summaryrefslogtreecommitdiff
path: root/src/soc/cavium/cn81xx/uart.c
blob: 4e5fd82a374918bc1d297bfe50137e027170b12c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
/* SPDX-License-Identifier: GPL-2.0-only */

/*
 * Derived from Cavium's BSD-3 Clause OCTEONTX-SDK-6.2.0.
 */

#include <device/mmio.h>
#include <console/uart.h>
#include <delay.h>
#include <endian.h>
#include <stdint.h>
#include <soc/clock.h>
#include <soc/uart.h>
#include <assert.h>
#include <soc/addressmap.h>
#include <drivers/uart/pl011.h>

union cn81xx_uart_ctl {
	u64 u;
	struct {
		u64 uctl_rst		: 1;
		u64 uaa_rst		: 1;
		u64			: 2;
		u64 csclk_en		: 1;
		u64			: 19;
		u64 h_clkdiv_sel	: 3;
		u64			: 1;
		u64 h_clkdiv_rst	: 1;
		u64 h_clk_byp_sel	: 1;
		u64 h_clk_en		: 1;
		u64			: 33;
	} s;
};

struct cn81xx_uart {
	struct pl011_uart pl011;
	union cn81xx_uart_ctl uctl_ctl;
	u8 rsvd4[0x8];
	u64 uctl_spare0;
	u8 rsvd5[0xe0];
	u64 uctl_spare1;
};

#define UART_IBRD_BAUD_DIVINT_SHIFT		0
#define UART_IBRD_BAUD_DIVINT_MASK		0xffff

#define UART_FBRD_BAUD_DIVFRAC_SHIFT		0
#define UART_FBRD_BAUD_DIVFRAC_MASK		0x3f


check_member(cn81xx_uart, uctl_ctl, 0x1000);
check_member(cn81xx_uart, uctl_spare1, 0x10f8);

#define UART_SCLK_DIV 3

/**
 * Returns the current UART HCLK divider
 *
 * @param reg      The H_CLKDIV_SEL value
 * @return         The HCLK divider
 */
static size_t uart_sclk_divisor(const size_t reg)
{
	static const u8 div[] = {1, 2, 4, 6, 8, 16, 24, 32};

	assert(reg < ARRAY_SIZE(div));

	return div[reg];
}

/**
 * Returns the current UART HCLK
 *
 * @param uart     The UART to operate on
 * @return         The HCLK in Hz
 */
static size_t uart_hclk(struct cn81xx_uart *uart)
{
	union cn81xx_uart_ctl ctl;
	const uint64_t sclk = thunderx_get_io_clock();

	ctl.u = read64(&uart->uctl_ctl);
	return sclk / uart_sclk_divisor(ctl.s.h_clkdiv_sel);
}

unsigned int uart_platform_refclk(void)
{
	struct cn81xx_uart *uart =
	    (struct cn81xx_uart *)CONFIG_CONSOLE_SERIAL_UART_ADDRESS;

	if (!uart)
		return 0;

	return uart_hclk(uart);
}

uintptr_t uart_platform_base(unsigned int idx)
{
	return CONFIG_CONSOLE_SERIAL_UART_ADDRESS;
}

/**
 * Waits given count if HCLK cycles
 *
 * @param uart     The UART to operate on
 * @param hclks    The number of HCLK cycles to wait
 */
static void uart_wait_hclk(struct cn81xx_uart *uart, const size_t hclks)
{
	const size_t hclk = uart_hclk(uart);
	const size_t delay = (hclks * 1000000ULL) / hclk;
	udelay(MAX(delay, 1));
}

/**
 * Returns the UART state.
 *
 * @param bus     The UART to operate on
 * @return        Boolean: True if UART is enabled
 */
int uart_is_enabled(const size_t bus)
{
	struct cn81xx_uart *uart = (struct cn81xx_uart *)UAAx_PF_BAR0(bus);
	union cn81xx_uart_ctl ctl;

	assert(uart);
	if (!uart)
		return 0;

	ctl.u = read64(&uart->uctl_ctl);
	return !!ctl.s.csclk_en;
}

/**
 * Setup UART with desired BAUD rate in 8N1, no parity mode.
 *
 * @param bus          The UART to operate on
 * @param baudrate     baudrate to set up
 *
 * @return             Boolean: True on error
 */
int uart_setup(const size_t bus, int baudrate)
{
	union cn81xx_uart_ctl ctl;
	struct cn81xx_uart *uart = (struct cn81xx_uart *)UAAx_PF_BAR0(bus);

	assert(uart);
	if (!uart)
		return 1;

	/* 1.2.1 Initialization Sequence (Power-On/Hard/Cold Reset) */
	/* 1. Wait for IOI reset (srst_n) to deassert. */

