1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
|
/* SPDX-License-Identifier: GPL-2.0-only */
#define __SIMPLE_DEVICE__
#include <stdlib.h>
#include <console/console.h>
#include <device/device.h>
#include <device/mmio.h>
#include <device/pci_def.h>
#include <device/pci_ops.h>
#include <fmap.h>
#include <intelblocks/cse.h>
#include <intelblocks/systemagent.h>
#include <intelblocks/vtd.h>
#include <security/vboot/misc.h>
#include <soc/hsphy.h>
#include <soc/iomap.h>
#include <soc/pci_devs.h>
#include <vb2_api.h>
#include <lib.h>
#define HASHALG_SHA1 0x00000001
#define HASHALG_SHA256 0x00000002
#define HASHALG_SHA384 0x00000003
#define HASHALG_SHA512 0x00000004
#define MAX_HASH_SIZE VB2_SHA512_DIGEST_SIZE
#define GET_IP_FIRMWARE_CMD 0x21
#define HSPHY_PAYLOAD_SIZE (32*KiB)
#define CPU_PID_PCIE_PHYX16_BROADCAST 0x55
struct hsphy_cache {
uint32_t hsphy_size;
uint8_t hash_algo;
uint8_t digest[MAX_HASH_SIZE];
uint8_t hsphy_fw[0];
} __packed;
struct ip_push_model {
uint16_t count;
uint16_t address;
uint32_t data[0];
} __packed;
static int heci_get_hsphy_payload(void *buf, uint32_t *buf_size, uint8_t *hash_buf,
uint8_t *hash_alg, uint32_t *status)
{
size_t reply_size;
struct heci_ip_load_request {
struct mkhi_hdr hdr;
uint32_t version;
uint32_t operation;
uint32_t dram_base_low;
uint32_t dram_base_high;
uint32_t memory_size;
uint32_t reserved;
} __packed msg = {
.hdr = {
.group_id = MKHI_GROUP_ID_BUP_COMMON,
.command = GET_IP_FIRMWARE_CMD,
},
.version = 1,
.operation = 1,
.dram_base_low = (uintptr_t)buf,
.dram_base_high = 0,
.memory_size = *buf_size,
.reserved = 0,
};
struct heci_ip_load_response {
struct mkhi_hdr hdr;
uint32_t payload_size;
uint32_t reserved[2];
uint32_t status;
uint8_t hash_type;
uint8_t hash[MAX_HASH_SIZE];
} __packed reply;
if (!buf || !buf_size || !hash_buf || !hash_alg) {
printk(BIOS_ERR, "%s: Invalid parameters\n", __func__);
return -1;
}
reply_size = sizeof(reply);
memset(&reply, 0, reply_size);
printk(BIOS_DEBUG, "HECI: Sending Get IP firmware command\n");
if (heci_send_receive(&msg, sizeof(msg), &reply, &reply_size, HECI_MKHI_ADDR)) {
printk(BIOS_ERR, "HECI: Get IP firmware failed\n");
return -1;
}
if (reply.hdr.result) {
printk(BIOS_ERR, "HECI: Get IP firmware response invalid\n");
*status = reply.status;
printk(BIOS_DEBUG, "HECI response:\n");
hexdump(&reply, sizeof(reply));
return -1;
}
*buf_size = reply.payload_size;
*hash_alg = reply.hash_type;
*status = reply.status;
memcpy(hash_buf, reply.hash, MAX_HASH_SIZE);
printk(BIOS_DEBUG, "HECI: Get IP firmware success. Response:\n");
printk(BIOS_DEBUG, " Payload size = 0x%x\n", *buf_size);
printk(BIOS_DEBUG, " Hash type used for signing payload = 0x%x\n", *hash_alg);
return 0;
}
static bool verify_hsphy_hash(void *buf, uint32_t buf_size, uint8_t *hash_buf, uint8_t hash_alg)
{
struct vb2_hash hash;
switch (hash_alg) {
case HASHALG_SHA256:
hash.algo = VB2_HASH_SHA256;
break;
case HASHALG_SHA384:
hash.algo = VB2_HASH_SHA384;
break;
case HASHALG_SHA512:
hash.algo = VB2_HASH_SHA512;
break;
case HASHALG_SHA1:
default:
printk(BIOS_ERR, "Hash alg %d not supported, trying SHA384\n", hash_alg);
hash.algo = VB2_HASH_SHA384;
