio = 0x2,
.periph_ratio = 0x7,
.acp_ratio = 0x7,
.cpud_ratio = 0x1,
.arm_ratio = 0x0,
}, {
.arm_freq_mhz = 800,
.apll_mdiv = 0x64,
.apll_pdiv = 0x3,
.apll_sdiv = 0x0,
.arm2_ratio = 0x0,
.apll_ratio = 0x1,
.pclk_dbg_ratio = 0x1,
.atb_ratio = 0x3,
.periph_ratio = 0x7,
.acp_ratio = 0x7,
.cpud_ratio = 0x2,
.arm_ratio = 0x0,
}, {
.arm_freq_mhz = 1000,
.apll_mdiv = 0x7d,
.apll_pdiv = 0x3,
.apll_sdiv = 0x0,
.arm2_ratio = 0x0,
.apll_ratio = 0x1,
.pclk_dbg_ratio = 0x1,
.atb_ratio = 0x4,
.periph_ratio = 0x7,
.acp_ratio = 0x7,
.cpud_ratio = 0x2,
.arm_ratio = 0x0,
}, {
.arm_freq_mhz = 1200,
.apll_mdiv = 0x96,
.apll_pdiv = 0x3,
.apll_sdiv = 0x0,
.arm2_ratio = 0x0,
.apll_ratio = 0x3,
.pclk_dbg_ratio = 0x1,
.atb_ratio = 0x5,
.periph_ratio = 0x7,
.acp_ratio = 0x7,
.cpud_ratio = 0x3,
.arm_ratio = 0x0,
}, {
.arm_freq_mhz = 1400,
.apll_mdiv = 0xaf,
.apll_pdiv = 0x3,
.apll_sdiv = 0x0,
.arm2_ratio = 0x0,
.apll_ratio = 0x3,
.pclk_dbg_ratio = 0x1,
.atb_ratio = 0x6,
.periph_ratio = 0x7,
.acp_ratio = 0x7,
.cpud_ratio = 0x3,
.arm_ratio = 0x0,
}, {
.arm_freq_mhz = 1700,
.apll_mdiv = 0x1a9,
.apll_pdiv = 0x6,
.apll_sdiv = 0x0,
.arm2_ratio = 0x0,
.apll_ratio = 0x3,
.pclk_dbg_ratio = 0x1,
.atb_ratio = 0x6,
.periph_ratio = 0x7,
.acp_ratio = 0x7,
.cpud_ratio = 0x3,
.arm_ratio = 0x0,
}
};
/* src_bit div_bit prediv_bit */
static struct clk_bit_info clk_bit_info[PERIPH_ID_COUNT] = {
{0, 4, 0, -1},
{4, 4, 4, -1},
{8, 4, 8, -1},
{12, 4, 12, -1},
{0, 4, 0, 8},
{4, 4, 16, 24},
{8, 4, 0, 8},
{12, 4, 16, 24},
{-1, -1, -1, -1},
{16, 4, 0, 8}, /* PERIPH_ID_SROMC */
{20, 4, 16, 24},
{24, 4, 0, 8},
{0, 4, 0, 4},
{4, 4, 12, 16},
{-1, 4, -1, -1},
{-1, 4, -1, -1},
{-1, 4, 24, 0},
{-1, 4, 24, 0},
{-1, 4, 24, 0},
{-1, 4, 24, 0},
{-1, 4, 24, 0},
{-1, 4, 24, 0},
{-1, 4, 24, 0},
{-1, 4, 24, 0},
{24, 4, 0, -1},
{24, 4, 0, -1},
{24, 4, 0, -1},
{24, 4, 0, -1},
{24, 4, 0, -1},
{-1, -1, -1, -1},
{-1, -1, -1, -1},
{-1, -1, -1, -1}, /* PERIPH_ID_I2S1 */
{24, 1, 20, -1}, /* PERIPH_ID_SATA */
};
/* Epll Clock division values to achieve different frequency output */
static struct st_epll_con_val epll_div[] = {
{ 192000000, 0, 48, 3, 1, 0 },
{ 180000000, 0, 45, 3, 1, 0 },
{ 73728000, 1, 73, 3, 3, 47710 },
{ 67737600, 1, 90, 4, 3, 20762 },
{ 49152000, 0, 49, 3, 3, 9961 },
{ 45158400, 0, 45, 3, 3, 10381 },
{ 180633600, 0, 45, 3, 1, 10381 }
};
/* exynos5: return pll clock frequency */
unsigned long get_pll_clk(int pllreg)
{
unsigned long r, m, p, s, k = 0, mask, fout;
unsigned int freq;
switch (pllreg) {
case APLL:
r = readl(&exynos_clock->apll_con0);
