1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
|
/*
* This file is part of the coreboot project.
*
* Copyright 2016 Rockchip Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <assert.h>
#include <console/console.h>
#include <device/mmio.h>
#include <delay.h>
#include <soc/addressmap.h>
#include <soc/clock.h>
#include <soc/grf.h>
#include <soc/i2c.h>
#include <soc/soc.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
struct pll_div {
u32 refdiv;
u32 fbdiv;
u32 postdiv1;
u32 postdiv2;
u32 frac;
u32 freq;
};
#define PLL_DIVISORS(hz, _refdiv, _postdiv1, _postdiv2) {\
.refdiv = _refdiv,\
.fbdiv = (u32)((u64)hz * _refdiv * _postdiv1 * _postdiv2 / OSC_HZ),\
.postdiv1 = _postdiv1, .postdiv2 = _postdiv2, .freq = hz};\
_Static_assert(((u64)hz * _refdiv * _postdiv1 * _postdiv2 / OSC_HZ) *\
OSC_HZ / (_refdiv * _postdiv1 * _postdiv2) == hz,\
STRINGIFY(hz) " Hz cannot be hit with PLL "\
"divisors on line " STRINGIFY(__LINE__))
static const struct pll_div gpll_init_cfg = PLL_DIVISORS(GPLL_HZ, 1, 4, 1);
static const struct pll_div cpll_init_cfg = PLL_DIVISORS(CPLL_HZ, 1, 3, 1);
static const struct pll_div ppll_init_cfg = PLL_DIVISORS(PPLL_HZ, 3, 2, 1);
static const struct pll_div apll_1512_cfg = PLL_DIVISORS(1512*MHz, 1, 1, 1);
static const struct pll_div apll_600_cfg = PLL_DIVISORS(600*MHz, 1, 3, 1);
static const struct pll_div *apll_cfgs[] = {
[APLL_1512_MHZ] = &apll_1512_cfg,
[APLL_600_MHZ] = &apll_600_cfg,
};
enum {
/* PLL_CON0 */
PLL_FBDIV_MASK = 0xfff,
PLL_FBDIV_SHIFT = 0,
/* PLL_CON1 */
PLL_POSTDIV2_MASK = 0x7,
PLL_POSTDIV2_SHIFT = 12,
PLL_POSTDIV1_MASK = 0x7,
PLL_POSTDIV1_SHIFT = 8,
PLL_REFDIV_MASK = 0x3f,
PLL_REFDIV_SHIFT = 0,
/* PLL_CON2 */
PLL_LOCK_STATUS_MASK = 1,
PLL_LOCK_STATUS_SHIFT = 31,
PLL_FRACDIV_MASK = 0xffffff,
PLL_FRACDIV_SHIFT = 0,
/* PLL_CON3 */
PLL_MODE_MASK = 3,
PLL_MODE_SHIFT = 8,
PLL_MODE_SLOW = 0,
PLL_MODE_NORM,
PLL_MODE_DEEP,
PLL_DSMPD_MASK = 1,
PLL_DSMPD_SHIFT = 3,
PLL_FRAC_MODE = 0,
PLL_INTEGER_MODE = 1,
/* PLL_CON4 */
PLL_SSMOD_BP_MASK = 1,
PLL_SSMOD_BP_SHIFT = 0,
PLL_SSMOD_DIS_SSCG_MASK = 1,
PLL_SSMOD_DIS_SSCG_SHIFT = 1,
PLL_SSMOD_RESET_MASK = 1,
PLL_SSMOD_RESET_SHIFT = 2,
PLL_SSMOD_DOWNSPEAD_MASK = 1,
PLL_SSMOD_DOWNSPEAD_SHIFT = 3,
PLL_SSMOD_DIVVAL_MASK = 0Xf,
PLL_SSMOD_DIVVAL_SHIFT = 4,
PLL_SSMOD_SPREADAMP_MASK = 0x1f,
PLL_SSMOD_SPREADAMP_SHIFT = 8,
/* PMUCRU_CLKSEL_CON0 */
PMU_PCLK_DIV_CON_MASK = 0x1f,
PMU_PCLK_DIV_CON_SHIFT = 0,
/* PMUCRU_CLKSEL_CON1 */
SPI3_PLL_SEL_MASK = 1,
SPI3_PLL_SEL_SHIFT = 7,
SPI3_PLL_SEL_24M = 0,
SPI3_PLL_SEL_PPLL = 1,
SPI3_DIV_CON_MASK = 0x7f,
SPI3_DIV_CON_SHIFT = 0x0,
/* PMUCRU_CLKSEL_CON2 */
I2C_DIV_CON_MASK = 0x7f,
I2C8_DIV_CON_SHIFT = 8,
I2C0_DIV_CON_SHIFT = 0,
/* PMUCRU_CLKSEL_CON3 */
I2C4_DIV_CON_SHIFT = 0,
/* CLKSEL_CON0 / CLKSEL_CON2 */
ACLKM_CORE_DIV_CON_MASK = 0x1f,
ACLKM_CORE_DIV_CON_SHIFT = 8,
CLK_CORE_PLL_SEL_MASK = 3,
CLK_CORE_PLL_SEL_SHIFT = 6,
CLK_CORE_PLL_SEL_ALPLL = 0x0,
CLK_CORE_PLL_SEL_ABPLL = 0x1,
CLK_CORE_PLL_SEL_DPLL = 0x10,
CLK_CORE_PLL_SEL_GPLL = 0x11,
CLK_CORE_DIV_MASK = 0x1f,
