1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
|
/*
* Copyright (c) 2013-2015, NVIDIA CORPORATION. All rights reserved.
* Copyright 2014 Google Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <arch/io.h>
#include <assert.h>
#include <console/console.h>
#include <delay.h>
#include <stdlib.h>
#include <soc/addressmap.h>
#include <soc/clk_rst.h>
#include <soc/clock.h>
#include <soc/clst_clk.h>
#include <soc/flow.h>
#include <soc/maincpu.h>
#include <soc/pmc.h>
#include <soc/sysctr.h>
static struct flow_ctlr *flow = (void *)TEGRA_FLOW_BASE;
static struct tegra_pmc_regs *pmc = (void *)TEGRA_PMC_BASE;
static struct sysctr_regs *sysctr = (void *)TEGRA_SYSCTR0_BASE;
enum {
PLLX_INDEX,
PLLC_INDEX,
PLLU_INDEX,
PLLDP_INDEX,
PLLD_INDEX,
PLL_MAX_INDEX,
};
struct pll_reg_info {
u32 *base_reg;
u32 *lock_enb_reg;
u32 lock_enb_val;
u32 *pll_lock_reg;
u32 pll_lock_val;
u32 *kcp_kvco_reg;
u32 n_shift:5; /* n bits location */
u32 m_shift:5; /* m bits location */
u32 p_shift:5; /* p bits location */
u32 kcp_shift:5; /* kcp bits location */
u32 kvco_shift:5; /* kvco bit location */
u32 rsvd:7;
} static const pll_reg_table[] = {
[PLLX_INDEX] = { .base_reg = CLK_RST_REG(pllx_base),
.lock_enb_reg = CLK_RST_REG(pllx_misc),
.lock_enb_val = PLLPAXS_MISC_LOCK_ENABLE,
.pll_lock_reg = CLK_RST_REG(pllx_base),
.pll_lock_val = PLL_BASE_LOCK,
.kcp_kvco_reg = CLK_RST_REG(pllx_misc3),
.n_shift = 8, .m_shift = 0, .p_shift = 20,
.kcp_shift = 1, .kvco_shift = 0, },
[PLLC_INDEX] = { .base_reg = CLK_RST_REG(pllc_base),
.lock_enb_reg = CLK_RST_REG(pllc_misc),
.pll_lock_reg = CLK_RST_REG(pllc_base),
.pll_lock_val = PLL_BASE_LOCK,
.n_shift = 10, .m_shift = 0, .p_shift = 20, },
[PLLU_INDEX] = { .base_reg = CLK_RST_REG(pllu_base),
.lock_enb_reg = CLK_RST_REG(pllu_misc),
.lock_enb_val = PLLU_MISC_LOCK_ENABLE,
.pll_lock_reg = CLK_RST_REG(pllu_base),
.pll_lock_val = PLL_BASE_LOCK,
.kcp_kvco_reg = CLK_RST_REG(pllu_misc),
.n_shift = 8, .m_shift = 0, .p_shift = 16,
.kcp_shift = 25, .kvco_shift = 24, },
[PLLDP_INDEX] = { .base_reg = CLK_RST_REG(plldp_base),
.lock_enb_reg = CLK_RST_REG(plldp_misc),
.lock_enb_val = PLLDPD2_MISC_LOCK_ENABLE,
.pll_lock_reg = CLK_RST_REG(plldp_base),
.pll_lock_val = PLL_BASE_LOCK,
.kcp_kvco_reg = CLK_RST_REG(plldp_misc),
.n_shift = 8, .m_shift = 0, .p_shift = 19,
.kcp_shift = 25, .kvco_shift = 24, },
[PLLD_INDEX] = { .base_reg = CLK_RST_REG(plld_base),