break;
case BPLL:
r = readl(&exynos_clock->bpll_con0);
break;
case MPLL:
r = readl(&exynos_clock->mpll_con0);
break;
case EPLL:
r = readl(&exynos_clock->epll_con0);
k = readl(&exynos_clock->epll_con1);
break;
case VPLL:
r = readl(&exynos_clock->vpll_con0);
k = readl(&exynos_clock->vpll_con1);
break;
default:
printk(BIOS_DEBUG, "Unsupported PLL (%d)\n", pllreg);
return 0;
}
/*
* APLL_CON: MIDV [25:16]
* MPLL_CON: MIDV [25:16]
* EPLL_CON: MIDV [24:16]
* VPLL_CON: MIDV [24:16]
*/
if (pllreg == APLL || pllreg == BPLL || pllreg == MPLL)
mask = 0x3ff;
else
mask = 0x1ff;
m = (r >> 16) & mask;
/* PDIV [13:8] */
p = (r >> 8) & 0x3f;
/* SDIV [2:0] */
s = r & 0x7;
freq = CONFIG_SYS_CLK_FREQ;
if (pllreg == EPLL) {
k = k & 0xffff;
/* FOUT = (MDIV + K / 65536) * FIN / (PDIV * 2^SDIV) */
fout = (m + k / 65536) * (freq / (p * (1 << s)));
} else if (pllreg == VPLL) {
k = k & 0xfff;
/* FOUT = (MDIV + K / 1024) * FIN / (PDIV * 2^SDIV) */
fout = (m + k / 1024) * (freq / (p * (1 << s)));
} else {
/* FOUT = MDIV * FIN / (PDIV * 2^SDIV) */
fout = m * (freq / (p * (1 << s)));
}
return fout;
}
unsigned long clock_get_periph_rate(enum periph_id peripheral)
{
struct clk_bit_info *bit_info = &clk_bit_info[peripheral];
unsigned long sclk, sub_clk;
unsigned int src, div, sub_div;
switch (peripheral) {
case PERIPH_ID_UART0:
case PERIPH_ID_UART1:
case PERIPH_ID_UART2:
case PERIPH_ID_UART3:
src = readl(&exynos_clock->src_peric0);
div = readl(&exynos_clock->div_peric0);
break;
case PERIPH_ID_PWM0:
case PERIPH_ID_PWM1:
case PERIPH_ID_PWM2:
case PERIPH_ID_PWM3:
case PERIPH_ID_PWM4:
src = readl(&exynos_clock->src_peric0);
div = readl(&exynos_clock->div_peric3);
break;
case PERIPH_ID_SPI0:
case PERIPH_ID_SPI1:
src = readl(&exynos_clock->src_peric1);
div = readl(&exynos_clock->div_peric1);
break;
case PERIPH_ID_SPI2:
src = readl(&exynos_clock->src_peric1);
div = readl(&exynos_clock->div_peric2);
break;
case PERIPH_ID_SPI3:
case PERIPH_ID_SPI4:
src = readl(&exynos_clock->sclk_src_isp);
div = readl(&exynos_clock->sclk_div_isp);
break;
case PERIPH_ID_SATA:
src = readl(&exynos_clock->src_fsys);
div = readl(&exynos_clock->div_fsys0);
break;
case PERIPH_ID_SDMMC0:
case PERIPH_ID_SDMMC1:
case PERIPH_ID_SDMMC2:
case PERIPH_ID_SDMMC3:
src = readl(&exynos_clock->src_fsys);
div = readl(&exynos_clock->div_fsys1);
break;
case PERIPH_ID_I2C0:
case PERIPH_ID_I2C1:
case PERIPH_ID_I2C2:
case PERIPH_ID_I2C3:
case PERIPH_ID_I2C4:
case PERIPH_ID_I2C5:
case PERIPH_ID_I2C6:
case PERIPH_ID_I2C7:
sclk = get_pll_clk(MPLL);