break;
}
memcpy(hash.raw, hash_buf, vb2_digest_size(hash.algo));
if (vb2_hash_verify(vboot_hwcrypto_allowed(), buf, buf_size, &hash) != VB2_SUCCESS)
return false;
return true;
}
static void upload_hsphy_to_cpu_pcie(void *buf, uint32_t buf_size)
{
uint16_t i = 0, j;
struct ip_push_model *push_model = (struct ip_push_model *)buf;
while (i < buf_size) {
i += sizeof(*push_model);
if ((push_model->address == 0) && (push_model->count == 0))
break; // End of file
for (j = 0; j < push_model->count; j++) {
REGBAR32(CPU_PID_PCIE_PHYX16_BROADCAST,
push_model->address) = push_model->data[j];
i += sizeof(uint32_t);
}
push_model = (struct ip_push_model *)(buf + i);
}
}
static bool hsphy_cache_valid(struct hsphy_cache *hsphy_fw_cache)
{
if (!hsphy_fw_cache) {
printk(BIOS_WARNING, "Failed to mmap HSPHY cache\n");
return false;
}
if (hsphy_fw_cache->hsphy_size == 0 ||
hsphy_fw_cache->hsphy_size > HSPHY_PAYLOAD_SIZE ||
hsphy_fw_cache->hash_algo <= HASHALG_SHA1 ||
hsphy_fw_cache->hash_algo > HASHALG_SHA512)
return false;
if (!verify_hsphy_hash(hsphy_fw_cache->hsphy_fw, hsphy_fw_cache->hsphy_size,
hsphy_fw_cache->digest, hsphy_fw_cache->hash_algo))
return false;
return true;
}
static bool load_hsphy_from_cache(void)
{
struct region_device rdev;
struct hsphy_cache *hsphy_fw_cache;
if (fmap_locate_area_as_rdev("HSPHY_FW", &rdev) < 0) {
printk(BIOS_ERR, "HSPHY: Cannot find HSPHY_FW region\n");
return false;
}
hsphy_fw_cache = (struct hsphy_cache *)rdev_mmap_full(&rdev);
if (!hsphy_cache_valid(hsphy_fw_cache)) {
printk(BIOS_ERR, "HSPHY: HSPHY cache invalid\n");
if (hsphy_fw_cache)
rdev_munmap(&rdev, hsphy_fw_cache);
return false;
}
printk(BIOS_INFO, "Loading HSPHY FW from cache\n");
upload_hsphy_to_cpu_pcie(hsphy_fw_cache->hsphy_fw, hsphy_fw_cache->hsphy_size);
rdev_munmap(&rdev, hsphy_fw_cache);
return true;
}
static void cache_hsphy_fw_in_flash(void *buf, uint32_t buf_size, uint8_t *hash_buf,
uint8_t hash_alg)
{
struct region_device rdev;
struct hsphy_cache *hsphy_fw_cache;
size_t ret;
if (!buf || buf_size == 0 || buf_size > (HSPHY_PAYLOAD_SIZE - sizeof(*hsphy_fw_cache))
|| !hash_buf || hash_alg <= HASHALG_SHA1 || hash_alg > HASHALG_SHA512) {
printk(BIOS_ERR, "Invalid parameters, HSPHY will not be cached in flash.\n");
return;
}
/* Locate the area as RO rdev, otherwise mmap will fail */
if (fmap_locate_area_as_rdev("HSPHY_FW", &rdev) < 0) {
printk(BIOS_ERR, "HSPHY: Could not find HSPHY_FW region\n");
printk(BIOS_ERR, "HSPHY will not be cached in flash\n");
return;
}
hsphy_fw_cache = (struct hsphy_cache *)rdev_mmap_full(&rdev);
if (hsphy_cache_valid(hsphy_fw_cache)) {
/* If the cache is valid, check the buffer against the cache hash */
if (verify_hsphy_hash(buf, buf_size, hsphy_fw_cache->digest,
hsphy_fw_cache->hash_algo)) {
printk(BIOS_INFO, "HSPHY: cache does not need update\n");
rdev_munmap(&rdev, hsphy_fw_cache);
return;
} else {
printk(BIOS_INFO, "HSPHY: cache needs update\n");
}
} else {
printk(BIOS_INFO, "HSPHY: cache invalid, updating\n");
}
if (region_device_sz(&rdev) < (buf_size + sizeof(*hsphy_fw_cache))) {
printk(BIOS_ERR, "HSPHY: HSPHY_FW region too small: %zx < %zx\n",