.lock_enb_reg = CLK_RST_REG(plld_misc),
.lock_enb_val = PLLD_MISC_LOCK_ENABLE | PLLD_MISC_CLK_ENABLE,
.pll_lock_reg = CLK_RST_REG(plld_base),
.pll_lock_val = PLL_BASE_LOCK,
.kcp_kvco_reg = CLK_RST_REG(plld_misc),
.n_shift = 11, .m_shift = 0, .p_shift = 20,
.kcp_shift = 23, .kvco_shift = 22, },
};
struct pll_fields {
u32 n:8; /* the feedback divider bits width */
u32 m:8; /* the input divider bits width */
u32 p:5; /* the post divider bits witch */
u32 kcp:2; /* charge pump gain control */
u32 kvco:1; /* vco gain */
u32 rsvd:8;
};
#define PLL_HAS_KCP_KVCO(_n, _m, _p, _kcp, _kvco) \
{.n = _n, .m = _m, .p = _p, .kcp = _kcp, .kvco = _kvco,}
#define PLL_NO_KCP_KVCO(_n, _m, _p) \
{.n = _n, .m = _m, .p = _p,}
#define PLLX(_n, _m, _p, _kcp, _kvco) \
[PLLX_INDEX] = PLL_HAS_KCP_KVCO(_n, _m, _p, _kcp, _kvco)
#define PLLC(_n, _m, _p) \
[PLLC_INDEX] = PLL_NO_KCP_KVCO(_n, _m, _p)
#define PLLU(_n, _m, _p, _kcp, _kvco) \
[PLLU_INDEX] = PLL_HAS_KCP_KVCO(_n, _m, _p, _kcp, _kvco)
#define PLLDP(_n, _m, _p, _kcp, _kvco) \
[PLLDP_INDEX] = PLL_HAS_KCP_KVCO(_n, _m, _p, _kcp, _kvco)
#define PLLD(_n, _m, _p, _kcp, _kvco) \
[PLLD_INDEX] = PLL_HAS_KCP_KVCO(_n, _m, _p, _kcp, _kvco)
/* This table defines the frequency dividers for every PLL to turn the external
* OSC clock into the frequencies defined by TEGRA_PLL*_KHZ in soc/clock.h.
* All PLLs have three dividers (n, m and p), with the governing formula for
* the output frequency being CF = (IN / m), VCO = CF * n and OUT = VCO / (2^p).
* All divisor configurations must meet the PLL's constraints for VCO and CF:
* PLLX: 12 MHz < CF < 50 MHz, 700 MHz < VCO < 3000 MHz
* PLLC: 12 MHz < CF < 50 MHz, 600 MHz < VCO < 1400 MHz
* PLLM: 12 MHz < CF < 50 MHz, 400 MHz < VCO < 1066 MHz
* PLLP: 1 MHz < CF < 6 MHz, 200 MHz < VCO < 700 MHz
* PLLD: 1 MHz < CF < 6 MHz, 500 MHz < VCO < 1000 MHz
* PLLU: 1 MHz < CF < 6 MHz, 480 MHz < VCO < 960 MHz
* PLLDP: 12 MHz < CF < 38 MHz, 600 MHz < VCO < 1200 MHz
* (values taken from Linux' drivers/clk/tegra/clk-tegra124.c).
* Target Frequencies:
* PLLX = CONFIG_PLLX_KHZ
* PLLC = 600 MHz
* PLLU = 240 MHz (As per TRM, m and n should be programmed to generate 480MHz
* VCO, and p should be programmed to do div-by-2.)
* PLLDP = 270 MHz (PLLDP treats p differently (OUT = VCO / (p + 1) for p < 6)).
* PLLM is set up dynamically by clock_sdram().
* PLLP is hardwired to 408 MHz in HW (unless we set BASE_OVRD).