sub_div = ((readl(&exynos_clock->div_top1)
>> bit_info->div_bit) & 0x7) + 1;
div = ((readl(&exynos_clock->div_top0)
>> bit_info->prediv_bit) & 0x7) + 1;
return (sclk / sub_div) / div;
default:
printk(BIOS_DEBUG, "%s: invalid peripheral %d", __func__, peripheral);
return -1;
};
src = (src >> bit_info->src_bit) & ((1 << bit_info->n_src_bits) - 1);
if (peripheral == PERIPH_ID_SATA) {
if (src)
sclk = get_pll_clk(BPLL);
else
sclk = get_pll_clk(MPLL);
} else {
if (src == SRC_MPLL)
sclk = get_pll_clk(MPLL);
else if (src == SRC_EPLL)
sclk = get_pll_clk(EPLL);
else if (src == SRC_VPLL)
sclk = get_pll_clk(VPLL);
else
return 0;
}
sub_div = (div >> bit_info->div_bit) & 0xf;
sub_clk = sclk / (sub_div + 1);
if (peripheral == PERIPH_ID_SDMMC0 || peripheral == PERIPH_ID_SDMMC2) {
div = (div >> bit_info->prediv_bit) & 0xff;
return sub_clk / (div + 1);
}
return sub_clk;
}
/* exynos5: return ARM clock frequency */
unsigned long get_arm_clk(void)
{
unsigned long div;
unsigned long armclk;
unsigned int arm_ratio;
unsigned int arm2_ratio;
div = readl(&exynos_clock->div_cpu0);
/* ARM_RATIO: [2:0], ARM2_RATIO: [30:28] */
arm_ratio = (div >> 0) & 0x7;
arm2_ratio = (div >> 28) & 0x7;
armclk = get_pll_clk(APLL) / (arm_ratio + 1);
armclk /= (arm2_ratio + 1);
return armclk;
}
struct arm_clk_ratios *get_arm_clk_ratios(void)
{
struct arm_clk_ratios *arm_ratio;
unsigned long arm_freq = 1700; /* FIXME: use get_arm_clk() */
int i;
for (i = 0, arm_ratio = arm_clk_ratios; i < ARRAY_SIZE(arm_clk_ratios);
i++, arm_ratio++) {
if (arm_ratio->arm_freq_mhz == arm_freq)
return arm_ratio;
}
return NULL;
}
/* exynos5: set the mmc clock */
void set_mmc_clk(int dev_index, unsigned int div)
{
unsigned int *addr;
unsigned int val;
/*
* CLK_DIV_FSYS1
* MMC0_PRE_RATIO [15:8], MMC1_PRE_RATIO [31:24]
* CLK_DIV_FSYS2
* MMC2_PRE_RATIO [15:8], MMC3_PRE_RATIO [31:24]
*/
if (dev_index < 2) {
addr = &exynos_clock->div_fsys1;
} else {
addr = &exynos_clock->div_fsys2;
dev_index -= 2;
}
val = readl(addr);
val &= ~(0xff << ((dev_index << 4) + 8));
val |= (div & 0xff) << ((dev_index << 4) + 8);
writel(val, addr);
}
void clock_ll_set_pre_ratio(enum periph_id periph_id, unsigned divisor)
{
unsigned shift;
unsigned mask = 0xff;
u32 *reg;
/*
* For now we only handle a very small subset of peripherals here.
* Others will need to (and do) mangle the clock registers
* themselves, At some point it is hoped that this function can work
* from a table or calculated register offset / mask. For now this
* is at least better than spreading clock control code around
* U-Boot.
