aboutsummaryrefslogtreecommitdiff
path: root/src/soc/intel/skylake/me.c
blob: 577437291f384b4a86e3c08eab11becf0ced7b00 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
/*
 * This file is part of the coreboot project.
 *
 * Copyright (C) 2016 Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <arch/io.h>
#include <commonlib/helpers.h>
#include <console/console.h>
#include <device/pci.h>
#include <device/pci_def.h>
#include <device/pci_ids.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <soc/iomap.h>
#include <soc/pci_devs.h>
#include <soc/me.h>
#include <delay.h>
#include <timer.h>

static inline u32 me_read_config32(int offset)
{
	return pci_read_config32(PCH_DEV_ME, offset);
}

static inline void me_write_config32(int offset, u32 value)
{
	pci_write_config32(PCH_DEV_ME, offset, value);
}

static inline u32 me_read_mmio32(int offset)
{
	return read32((void *)(HECI1_BASE_ADDRESS + offset));
}

static inline void me_write_mmio32(u16 offset, u32 value)
{
	write32((void *)(HECI1_BASE_ADDRESS + offset), value);
}

/* HFSTS1[3:0] Current Working State Values */
static const char * const me_cws_values[] = {
	[ME_HFS_CWS_RESET]	= "Reset",
	[ME_HFS_CWS_INIT]	= "Initializing",
	[ME_HFS_CWS_REC]	= "Recovery",
	[3]			= "Unknown (3)",
	[4]			= "Unknown (4)",
	[ME_HFS_CWS_NORMAL]	= "Normal",
	[ME_HFS_CWS_WAIT]	= "Platform Disable Wait",
	[ME_HFS_CWS_TRANS]	= "OP State Transition",
	[ME_HFS_CWS_INVALID]	= "Invalid CPU Plugged In",
	[9]			= "Unknown (9)",
	[10]			= "Unknown (10)",
	[11]			= "Unknown (11)",
	[12]			= "Unknown (12)",
	[13]			= "Unknown (13)",
	[14]			= "Unknown (14)",
	[15]			= "Unknown (15)",
};

/* HFSTS1[8:6] Current Operation State Values */
static const char * const me_opstate_values[] = {
	[ME_HFS_STATE_PREBOOT]	= "Preboot",
	[ME_HFS_STATE_M0_UMA]	= "M0 with UMA",
	[ME_HFS_STATE_M3]	= "M3 without UMA",
	[ME_HFS_STATE_M0]	= "M0 without UMA",
	[ME_HFS_STATE_BRINGUP]	= "Bring up",
	[ME_HFS_STATE_ERROR]	= "M0 without UMA but with error"
};

/* HFSTS1[19:16] Current Operation Mode Values */
static const char * const me_opmode_values[] = {
	[ME_HFS_MODE_NORMAL]	= "Normal",
	[ME_HFS_MODE_DEBUG]	= "Debug",
	[ME_HFS_MODE_DIS]	= "Soft Temporary Disable",
	[ME_HFS_MODE_OVER_JMPR]	= "Security Override via Jumper",
	[ME_HFS_MODE_OVER_MEI]	= "Security Override via MEI Message"
};

/* HFSTS1[15:12] Error Code Values */
static const char * const me_error_values[] = {
	[ME_HFS_ERROR_NONE]	= "No Error",
	[ME_HFS_ERROR_UNCAT]	= "Uncategorized Failure",
	[ME_HFS_ERROR_IMAGE]	= "Image Failure",
	[ME_HFS_ERROR_DEBUG]	= "Debug Failure"
};

/* HFSTS2[31:28] ME Progress Code */
static const char * const me_progress_values[] = {
	[ME_HFS2_PHASE_ROM]		= "ROM Phase",
	[1]				= "Unknown (1)",
	[ME_HFS2_PHASE_UKERNEL]		= "uKernel Phase",
	[ME_HFS2_PHASE_BUP]		= "BUP Phase",
	[4]				= "Unknown (4)",
	[5]				= "Unknown (5)",
	[ME_HFS2_PHASE_HOST_COMM]	= "Host Communication",
	[7]				= "Unknown (7)",
	[8]				= "Unknown (8)"
};