*/
struct {
int khz;
struct pll_fields plls[PLL_MAX_INDEX];
} static osc_table[16] = {
[OSC_FREQ_12]{
.khz = 12000,
.plls = {
PLLX(TEGRA_PLLX_KHZ / 12000, 1, 0, 0, 0),
PLLC(50, 1, 0), /* 600 MHz */
PLLU(40, 1, 1, 0, 0), /* 240 MHz */
PLLDP(90, 1, 2, 0, 0), /* 270 MHz */
},
},
[OSC_FREQ_13]{
.khz = 13000,
.plls = {
PLLX(TEGRA_PLLX_KHZ / 13000, 1, 0, 0, 0),
PLLC(46, 1, 0), /* 598.0 MHz */
PLLU(74, 2, 1, 0, 0), /* 240.5 MHz */
PLLDP(83, 1, 3, 0, 0), /* 269.8 MHz */
},
},
[OSC_FREQ_16P8]{
.khz = 16800,
.plls = {
PLLX(TEGRA_PLLX_KHZ / 16800, 1, 0, 0, 0),
PLLC(71, 1, 1), /* 596.4 MHz */
PLLU(115, 4, 1, 0, 0), /* 241.5 MHz */
PLLDP(64, 1, 2, 0, 0), /* 268.8 MHz */
},
},
[OSC_FREQ_19P2]{
.khz = 19200,
.plls = {
PLLX(TEGRA_PLLX_KHZ / 19200, 1, 0, 0, 0),
PLLC(62, 1, 1), /* 595.2 MHz */
PLLU(25, 1, 1, 0, 0), /* 240.0 MHz */
PLLDP(56, 1, 2, 0, 0), /* 268.8 MHz */
},
},
[OSC_FREQ_26]{
.khz = 26000,
.plls = {
PLLX(TEGRA_PLLX_KHZ / 26000, 1, 0, 0, 0),
PLLC(23, 1, 0), /* 598.0 MHz */
PLLU(37, 2, 1, 0, 0), /* 240.5 MHz */
PLLDP(83, 2, 2, 0, 0), /* 269.8 MHz */
},
},
[OSC_FREQ_38P4]{
.khz = 38400,
.plls = {
PLLX(TEGRA_PLLX_KHZ / 38400, 1, 0, 0, 0),
PLLC(62, 2, 1), /* 595.2 MHz */
PLLU(25, 2, 1, 0, 0), /* 240 MHz */
PLLDP(56, 2, 2, 0, 0), /* 268.8 MHz */
},
},
[OSC_FREQ_48]{
.khz = 48000,
.plls = {
PLLX(TEGRA_PLLX_KHZ / 48000, 1, 0, 0, 0),
PLLC(50, 2, 1), /* 600 MHz */
PLLU(40, 4, 1, 0, 0), /* 240 MHz */
PLLDP(90, 2, 3, 0, 0), /* 270 MHz */
},
},
};
/* Get the oscillator frequency, from the corresponding hardware
* configuration field. This is actually a per-soc thing. Avoid the
* temptation to make it common.
*/
static u32 clock_get_osc_bits(void)
{
return (read32(CLK_RST_REG(osc_ctrl)) & OSC_FREQ_MASK) >> OSC_FREQ_SHIFT;
}
int clock_get_osc_khz(void)
{
return osc_table[clock_get_osc_bits()].khz;
}
int clock_get_pll_input_khz(void)
{
u32 osc_ctrl = read32(CLK_RST_REG(osc_ctrl));
u32 osc_bits = (osc_ctrl & OSC_FREQ_MASK) >> OSC_FREQ_SHIFT;
u32 pll_ref_div = (osc_ctrl & OSC_PREDIV_MASK) >> OSC_PREDIV_SHIFT;
return osc_table[osc_bits].khz >> pll_ref_div;
}
void clock_init_arm_generic_timer(void)
{
uint32_t freq = TEGRA_CLK_M_KHZ * 1000;
// Record the system timer frequency.
write32(&sysctr->cntfid0, freq);
// Enable the system counter.
uint32_t cntcr = read32(&sysctr->cntcr);
cntcr |= SYSCTR_CNTCR_EN | SYSCTR_CNTCR_HDBG;
write32(&sysctr->cntcr, cntcr);
}
#define SOR0_CLK_SEL0 (1 << 14)
#define SOR0_CLK_SEL1 (1 << 15)
void sor_clock_stop(void)
{
/* The Serial Output Resource clock has to be off
* before we start the plldp. Learned the hard way.
* FIXME: this has to be cleaned up a bit more.
* Waiting on some new info from Nvidia.