CLK_CORE_DIV_SHIFT = 0,
/* CLKSEL_CON1 / CLKSEL_CON3 */
PCLK_DBG_DIV_MASK = 0x1f,
PCLK_DBG_DIV_SHIFT = 0x8,
ATCLK_CORE_DIV_MASK = 0x1f,
ATCLK_CORE_DIV_SHIFT = 0,
/* CLKSEL_CON14 */
PCLK_PERIHP_DIV_CON_MASK = 0x7,
PCLK_PERIHP_DIV_CON_SHIFT = 12,
HCLK_PERIHP_DIV_CON_MASK = 3,
HCLK_PERIHP_DIV_CON_SHIFT = 8,
ACLK_PERIHP_PLL_SEL_MASK = 1,
ACLK_PERIHP_PLL_SEL_SHIFT = 7,
ACLK_PERIHP_PLL_SEL_CPLL = 0,
ACLK_PERIHP_PLL_SEL_GPLL = 1,
ACLK_PERIHP_DIV_CON_MASK = 0x1f,
ACLK_PERIHP_DIV_CON_SHIFT = 0,
/* CLKSEL_CON21 */
ACLK_EMMC_PLL_SEL_MASK = 0x1,
ACLK_EMMC_PLL_SEL_SHIFT = 7,
ACLK_EMMC_PLL_SEL_GPLL = 0x1,
ACLK_EMMC_DIV_CON_MASK = 0x1f,
ACLK_EMMC_DIV_CON_SHIFT = 0,
/* CLKSEL_CON22 */
CLK_EMMC_PLL_MASK = 0x7,
CLK_EMMC_PLL_SHIFT = 8,
CLK_EMMC_PLL_SEL_GPLL = 0x1,
CLK_EMMC_DIV_CON_MASK = 0x7f,
CLK_EMMC_DIV_CON_SHIFT = 0,
/* CLKSEL_CON23 */
PCLK_PERILP0_DIV_CON_MASK = 0x7,
PCLK_PERILP0_DIV_CON_SHIFT = 12,
HCLK_PERILP0_DIV_CON_MASK = 3,
HCLK_PERILP0_DIV_CON_SHIFT = 8,
ACLK_PERILP0_PLL_SEL_MASK = 1,
ACLK_PERILP0_PLL_SEL_SHIFT = 7,
ACLK_PERILP0_PLL_SEL_CPLL = 0,
ACLK_PERILP0_PLL_SEL_GPLL = 1,
ACLK_PERILP0_DIV_CON_MASK = 0x1f,
ACLK_PERILP0_DIV_CON_SHIFT = 0,
/* CLKSEL_CON25 */
PCLK_PERILP1_DIV_CON_MASK = 0x7,
PCLK_PERILP1_DIV_CON_SHIFT = 8,
HCLK_PERILP1_PLL_SEL_MASK = 1,
HCLK_PERILP1_PLL_SEL_SHIFT = 7,
HCLK_PERILP1_PLL_SEL_CPLL = 0,
HCLK_PERILP1_PLL_SEL_GPLL = 1,
HCLK_PERILP1_DIV_CON_MASK = 0x1f,
HCLK_PERILP1_DIV_CON_SHIFT = 0,
/* CLKSEL_CON26 */
CLK_SARADC_DIV_CON_MASK = 0xff,
CLK_SARADC_DIV_CON_SHIFT = 8,
/* CLKSEL_CON27 */
CLK_TSADC_SEL_X24M = 0x0,
CLK_TSADC_SEL_MASK = 1,
CLK_TSADC_SEL_SHIFT = 15,
CLK_TSADC_DIV_CON_MASK = 0x3ff,
CLK_TSADC_DIV_CON_SHIFT = 0,
/* CLKSEL_CON44 */
CLK_PCLK_EDP_PLL_SEL_MASK = 1,
CLK_PCLK_EDP_PLL_SEL_SHIFT = 15,
CLK_PCLK_EDP_PLL_SEL_CPLL = 0,
CLK_PCLK_EDP_DIV_CON_MASK = 0x3f,
CLK_PCLK_EDP_DIV_CON_SHIFT = 8,
/* CLKSEL_CON47 & CLKSEL_CON48 */
ACLK_VOP_PLL_SEL_MASK = 0x3,
ACLK_VOP_PLL_SEL_SHIFT = 6,
ACLK_VOP_PLL_SEL_CPLL = 0x1,
ACLK_VOP_DIV_CON_MASK = 0x1f,
ACLK_VOP_DIV_CON_SHIFT = 0,
/* CLKSEL_CON49 & CLKSEL_CON50 */
DCLK_VOP_DCLK_SEL_MASK = 1,
DCLK_VOP_DCLK_SEL_SHIFT = 11,
DCLK_VOP_DCLK_SEL_DIVOUT = 0,
DCLK_VOP_PLL_SEL_MASK = 3,
DCLK_VOP_PLL_SEL_SHIFT = 8,
DCLK_VOP_PLL_SEL_VPLL = 0,
DCLK_VOP_DIV_CON_MASK = 0xff,
DCLK_VOP_DIV_CON_SHIFT = 0,
/* CLKSEL_CON58 */
CLK_SPI_PLL_SEL_MASK = 1,
CLK_SPI_PLL_SEL_CPLL = 0,
CLK_SPI_PLL_SEL_GPLL = 1,
CLK_SPI_PLL_DIV_CON_MASK = 0x7f,
CLK_SPI5_PLL_DIV_CON_SHIFT = 8,
CLK_SPI5_PLL_SEL_SHIFT = 15,
/* CLKSEL_CON59 */
CLK_SPI1_PLL_SEL_SHIFT = 15,
CLK_SPI1_PLL_DIV_CON_SHIFT = 8,
CLK_SPI0_PLL_SEL_SHIFT = 7,
CLK_SPI0_PLL_DIV_CON_SHIFT = 0,
/* CLKSEL_CON60 */
CLK_SPI4_PLL_SEL_SHIFT = 15,
CLK_SPI4_PLL_DIV_CON_SHIFT = 8,
CLK_SPI2_PLL_SEL_SHIFT = 7,
CLK_SPI2_PLL_DIV_CON_SHIFT = 0,
/* CLKSEL_CON61 */
CLK_I2C_PLL_SEL_MASK = 1,
CLK_I2C_PLL_SEL_CPLL = 0,
CLK_I2C_PLL_SEL_GPLL = 1,
CLK_I2C5_PLL_SEL_SHIFT = 15,
CLK_I2C5_DIV_CON_SHIFT = 8,
CLK_I2C1_PLL_SEL_SHIFT = 7,
CLK_I2C1_DIV_CON_SHIFT = 0,
/* CLKSEL_CON62 */
CLK_I2C6_PLL_SEL_SHIFT = 15,
CLK_I2C6_DIV_CON_SHIFT = 8,
