1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
|
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2013 Google Inc.
* Copyright (C) 2015 Intel Corp.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc.
*/
#include <console/console.h>
#include <cpu/cpu.h>
#include <cpu/intel/microcode.h>
#include <cpu/intel/turbo.h>
#include <cpu/x86/cache.h>
#include <cpu/x86/lapic.h>
#include <cpu/x86/mp.h>
#include <cpu/x86/msr.h>
#include <cpu/x86/mtrr.h>
#include <cpu/x86/smm.h>
#include <soc/intel/common/memmap.h>
#include <reg_script.h>
#include <soc/msr.h>
#include <soc/pattrs.h>
#include <soc/ramstage.h>
#include <soc/smm.h>
#include <stdlib.h>
static void smm_relocate(void *unused);
static void enable_smis(void *unused);
static void pre_smm_relocation(void *unused);
static struct mp_flight_record mp_steps[] = {
MP_FR_BLOCK_APS(pre_smm_relocation, NULL, pre_smm_relocation, NULL),
MP_FR_BLOCK_APS(smm_relocate, NULL, smm_relocate, NULL),
MP_FR_BLOCK_APS(mp_initialize_cpu, NULL, mp_initialize_cpu, NULL),
/* Wait for APs to finish initialization before proceeding. */
MP_FR_BLOCK_APS(NULL, NULL, enable_smis, NULL),
};
/* The APIC id space is sparse. Each id is separated by 2. */
static int adjust_apic_id(int index, int apic_id)
{
return 2 * index;
}
/* Package level MSRs */
const struct reg_script package_msr_script[] = {
/* Set Package TDP to ~7W */
REG_MSR_WRITE(MSR_PKG_POWER_LIMIT, 0x3880fa),
REG_MSR_RMW(MSR_PP1_POWER_LIMIT, ~(0x7f << 17), 0),
REG_MSR_WRITE(MSR_PKG_TURBO_CFG1, 0x702),
REG_MSR_WRITE(MSR_CPU_TURBO_WKLD_CFG1, 0x200b),
REG_MSR_WRITE(MSR_CPU_TURBO_WKLD_CFG2, 0),
REG_MSR_WRITE(MSR_CPU_THERM_CFG1, 0x00000305),
REG_MSR_WRITE(MSR_CPU_THERM_CFG2, 0x0405500d),
REG_MSR_WRITE(MSR_CPU_THERM_SENS_CFG, 0x27),
REG_SCRIPT_END
};
/* Core level MSRs */
const struct reg_script core_msr_script[] = {
/* Dynamic L2 shrink enable and threshold, clear SINGLE_PCTL bit 11 */
REG_MSR_RMW(MSR_PMG_CST_CONFIG_CONTROL, ~0x3f080f, 0xe0008),
REG_MSR_RMW(MSR_POWER_MISC,
~(ENABLE_ULFM_AUTOCM_MASK | ENABLE_INDP_AUTOCM_MASK), 0),
/* Disable C1E */
REG_MSR_RMW(MSR_POWER_CTL, ~0x2, 0),
REG_MSR_OR(MSR_POWER_MISC, 0x44),
REG_SCRIPT_END
};
void soc_init_cpus(device_t dev)
{
struct bus *cpu_bus = dev->link_list;
const struct pattrs *pattrs = pattrs_get();
struct mp_params mp_params;
void *default_smm_area;
printk(BIOS_SPEW, "%s/%s ( %s )\n",
__FILE__, __func__, dev_name(dev));
/* Set up MTRRs based on physical address size. */
x86_setup_fixed_mtrrs();
x86_setup_var_mtrrs(pattrs->address_bits, 2);
x86_mtrr_check();
mp_params.num_cpus = pattrs->num_cpus,
mp_params.parallel_microcode_load = 1,
mp_params.adjust_apic_id = adjust_apic_id;
mp_params.flight_plan = &mp_steps[0];
mp_params.num_records = ARRAY_SIZE(mp_steps);
mp_params.microcode_pointer = pattrs->microcode_patch;
default_smm_area = backup_default_smm_area();
/* Set package MSRs */
reg_script_run(package_msr_script);
/* Enable Turbo Mode on BSP and siblings of the BSP's building block. */
enable_turbo();
if (mp_init(cpu_bus, &mp_params))
printk(BIOS_ERR, "MP initialization failure.\n");
restore_default_smm_area(default_smm_area);
}
static void soc_core_init(device_t cpu)
{
printk(BIOS_SPEW, "%s/%s ( %s )\n",
__FILE__, __func__, dev_name(cpu));
printk(BIOS_DEBUG, "Init Braswell core.\n");
/*
* The turbo disable bit is actually scoped at building
* block level -- not package. For non-bsp cores that are within a
* building block enable turbo. The cores within the BSP's building
* block will just see it already enabled and move on.
*/
if (lapicid())
enable_turbo();
/* Set core MSRs */
reg_script_run(core_msr_script);
/* Set this core to max frequency ratio */
set_max_freq();
}
static struct device_operations cpu_dev_ops = {
.init = soc_core_init,
};
static struct cpu_device_id cpu_table[] = {
{ X86_VENDOR_INTEL, 0x406C3 },
{ X86_VENDOR_INTEL, 0x406C2 },
{ 0, 0 },
};
static const struct cpu_driver driver __cpu_driver = {
.ops = &cpu_dev_ops,
.id_table = cpu_table,
};
/*
* SMM loading and initialization.