/* HFSTS2[27:24] Power Management Event */
static const char * const me_pmevent_values[] = {
	[ME_HFS2_PMEVENT_CLEAN_MOFF_MX_WAKE] =
	"Clean Moff->Mx wake",
	[ME_HFS2_PMEVENT_MOFF_MX_WAKE_ERROR] =
	"Moff->Mx wake after an error",
	[ME_HFS2_PMEVENT_CLEAN_GLOBAL_RESET] =
	"Clean global reset",
	[ME_HFS2_PMEVENT_CLEAN_GLOBAL_RESET_ERROR] =
	"Global reset after an error",
	[ME_HFS2_PMEVENT_CLEAN_ME_RESET] =
	"Clean Intel ME reset",
	[ME_HFS2_PMEVENT_ME_RESET_EXCEPTION] =
	"Intel ME reset due to exception",
	[ME_HFS2_PMEVENT_PSEUDO_ME_RESET] =
	"Pseudo-global reset",
	[ME_HFS2_PMEVENT_CM0_CM3] =
	"CM0->CM3",
	[ME_HFS2_PMEVENT_CM3_CM0] =
	"CM3->CM0",
	[ME_HFS2_PMEVENT_NON_PWR_CYCLE_RESET] =
	"Non-power cycle reset",
	[ME_HFS2_PMEVENT_PWR_CYCLE_RESET_M3] =
	"Power cycle reset through M3",
	[ME_HFS2_PMEVENT_PWR_CYCLE_RESET_MOFF] =
	"Power cycle reset through Moff",
	[ME_HFS2_PMEVENT_CMX_CMOFF] =
	"Cx/Mx->Cx/Moff",
	[ME_HFS2_PMEVENT_CM0_CM0PG] =
	"CM0->CM0PG",
	[ME_HFS2_PMEVENT_CM3_CM3PG] =
	"CM3->CM3PG",
	[ME_HFS2_PMEVENT_CM0PG_CM0] =
	"CM0PG->CM0"

};

/* Progress Code 0 states */
static const char * const me_progress_rom_values[] = {
	[ME_HFS2_STATE_ROM_BEGIN]	= "BEGIN",
	[ME_HFS2_STATE_ROM_DISABLE]	= "DISABLE"
};

/* Progress Code 1 states */
static const char * const me_progress_bup_values[] = {
	[ME_HFS2_STATE_BUP_INIT] =
	"Initialization starts",
	[ME_HFS2_STATE_BUP_DIS_HOST_WAKE] =
	"Disable the host wake event",
	[ME_HFS2_STATE_BUP_CG_ENABLE] =
	"Enabling CG for cset",
	[ME_HFS2_STATE_BUP_PM_HND_EN] =
	"Enabling PM handshaking",
	[ME_HFS2_STATE_BUP_FLOW_DET] =
	"Flow determination start process",
	[ME_HFS2_STATE_BUP_PMC_PATCHING] =
	"PMC Patching process",
	[ME_HFS2_STATE_BUP_GET_FLASH_VSCC] =
	"Get VSCC params",
	[ME_HFS2_STATE_BUP_SET_FLASH_VSCC] =
	"Set VSCC params",
	[ME_HFS2_STATE_BUP_VSCC_ERR] =
	"Error reading/matching the VSCC table in the descriptor",
	[ME_HFS2_STATE_BUP_EFSS_INIT] =
	"Initialize EFFS",
	[ME_HFS2_STATE_BUP_CHECK_STRAP] =
	"Check to see if straps say ME DISABLED",
	[ME_HFS2_STATE_BUP_PWR_OK_TIMEOUT] =
	"Timeout waiting for PWROK",
	[ME_HFS2_STATE_BUP_STRAP_DIS] =
	"EFFS says ME disabled",
	[ME_HFS2_STATE_BUP_MANUF_OVRD_STRAP] =
	"Possibly handle BUP manufacturing override strap",
	[ME_HFS2_STATE_BUP_M3] =
	"Bringup in M3",
	[ME_HFS2_STATE_BUP_M0] =
	"Bringup in M0",
	[ME_HFS2_STATE_BUP_FLOW_DET_ERR] =
	"Flow detection error",
	[ME_HFS2_STATE_BUP_M3_CLK_ERR] =
	"M3 clock switching error",
	[ME_HFS2_STATE_BUP_CPU_RESET_DID_TIMEOUT_MEM_MISSING] =
	"Host error - CPU reset timeout, DID timeout, memory missing",
	[ME_HFS2_STATE_BUP_M3_KERN_LOAD] =
	"M3 kernel load",
	[ME_HFS2_STATE_BUP_T32_MISSING] =
	"T34 missing - cannot program ICC",
	[ME_HFS2_STATE_BUP_WAIT_DID] =
	"Waiting for DID BIOS message",
	[ME_HFS2_STATE_BUP_WAIT_DID_FAIL] =
	"Waiting for DID BIOS message failure",
	[ME_HFS2_STATE_BUP_DID_NO_FAIL] =
	"DID reported no error",
	[ME_HFS2_STATE_BUP_ENABLE_UMA] =
	"Enabling UMA",
	[ME_HFS2_STATE_BUP_ENABLE_UMA_ERR] =
	"Enabling UMA error",
	[ME_HFS2_STATE_BUP_SEND_DID_ACK] =
	"Sending DID Ack to BIOS",
	[ME_HFS2_STATE_BUP_SEND_DID_ACK_ERR] =
	"Sending DID Ack to BIOS error",
	[ME_HFS2_STATE_BUP_M0_CLK] =
	"Switching clocks in M0",
	[ME_HFS2_STATE_BUP_M0_CLK_ERR] =
	"Switching clocks in M0 error",
	[ME_HFS2_STATE_BUP_TEMP_DIS] =
	"ME in temp disable",
	[ME_HFS2_STATE_BUP_M0_KERN_LOAD] =
	"M0 kernel load",
};