CLK_I2C2_PLL_SEL_SHIFT = 7,
CLK_I2C2_DIV_CON_SHIFT = 0,
/* CLKSEL_CON63 */
CLK_I2C7_PLL_SEL_SHIFT = 15,
CLK_I2C7_DIV_CON_SHIFT = 8,
CLK_I2C3_PLL_SEL_SHIFT = 7,
CLK_I2C3_DIV_CON_SHIFT = 0,
/* CRU_SOFTRST_CON4 */
RESETN_DDR0_REQ_MASK = 1,
RESETN_DDR0_REQ_SHIFT = 8,
RESETN_DDRPHY0_REQ_MASK = 1,
RESETN_DDRPHY0_REQ_SHIFT = 9,
RESETN_DDR1_REQ_MASK = 1,
RESETN_DDR1_REQ_SHIFT = 12,
RESETN_DDRPHY1_REQ_MASK = 1,
RESETN_DDRPHY1_REQ_SHIFT = 13,
};
#define VCO_MAX_KHZ (3200 * (MHz / KHz))
#define VCO_MIN_KHZ (800 * (MHz / KHz))
#define OUTPUT_MAX_KHZ (3200 * (MHz / KHz))
#define OUTPUT_MIN_KHZ (16 * (MHz / KHz))
/* the div restrictions of pll in integer mode,
* these are defined in * CRU_*PLL_CON0 or PMUCRU_*PLL_CON0
*/
#define PLL_DIV_MIN 16
#define PLL_DIV_MAX 3200
/* How to calculate the PLL(from TRM V0.3 Part 1 Page 63):
* Formulas also embedded within the Fractional PLL Verilog model:
* If DSMPD = 1 (DSM is disabled, "integer mode")
* FOUTVCO = FREF / REFDIV * FBDIV
* FOUTPOSTDIV = FOUTVCO / POSTDIV1 / POSTDIV2
* Where:
* FOUTVCO = Fractional PLL non-divided output frequency
* FOUTPOSTDIV = Fractional PLL divided output frequency
* (output of second post divider)
* FREF = Fractional PLL input reference frequency, (the OSC_HZ 24MHz input)
* REFDIV = Fractional PLL input reference clock divider
* FBDIV = Integer value programmed into feedback divide
*
*/
static void rkclk_set_pll(u32 *pll_con, const struct pll_div *div)
{
/* All 8 PLLs have same VCO and output frequency range restrictions. */
u32 vco_khz = OSC_HZ / 1000 * div->fbdiv / div->refdiv;
u32 output_khz = vco_khz / div->postdiv1 / div->postdiv2;
printk(BIOS_DEBUG, "PLL at %p: fbdiv=%d, refdiv=%d, postdiv1=%d, "
"postdiv2=%d, vco=%u khz, output=%u khz\n",
pll_con, div->fbdiv, div->refdiv, div->postdiv1,
div->postdiv2, vco_khz, output_khz);
assert(vco_khz >= VCO_MIN_KHZ && vco_khz <= VCO_MAX_KHZ &&
output_khz >= OUTPUT_MIN_KHZ && output_khz <= OUTPUT_MAX_KHZ &&
div->fbdiv >= PLL_DIV_MIN && div->fbdiv <= PLL_DIV_MAX);
/* When power on or changing PLL setting,
* we must force PLL into slow mode to ensure output stable clock.
*/
write32(&pll_con[3], RK_CLRSETBITS(PLL_MODE_MASK << PLL_MODE_SHIFT,
PLL_MODE_SLOW << PLL_MODE_SHIFT));
/* use integer mode */
write32(&pll_con[3],
RK_CLRSETBITS(PLL_DSMPD_MASK << PLL_DSMPD_SHIFT,
PLL_INTEGER_MODE << PLL_DSMPD_SHIFT));
write32(&pll_con[0], RK_CLRSETBITS(PLL_FBDIV_MASK << PLL_FBDIV_SHIFT,
div->fbdiv << PLL_FBDIV_SHIFT));
write32(&pll_con[1],
RK_CLRSETBITS(PLL_POSTDIV2_MASK << PLL_POSTDIV2_SHIFT |
PLL_POSTDIV1_MASK << PLL_POSTDIV1_SHIFT |
PLL_REFDIV_MASK | PLL_REFDIV_SHIFT,
(div->postdiv2 << PLL_POSTDIV2_SHIFT) |
(div->postdiv1 << PLL_POSTDIV1_SHIFT) |
(div->refdiv << PLL_REFDIV_SHIFT)));
/* waiting for pll lock */
while (!(read32(&pll_con[2]) & (1 << PLL_LOCK_STATUS_SHIFT)))
udelay(1);
/* pll enter normal mode */
write32(&pll_con[3], RK_CLRSETBITS(PLL_MODE_MASK << PLL_MODE_SHIFT,
PLL_MODE_NORM << PLL_MODE_SHIFT));
}
/*
* Configure the DPLL spread spectrum feature on memory clock.
