1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
|
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2010-2017 Advanced Micro Devices, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <console/console.h>
#include <arch/io.h>
#include <bootstate.h>
#include <cpu/x86/smm.h>
#include <device/device.h>
#include <device/pci.h>
#include <device/pci_ids.h>
#include <device/pci_ops.h>
#include <cbmem.h>
#include <elog.h>
#include <amdblocks/amd_pci_util.h>
#include <amdblocks/agesawrapper.h>
#include <soc/southbridge.h>
#include <soc/smi.h>
#include <soc/amd_pci_int_defs.h>
#include <delay.h>
#include <soc/pci_devs.h>
#include <agesa_headers.h>
#include <soc/nvs.h>
#include <reset.h>
/*
* Table of devices that need their AOAC registers enabled and waited
* upon (usually about .55 milliseconds). Instead of individual delays
* waiting for each device to become available, a single delay will be
* executed.
*/
const static struct stoneyridge_aoac aoac_devs[] = {
{ (FCH_AOAC_D3_CONTROL_UART0 + CONFIG_UART_FOR_CONSOLE * 2),
(FCH_AOAC_D3_STATE_UART0 + CONFIG_UART_FOR_CONSOLE * 2) },
{ FCH_AOAC_D3_CONTROL_AMBA, FCH_AOAC_D3_STATE_AMBA },
{ FCH_AOAC_D3_CONTROL_I2C0, FCH_AOAC_D3_STATE_I2C0 },
{ FCH_AOAC_D3_CONTROL_I2C1, FCH_AOAC_D3_STATE_I2C1 },
{ FCH_AOAC_D3_CONTROL_I2C2, FCH_AOAC_D3_STATE_I2C2 },
{ FCH_AOAC_D3_CONTROL_I2C3, FCH_AOAC_D3_STATE_I2C3 }
};
static int is_sata_config(void)
{
return !((CONFIG_STONEYRIDGE_SATA_MODE == SataNativeIde)
|| (CONFIG_STONEYRIDGE_SATA_MODE == SataLegacyIde));
}
static inline int sb_sata_enable(void)
{
/* True if IDE or AHCI. */
return (CONFIG_STONEYRIDGE_SATA_MODE == SataNativeIde) ||
(CONFIG_STONEYRIDGE_SATA_MODE == SataAhci);
}
static inline int sb_ide_enable(void)
{
/* True if IDE or LEGACY IDE. */
return (CONFIG_STONEYRIDGE_SATA_MODE == SataNativeIde) ||
(CONFIG_STONEYRIDGE_SATA_MODE == SataLegacyIde);
}
void SetFchResetParams(FCH_RESET_INTERFACE *params)
{
const struct device *dev = dev_find_slot(0, SATA_DEVFN);
params->Xhci0Enable = IS_ENABLED(CONFIG_STONEYRIDGE_XHCI_ENABLE);
if (dev && dev->enabled) {
params->SataEnable = sb_sata_enable();
params->IdeEnable = sb_ide_enable();
} else {
params->SataEnable = FALSE;
params->IdeEnable = FALSE;
}
}
void SetFchEnvParams(FCH_INTERFACE *params)
{
const struct device *dev = dev_find_slot(0, SATA_DEVFN);
params->AzaliaController = AzEnable;
params->SataClass = CONFIG_STONEYRIDGE_SATA_MODE;
if (dev && dev->enabled) {
params->SataEnable = is_sata_config();
params->IdeEnable = !params->SataEnable;
params->SataIdeMode = (CONFIG_STONEYRIDGE_SATA_MODE ==
SataLegacyIde);
} else {
params->SataEnable = FALSE;
params->IdeEnable = FALSE;
params->SataIdeMode = FALSE;
}
}
void SetFchMidParams(FCH_INTERFACE *params)
{
SetFchEnvParams(params);
}
/*
* Table of APIC register index and associated IRQ name. Using IDX_XXX_NAME
* provides a visible association with the index, therefore helping
* maintainability of table. If a new index/name is defined in
* amd_pci_int_defs.h, just add the pair at the end of this table.
* Order is not important.
*/
const static struct irq_idx_name irq_association[] = {
{ PIRQ_A, "INTA#" },
{ PIRQ_B, "INTB#" },
{ PIRQ_C, "INTC#" },
{ PIRQ_D, "INTD#" },
{ PIRQ_E, "INTE#" },
{ PIRQ_F, "INTF#" },
{ PIRQ_G, "INTG#" },
{ PIRQ_H, "INTH#" },
{ PIRQ_MISC, "Misc" },
{ PIRQ_MISC0, "Misc0" },
{ PIRQ_MISC1, "Misc1" },
{ PIRQ_MISC2, "Misc2" },
{ PIRQ_SIRQA, "Ser IRQ INTA" },
{ PIRQ_SIRQB, "Ser IRQ INTB" },
{ PIRQ_SIRQC, "Ser IRQ INTC" },
{ PIRQ_SIRQD, "Ser IRQ INTD" },
{ PIRQ_SCI, "SCI" },
{ PIRQ_SMBUS, "SMBUS" },
{ PIRQ_ASF, "ASF" },
{ PIRQ_HDA, "HDA" },
{ PIRQ_FC, "FC" },
{ PIRQ_PMON, "PerMon" },
{ PIRQ_SD, "SD" },
{ PIRQ_SDIO, "SDIOt" },
{ PIRQ_EHCI, "EHCI" },
{ PIRQ_XHCI, "XHCI" },
{ PIRQ_SATA, "SATA" },
{ PIRQ_GPIO, "GPIO" },
{ PIRQ_I2C0, "I2C0" },
{ PIRQ_I2C1, "I2C1" },
{ PIRQ_I2C2, "I2C2" },
{ PIRQ_I2C3, "I2C3" },
{ PIRQ_UART0, "UART0" },
{ PIRQ_UART1, "UART1" },
};
/*
* Structure to simplify code obtaining the total of used wide IO
* registers and the size assigned to each.