void intel_me_status(void)
{
	union me_hfs hfs;
	union me_hfs2 hfs2;
	union me_hfs3 hfs3;

	hfs.data = me_read_config32(PCI_ME_HFSTS1);
	hfs2.data = me_read_config32(PCI_ME_HFSTS2);
	hfs3.data = me_read_config32(PCI_ME_HFSTS3);

	/* Check Current States */
	printk(BIOS_DEBUG, "ME: FW Partition Table      : %s\n",
	       hfs.fields.fpt_bad ? "BAD" : "OK");
	printk(BIOS_DEBUG, "ME: Bringup Loader Failure  : %s\n",
	       hfs.fields.ft_bup_ld_flr ? "YES" : "NO");
	printk(BIOS_DEBUG, "ME: Firmware Init Complete  : %s\n",
	       hfs.fields.fw_init_complete ? "YES" : "NO");
	printk(BIOS_DEBUG, "ME: Manufacturing Mode      : %s\n",
	       hfs.fields.mfg_mode ? "YES" : "NO");
	printk(BIOS_DEBUG, "ME: Boot Options Present    : %s\n",
	       hfs.fields.boot_options_present ? "YES" : "NO");
	printk(BIOS_DEBUG, "ME: Update In Progress      : %s\n",
	       hfs.fields.update_in_progress ? "YES" : "NO");
	printk(BIOS_DEBUG, "ME: D3 Support              : %s\n",
	       hfs.fields.d3_support_valid ? "YES" : "NO");
	printk(BIOS_DEBUG, "ME: D0i3 Support            : %s\n",
	       hfs.fields.d0i3_support_valid ? "YES" : "NO");
	printk(BIOS_DEBUG, "ME: Low Power State Enabled : %s\n",
	       hfs2.fields.low_power_state ? "YES" : "NO");
	printk(BIOS_DEBUG, "ME: Power Gated             : %s\n",
	       hfs2.fields.power_gating_ind ? "YES" : "NO");
	printk(BIOS_DEBUG, "ME: CPU Replaced            : %s\n",
	       hfs2.fields.cpu_replaced_sts  ? "YES" : "NO");
	printk(BIOS_DEBUG, "ME: CPU Replacement Valid   : %s\n",
	       hfs2.fields.cpu_replaced_valid ? "YES" : "NO");
	printk(BIOS_DEBUG, "ME: Current Working State   : %s\n",
	       me_cws_values[hfs.fields.working_state]);
	printk(BIOS_DEBUG, "ME: Current Operation State : %s\n",
	       me_opstate_values[hfs.fields.operation_state]);
	printk(BIOS_DEBUG, "ME: Current Operation Mode  : %s\n",
	       me_opmode_values[hfs.fields.operation_mode]);
	printk(BIOS_DEBUG, "ME: Error Code              : %s\n",
	       me_error_values[hfs.fields.error_code]);
	printk(BIOS_DEBUG, "ME: Progress Phase          : %s\n",
	       me_progress_values[hfs2.fields.progress_code]);
	printk(BIOS_DEBUG, "ME: Power Management Event  : %s\n",
	       me_pmevent_values[hfs2.fields.current_pmevent]);

	printk(BIOS_DEBUG, "ME: Progress Phase State    : ");
	switch (hfs2.fields.progress_code) {
	case ME_HFS2_PHASE_ROM:		/* ROM Phase */
		printk(BIOS_DEBUG, "%s",
		       me_progress_rom_values[hfs2.fields.current_state]);
		break;