	/**
	 * 2. Assert all resets:
	 * a. UAA reset: UCTL_CTL[UAA_RST] = 1
	 * b. UCTL reset: UCTL_CTL[UCTL_RST] = 1
	 */
	ctl.u = read64(&uart->uctl_ctl);
	ctl.s.uctl_rst = 1;
	ctl.s.uaa_rst = 1;
	write64(&uart->uctl_ctl, ctl.u);

	/**
	 * 3. Configure the HCLK:
	 * a. Reset the clock dividers: UCTL_CTL[H_CLKDIV_RST] = 1.
	 * b. Select the HCLK frequency
	 * i. UCTL_CTL[H_CLKDIV] = desired value,
	 * ii. UCTL_CTL[H_CLKDIV_EN] = 1 to enable the HCLK.
	 * iii. Readback UCTL_CTL to ensure the values take effect.
	 * c. Deassert the HCLK clock divider reset: UCTL_CTL[H_CLKDIV_RST] = 0.
	 */
	ctl.u = read64(&uart->uctl_ctl);
	ctl.s.h_clkdiv_sel = UART_SCLK_DIV;
	write64(&uart->uctl_ctl, ctl.u);

	ctl.u = read64(&uart->uctl_ctl);
	ctl.s.h_clk_byp_sel = 0;
	write64(&uart->uctl_ctl, ctl.u);

	ctl.u = read64(&uart->uctl_ctl);
	ctl.s.h_clk_en = 1;
	write64(&uart->uctl_ctl, ctl.u);

	ctl.u = read64(&uart->uctl_ctl);
	ctl.s.h_clkdiv_rst = 0;
	write64(&uart->uctl_ctl, ctl.u);

	/**
	 * 4. Wait 20 HCLK cycles from step 3 for HCLK to start and async fifo
	 * to properly reset.
	 */
	uart_wait_hclk(uart, 20 + 1);

	/**
	 * 5. Deassert UCTL and UAHC resets:
	 *  a. UCTL_CTL[UCTL_RST] = 0
	 * b. Wait 10 HCLK cycles.
	 * c. UCTL_CTL[UAHC_RST] = 0
	 * d. You will have to wait 10 HCLK cycles before accessing any
	 * HCLK-only registers.
	 */
	ctl.u = read64(&uart->uctl_ctl);
	ctl.s.uctl_rst = 0;
	write64(&uart->uctl_ctl, ctl.u);

	uart_wait_hclk(uart, 10 + 1);

	ctl.u = read64(&uart->uctl_ctl);
	ctl.s.uaa_rst = 0;
	write64(&uart->uctl_ctl, ctl.u);

	uart_wait_hclk(uart, 10 + 1);

	/**
	 * 6. Enable conditional SCLK of UCTL by writing
	 * UCTL_CTL[CSCLK_EN] = 1.
	 */
	ctl.u = read64(&uart->uctl_ctl);
	ctl.s.csclk_en = 1;
	write64(&uart->uctl_ctl, ctl.u);

	/**
	 * Exit here if the UART is not going to be used in coreboot.
	 * The previous initialization steps are sufficient to make the Linux
	 * kernel not panic.
	 */
	if (!baudrate)
		return 0;

	/**
	 * 7. Initialize the integer and fractional baud rate divider registers
	 * UARTIBRD and UARTFBRD as follows:
	 * a. Baud Rate Divisor = UARTCLK/(16xBaud Rate) = BRDI + BRDF
	 * b. The fractional register BRDF, m is calculated as
	 * integer(BRDF x 64 + 0.5)
	 * Example calculation:
	 * If the required baud rate is 230400 and hclk = 4MHz then:
	 * Baud Rate Divisor = (4x10^6)/(16x230400) = 1.085
	 * This means BRDI = 1 and BRDF = 0.085.
	 * Therefore, fractional part, BRDF = integer((0.085x64)+0.5) = 5
	 * Generated baud rate divider = 1+5/64 = 1.078
	 */
	u64 divisor = thunderx_get_io_clock() /
		(baudrate * 16 * uart_sclk_divisor(UART_SCLK_DIV) / 64);
	write32(&uart->pl011.ibrd, divisor >> 6);
	write32(&uart->pl011.fbrd, divisor & UART_FBRD_BAUD_DIVFRAC_MASK);

	/**
	 * 8. Program the line control register UAA(0..1)_LCR_H and the control
	 * register UAA(0..1)_CR
	 */
	/* 8-bits, FIFO enable */
	write32(&uart->pl011.lcr_h, PL011_UARTLCR_H_WLEN_8 |
				    PL011_UARTLCR_H_FEN);
	/* RX/TX enable, UART enable */
	write32(&uart->pl011.cr, PL011_UARTCR_RXE | PL011_UARTCR_TXE |
				 PL011_UARTCR_UARTEN);

	return 0;
}