*/
clrbits_le32(CLK_RST_REG(clk_src_sor), SOR0_CLK_SEL0 | SOR0_CLK_SEL1);
}
void sor_clock_start(void)
{
/* uses PLLP, has a non-standard bit layout. */
setbits_le32(CLK_RST_REG(clk_src_sor), SOR0_CLK_SEL0);
}
static void init_pll(u32 index, u32 osc)
{
assert(index <= PLL_MAX_INDEX);
struct pll_fields *pll = &osc_table[osc].plls[index];
const struct pll_reg_info *pll_reg = &pll_reg_table[index];
u32 dividers = pll->n << pll_reg->n_shift |
pll->m << pll_reg->m_shift |
pll->p << pll_reg->p_shift;
/* Write dividers but BYPASS the PLL while we're messing with it. */
write32(pll_reg->base_reg, dividers | PLL_BASE_BYPASS);
/* Set Lock bit if needed. */
if (pll_reg->lock_enb_val)
setbits_le32(pll_reg->lock_enb_reg, pll_reg->lock_enb_val);
/* Set KCP/KVCO if needed. */
if (pll_reg->kcp_kvco_reg)
setbits_le32(pll_reg->kcp_kvco_reg,
pll->kcp << pll_reg->kcp_shift |
pll->kvco << pll_reg->kvco_shift);
/* Enable PLL and take it back out of BYPASS */
write32(pll_reg->base_reg, dividers | PLL_BASE_ENABLE);
/* Wait for lock ready */
if (pll_reg->lock_enb_val)
while (!(read32(pll_reg->pll_lock_reg) & pll_reg->pll_lock_val))
;
}
static void init_pllc(u32 osc)
{
/* Clear PLLC reset */
clrbits_le32(CLK_RST_REG(pllc_misc), PLLC_MISC_RESET);
/* Clear PLLC IDDQ */
clrbits_le32(CLK_RST_REG(pllc_misc_1), PLLC_MISC_1_IDDQ);
/* Max out the AVP clock before everything else (need PLLC for that). */
init_pll(PLLC_INDEX, osc);
/* wait for pllc_lock (not the normal bit 27) */
while (!(read32(CLK_RST_REG(pllc_base)) & PLLC_BASE_LOCK))
;
}
static void init_pllu(u32 osc)
{
/* Clear PLLU IDDQ */
clrbits_le32(CLK_RST_REG(pllu_misc), PLLU_MISC_IDDQ);
/* Wait 5 us */
udelay(5);
init_pll(PLLU_INDEX, osc);
}
static void init_utmip_pll(void)
{
int khz = clock_get_pll_input_khz();
/* CFG1 */
u32 pllu_enb_ct = 0;
u32 phy_stb_ct = div_round_up(khz, 300); /* phy_stb_ct = 128 */
write32(CLK_RST_REG(utmip_pll_cfg1),
pllu_enb_ct << UTMIP_CFG1_PLLU_ENABLE_DLY_COUNT_SHIFT |
UTMIP_CFG1_FORCE_PLLU_POWERDOWN_ENABLE |
UTMIP_CFG1_FORCE_PLL_ENABLE_POWERDOWN_DISABLE |
UTMIP_CFG1_FORCE_PLL_ACTIVE_POWERDOWN_DISABLE |
UTMIP_CFG1_FORCE_PLL_ENABLE_POWERUP_ENABLE |
phy_stb_ct << UTMIP_CFG1_XTAL_FREQ_COUNT_SHIFT);
/* CFG2 */
u32 pllu_stb_ct = 0;
u32 phy_act_ct = div_round_up(khz, 6400); /* phy_act_ct = 6 */
write32(CLK_RST_REG(utmip_pll_cfg2),
phy_act_ct << UTMIP_CFG2_PLL_ACTIVE_DLY_COUNT_SHIFT |
pllu_stb_ct << UTMIP_CFG2_PLLU_STABLE_COUNT_SHIFT |
UTMIP_CFG2_FORCE_PD_SAMP_D_POWERDOWN_DISABLE |
UTMIP_CFG2_FORCE_PD_SAMP_C_POWERDOWN_DISABLE |
UTMIP_CFG2_FORCE_PD_SAMP_B_POWERDOWN_DISABLE |
UTMIP_CFG2_FORCE_PD_SAMP_A_POWERDOWN_DISABLE |
UTMIP_CFG2_FORCE_PD_SAMP_D_POWERUP_ENABLE |
UTMIP_CFG2_FORCE_PD_SAMP_C_POWERUP_ENABLE |
UTMIP_CFG2_FORCE_PD_SAMP_B_POWERUP_ENABLE |
UTMIP_CFG2_FORCE_PD_SAMP_A_POWERUP_ENABLE);
printk(BIOS_DEBUG, "%s: UTMIPLL_HW_PWRDN_CFG0:0x%08x\n",
__func__, read32(CLK_RST_REG(utmipll_hw_pwrdn_cfg0)));
printk(BIOS_DEBUG, "%s: UTMIP_PLL_CFG0:0x%08x\n",
__func__, read32(CLK_RST_REG(utmip_pll_cfg0)));
printk(BIOS_DEBUG, "%s: UTMIP_PLL_CFG1:0x%08x\n",
__func__, read32(CLK_RST_REG(utmip_pll_cfg1)));
printk(BIOS_DEBUG, "%s: UTMIP_PLL_CFG2:0x%08x\n",
__func__, read32(CLK_RST_REG(utmip_pll_cfg2)));
}
/* Graphics just has to be different. There's a few more bits we
* need to set in here, but it makes sense just to restrict all the
* special bits to this one function.
