1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
|
/* SPDX-License-Identifier: GPL-2.0-only */
#include <assert.h>
#include <cbfs.h>
#include <cbmem.h>
#include <cf9_reset.h>
#include <console/console.h>
#include <device/pci_def.h>
#include <memory_info.h>
#include <mrc_cache.h>
#include <string.h>
#include <soc/iomap.h>
#include <soc/pei_data.h>
#include <soc/pei_wrapper.h>
#include <soc/pm.h>
#include <soc/romstage.h>
#include <soc/systemagent.h>
#include <timestamp.h>
static void save_mrc_data(struct pei_data *pei_data)
{
printk(BIOS_DEBUG, "MRC data at %p %d bytes\n", pei_data->data_to_save,
pei_data->data_to_save_size);
if (pei_data->data_to_save != NULL && pei_data->data_to_save_size > 0)
mrc_cache_stash_data(MRC_TRAINING_DATA, 0,
pei_data->data_to_save,
pei_data->data_to_save_size);
}
static const char *const ecc_decoder[] = {
"inactive",
"active on IO",
"disabled on IO",
"active",
};
/*
* Dump in the log memory controller configuration as read from the memory
* controller registers.
*/
static void report_memory_config(void)
{
int i;
const u32 addr_decoder_common = mchbar_read32(MAD_CHNL);
printk(BIOS_DEBUG, "memcfg DDR3 clock %d MHz\n",
(mchbar_read32(MC_BIOS_DATA) * 13333 * 2 + 50) / 100);
printk(BIOS_DEBUG, "memcfg channel assignment: A: %d, B % d, C % d\n",
(addr_decoder_common >> 0) & 3,
(addr_decoder_common >> 2) & 3,
(addr_decoder_common >> 4) & 3);
for (i = 0; i < NUM_CHANNELS; i++) {
const u32 ch_conf = mchbar_read32(MAD_DIMM(i));
printk(BIOS_DEBUG, "memcfg channel[%d] config (%8.8x):\n", i, ch_conf);
printk(BIOS_DEBUG, " ECC %s\n", ecc_decoder[(ch_conf >> 24) & 3]);
printk(BIOS_DEBUG, " enhanced interleave mode %s\n",
((ch_conf >> 22) & 1) ? "on" : "off");
printk(BIOS_DEBUG, " rank interleave %s\n",
((ch_conf >> 21) & 1) ? "on" : "off");
printk(BIOS_DEBUG, " DIMMA %d MB width %s %s rank%s\n",
((ch_conf >> 0) & 0xff) * 256,
((ch_conf >> 19) & 1) ? "x16" : "x8 or x32",
((ch_conf >> 17) & 1) ? "dual" : "single",
((ch_conf >> 16) & 1) ? "" : ", selected");
printk(BIOS_DEBUG, " DIMMB %d MB width %s %s rank%s\n",
((ch_conf >> 8) & 0xff) * 256,
((ch_conf >> 20) & 1) ? "x16" : "x8 or x32",
((ch_conf >> 18) & 1) ? "dual" : "single",
((ch_conf >> 16) & 1) ? ", selected" : "");
}
}
/*
* Find PEI executable in coreboot filesystem and execute it.
*/
static void sdram_initialize(struct pei_data *pei_data)
{
size_t mrc_size;
pei_wrapper_entry_t entry;
int ret;
broadwell_fill_pei_data(pei_data);
/* Assume boot device is memory mapped. */
assert(CONFIG(BOOT_DEVICE_MEMORY_MAPPED));
pei_data->saved_data =
mrc_cache_current_mmap_leak(MRC_TRAINING_DATA, 0,
&mrc_size);
if (pei_data->saved_data) {
/* MRC cache found */
pei_data->saved_data_size = mrc_size;
} else if (pei_data->boot_mode == ACPI_S3) {
/* Waking from S3 and no cache. */
printk(BIOS_DEBUG,
"No MRC cache found in S3 resume path.\n");
post_code(POSTCODE_RESUME_FAILURE);
system_reset();
} else {
printk(BIOS_DEBUG, "No MRC cache found.\n");
}
/*
* Do not use saved pei data. Can be set by mainboard romstage
* to force a full train of memory on every boot.