	case ME_HFS2_PHASE_UKERNEL:	/* uKernel Phase */
		printk(BIOS_DEBUG, "0x%02x", hfs2.fields.current_state);
		break;

	case ME_HFS2_PHASE_BUP:		/* Bringup Phase */
		if (hfs2.fields.current_state
			< ARRAY_SIZE(me_progress_bup_values)
		    && me_progress_bup_values[hfs2.fields.current_state])
			printk(BIOS_DEBUG, "%s",
				me_progress_bup_values[
					hfs2.fields.current_state]);
		else
			printk(BIOS_DEBUG, "0x%02x", hfs2.fields.current_state);
		break;

	case ME_HFS2_PHASE_HOST_COMM:	/* Host Communication Phase */
		if (!hfs2.fields.current_state)
			printk(BIOS_DEBUG, "Host communication established");
		else
			printk(BIOS_DEBUG, "0x%02x", hfs2.fields.current_state);
		break;

	default:
		printk(BIOS_DEBUG, "Unknown phase: 0x%02x state: 0x%02x",
		       hfs2.fields.progress_code, hfs2.fields.current_state);
	}
	printk(BIOS_DEBUG, "\n");

	/* Power Down Mitigation Status */
	printk(BIOS_DEBUG, "ME: Power Down Mitigation   : %s\n",
	       hfs3.fields.power_down_mitigation ? "YES" : "NO");

	if (hfs3.fields.power_down_mitigation) {
		printk(BIOS_INFO, "ME: PD Mitigation State     : ");
		if (hfs3.fields.encrypt_key_override == 1 &&
		    hfs3.fields.encrypt_key_check == 0 &&
		    hfs3.fields.pch_config_change == 0)
			printk(BIOS_INFO, "Normal Operation");
		else if (hfs3.fields.encrypt_key_override == 1 &&
			 hfs3.fields.encrypt_key_check == 1 &&
			 hfs3.fields.pch_config_change == 0)
			printk(BIOS_INFO, "Issue Detected and Recovered");
		else
			printk(BIOS_INFO, "Issue Detected but not Recovered");
		printk(BIOS_INFO, "\n");

		printk(BIOS_DEBUG, "ME: Encryption Key Override : %s\n",
		       hfs3.fields.encrypt_key_override ? "Workaround Applied" :
		       "Unable to override");
		printk(BIOS_DEBUG, "ME: Encryption Key Check    : %s\n",
		       hfs3.fields.encrypt_key_check ? "FAIL" : "PASS");
		printk(BIOS_DEBUG, "ME: PCH Configuration Info  : %s\n",
		       hfs3.fields.pch_config_change ? "Changed" : "No Change");

		printk(BIOS_DEBUG, "ME: Firmware SKU            : ");
		switch (hfs3.fields.fw_sku) {
		case ME_HFS3_FW_SKU_CONSUMER:
			printk(BIOS_DEBUG, "Consumer\n");
			break;
		case ME_HFS3_FW_SKU_CORPORATE:
			printk(BIOS_DEBUG, "Corporate\n");
			break;
		default:
			printk(BIOS_DEBUG, "Unknown (0x%x)\n",
				hfs3.fields.fw_sku);
		}
	}
}

/*
* Aligning a byte length to length in dwords.
*/
static u32 get_dword_length(u32 byte_length)
{
	return ALIGN_UP(byte_length, sizeof(uint32_t)) / sizeof(uint32_t);
}

/*
* Get remaining message count in dword from circular buffer based on
* write and read offset.
*/
static u32 get_cb_msg_count(u32 data)
{
	u8 read_offset = data >> 8;
	u8 write_offset = data >> 16;

	return get_dword_length(write_offset - read_offset);
}

static int wait_heci_ready(void)
{
	struct stopwatch sw;
	int timeout = 0;
	union me_csr csr;

	stopwatch_init_msecs_expire(&sw, HECI_TIMEOUT);
	while (1) {
		do {
			csr.data = me_read_mmio32(MMIO_ME_CSR);
			if (csr.fields.host_ready)
				return 0;
		} while (!(timeout = stopwatch_expired(&sw)));

		printk(BIOS_ERR, "ME_RDY bit is not set after 15 sec");
		return -1;
	}
}

static int wait_heci_cb_avail(u32 len)
{
	struct stopwatch sw;
	union host_csr csr;

