1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
|
/*
* This file is part of the coreboot project.
*
* Copyright 2014 Google Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <string.h>
#include <console/console.h>
#include <arch/io.h>
#include <cbfs.h>
#include <timer.h>
#include <soc/addressmap.h>
#include <soc/romstage.h>
#include "clk_rst.h"
#include "ccplex.h"
#include "flow.h"
#include "mc.h"
#include "pmc.h"
#include "power.h"
#define EVP_CPU_RESET_VECTOR (void *)(uintptr_t)(TEGRA_EVP_BASE + 0x100)
#define CLK_RST_REGS (void *)(uintptr_t)(TEGRA_CLK_RST_BASE)
#define PMC_REGS (void *)(uintptr_t)(TEGRA_PMC_BASE)
#define MTS_FILE_NAME "mts"
static int ccplex_start(void)
{
struct stopwatch sw;
const long timeout_ms = 1500;
const uint32_t handshake_mask = 1;
const uint32_t cxreset1_mask = 1 << 21;
uint32_t reg;
struct tegra_pmc_regs * const pmc = PMC_REGS;
struct clk_rst_ctlr * const clk_rst = CLK_RST_REGS;
/* Set the handshake bit to be knocked down. */
write32(handshake_mask, &pmc->scratch118);
/* Assert nCXRSET[1] */
reg = read32(&clk_rst->rst_cpu_cmplx_set);
reg |= cxreset1_mask;
write32(reg, &clk_rst->rst_cpu_cmplx_set);
stopwatch_init_msecs_expire(&sw, timeout_ms);
while (1) {
reg = read32(&pmc->scratch118);
/* Wait for the bit to be knocked down. */
if ((reg & handshake_mask) != handshake_mask)
break;
if (stopwatch_expired(&sw)) {
printk(BIOS_DEBUG, "MTS handshake timeout.\n");
return -1;
}
}
printk(BIOS_DEBUG, "MTS handshake took %ld us.\n",
stopwatch_duration_usecs(&sw));
return 0;
}
int ccplex_load_mts(void)
{
struct cbfs_file file;
ssize_t offset;
size_t nread;
/*
* MTS location is hard coded to this magic address. The hardware will
* take the MTS from this location and place it in the final resting
* place in the carveout region.
*/
void * const mts = (void *)(uintptr_t)MTS_LOAD_ADDRESS;
struct cbfs_media *media = CBFS_DEFAULT_MEDIA;
offset = cbfs_locate_file(media, &file, MTS_FILE_NAME);
if (offset < 0) {
printk(BIOS_DEBUG, "MTS file not found: %s\n", MTS_FILE_NAME);
return -1;
}
/* Read MTS file into the carveout region. */
nread = cbfs_read(media, mts, offset, file.len);
if (nread != file.len) {
printk(BIOS_DEBUG, "MTS bytes read (%zu) != file length(%u)!\n",
nread, file.len);
return -1;
}
printk(BIOS_DEBUG, "MTS: %zu bytes loaded @ %p\n", nread, mts);
return ccplex_start();
}
static void enable_cpu_clocks(void)
{
struct clk_rst_ctlr * const clk_rst = CLK_RST_REGS;
uint32_t reg;
reg = read32(&clk_rst->clk_enb_l_set);
reg |= CLK_ENB_CPU;
write32(reg, &clk_rst->clk_enb_l_set);
reg = read32(&clk_rst->clk_enb_v_set);
reg |= SET_CLK_ENB_CPUG_ENABLE | SET_CLK_ENB_CPULP_ENABLE;
write32(reg, &clk_rst->clk_enb_v_set);
}
static void enable_cpu_power_partitions(void)
{
/* Bring up fast cluster, non-CPU, CPU0, and CPU1 partitions. */
power_ungate_partition(POWER_PARTID_CRAIL);
power_ungate_partition(POWER_PARTID_C0NC);
power_ungate_partition(POWER_PARTID_CE0);
power_ungate_partition(POWER_PARTID_CE1);
}
static void request_ram_repair(void)
{
struct flow_ctlr * const flow = (void *)(uintptr_t)TEGRA_FLOW_BASE;
const uint32_t req = 1 << 0;
const uint32_t sts = 1 << 1;
uint32_t reg;
struct stopwatch sw;
printk(BIOS_DEBUG, "Requesting RAM repair.\n");
reg = read32(&flow->ram_repair);
reg |= req;
write32(reg, &flow->ram_repair);
stopwatch_init(&sw);
while ((read32(&flow->ram_repair) & sts) != sts)
;
printk(BIOS_DEBUG, "RAM repair complete in %ld usecs.\n",
stopwatch_duration_usecs(&sw));
}
void ccplex_cpu_prepare(void)
{
enable_cpu_clocks();
enable_cpu_power_partitions();
mainboard_configure_pmc();
mainboard_enable_vdd_cpu();
request_ram_repair();
}
static void start_cpu0(void)
{
struct clk_rst_ctlr * const clk_rst = CLK_RST_REGS;
/* Clear fast CPU partition reset. */
write32(CRC_RST_CPUG_CLR_NONCPU, &clk_rst->rst_cpug_cmplx_clr);
/* Clear reset of CPU0 components. */
write32(CRC_RST_CPUG_CLR_CPU0 |
CRC_RST_CPUG_CLR_DBG0 |
CRC_RST_CPUG_CLR_CORE0 |
CRC_RST_CPUG_CLR_CX0 |
CRC_RST_CPUG_CLR_L2 |
CRC_RST_CPUG_CLR_PDBG, &clk_rst->rst_cpug_cmplx_clr);
}
/*
* The Denver cores come up in aarch32 mode. In order to transition to
* 64-bit mode a write to the RMR (reset mangement register) with the
* AA64 bit (0) set while setting RR (reset request bit 1).
*/
static const uint32_t aarch32to64[] = {
0xe3a00003, /* mov r0, #3 */
0xee0c0f50, /* mcr 15, 0, r0, cr12, cr0, {2} */
};
static void load_aarch64_trampoline(void *addr)
{
const size_t trampoline_size = sizeof(aarch32to64);
const void * const trampoline = &aarch32to64[0];
/* Copy trampoline into ram. */
memcpy(addr, trampoline, trampoline_size);
}
void ccplex_cpu_start(void *entry_addr)
{
struct tegra_pmc_regs * const pmc = PMC_REGS;
void * const evp_cpu_reset_vector = EVP_CPU_RESET_VECTOR;
void *trampoline;
uint32_t entry_point;
/*
* Just place the trampoline at the MTS_LOAD_ADDRESS. This assumes
* the program to run doesn't overlap this address.
*/
const uint32_t trampoline_addr = MTS_LOAD_ADDRESS;
trampoline = (void *)(uintptr_t)trampoline_addr;
/* The arm entry points have bit 0 set if thumb code. Mask that off. */
entry_point = (uint32_t)(uintptr_t)entry_addr;
load_aarch64_trampoline(trampoline);
/* Warm reset vector is pulled from the PMC scratch registers. */
write32(entry_point, &pmc->secure_scratch34);
write32(0, &pmc->secure_scratch35);
printk(BIOS_DEBUG, "Starting CPU0 @ %p trampolining to %08x.\n",
trampoline, entry_point);
/*
* The Denver cores start in 32-bit mode. Therefore a trampoline
* is needed to get into 64-bit mode. Point the cold reset vector
* to the trampoline location.
*/
write32(trampoline_addr, evp_cpu_reset_vector);
start_cpu0();
}
|