* Configure sequence:
* 1. PLL been configured as frac mode, and DACPD should be set to 1'b0.
* 2. Configure DOWNSPERAD, SPREAD, DIVVAL(option: configure xPLL_CON5 with
* extern wave table).
* 3. set ssmod_disable_sscg = 1'b0, and set ssmod_bp = 1'b0.
* 4. Assert RESET = 1'b1 to SSMOD.
* 5. RESET = 1'b0 on SSMOD.
* 6. Adjust SPREAD/DIVVAL/DOWNSPREAD.
*/
static void rkclk_set_dpllssc(struct pll_div *dpll_cfg)
{
u32 divval;
assert(dpll_cfg->refdiv && dpll_cfg->refdiv <= 6);
/*
* Need to acquire ~30kHZ which is the target modulation frequency.
* The modulation frequency ~ 30kHz= OSC_HZ/revdiv/128/divval
* (the 128 is the number points in the query table).
*/
divval = OSC_HZ / 128 / (30 * KHz) / dpll_cfg->refdiv;
/*
* Use frac mode.
* Make sure the output frequency isn't offset, set 0 for Fractional
* part of feedback divide.
*/
write32(&cru_ptr->dpll_con[3],
RK_CLRSETBITS(PLL_DSMPD_MASK << PLL_DSMPD_SHIFT,
PLL_FRAC_MODE << PLL_DSMPD_SHIFT));
clrsetbits_le32(&cru_ptr->dpll_con[2],
PLL_FRACDIV_MASK << PLL_FRACDIV_SHIFT,
0 << PLL_FRACDIV_SHIFT);
/*
* Configure SSC divval.
* Spread amplitude range = 0.1 * SPREAD[4:0] (%).
* The below 8 means SPREAD[4:0] that appears to mitigate EMI on boards
* tested. Center and down spread modulation amplitudes based on the
* value of SPREAD.
* SPREAD[4:0] Center Spread Down Spread
* 0 0 0
* 1 +/-0.1% -0.10%
* 2 +/-0.2% -0.20%
* 3 +/-0.3% -0.30%
* 4 +/-0.4% -0.40%
* 5 +/-0.5% -0.50%
* ...
* 31 +/-3.1% -3.10%
*/
write32(&cru_ptr->dpll_con[4],
RK_CLRSETBITS(PLL_SSMOD_DIVVAL_MASK << PLL_SSMOD_DIVVAL_SHIFT,
divval << PLL_SSMOD_DIVVAL_SHIFT));
write32(&cru_ptr->dpll_con[4],
RK_CLRSETBITS(PLL_SSMOD_SPREADAMP_MASK <<
PLL_SSMOD_SPREADAMP_SHIFT,
8 << PLL_SSMOD_SPREADAMP_SHIFT));
/* Enable SSC for DPLL */
write32(&cru_ptr->dpll_con[4],
RK_CLRBITS(PLL_SSMOD_BP_MASK << PLL_SSMOD_BP_SHIFT |
PLL_SSMOD_DIS_SSCG_MASK << PLL_SSMOD_DIS_SSCG_SHIFT));
/* Deassert reset SSMOD */
write32(&cru_ptr->dpll_con[4],
RK_CLRBITS(PLL_SSMOD_RESET_MASK << PLL_SSMOD_RESET_SHIFT));
udelay(20);
}
static int pll_para_config(u32 freq_hz, struct pll_div *div)
{
u32 ref_khz = OSC_HZ / KHz, refdiv, fbdiv = 0;
u32 postdiv1, postdiv2 = 1;
u32 fref_khz;
u32 diff_khz, best_diff_khz;
const u32 max_refdiv = 63, max_fbdiv = 3200, min_fbdiv = 16;
const u32 max_postdiv1 = 7, max_postdiv2 = 7;
u32 vco_khz;
u32 freq_khz = freq_hz / KHz;
if (!freq_hz) {
printk(BIOS_ERR, "%s: the frequency can't be 0 Hz\n", __func__);
return -1;
}
postdiv1 = DIV_ROUND_UP(VCO_MIN_KHZ, freq_khz);
if (postdiv1 > max_postdiv1) {
postdiv2 = DIV_ROUND_UP(postdiv1, max_postdiv1);
postdiv1 = DIV_ROUND_UP(postdiv1, postdiv2);
}
vco_khz = freq_khz * postdiv1 * postdiv2;
if (vco_khz < VCO_MIN_KHZ || vco_khz > VCO_MAX_KHZ ||
postdiv2 > max_postdiv2) {
printk(BIOS_ERR, "%s: Cannot find out a supported VCO"
" for Frequency (%uHz).\n", __func__, freq_hz);
return -1;
}
div->postdiv1 = postdiv1;
div->postdiv2 = postdiv2;
best_diff_khz = vco_khz;
for (refdiv = 1; refdiv < max_refdiv && best_diff_khz; refdiv++) {
fref_khz = ref_khz / refdiv;
fbdiv = vco_khz / fref_khz;
if ((fbdiv >= max_fbdiv) || (fbdiv <= min_fbdiv))
continue;
diff_khz = vco_khz - fbdiv * fref_khz;
if (fbdiv + 1 < max_fbdiv && diff_khz > fref_khz / 2) {
fbdiv++;
diff_khz = fref_khz - diff_khz;
}
if (diff_khz >= best_diff_khz)
continue;
best_diff_khz = diff_khz;
div->refdiv = refdiv;
div->fbdiv = fbdiv;
}
if (best_diff_khz > 4 * (MHz/KHz)) {
printk(BIOS_ERR, "%s: Failed to match output frequency %u, "
"difference is %u Hz,exceed 4MHZ\n", __func__, freq_hz,
best_diff_khz * KHz);
return -1;
}
return 0;
}
void rkclk_init(void)
{
u32 aclk_div;
u32 hclk_div;
u32 pclk_div;
/* some cru registers changed by bootrom, we'd better reset them to
* reset/default values described in TRM to avoid confusion in kernel.