	csr.data = me_read_mmio32(MMIO_HOST_CSR);
	/*
	* if timeout has happened, return failure as
	* the circular buffer is not empty
	*/
	stopwatch_init_msecs_expire(&sw, HECI_SEND_TIMEOUT);
	/* Must have room for message and message header */
	while (len > (get_dword_length(csr.fields.me_cir_depth) -
			get_cb_msg_count(csr.data))) {
		if (stopwatch_expired(&sw)) {
			printk(BIOS_ERR,
			"Circular Buffer never emptied within 5 sec");
			return -1;
		}
		/* wait before trying again */
		udelay(HECI_DELAY);
		/* read HOST_CSR for next iteration */
		csr.data = me_read_mmio32(MMIO_HOST_CSR);
	}
	return 0;
}

static int send_heci_packet(union mei_header *head, u32 len, u32 *payload)
{
	int sts;
	int index;
	union me_csr csr;
	union host_csr hcsr;

	/*
	 * wait until there is sufficient room in CB
	 */
	sts = wait_heci_cb_avail(len + 1);
	if (sts != 0)
		return -1;

	/* Write message header */
	me_write_mmio32(MMIO_ME_CB_WW, head->data);

	/* Write message body */
	for (index = 0; index < len; index++)
		me_write_mmio32(MMIO_ME_CB_WW, payload[index]);

	/* Set Interrupt Generate bit */
	hcsr.data = me_read_mmio32(MMIO_HOST_CSR);
	hcsr.fields.int_gen = 1;
	me_write_mmio32(MMIO_HOST_CSR, hcsr.data);

	/* Check if ME Ready bit is set, if set to 0 then return fatal error */
	csr.data = me_read_mmio32(MMIO_ME_CSR);
	if (csr.fields.host_ready)
		return 0;
	else
		return -1;
}

static int recv_heci_packet(union mei_header *head, u32 *packet,
		 u32 *packet_size)
{
	union me_csr csr;
	union host_csr hcsr;
	int rec_msg = 0;
	struct stopwatch sw;
	u32 length, index;

	/* Clear Interrupt Status bit */
	hcsr.data = me_read_mmio32(MMIO_HOST_CSR);
	hcsr.fields.int_sts = 1;
	me_write_mmio32(MMIO_HOST_CSR, hcsr.data);

	/* Check if circular buffer overflow
	 * if yes then return fatal error
	 */
	csr.data = me_read_mmio32(MMIO_ME_CSR);
	if (get_cb_msg_count(csr.data) >
			get_dword_length(csr.fields.me_cir_buff))
		return -1;
	/*
	* if timeout has happened, return failure as
	* the circular buffer is not empty
	*/
	stopwatch_init_msecs_expire(&sw, HECI_READ_TIMEOUT);
	/* go until we got message pkt */
	do {
		if (stopwatch_expired(&sw)) {
			printk(BIOS_ERR,
			"Circular Buffer not filled within 5 sec");
			*packet_size = 0;
			return -1;
		}
		csr.data = me_read_mmio32(MMIO_ME_CSR);
		/* Read one message from HECI buffer */
		if (get_cb_msg_count(csr.data) > 0) {
			head->data = me_read_mmio32(MMIO_ME_CB_RW);
			/* calculate the message length in dword */
			length = get_dword_length(head->fields.length);
			if (head->fields.length == 0) {
				*packet_size = 0;
				goto SET_IG;
			}
			/* Make sure, we have enough space to catch all */
			if (head->fields.length <= *packet_size) {
				csr.data = me_read_mmio32(MMIO_ME_CSR);
				/* get complete message into circular buffer */
				while (length > get_cb_msg_count(csr.data)) {
					udelay(HECI_DELAY);
					csr.data = me_read_mmio32(MMIO_ME_CSR);
				}
				/* here is the message */
				for (index = 0; index < length; index++)
					packet[index] =
						me_read_mmio32(MMIO_ME_CB_RW);

				rec_msg = 1;
				*packet_size = head->fields.length;
			} else {
				/* Too small buffer */
				*packet_size = 0;
				return -1;
			}
		}
	} while (!rec_msg);