*/
static void graphics_pll(void)
{
int osc = clock_get_osc_bits();
u32 *cfg = CLK_RST_REG(plldp_ss_cfg);
/* the vendor code sets the dither bit (28)
* an undocumented bit (24)
* and clamp while we mess with it (22)
* Dither is pretty important to display port
* so we really do need to handle these bits.
* I'm not willing to not clamp it, even if
* it might "mostly work" with it not set,
* I don't want to find out in a few months
* that it is needed.
*/
u32 scfg = (1<<28) | (1<<24) | (1<<22);
write32(cfg, scfg);
init_pll(PLLDP_INDEX, osc);
/* leave dither and undoc bits set, release clamp */
scfg = (1<<28) | (1<<24);
write32(cfg, scfg);
}
/*
* Init PLLD clock source.
*
* @frequency: the requested plld frequency
*
* Return the plld frequency if success, otherwise return 0.
*/
u32 clock_configure_plld(u32 frequency)
{
/**
* plld (fo) = vco >> p, where 500MHz < vco < 1000MHz
* = (cf * n) >> p, where 1MHz < cf < 6MHz
* = ((ref / m) * n) >> p
*
* Iterate the possible values of p (3 bits, 2^7) to find out a minimum
* safe vco, then find best (m, n). since m has only 5 bits, we can
* iterate all possible values. Note Tegra1xx supports 11 bits for n,
* but our pll_fields has only 10 bits for n.
*
* Note values undershoot or overshoot target output frequency may not
* work if the values are not in "safe" range by panel specification.
*/
struct pll_fields *plld;
u32 ref = clock_get_pll_input_khz() * 1000, m, n, p = 0;
u32 cf, vco, rounded_rate = frequency;
u32 diff, best_diff;
const u32 max_m = 1 << 8, max_n = 1 << 8, max_p = 1 << 3,
mhz = 1000 * 1000, min_vco = 500 * mhz, max_vco = 1000 * mhz,
min_cf = 1 * mhz, max_cf = 6 * mhz;
u32 osc = clock_get_osc_bits();
plld = &osc_table[osc].plls[PLLD_INDEX];
for (vco = frequency; vco < min_vco && p < max_p; p++)
vco <<= 1;
if (vco < min_vco || vco > max_vco) {
printk(BIOS_ERR, "%s: Cannot find out a supported VCO"
" for Frequency (%u).\n", __func__, frequency);
return 0;
}
plld->p = p;
best_diff = vco;
for (m = 1; m < max_m && best_diff; m++) {
cf = ref / m;
if (cf < min_cf)
break;
if (cf > max_cf)
continue;
n = vco / cf;
if (n >= max_n)
continue;
diff = vco - n * cf;
if (n + 1 < max_n && diff > cf / 2) {
n++;
diff = cf - diff;
}
if (diff >= best_diff)
continue;
best_diff = diff;
plld->m = m;
plld->n = n;
}
if (best_diff) {
printk(BIOS_WARNING, "%s: Failed to match output frequency %u, "
"best difference is %u.\n", __func__, frequency,
best_diff);
rounded_rate = (ref / plld->m * plld->n) >> plld->p;
}
printk(BIOS_DEBUG, "%s: PLLD=%u ref=%u, m/n/p=%u/%u/%u\n",
__func__, rounded_rate, ref, plld->m, plld->n, plld->p);
/* Write misc1 and misc */
write32(CLK_RST_REG(plld_misc1), PLLD_MISC1_SETUP);
write32(CLK_RST_REG(plld_misc), (PLLD_MISC_EN_SDM | PLLD_MISC_SDM_DIN));
/* configure PLLD */
init_pll(PLLD_INDEX, osc);
if (rounded_rate != frequency)
printk(BIOS_DEBUG, "PLLD rate: %u vs %u\n", rounded_rate,
frequency);
return rounded_rate;
}
/*
* Initialize the UART and use PLLP as clock source. PLLP is hardwired to 408
* MHz in HW (unless we set BASE_OVRD). We override the 16.0 UART divider with
* the 15.1 CLK_SOURCE divider to get more precision. The 1843(KHZ) is
* calculated thru BAUD_RATE*16/1000, ie, 115200*16/1000.