region_device_sz(&rdev), buf_size + sizeof(*hsphy_fw_cache));
printk(BIOS_ERR, "HSPHY will not be cached in flash\n");
rdev_munmap(&rdev, hsphy_fw_cache);
return;
}
rdev_munmap(&rdev, hsphy_fw_cache);
hsphy_fw_cache = malloc(sizeof(*hsphy_fw_cache));
if (!hsphy_fw_cache) {
printk(BIOS_ERR, "HSPHY: Could not allocate memory for HSPHY cache buffer\n");
printk(BIOS_ERR, "HSPHY will not be cached in flash\n");
return;
}
hsphy_fw_cache->hsphy_size = buf_size;
hsphy_fw_cache->hash_algo = hash_alg;
switch (hash_alg) {
case HASHALG_SHA256:
hash_alg = VB2_HASH_SHA256;
break;
case HASHALG_SHA384:
hash_alg = VB2_HASH_SHA384;
break;
case HASHALG_SHA512:
hash_alg = VB2_HASH_SHA512;
break;
}
memset(hsphy_fw_cache->digest, 0, sizeof(hsphy_fw_cache->digest));
memcpy(hsphy_fw_cache->digest, hash_buf, vb2_digest_size(hash_alg));
/* Now that we want to write to flash, locate the area as RW rdev */
if (fmap_locate_area_as_rdev_rw("HSPHY_FW", &rdev) < 0) {
printk(BIOS_ERR, "HSPHY: Could not find HSPHY_FW region\n");
printk(BIOS_ERR, "HSPHY will not be cached in flash\n");
free(hsphy_fw_cache);
return;
}
if (rdev_eraseat(&rdev, 0, region_device_sz(&rdev)) < 0) {
printk(BIOS_ERR, "Failed to erase HSPHY cache region\n");
free(hsphy_fw_cache);
return;
}
ret = rdev_writeat(&rdev, hsphy_fw_cache, 0, sizeof(*hsphy_fw_cache));
if (ret != sizeof(*hsphy_fw_cache)) {
printk(BIOS_ERR, "Failed to write HSPHY cache metadata\n");
free(hsphy_fw_cache);
return;
}
ret = rdev_writeat(&rdev, buf, sizeof(*hsphy_fw_cache), buf_size);
if (ret != buf_size) {
printk(BIOS_ERR, "Failed to write HSPHY FW to cache\n");
free(hsphy_fw_cache);
return;
}
printk(BIOS_INFO, "HSPHY cached to flash successfully\n");
free(hsphy_fw_cache);
}
static void *allocate_hsphy_buf(void)
{
void *hsphy_buf;
size_t dma_buf_size;
if (CONFIG(ENABLE_EARLY_DMA_PROTECTION)) {
hsphy_buf = vtd_get_dma_buffer(&dma_buf_size);
if (!hsphy_buf || dma_buf_size < HSPHY_PAYLOAD_SIZE) {
printk(BIOS_ERR, "DMA protection enabled but DMA buffer does not"
" exist or is too small\n");
return NULL;
}
/* Rather impossible scenario, but check alignment anyways */
if (!IS_ALIGNED((uintptr_t)hsphy_buf, 4 * KiB) &&
(HSPHY_PAYLOAD_SIZE + 4 * KiB) <= dma_buf_size)
hsphy_buf = (void *)ALIGN_UP((uintptr_t)hsphy_buf, 4 * KiB);
} else {
/* Align the buffer to page size, otherwise the HECI command will fail */
hsphy_buf = memalign(4 * KiB, HSPHY_PAYLOAD_SIZE);
if (!hsphy_buf) {
printk(BIOS_ERR, "Failed to allocate memory for HSPHY blob\n");
return NULL;
}
}
return hsphy_buf;
}
void load_and_init_hsphy(void)
{
void *hsphy_buf;
uint8_t hsphy_hash[MAX_HASH_SIZE] = { 0 };
uint8_t hash_type;
uint32_t buf_size = HSPHY_PAYLOAD_SIZE;
pci_devfn_t dev = PCH_DEV_CSE;
const uint16_t pci_cmd_bme_mem = PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY;
uint32_t status;
if (!is_devfn_enabled(SA_DEVFN_CPU_PCIE1_0) &&
!is_devfn_enabled(SA_DEVFN_CPU_PCIE1_1)) {
printk(BIOS_DEBUG, "All HSPHY ports disabled, skipping HSPHY loading\n");
return;
}
/*
* Try to get HSPHY payload from CSME first, so we can always keep our
* HSPHY cache up to date. If we cannot allocate the buffer for it, the
* cache is our last resort.