*/
switch (periph_id) {
case PERIPH_ID_SPI0:
reg = &exynos_clock->div_peric1;
shift = 8;
break;
case PERIPH_ID_SPI1:
reg = &exynos_clock->div_peric1;
shift = 24;
break;
case PERIPH_ID_SPI2:
reg = &exynos_clock->div_peric2;
shift = 8;
break;
case PERIPH_ID_SPI3:
reg = &exynos_clock->sclk_div_isp;
shift = 4;
break;
case PERIPH_ID_SPI4:
reg = &exynos_clock->sclk_div_isp;
shift = 16;
break;
default:
printk(BIOS_DEBUG, "%s: Unsupported peripheral ID %d\n", __func__,
periph_id);
return;
}
clrsetbits_le32(reg, mask << shift, (divisor & mask) << shift);
}
void clock_ll_set_ratio(enum periph_id periph_id, unsigned divisor)
{
unsigned shift;
unsigned mask = 0xff;
u32 *reg;
switch (periph_id) {
case PERIPH_ID_SPI0:
reg = &exynos_clock->div_peric1;
shift = 0;
break;
case PERIPH_ID_SPI1:
reg = &exynos_clock->div_peric1;
shift = 16;
break;
case PERIPH_ID_SPI2:
reg = &exynos_clock->div_peric2;
shift = 0;
break;
case PERIPH_ID_SPI3:
reg = &exynos_clock->sclk_div_isp;
shift = 0;
break;
case PERIPH_ID_SPI4:
reg = &exynos_clock->sclk_div_isp;
shift = 12;
break;
default:
printk(BIOS_DEBUG, "%s: Unsupported peripheral ID %d\n", __func__,
periph_id);
return;
}
clrsetbits_le32(reg, mask << shift, (divisor & mask) << shift);
}
/**
* Linearly searches for the most accurate main and fine stage clock scalars
* (divisors) for a specified target frequency and scalar bit sizes by checking
* all multiples of main_scalar_bits values. Will always return scalars up to or
* slower than target.
*
* @param main_scalar_bits Number of main scalar bits, must be > 0 and < 32
* @param fine_scalar_bits Number of fine scalar bits, must be > 0 and < 32
* @param input_rate Clock frequency to be scaled in Hz
* @param target_rate Desired clock frequency in Hz
* @param best_fine_scalar Pointer to store the fine stage divisor
*
* @return best_main_scalar Main scalar for desired frequency or -1 if none
* found
*/
static int clock_calc_best_scalar(unsigned int main_scaler_bits,
unsigned int fine_scalar_bits, unsigned int input_rate,
unsigned int target_rate, unsigned int *best_fine_scalar)
{
int i;
int best_main_scalar = -1;
unsigned int best_error = target_rate;
const unsigned int cap = (1 << fine_scalar_bits) - 1;
const unsigned int loops = 1 << main_scaler_bits;
printk(BIOS_DEBUG, "Input Rate is %u, Target is %u, Cap is %u\n", input_rate,
target_rate, cap);
ASSERT(best_fine_scalar != NULL);
ASSERT(main_scaler_bits <= fine_scalar_bits);
*best_fine_scalar = 1;
if (input_rate == 0 || target_rate == 0)
return -1;
if (target_rate >= input_rate)
return 1;
for (i = 1; i <= loops; i++) {
const unsigned int effective_div = MAX(MIN(input_rate / i /
target_rate, cap), 1);
const unsigned int effective_rate = input_rate / i /
effective_div;
const int error = target_rate - effective_rate;
printk(BIOS_DEBUG, "%d|effdiv:%u, effrate:%u, error:%d\n", i, effective_div,
effective_rate, error);
if (error >= 0 && error <= best_error) {
best_error = error;
best_main_scalar = i;
*best_fine_scalar = effective_div;
}
}
return best_main_scalar;
}
int clock_set_rate(enum periph_id periph_id, unsigned int rate)
{
int main_scalar;
unsigned int fine;
switch (periph_id) {
case PERIPH_ID_SPI0:
case PERIPH_ID_SPI1:
case PERIPH_ID_SPI2:
case PERIPH_ID_SPI3:
case PERIPH_ID_SPI4:
main_scalar = clock_calc_best_scalar(4, 8, 400000000, rate, &fine);
if (main_scalar < 0) {
printk(BIOS_DEBUG, "%s: Cannot set clock rate for periph %d",
__func__, periph_id);
return -1;
}
clock_ll_set_ratio(periph_id, main_scalar - 1);
clock_ll_set_pre_ratio(periph_id, fine - 1);
break;
default:
printk(BIOS_DEBUG, "%s: Unsupported peripheral ID %d\n", __func__,
periph_id);
return -1;
}
return 0;
}
int clock_set_mshci(enum periph_id peripheral)
{
u32 *addr;
unsigned int clock;
unsigned int tmp;
unsigned int i;
/* get mpll clock */
clock = get_pll_clk(MPLL) / 1000000;
/*
* CLK_DIV_FSYS1
* MMC0_PRE_RATIO [15:8], MMC0_RATIO [3:0]
* CLK_DIV_FSYS2
* MMC2_PRE_RATIO [15:8], MMC2_RATIO [3:0]
*/
switch (peripheral) {
case PERIPH_ID_SDMMC0:
addr = &exynos_clock->div_fsys1;
break;
case PERIPH_ID_SDMMC2:
addr = &exynos_clock->div_fsys2;
break;
default:
printk(BIOS_DEBUG, "invalid peripheral\n");
return -1;
}
tmp = readl(addr) & ~0xff0f;
for (i = 0; i <= 0xf; i++) {
if ((clock / (i + 1)) <= 400) {
writel(tmp | i << 0, addr);
break;
}
}
return 0;
}
int clock_epll_set_rate(unsigned long rate)
{
unsigned int epll_con, epll_con_k;
unsigned int i;
unsigned int lockcnt;
struct mono_time current, end;
epll_con = readl(&exynos_clock->epll_con0);
epll_con &= ~((EPLL_CON0_LOCK_DET_EN_MASK <<
EPLL_CON0_LOCK_DET_EN_SHIFT) |
EPLL_CON0_MDIV_MASK << EPLL_CON0_MDIV_SHIFT |
EPLL_CON0_PDIV_MASK << EPLL_CON0_PDIV_SHIFT |
EPLL_CON0_SDIV_MASK << EPLL_CON0_SDIV_SHIFT);
for (i = 0; i < ARRAY_SIZE(epll_div); i++) {
if (epll_div[i].freq_out == rate)
break;
}
if (i == ARRAY_SIZE(epll_div))
return -1;
epll_con_k = epll_div[i].k_dsm << 0;
epll_con |= epll_div[i].en_lock_det << EPLL_CON0_LOCK_DET_EN_SHIFT;
epll_con |= epll_div[i].m_div << EPLL_CON0_MDIV_SHIFT;
epll_con |= epll_div[i].p_div << EPLL_CON0_PDIV_SHIFT;
epll_con |= epll_div[i].s_div << EPLL_CON0_SDIV_SHIFT;
/*
* Required period ( in cycles) to generate a stable clock output.
* The maximum clock time can be up to 3000 * PDIV cycles of PLLs
* frequency input (as per spec)
*/
lockcnt = 3000 * epll_div[i].p_div;
writel(lockcnt, &exynos_clock->epll_lock);
writel(epll_con, &exynos_clock->epll_con0);
writel(epll_con_k, &exynos_clock->epll_con1);
timer_monotonic_get(¤t);
end = current;
mono_time_add_msecs(&end, TIMEOUT_EPLL_LOCK);
while (!(readl(&exynos_clock->epll_con0) &
(0x1 << EXYNOS5_EPLLCON0_LOCKED_SHIFT))) {
if (mono_time_after(¤t, &end)) {
printk(BIOS_DEBUG, "%s: Timeout waiting for EPLL lock\n", __func__);
return -1;
}
timer_monotonic_get(¤t);
}
return 0;
}
void clock_select_i2s_clk_source(void)
{
clrsetbits_le32(&exynos_clock->src_peric1, AUDIO1_SEL_MASK,
(CLK_SRC_SCLK_EPLL));
}
int clock_set_i2s_clk_prescaler(unsigned int src_frq, unsigned int dst_frq)
{
unsigned int div ;
if ((dst_frq == 0) || (src_frq == 0)) {
printk(BIOS_DEBUG, "%s: Invalid frequency input for prescaler\n", __func__);
printk(BIOS_DEBUG, "src frq = %d des frq = %d ", src_frq, dst_frq);
return -1;
}
div = (src_frq / dst_frq);
if (div > AUDIO_1_RATIO_MASK) {
printk(BIOS_DEBUG, "%s: Frequency ratio is out of range\n", __func__);
printk(BIOS_DEBUG, "src frq = %d des frq = %d ", src_frq, dst_frq);
return -1;
}
clrsetbits_le32(&exynos_clock->div_peric4, AUDIO_1_RATIO_MASK,
(div & AUDIO_1_RATIO_MASK));
return 0;
}
|