*/
void clock_early_uart(void)
{
write32(CLK_RST_REG(clk_src_uarta),
CLK_SRC_DEV_ID(UARTA, PLLP) << CLK_SOURCE_SHIFT |
CLK_UART_DIV_OVERRIDE |
CLK_DIVIDER(TEGRA_PLLP_KHZ, 1843));
clock_enable_clear_reset_l(CLK_L_UARTA);
}
/* Enable output clock (CLK1~3) for external peripherals. */
void clock_external_output(int clk_id)
{
switch (clk_id) {
case 1:
setbits_le32(&pmc->clk_out_cntrl, 1 << 2);
break;
case 2:
setbits_le32(&pmc->clk_out_cntrl, 1 << 10);
break;
case 3:
setbits_le32(&pmc->clk_out_cntrl, 1 << 18);
break;
default:
printk(BIOS_CRIT, "ERROR: Unknown output clock id %d\n",
clk_id);
break;
}
}
/* Start PLLM for SDRAM. */
void clock_sdram(u32 m, u32 n, u32 p, u32 setup, u32 kvco, u32 kcp,
u32 stable_time, u32 emc_source, u32 same_freq)
{
u32 misc1 = ((setup << PLLM_MISC1_SETUP_SHIFT)),
misc2 = ((kvco << PLLM_MISC2_KVCO_SHIFT) |
(kcp << PLLM_MISC2_KCP_SHIFT) |
PLLM_EN_LCKDET),
base;
if (same_freq)
emc_source |= CLK_SOURCE_EMC_MC_EMC_SAME_FREQ;
else
emc_source &= ~CLK_SOURCE_EMC_MC_EMC_SAME_FREQ;
/*
* Note PLLM_BASE.PLLM_OUT1_RSTN must be in RESET_ENABLE mode, and
* PLLM_BASE.ENABLE must be in DISABLE state (both are the default
* values after coldboot reset).
*/
write32(CLK_RST_REG(pllm_misc1), misc1);
write32(CLK_RST_REG(pllm_misc2), misc2);
/* PLLM.BASE needs BYPASS=0, different from general init_pll */
base = read32(CLK_RST_REG(pllm_base));
base &= ~(PLLCMX_BASE_DIVN_MASK | PLLCMX_BASE_DIVM_MASK |
PLLM_BASE_DIVP_MASK | PLL_BASE_BYPASS);
base |= ((m << PLL_BASE_DIVM_SHIFT) | (n << PLL_BASE_DIVN_SHIFT) |
(p << PLL_BASE_DIVP_SHIFT));
write32(CLK_RST_REG(pllm_base), base);
setbits_le32(CLK_RST_REG(pllm_base), PLL_BASE_ENABLE);
/* stable_time is required, before we can start to check lock. */
udelay(stable_time);
while (!(read32(CLK_RST_REG(pllm_base)) & PLL_BASE_LOCK))
udelay(1);
/*
* After PLLM reports being locked, we have to delay 10us before
* enabling PLLM_OUT.
*/
udelay(10);
/* Enable and start MEM(MC) and EMC. */
clock_enable_clear_reset(0, CLK_H_MEM | CLK_H_EMC, 0, 0, 0, 0, 0);
write32(CLK_RST_REG(clk_src_emc), emc_source);
udelay(IO_STABILIZATION_DELAY);
}
void clock_halt_avp(void)
{
for (;;) {
write32(&flow->halt_cop_events,
FLOW_EVENT_JTAG | FLOW_EVENT_LIC_IRQ |
FLOW_EVENT_GIC_IRQ | FLOW_MODE_WAITEVENT);
}
}
void clock_init(void)
{
u32 osc = clock_get_osc_bits();
/* clk_m = osc/2 */
clrsetbits_le32(CLK_RST_REG(spare_reg0), CLK_M_DIVISOR_MASK,
CLK_M_DIVISOR_BY_2);
/* TIMERUS needs to be adjusted for new 19.2MHz CLK_M rate */
write32((void *)TEGRA_TMRUS_BASE + TIMERUS_USEC_CFG,
TIMERUS_USEC_CFG_19P2_CLK_M);
init_pllc(osc);
/* Typical ratios are 1:2:2 or 1:2:3 sclk:hclk:pclk (See: APB DMA
* features section in the TRM). */
write32(CLK_RST_REG(clk_sys_rate), /* pclk = hclk = sclk/2 */
1 << HCLK_DIVISOR_SHIFT | 0 << PCLK_DIVISOR_SHIFT);
write32(CLK_RST_REG(pllc_out),
CLK_DIVIDER(TEGRA_PLLC_KHZ, 300000) << PLL_OUT_RATIO_SHIFT |
PLL_OUT_CLKEN | PLL_OUT_RSTN);
write32(CLK_RST_REG(sclk_brst_pol), /* sclk = 300 MHz */
SCLK_SYS_STATE_RUN << SCLK_SYS_STATE_SHIFT |
SCLK_SOURCE_PLLC_OUT1 << SCLK_RUN_SHIFT);
/* Change the oscillator drive strength (from U-Boot -- why?) */
clrsetbits_le32(CLK_RST_REG(osc_ctrl), OSC_XOFS_MASK,
OSC_DRIVE_STRENGTH << OSC_XOFS_SHIFT);
/*
* Ambiguous quote from u-boot. TODO: what's this mean?