	/*
	 * Check if ME Ready bit is set, if set to 0 then return fatal error
	 * because ME might have reset during transaction and we might have
	 * read a junk data from CB
	*/
	csr.data = me_read_mmio32(MMIO_ME_CSR);
	if (!(csr.fields.host_ready))
		return -1;
SET_IG:
	/* Set Interrupt Generate bit */
	hcsr.data = me_read_mmio32(MMIO_HOST_CSR);
	hcsr.fields.int_gen = 1;
	me_write_mmio32(MMIO_HOST_CSR, hcsr.data);
	return 0;
}

static int
send_heci_message(void *msg, int len, u8 hostaddress, u8 clientaddress)
{
	u8 retry;
	int status = -1;
	u32 cir_buff_depth;
	union host_csr csr;
	union mei_header head;
	int cur = 0;
	u32 slength, rlength;

	for (retry = 0; retry < MAX_HECI_MESSAGE; retry++) {
		if (wait_heci_ready() != 0)
			continue;
		/* HECI is ready */
		csr.data = me_read_mmio32(MMIO_HOST_CSR);
		cir_buff_depth = csr.fields.me_cir_depth;
		head.fields.client_address = clientaddress;
		head.fields.host_address = hostaddress;
		while (len > cur) {
			rlength = get_dword_length(len - cur);
			/*
			 * Set the message complete bit if this is last packet
			 * in message needs to be "less than" to account for
			 * the header OR needs to be exact equal to CB depth
			 */
			if (rlength <= cir_buff_depth)
				head.fields.is_complete = 1;
			else
				head.fields.is_complete = 0;
			/*
			 * calculate length for message header
			 * header length = smaller of CB buffer or
			 * remaining message
			 */
			slength = ((cir_buff_depth <= rlength)
					? ((cir_buff_depth - 1) * 4)
					: (len - cur));
			head.fields.length = slength;
			head.fields.reserved = 0;
			/*
			 * send the current packet
			 * (cur should be treated as index for message)
			 */
			status = send_heci_packet(&head,
				get_dword_length(head.fields.length), msg);
			if (status != 0)
				break;
			/* update the length information */
			cur += slength;
			msg += cur;
		}
		if (!status)
			break;
	}
	return status;
}

static int
recv_heci_message(void *message, u32 *message_size)
{
	union mei_header head;
	int cur = 0;
	u8 retry;
	int status = -1;
	int msg_complete = 0;
	u32 pkt_buff;

	for (retry = 0; retry < MAX_HECI_MESSAGE; retry++) {
		if (wait_heci_ready() != 0)
			continue;
		/* HECI is ready */
		while ((cur < *message_size) && (msg_complete == 0)) {
			pkt_buff = *message_size - cur;
			status = recv_heci_packet(&head, message + (cur >> 2),
						&pkt_buff);
			if (status == -1) {
				*message_size = 0;
				break;
			}
			msg_complete = head.fields.is_complete;
			if (pkt_buff == 0) {
				/* if not in middle of msg and msg complete bit
				 * is set then this is a valid zero length msg
				 */
				if ((cur == 0) && (msg_complete == 1))
					status = 0;
				else
					status = -1;
				*message_size = 0;
				break;
			}
			cur += pkt_buff;
		}
		if (!status) {
			*message_size = cur;
			break;
		}
	}
	return status;
}

static int send_heci_reset_message(void)
{
	int status;
	struct reset_reply {
		u8 group_id;
		u8 command;
		u8 reserved;
		u8 result;
	} __attribute__ ((packed)) reply;
	struct reset_message {
		u8 group_id;
		u8 cmd;
		u8 reserved;
		u8 result;
		u8 req_origin;
		u8 reset_type;
	} __attribute__ ((packed));
	struct reset_message msg = {
		.cmd = MKHI_GLOBAL_RESET,
		.req_origin = GR_ORIGIN_BIOS_POST,
		.reset_type = GLOBAL_RST_TYPE
	};
	u32 reply_size;

	status = send_heci_message(&msg, sizeof(msg),
			BIOS_HOST_ADD, HECI_MKHI_ADD);
	if (status != 0)
		return -1;

	reply_size = sizeof(reply);
	if (recv_heci_message(&reply, &reply_size) == -1)
		return -1;
	/* get reply result from HECI MSG  */
	if (reply.result != 0) {
		printk(BIOS_DEBUG, "%s: Exit with Failure\n", __func__);
		return -1;
	}
	printk(BIOS_DEBUG, "%s: Exit with Success\n",  __func__);
	return 0;
}

int send_global_reset(void)
{
	int status = -1;
	union me_hfs hfs;

	/* Check ME operating mode */
	hfs.data = me_read_config32(PCI_ME_HFSTS1);
	if (hfs.fields.operation_mode)
		goto ret;

	/* ME should be in Normal Mode for this command */
	status = send_heci_reset_message();
ret:
	return status;
}