* Please consider these threee lines as a fix of bootrom bug.
*/
write32(&cru_ptr->clksel_con[12], 0xffff4101);
write32(&cru_ptr->clksel_con[19], 0xffff033f);
write32(&cru_ptr->clksel_con[56], 0x00030003);
/* configure pmu pll(ppll) */
rkclk_set_pll(&pmucru_ptr->ppll_con[0], &ppll_init_cfg);
/* configure pmu pclk */
pclk_div = PPLL_HZ / PMU_PCLK_HZ - 1;
assert((unsigned int)(PPLL_HZ - (pclk_div + 1) * PMU_PCLK_HZ) <= pclk_div
&& pclk_div <= 0x1f);
write32(&pmucru_ptr->pmucru_clksel[0],
RK_CLRSETBITS(PMU_PCLK_DIV_CON_MASK << PMU_PCLK_DIV_CON_SHIFT,
pclk_div << PMU_PCLK_DIV_CON_SHIFT));
/* configure gpll cpll */
rkclk_set_pll(&cru_ptr->gpll_con[0], &gpll_init_cfg);
rkclk_set_pll(&cru_ptr->cpll_con[0], &cpll_init_cfg);
/* configure perihp aclk, hclk, pclk */
aclk_div = GPLL_HZ / PERIHP_ACLK_HZ - 1;
assert((aclk_div + 1) * PERIHP_ACLK_HZ == GPLL_HZ && aclk_div <= 0x1f);
hclk_div = PERIHP_ACLK_HZ / PERIHP_HCLK_HZ - 1;
assert((hclk_div + 1) * PERIHP_HCLK_HZ ==
PERIHP_ACLK_HZ && (hclk_div <= 0x3));
pclk_div = PERIHP_ACLK_HZ / PERIHP_PCLK_HZ - 1;
assert((pclk_div + 1) * PERIHP_PCLK_HZ ==
PERIHP_ACLK_HZ && (pclk_div <= 0x7));
write32(&cru_ptr->clksel_con[14],
RK_CLRSETBITS(PCLK_PERIHP_DIV_CON_MASK <<
PCLK_PERIHP_DIV_CON_SHIFT |
HCLK_PERIHP_DIV_CON_MASK <<
HCLK_PERIHP_DIV_CON_SHIFT |
ACLK_PERIHP_PLL_SEL_MASK <<
ACLK_PERIHP_PLL_SEL_SHIFT |
ACLK_PERIHP_DIV_CON_MASK <<
ACLK_PERIHP_DIV_CON_SHIFT,
pclk_div << PCLK_PERIHP_DIV_CON_SHIFT |
hclk_div << HCLK_PERIHP_DIV_CON_SHIFT |
ACLK_PERIHP_PLL_SEL_GPLL <<
ACLK_PERIHP_PLL_SEL_SHIFT |
aclk_div << ACLK_PERIHP_DIV_CON_SHIFT));
/* configure perilp0 aclk, hclk, pclk */
aclk_div = GPLL_HZ / PERILP0_ACLK_HZ - 1;
assert((aclk_div + 1) * PERILP0_ACLK_HZ == GPLL_HZ && aclk_div <= 0x1f);
hclk_div = PERILP0_ACLK_HZ / PERILP0_HCLK_HZ - 1;
assert((hclk_div + 1) * PERILP0_HCLK_HZ ==
PERILP0_ACLK_HZ && (hclk_div <= 0x3));
pclk_div = PERILP0_ACLK_HZ / PERILP0_PCLK_HZ - 1;
assert((pclk_div + 1) * PERILP0_PCLK_HZ ==
PERILP0_ACLK_HZ && (pclk_div <= 0x7));
write32(&cru_ptr->clksel_con[23],
RK_CLRSETBITS(PCLK_PERILP0_DIV_CON_MASK <<
PCLK_PERILP0_DIV_CON_SHIFT |
HCLK_PERILP0_DIV_CON_MASK <<
HCLK_PERILP0_DIV_CON_SHIFT |
ACLK_PERILP0_PLL_SEL_MASK <<
ACLK_PERILP0_PLL_SEL_SHIFT |
ACLK_PERILP0_DIV_CON_MASK <<
ACLK_PERILP0_DIV_CON_SHIFT,
pclk_div << PCLK_PERILP0_DIV_CON_SHIFT |
hclk_div << HCLK_PERILP0_DIV_CON_SHIFT |
ACLK_PERILP0_PLL_SEL_GPLL <<
ACLK_PERILP0_PLL_SEL_SHIFT |
aclk_div << ACLK_PERILP0_DIV_CON_SHIFT));
/* perilp1 hclk select gpll as source */
hclk_div = GPLL_HZ / PERILP1_HCLK_HZ - 1;
assert((hclk_div + 1) * PERILP1_HCLK_HZ ==
GPLL_HZ && (hclk_div <= 0x1f));
pclk_div = PERILP1_HCLK_HZ / PERILP1_PCLK_HZ - 1;
assert((pclk_div + 1) * PERILP1_PCLK_HZ ==
PERILP1_HCLK_HZ && (pclk_div <= 0x7));
write32(&cru_ptr->clksel_con[25],
RK_CLRSETBITS(PCLK_PERILP1_DIV_CON_MASK <<
PCLK_PERILP1_DIV_CON_SHIFT |
HCLK_PERILP1_DIV_CON_MASK <<
HCLK_PERILP1_DIV_CON_SHIFT |
HCLK_PERILP1_PLL_SEL_MASK <<
HCLK_PERILP1_PLL_SEL_SHIFT,
pclk_div << PCLK_PERILP1_DIV_CON_SHIFT |
hclk_div << HCLK_PERILP1_DIV_CON_SHIFT |
HCLK_PERILP1_PLL_SEL_GPLL <<
HCLK_PERILP1_PLL_SEL_SHIFT));
}
void rkclk_configure_cpu(enum apll_frequencies freq, enum cpu_cluster cluster)