*/
struct smm_relocation_attrs {
uint32_t smbase;
uint32_t smrr_base;
uint32_t smrr_mask;
};
static struct smm_relocation_attrs relo_attrs;
static void adjust_apic_id_map(struct smm_loader_params *smm_params)
{
int i;
struct smm_runtime *runtime = smm_params->runtime;
for (i = 0; i < CONFIG_MAX_CPUS; i++)
runtime->apic_id_to_cpu[i] = mp_get_apic_id(i);
}
static void asmlinkage cpu_smm_do_relocation(void *arg)
{
msr_t smrr;
em64t100_smm_state_save_area_t *smm_state;
const struct smm_module_params *p;
const struct smm_runtime *runtime;
int cpu;
p = arg;
runtime = p->runtime;
cpu = p->cpu;
if (cpu >= CONFIG_MAX_CPUS) {
printk(BIOS_CRIT,
"Invalid CPU number assigned in SMM stub: %d\n", cpu);
return;
}
/* Set up SMRR. */
smrr.lo = relo_attrs.smrr_base;
smrr.hi = 0;
wrmsr(SMRRphysBase_MSR, smrr);
smrr.lo = relo_attrs.smrr_mask;
smrr.hi = 0;
wrmsr(SMRRphysMask_MSR, smrr);
/*
* The relocated handler runs with all CPUs concurrently. Therefore
* stagger the entry points adjusting SMBASE downwards by save state
* size * CPU num.
*/
smm_state = (void *)(SMM_EM64T100_SAVE_STATE_OFFSET + runtime->smbase);
smm_state->smbase = relo_attrs.smbase - cpu * runtime->save_state_size;
printk(BIOS_DEBUG, "New SMBASE 0x%08x\n", smm_state->smbase);
}
static int install_relocation_handler(int num_cpus)
{
const int save_state_size = sizeof(em64t100_smm_state_save_area_t);
struct smm_loader_params smm_params = {
.per_cpu_stack_size = save_state_size,
.num_concurrent_stacks = num_cpus,
.per_cpu_save_state_size = save_state_size,
.num_concurrent_save_states = 1,
.handler = (smm_handler_t)&cpu_smm_do_relocation,
};
if (smm_setup_relocation_handler(&smm_params))
return -1;
adjust_apic_id_map(&smm_params);
return 0;
}
static int install_permanent_handler(int num_cpus)
{
/*
* There are num_cpus concurrent stacks and num_cpus concurrent save
* state areas. Lastly, set the stack size to the save state size.
*/
int save_state_size = sizeof(em64t100_smm_state_save_area_t);
struct smm_loader_params smm_params = {
.per_cpu_stack_size = save_state_size,
.num_concurrent_stacks = num_cpus,
.per_cpu_save_state_size = save_state_size,
.num_concurrent_save_states = num_cpus,
};
void *smm_base;
size_t smm_size;
int tseg_size;
printk(BIOS_DEBUG, "Installing SMM handler to 0x%08x\n",
relo_attrs.smbase);
smm_region(&smm_base, &smm_size);
tseg_size = smm_size - CONFIG_SMM_RESERVED_SIZE;
if (smm_load_module((void *)relo_attrs.smbase, tseg_size, &smm_params))
return -1;
adjust_apic_id_map(&smm_params);
return 0;
}
static int smm_load_handlers(void)
{
/* All range registers are aligned to 4KiB */
const uint32_t rmask = ~((1 << 12) - 1);
const struct pattrs *pattrs = pattrs_get();
void *smm_base;
size_t smm_size;
/* Initialize global tracking state. */
smm_region(&smm_base, &smm_size);
relo_attrs.smbase = (uint32_t)smm_base;
relo_attrs.smrr_base = relo_attrs.smbase | MTRR_TYPE_WRBACK;
relo_attrs.smrr_mask = ~(smm_size - 1) & rmask;
relo_attrs.smrr_mask |= MTRRphysMaskValid;
/* Install handlers. */
if (install_relocation_handler(pattrs->num_cpus) < 0) {
printk(BIOS_ERR, "Unable to install SMM relocation handler.\n");
return -1;
}
if (install_permanent_handler(pattrs->num_cpus) < 0) {
printk(BIOS_ERR, "Unable to install SMM permanent handler.\n");
return -1;
}
/* Ensure the SMM handlers hit DRAM before performing first SMI. */
wbinvd();
return 0;
}
static void pre_smm_relocation(void *unused)
{
const struct pattrs *pattrs = pattrs_get();
msr_t msr_value;
/* Need to make sure that all cores have microcode loaded. */
msr_value = rdmsr(MSR_IA32_BIOS_SIGN_ID);
if (msr_value.hi == 0)
intel_microcode_load_unlocked(pattrs->microcode_patch);
}
static void smm_relocate(void *unused)
{
const struct pattrs *pattrs = pattrs_get();
/* Load relocation and permanent handler. */
if (boot_cpu()) {
if (smm_load_handlers() < 0) {
printk(BIOS_ERR, "Error loading SMM handlers.\n");
return;
}
southcluster_smm_clear_state();
}
/* Relocate SMM space. */
smm_initiate_relocation();
/* Load microcode after SMM relocation. */
intel_microcode_load_unlocked(pattrs->microcode_patch);
}
static void enable_smis(void *unused)
{
southcluster_smm_enable_smi();
}
|