*/
if (pei_data->disable_saved_data) {
printk(BIOS_DEBUG, "Disabling PEI saved data by request\n");
pei_data->saved_data = NULL;
pei_data->saved_data_size = 0;
}
/* We don't care about leaking the mapping */
entry = cbfs_ro_map("mrc.bin", NULL);
if (entry == NULL)
die("mrc.bin not found!");
printk(BIOS_DEBUG, "Starting Memory Reference Code\n");
ret = entry(pei_data);
if (ret < 0)
die("pei_data version mismatch\n");
/* Print the MRC version after executing the UEFI PEI stage. */
u32 version = mchbar_read32(MRC_REVISION);
printk(BIOS_DEBUG, "MRC Version %u.%u.%u Build %u\n",
(version >> 24) & 0xff, (version >> 16) & 0xff,
(version >> 8) & 0xff, (version >> 0) & 0xff);
report_memory_config();
}
static void setup_sdram_meminfo(struct pei_data *pei_data)
{
struct memory_info *mem_info;
printk(BIOS_DEBUG, "create cbmem for dimm information\n");
mem_info = cbmem_add(CBMEM_ID_MEMINFO, sizeof(struct memory_info));
if (!mem_info) {
printk(BIOS_ERR, "Error! Failed to add mem_info to cbmem\n");
return;
}
memset(mem_info, 0, sizeof(*mem_info));
/* Translate pei_memory_info struct data into memory_info struct */
mem_info->dimm_cnt = pei_data->meminfo.dimm_cnt;
for (int i = 0; i < MIN(DIMM_INFO_TOTAL, PEI_DIMM_INFO_TOTAL); i++) {
struct dimm_info *dimm = &mem_info->dimm[i];
const struct pei_dimm_info *pei_dimm =
&pei_data->meminfo.dimm[i];
dimm->dimm_size = pei_dimm->dimm_size;
dimm->ddr_type = pei_dimm->ddr_type;
dimm->ddr_frequency = pei_dimm->ddr_frequency;
dimm->rank_per_dimm = pei_dimm->rank_per_dimm;
dimm->channel_num = pei_dimm->channel_num;
dimm->dimm_num = pei_dimm->dimm_num;
dimm->bank_locator = pei_dimm->bank_locator;
memcpy(&dimm->serial, &pei_dimm->serial,
MIN(sizeof(dimm->serial), sizeof(pei_dimm->serial)));
memcpy(&dimm->module_part_number,
&pei_dimm->module_part_number,
MIN(sizeof(dimm->module_part_number),
sizeof(pei_dimm->module_part_number)));
dimm->module_part_number[DIMM_INFO_PART_NUMBER_SIZE - 1] = '\0';
dimm->mod_id = pei_dimm->mod_id;
dimm->mod_type = pei_dimm->mod_type;
dimm->bus_width = pei_dimm->bus_width;
}
}
/*
* 0 = leave channel enabled
* 1 = disable dimm 0 on channel
* 2 = disable dimm 1 on channel
* 3 = disable dimm 0+1 on channel
*/
static int make_channel_disabled_mask(const struct spd_info *spdi, int ch)
{
return (!spdi->addresses[ch + ch] << 0) | (!spdi->addresses[ch + ch + 1] << 1);
}
void perform_raminit(const struct chipset_power_state *const power_state)
{
const int s3resume = power_state->prev_sleep_state == ACPI_S3;
struct pei_data pei_data = { 0 };
mainboard_fill_pei_data(&pei_data);
if (CONFIG(BROADWELL_LPDDR3)) {
const struct lpddr3_dq_dqs_map *lpddr3_map = mb_get_lpddr3_dq_dqs_map();
assert(lpddr3_map);
memcpy(pei_data.dq_map, lpddr3_map->dq, sizeof(pei_data.dq_map));
memcpy(pei_data.dqs_map, lpddr3_map->dqs, sizeof(pei_data.dqs_map));
}
/* Obtain the SPD addresses from mainboard code */
struct spd_info spdi = { 0 };
mb_get_spd_map(&spdi);
if (CONFIG(HAVE_SPD_IN_CBFS))
copy_spd(&pei_data, &spdi);
/* Calculate unimplemented DIMM slots for each channel */
pei_data.dimm_channel0_disabled = make_channel_disabled_mask(&spdi, 0);
pei_data.dimm_channel1_disabled = make_channel_disabled_mask(&spdi, 1);
/* MRC expects left-aligned SMBus addresses, and 0 for memory-down */
for (size_t i = 0; i < ARRAY_SIZE(spdi.addresses); i++) {
const uint8_t addr = spdi.addresses[i];
pei_data.spd_addresses[i] = addr == SPD_MEMORY_DOWN ? 0 : addr << 1;
}
post_code(0x32);
timestamp_add_now(TS_INITRAM_START);
pei_data.boot_mode = power_state->prev_sleep_state;
/* Initialize RAM */
sdram_initialize(&pei_data);
timestamp_add_now(TS_INITRAM_END);
int cbmem_was_initted = !cbmem_recovery(s3resume);
if (s3resume && !cbmem_was_initted) {
/* Failed S3 resume, reset to come up cleanly */
printk(BIOS_CRIT, "Failed to recover CBMEM in S3 resume.\n");
system_reset();
}
save_mrc_data(&pei_data);
setup_sdram_meminfo(&pei_data);
}
|