*/
hsphy_buf = allocate_hsphy_buf();
if (!hsphy_buf) {
printk(BIOS_ERR, "Could not allocate memory for HSPHY blob\n");
if (CONFIG(INCLUDE_HSPHY_IN_FMAP)) {
printk(BIOS_INFO, "Trying to load HSPHY FW from cache\n");
if (load_hsphy_from_cache()) {
printk(BIOS_INFO, "Successfully loaded HSPHY FW from cache\n");
return;
}
printk(BIOS_ERR, "Failed to load HSPHY FW from cache\n");
}
printk(BIOS_ERR, "Aborting HSPHY FW loading, PCIe Gen5 won't work.\n");
return;
}
memset(hsphy_buf, 0, HSPHY_PAYLOAD_SIZE);
/*
* If CSME is not present, try cached HSPHY FW. We still want to use
* CSME just in case CSME is updated along with HSPHY FW, so that we
* can update our cache if needed.
*/
if (!is_cse_enabled()) {
if (CONFIG(INCLUDE_HSPHY_IN_FMAP)) {
printk(BIOS_INFO, "Trying to load HSPHY FW from cache"
" because CSME is not enabled or not visible\n");
if (load_hsphy_from_cache()) {
printk(BIOS_INFO, "Successfully loaded HSPHY FW from cache\n");
return;
}
printk(BIOS_ERR, "Failed to load HSPHY FW from cache\n");
}
printk(BIOS_ERR, "%s: CSME not enabled or not visible, but required\n",
__func__);
printk(BIOS_ERR, "Aborting HSPHY FW loading, PCIe Gen5 won't work.\n");
if (!CONFIG(ENABLE_EARLY_DMA_PROTECTION))
free(hsphy_buf);
return;
}
/* Ensure BAR, BME and memory space are enabled */
if ((pci_read_config16(dev, PCI_COMMAND) & pci_cmd_bme_mem) != pci_cmd_bme_mem)
pci_or_config16(dev, PCI_COMMAND, pci_cmd_bme_mem);
if (pci_read_config32(dev, PCI_BASE_ADDRESS_0) == 0) {
pci_and_config16(dev, PCI_COMMAND, ~pci_cmd_bme_mem);
pci_write_config32(dev, PCI_BASE_ADDRESS_0, HECI1_BASE_ADDRESS);
pci_or_config16(dev, PCI_COMMAND, pci_cmd_bme_mem);
}
/* Try to get HSPHY payload from CSME and cache it if possible. */
if (!heci_get_hsphy_payload(hsphy_buf, &buf_size, hsphy_hash, &hash_type, &status)) {
if (verify_hsphy_hash(hsphy_buf, buf_size, hsphy_hash, hash_type)) {
upload_hsphy_to_cpu_pcie(hsphy_buf, buf_size);
if (CONFIG(INCLUDE_HSPHY_IN_FMAP))
cache_hsphy_fw_in_flash(hsphy_buf, buf_size, hsphy_hash,
hash_type);
if (!CONFIG(ENABLE_EARLY_DMA_PROTECTION))
free(hsphy_buf);
return;
} else {
printk(BIOS_ERR, "Failed to verify HSPHY FW hash.\n");
}
} else {
printk(BIOS_ERR, "Failed to get HSPHY FW over HECI.\n");
}
if (!CONFIG(ENABLE_EARLY_DMA_PROTECTION))
free(hsphy_buf);
/* We failed to get HSPHY payload from CSME, cache is our last chance. */
if (CONFIG(INCLUDE_HSPHY_IN_FMAP) && load_hsphy_from_cache()) {
printk(BIOS_INFO, "Successfully loaded HSPHY FW from cache\n");
return;
}
printk(BIOS_ERR, "Failed to load HSPHY FW, PCIe Gen5 won't work.\n");
}
|