{
u32 aclkm_div, atclk_div, pclk_dbg_div, apll_hz;
int con_base, parent;
u32 *pll_con;
switch (cluster) {
case CPU_CLUSTER_LITTLE:
con_base = 0;
parent = CLK_CORE_PLL_SEL_ALPLL;
pll_con = &cru_ptr->apll_l_con[0];
break;
case CPU_CLUSTER_BIG:
default:
con_base = 2;
parent = CLK_CORE_PLL_SEL_ABPLL;
pll_con = &cru_ptr->apll_b_con[0];
break;
}
apll_hz = apll_cfgs[freq]->freq;
rkclk_set_pll(pll_con, apll_cfgs[freq]);
aclkm_div = DIV_ROUND_UP(apll_hz, ACLKM_CORE_HZ) - 1;
pclk_dbg_div = DIV_ROUND_UP(apll_hz, PCLK_DBG_HZ) - 1;
atclk_div = DIV_ROUND_UP(apll_hz, ATCLK_CORE_HZ) - 1;
write32(&cru_ptr->clksel_con[con_base],
RK_CLRSETBITS(ACLKM_CORE_DIV_CON_MASK <<
ACLKM_CORE_DIV_CON_SHIFT |
CLK_CORE_PLL_SEL_MASK << CLK_CORE_PLL_SEL_SHIFT |
CLK_CORE_DIV_MASK << CLK_CORE_DIV_SHIFT,
aclkm_div << ACLKM_CORE_DIV_CON_SHIFT |
parent << CLK_CORE_PLL_SEL_SHIFT |
0 << CLK_CORE_DIV_SHIFT));
write32(&cru_ptr->clksel_con[con_base + 1],
RK_CLRSETBITS(PCLK_DBG_DIV_MASK << PCLK_DBG_DIV_SHIFT |
ATCLK_CORE_DIV_MASK << ATCLK_CORE_DIV_SHIFT,
pclk_dbg_div << PCLK_DBG_DIV_SHIFT |
atclk_div << ATCLK_CORE_DIV_SHIFT));
}
void rkclk_configure_ddr(unsigned int hz)
{
struct pll_div dpll_cfg;
/* IC ECO bug, need to set this register */
write32(&rk3399_pmusgrf->ddr_rgn_con[16], 0xc000c000);
/* clk_ddrc == DPLL = 24MHz / refdiv * fbdiv / postdiv1 / postdiv2 */
switch (hz) {
case 200*MHz:
dpll_cfg = (struct pll_div)
{.refdiv = 1, .fbdiv = 50, .postdiv1 = 3, .postdiv2 = 2};
break;
case 300*MHz:
dpll_cfg = (struct pll_div)
{.refdiv = 2, .fbdiv = 100, .postdiv1 = 4, .postdiv2 = 1};
break;
case 666*MHz:
dpll_cfg = (struct pll_div)
{.refdiv = 2, .fbdiv = 111, .postdiv1 = 2, .postdiv2 = 1};
break;
case 800*MHz:
dpll_cfg = (struct pll_div)
{.refdiv = 1, .fbdiv = 100, .postdiv1 = 3, .postdiv2 = 1};
break;
case 933*MHz:
dpll_cfg = (struct pll_div)
{.refdiv = 1, .fbdiv = 116, .postdiv1 = 3, .postdiv2 = 1};
break;
default:
die("Unsupported SDRAM frequency, add to clock.c!");
}
rkclk_set_pll(&cru_ptr->dpll_con[0], &dpll_cfg);
if (CONFIG(RK3399_SPREAD_SPECTRUM_DDR))
rkclk_set_dpllssc(&dpll_cfg);
}
#define SPI_CLK_REG_VALUE(bus, clk_div) \
RK_CLRSETBITS(CLK_SPI_PLL_SEL_MASK << \
CLK_SPI ##bus## _PLL_SEL_SHIFT | \
CLK_SPI_PLL_DIV_CON_MASK << \
CLK_SPI ##bus## _PLL_DIV_CON_SHIFT, \
CLK_SPI_PLL_SEL_GPLL << \
CLK_SPI ##bus## _PLL_SEL_SHIFT | \
(clk_div - 1) << \
CLK_SPI ##bus## _PLL_DIV_CON_SHIFT)
void rkclk_configure_spi(unsigned int bus, unsigned int hz)
{
int src_clk_div;
int pll;
/* spi3 src clock from ppll, while spi0,1,2,4,5 src clock from gpll */
pll = (bus == 3) ? PPLL_HZ : GPLL_HZ;
src_clk_div = pll / hz;
assert((src_clk_div - 1 <= 127) && (src_clk_div * hz == pll));
switch (bus) {
case 0:
write32(&cru_ptr->clksel_con[59],
SPI_CLK_REG_VALUE(0, src_clk_div));
break;
case 1:
write32(&cru_ptr->clksel_con[59],
SPI_CLK_REG_VALUE(1, src_clk_div));
break;
case 2:
write32(&cru_ptr->clksel_con[60],
SPI_CLK_REG_VALUE(2, src_clk_div));
break;
case 3:
write32(&pmucru_ptr->pmucru_clksel[1],
RK_CLRSETBITS(SPI3_PLL_SEL_MASK << SPI3_PLL_SEL_SHIFT |
SPI3_DIV_CON_MASK << SPI3_DIV_CON_SHIFT,
SPI3_PLL_SEL_PPLL << SPI3_PLL_SEL_SHIFT |
(src_clk_div - 1) << SPI3_DIV_CON_SHIFT));