* "should update same value in PMC_OSC_EDPD_OVER XOFS
* field for warmboot "
*/
clrsetbits_le32(&pmc->osc_edpd_over, PMC_OSC_EDPD_OVER_XOFS_MASK,
OSC_DRIVE_STRENGTH << PMC_OSC_EDPD_OVER_XOFS_SHIFT);
/* Disable IDDQ for PLLX before we set it up (from U-Boot -- why?) */
clrbits_le32(CLK_RST_REG(pllx_misc3), PLLX_IDDQ_MASK);
/* Set up PLLP_OUT(1|2|3|4) divisor to generate (9.6|48|102|204)MHz */
write32(CLK_RST_REG(pllp_outa),
(CLK_DIVIDER(TEGRA_PLLP_KHZ, 9600) << PLL_OUT_RATIO_SHIFT |
PLL_OUT_OVR | PLL_OUT_CLKEN | PLL_OUT_RSTN) << PLL_OUT1_SHIFT |
(CLK_DIVIDER(TEGRA_PLLP_KHZ, 48000) << PLL_OUT_RATIO_SHIFT |
PLL_OUT_OVR | PLL_OUT_CLKEN | PLL_OUT_RSTN) << PLL_OUT2_SHIFT);
write32(CLK_RST_REG(pllp_outb),
(CLK_DIVIDER(TEGRA_PLLP_KHZ, TEGRA_PLLP_OUT3_KHZ) <<
PLL_OUT_RATIO_SHIFT |
PLL_OUT_OVR | PLL_OUT_CLKEN | PLL_OUT_RSTN) << PLL_OUT3_SHIFT |
(CLK_DIVIDER(TEGRA_PLLP_KHZ, 204000) << PLL_OUT_RATIO_SHIFT |
PLL_OUT_OVR | PLL_OUT_CLKEN | PLL_OUT_RSTN) << PLL_OUT4_SHIFT);
/* init pllx */
init_pll(PLLX_INDEX, osc);
write32(CLK_RST_REG(cclk_brst_pol), CCLK_BURST_POLICY_VAL);
/* init pllu */
init_pllu(osc);
init_utmip_pll();
graphics_pll();
}
void clock_grp_enable_clear_reset(u32 val, u32* clk_enb_set_reg,
u32 *rst_dev_clr_reg)
{
write32(clk_enb_set_reg, val);
udelay(IO_STABILIZATION_DELAY);
write32(rst_dev_clr_reg, val);
}
static u32 * const clk_enb_set_arr[DEV_CONFIG_BLOCKS] = {
CLK_RST_REG(clk_enb_l_set),
CLK_RST_REG(clk_enb_h_set),
CLK_RST_REG(clk_enb_u_set),
CLK_RST_REG(clk_enb_v_set),
CLK_RST_REG(clk_enb_w_set),
CLK_RST_REG(clk_enb_x_set),
CLK_RST_REG(clk_enb_y_set),
};
static u32 * const clk_enb_clr_arr[DEV_CONFIG_BLOCKS] = {
CLK_RST_REG(clk_enb_l_clr),
CLK_RST_REG(clk_enb_h_clr),
CLK_RST_REG(clk_enb_u_clr),
CLK_RST_REG(clk_enb_v_clr),
CLK_RST_REG(clk_enb_w_clr),
CLK_RST_REG(clk_enb_x_clr),
CLK_RST_REG(clk_enb_y_clr),
};
static u32 * const rst_dev_set_arr[DEV_CONFIG_BLOCKS] = {
CLK_RST_REG(rst_dev_l_set),
CLK_RST_REG(rst_dev_h_set),
CLK_RST_REG(rst_dev_u_set),
CLK_RST_REG(rst_dev_v_set),
CLK_RST_REG(rst_dev_w_set),
CLK_RST_REG(rst_dev_x_set),
CLK_RST_REG(rst_dev_y_set),
};
static u32 * const rst_dev_clr_arr[DEV_CONFIG_BLOCKS] = {
CLK_RST_REG(rst_dev_l_clr),
CLK_RST_REG(rst_dev_h_clr),
CLK_RST_REG(rst_dev_u_clr),
CLK_RST_REG(rst_dev_v_clr),