break;
case 4:
write32(&cru_ptr->clksel_con[60],
SPI_CLK_REG_VALUE(4, src_clk_div));
break;
case 5:
write32(&cru_ptr->clksel_con[58],
SPI_CLK_REG_VALUE(5, src_clk_div));
break;
default:
printk(BIOS_ERR, "do not support this spi bus\n");
}
}
#define I2C_CLK_REG_VALUE(bus, clk_div) \
RK_CLRSETBITS(I2C_DIV_CON_MASK << \
CLK_I2C ##bus## _DIV_CON_SHIFT | \
CLK_I2C_PLL_SEL_MASK << \
CLK_I2C ##bus## _PLL_SEL_SHIFT, \
(clk_div - 1) << \
CLK_I2C ##bus## _DIV_CON_SHIFT | \
CLK_I2C_PLL_SEL_GPLL << \
CLK_I2C ##bus## _PLL_SEL_SHIFT)
#define PMU_I2C_CLK_REG_VALUE(bus, clk_div) \
RK_CLRSETBITS(I2C_DIV_CON_MASK << I2C ##bus## _DIV_CON_SHIFT, \
(clk_div - 1) << I2C ##bus## _DIV_CON_SHIFT)
uint32_t rkclk_i2c_clock_for_bus(unsigned int bus)
{
int src_clk_div, pll, freq;
/* i2c0,4,8 src clock from ppll, i2c1,2,3,5,6,7 src clock from gpll */
if (bus == 0 || bus == 4 || bus == 8) {
pll = PPLL_HZ;
freq = 338*MHz;
} else {
pll = GPLL_HZ;
freq = 198*MHz;
}
src_clk_div = pll / freq;
assert((src_clk_div - 1 <= 127) && (src_clk_div * freq == pll));
switch (bus) {
case 0:
write32(&pmucru_ptr->pmucru_clksel[2],
PMU_I2C_CLK_REG_VALUE(0, src_clk_div));
break;
case 1:
write32(&cru_ptr->clksel_con[61],
I2C_CLK_REG_VALUE(1, src_clk_div));
break;
case 2:
write32(&cru_ptr->clksel_con[62],
I2C_CLK_REG_VALUE(2, src_clk_div));
break;
case 3:
write32(&cru_ptr->clksel_con[63],
I2C_CLK_REG_VALUE(3, src_clk_div));
break;
case 4:
write32(&pmucru_ptr->pmucru_clksel[3],
PMU_I2C_CLK_REG_VALUE(4, src_clk_div));
break;
case 5:
write32(&cru_ptr->clksel_con[61],
I2C_CLK_REG_VALUE(5, src_clk_div));
break;
case 6:
write32(&cru_ptr->clksel_con[62],
I2C_CLK_REG_VALUE(6, src_clk_div));
break;
case 7:
write32(&cru_ptr->clksel_con[63],
I2C_CLK_REG_VALUE(7, src_clk_div));
break;
case 8:
write32(&pmucru_ptr->pmucru_clksel[2],
PMU_I2C_CLK_REG_VALUE(8, src_clk_div));
break;
default:
die("unknown i2c bus\n");
}
return freq;
}
static u32 clk_gcd(u32 a, u32 b)
{
while (b != 0) {
int r = b;
b = a % b;
a = r;
}
return a;
}
void rkclk_configure_i2s(unsigned int hz)
{
int n, d;
int v;
/**
* clk_i2s0_sel: divider output from fraction
* clk_i2s0_pll_sel source clock: cpll
* clk_i2s0_div_con: 1 (div+1)
*/
write32(&cru_ptr->clksel_con[28],
RK_CLRSETBITS(3 << 8 | 1 << 7 | 0x7f << 0,
1 << 8 | 0 << 7 | 0 << 0));
/* make sure and enable i2s0 path gates */
write32(&cru_ptr->clkgate_con[8],
RK_CLRBITS(1 << 12 | 1 << 5 | 1 << 4 | 1 << 3));
/* set frac divider */
v = clk_gcd(CPLL_HZ, hz);
n = (CPLL_HZ / v) & (0xffff);
d = (hz / v) & (0xffff);
assert(hz == (u64)CPLL_HZ * d / n);
write32(&cru_ptr->clksel_con[96], d << 16 | n);
/**
* clk_i2sout_sel clk_i2s
* clk_i2s_ch_sel: clk_i2s0
*/
write32(&cru_ptr->clksel_con[31],
RK_CLRSETBITS(1 << 2 | 3 << 0,
0 << 2 | 0 << 0));
}
void rkclk_configure_saradc(unsigned int hz)
{
int src_clk_div;
/* saradc src clk from 24MHz */
src_clk_div = 24 * MHz / hz;
assert((src_clk_div - 1 <= 255) && (src_clk_div * hz == 24 * MHz));
write32(&cru_ptr->clksel_con[26],
RK_CLRSETBITS(CLK_SARADC_DIV_CON_MASK <<
CLK_SARADC_DIV_CON_SHIFT,
(src_clk_div - 1) << CLK_SARADC_DIV_CON_SHIFT));
}
void rkclk_configure_vop_aclk(u32 vop_id, u32 aclk_hz)
{
u32 div;
void *reg_addr = vop_id ? &cru_ptr->clksel_con[48] :