CLK_RST_REG(rst_dev_w_clr),
CLK_RST_REG(rst_dev_x_clr),
CLK_RST_REG(rst_dev_y_clr),
};
static void clock_write_regs(u32 * const regs[DEV_CONFIG_BLOCKS],
u32 bits[DEV_CONFIG_BLOCKS])
{
int i = 0;
for (; i < DEV_CONFIG_BLOCKS; i++)
if (bits[i])
write32(regs[i], bits[i]);
}
void clock_enable_regs(u32 bits[DEV_CONFIG_BLOCKS])
{
clock_write_regs(clk_enb_set_arr, bits);
}
void clock_disable_regs(u32 bits[DEV_CONFIG_BLOCKS])
{
clock_write_regs(clk_enb_clr_arr, bits);
}
void clock_set_reset_regs(u32 bits[DEV_CONFIG_BLOCKS])
{
clock_write_regs(rst_dev_set_arr, bits);
}
void clock_clr_reset_regs(u32 bits[DEV_CONFIG_BLOCKS])
{
clock_write_regs(rst_dev_clr_arr, bits);
}
void clock_enable_clear_reset(u32 l, u32 h, u32 u, u32 v, u32 w, u32 x, u32 y)
{
clock_enable(l, h, u, v, w, x, y);
/* Give clocks time to stabilize. */
udelay(IO_STABILIZATION_DELAY);
clock_clr_reset(l, h, u, v, w, x, y);
}
static void clock_reset_dev(u32 *setaddr, u32 *clraddr, u32 bit)
{
write32(setaddr, bit);
udelay(LOGIC_STABILIZATION_DELAY);
write32(clraddr, bit);
}
void clock_reset_l(u32 bit)
{
clock_reset_dev(CLK_RST_REG(rst_dev_l_set), CLK_RST_REG(rst_dev_l_clr),
bit);
}
void clock_reset_h(u32 bit)
{
clock_reset_dev(CLK_RST_REG(rst_dev_h_set), CLK_RST_REG(rst_dev_h_clr),
bit);
}
void clock_reset_u(u32 bit)
{
clock_reset_dev(CLK_RST_REG(rst_dev_u_set), CLK_RST_REG(rst_dev_u_clr),
bit);
}
void clock_reset_v(u32 bit)
{
clock_reset_dev(CLK_RST_REG(rst_dev_v_set), CLK_RST_REG(rst_dev_v_clr),
bit);
}
void clock_reset_w(u32 bit)
{
clock_reset_dev(CLK_RST_REG(rst_dev_w_set), CLK_RST_REG(rst_dev_w_clr),
bit);
}
void clock_reset_x(u32 bit)
{
clock_reset_dev(CLK_RST_REG(rst_dev_x_set), CLK_RST_REG(rst_dev_x_clr),
bit);
}
void clock_reset_y(u32 bit)
{
clock_reset_dev(CLK_RST_REG(rst_dev_y_set), CLK_RST_REG(rst_dev_y_clr),
bit);
}
/* Enable/unreset all audio toys under AHUB */
void clock_enable_audio(void)
{
/*
* As per NVIDIA hardware team, we need to take ALL audio devices
* connected to AHUB (AHUB, APB2APE, I2S, SPDIF, etc.) out of reset
* and clock-enabled, otherwise reading AHUB devices (in our case,
* I2S/APBIF/AUDIO<XBAR>) will hang.
*/
clock_enable_clear_reset(CLK_L_I2S1 | CLK_L_I2S2 | CLK_L_I2S3 | CLK_L_SPDIF,
0, 0,
CLK_V_I2S4 | CLK_V_I2S5 | CLK_V_AHUB | CLK_V_APB2APE,
0, 0, 0);
}
|