&cru_ptr->clksel_con[47];
/* vop aclk source clk: cpll */
div = CPLL_HZ / aclk_hz;
assert((div - 1 <= 31) && (div * aclk_hz == CPLL_HZ));
write32(reg_addr, RK_CLRSETBITS(
ACLK_VOP_PLL_SEL_MASK << ACLK_VOP_PLL_SEL_SHIFT |
ACLK_VOP_DIV_CON_MASK << ACLK_VOP_DIV_CON_SHIFT,
ACLK_VOP_PLL_SEL_CPLL << ACLK_VOP_PLL_SEL_SHIFT |
(div - 1) << ACLK_VOP_DIV_CON_SHIFT));
}
int rkclk_configure_vop_dclk(u32 vop_id, u32 dclk_hz)
{
struct pll_div vpll_config = {0};
void *reg_addr = vop_id ? &cru_ptr->clksel_con[50] :
&cru_ptr->clksel_con[49];
/* vop dclk source from vpll, and equals to vpll(means div == 1) */
if (pll_para_config(dclk_hz, &vpll_config))
return -1;
rkclk_set_pll(&cru_ptr->vpll_con[0], &vpll_config);
write32(reg_addr, RK_CLRSETBITS(
DCLK_VOP_DCLK_SEL_MASK << DCLK_VOP_DCLK_SEL_SHIFT |
DCLK_VOP_PLL_SEL_MASK << DCLK_VOP_PLL_SEL_SHIFT |
DCLK_VOP_DIV_CON_MASK << DCLK_VOP_DIV_CON_SHIFT,
DCLK_VOP_DCLK_SEL_DIVOUT << DCLK_VOP_DCLK_SEL_SHIFT |
DCLK_VOP_PLL_SEL_VPLL << DCLK_VOP_PLL_SEL_SHIFT |
(1 - 1) << DCLK_VOP_DIV_CON_SHIFT));
return 0;
}
void rkclk_configure_tsadc(unsigned int hz)
{
int src_clk_div;
/* use 24M as src clock */
src_clk_div = OSC_HZ / hz;
assert((src_clk_div - 1 <= 1023) && (src_clk_div * hz == OSC_HZ));
write32(&cru_ptr->clksel_con[27], RK_CLRSETBITS(
CLK_TSADC_DIV_CON_MASK << CLK_TSADC_DIV_CON_SHIFT |
CLK_TSADC_SEL_MASK << CLK_TSADC_SEL_SHIFT,
src_clk_div << CLK_TSADC_DIV_CON_SHIFT |
CLK_TSADC_SEL_X24M << CLK_TSADC_SEL_SHIFT));
}
void rkclk_configure_emmc(void)
{
int src_clk_div;
int aclk_emmc = 148500*KHz;
int clk_emmc = 148500*KHz;
/* Select aclk_emmc source from GPLL */
src_clk_div = GPLL_HZ / aclk_emmc;
assert((src_clk_div - 1 <= 31) && (src_clk_div * aclk_emmc == GPLL_HZ));
write32(&cru_ptr->clksel_con[21],
RK_CLRSETBITS(ACLK_EMMC_PLL_SEL_MASK <<
ACLK_EMMC_PLL_SEL_SHIFT |
ACLK_EMMC_DIV_CON_MASK << ACLK_EMMC_DIV_CON_SHIFT,
ACLK_EMMC_PLL_SEL_GPLL <<
ACLK_EMMC_PLL_SEL_SHIFT |
(src_clk_div - 1) << ACLK_EMMC_DIV_CON_SHIFT));
/* Select clk_emmc source from GPLL too */
src_clk_div = GPLL_HZ / clk_emmc;
assert((src_clk_div - 1 <= 127) && (src_clk_div * clk_emmc == GPLL_HZ));
write32(&cru_ptr->clksel_con[22],
RK_CLRSETBITS(CLK_EMMC_PLL_MASK << CLK_EMMC_PLL_SHIFT |
CLK_EMMC_DIV_CON_MASK << CLK_EMMC_DIV_CON_SHIFT,
CLK_EMMC_PLL_SEL_GPLL << CLK_EMMC_PLL_SHIFT |
(src_clk_div - 1) << CLK_EMMC_DIV_CON_SHIFT));
}
int rkclk_was_watchdog_reset(void)
{
/* Bits 5 and 4 are "second" and "first" global watchdog reset. */
return read32(&cru_ptr->glb_rst_st) & 0x30;
}
void rkclk_configure_edp(unsigned int hz)
{
int src_clk_div;
src_clk_div = CPLL_HZ / hz;
assert((src_clk_div - 1 <= 63) && (src_clk_div * hz == CPLL_HZ));
write32(&cru_ptr->clksel_con[44],
RK_CLRSETBITS(CLK_PCLK_EDP_PLL_SEL_MASK <<
CLK_PCLK_EDP_PLL_SEL_SHIFT |
CLK_PCLK_EDP_DIV_CON_MASK <<
CLK_PCLK_EDP_DIV_CON_SHIFT,
CLK_PCLK_EDP_PLL_SEL_CPLL <<
CLK_PCLK_EDP_PLL_SEL_SHIFT |
(src_clk_div - 1) <<
CLK_PCLK_EDP_DIV_CON_SHIFT));
}
void rkclk_configure_mipi(void)
{
/* Enable clk_mipidphy_ref and clk_mipidphy_cfg */
write32(&cru_ptr->clkgate_con[11],
RK_CLRBITS(1 << 14 | 1 << 15));
/* Enable pclk_mipi_dsi0 */
write32(&cru_ptr->clkgate_con[29],
RK_CLRBITS(1 << 1));
}
|