*/
static struct wide_io_ioport_and_bits {
uint32_t enable;
uint16_t port;
uint8_t alt;
} wio_io_en[TOTAL_WIDEIO_PORTS] = {
{
LPC_WIDEIO0_ENABLE,
LPC_WIDEIO_GENERIC_PORT,
LPC_ALT_WIDEIO0_ENABLE
},
{
LPC_WIDEIO1_ENABLE,
LPC_WIDEIO1_GENERIC_PORT,
LPC_ALT_WIDEIO1_ENABLE
},
{
LPC_WIDEIO2_ENABLE,
LPC_WIDEIO2_GENERIC_PORT,
LPC_ALT_WIDEIO2_ENABLE
}
};
const struct irq_idx_name *sb_get_apic_reg_association(size_t *size)
{
*size = ARRAY_SIZE(irq_association);
return irq_association;
}
/**
* @brief Find the size of a particular wide IO
*
* @param index = index of desired wide IO
*
* @return size of desired wide IO
*/
uint16_t sb_wideio_size(int index)
{
uint32_t enable_register;
uint16_t size = 0;
uint8_t alternate_register;
if (index >= TOTAL_WIDEIO_PORTS)
return size;
enable_register = pci_read_config32(SOC_LPC_DEV,
LPC_IO_OR_MEM_DECODE_ENABLE);
alternate_register = pci_read_config8(SOC_LPC_DEV,
LPC_ALT_WIDEIO_RANGE_ENABLE);
if (enable_register & wio_io_en[index].enable)
size = (alternate_register & wio_io_en[index].alt) ?
16 : 512;
return size;
}
/**
* @brief Identify if any LPC wide IO is covering the IO range
*
* @param start = start of IO range
* @param size = size of IO range
*
* @return Index of wide IO covering the range or error
*/
int sb_find_wideio_range(uint16_t start, uint16_t size)
{
uint32_t enable_register;
int i, index = WIDEIO_RANGE_ERROR;
uint16_t end, current_size, start_wideio, end_wideio;
end = start + size;
enable_register = pci_read_config32(SOC_LPC_DEV,
LPC_IO_OR_MEM_DECODE_ENABLE);
for (i = 0; i < TOTAL_WIDEIO_PORTS; i++) {
current_size = sb_wideio_size(i);
if (current_size == 0)
continue;
start_wideio = pci_read_config16(SOC_LPC_DEV,
wio_io_en[i].port);
end_wideio = start_wideio + current_size;
if ((start >= start_wideio) && (end <= end_wideio)) {
index = i;
break;
}
}
return index;
}
/**
* @brief Program a LPC wide IO to support an IO range
*
* @param start = start of range to be routed through wide IO
* @param size = size of range to be routed through wide IO
*
* @return Index of wide IO register used or error
*/
int sb_set_wideio_range(uint16_t start, uint16_t size)
{
int i, index = WIDEIO_RANGE_ERROR;
uint32_t enable_register;
uint8_t alternate_register;
enable_register = pci_read_config32(SOC_LPC_DEV,
LPC_IO_OR_MEM_DECODE_ENABLE);
alternate_register = pci_read_config8(SOC_LPC_DEV,
LPC_ALT_WIDEIO_RANGE_ENABLE);
for (i = 0; i < TOTAL_WIDEIO_PORTS; i++) {
if (enable_register & wio_io_en[i].enable)
continue;
index = i;
pci_write_config16(SOC_LPC_DEV, wio_io_en[i].port, start);
enable_register |= wio_io_en[i].enable;
pci_write_config32(SOC_LPC_DEV, LPC_IO_OR_MEM_DECODE_ENABLE,
enable_register);
if (size <= 16)
alternate_register |= wio_io_en[i].alt;
else
alternate_register &= ~wio_io_en[i].alt;
pci_write_config8(SOC_LPC_DEV,
LPC_ALT_WIDEIO_RANGE_ENABLE,
alternate_register);
break;
}
return index;
}
static void power_on_aoac_device(int aoac_device_control_register)
{
uint8_t byte;
uint8_t *register_pointer = (uint8_t *)(uintptr_t)AOAC_MMIO_BASE
+ aoac_device_control_register;
/* Power on the UART and AMBA devices */
byte = read8(register_pointer);
byte |= FCH_AOAC_PWR_ON_DEV;
write8(register_pointer, byte);
}
static bool is_aoac_device_enabled(int aoac_device_status_register)
{
uint8_t byte;
byte = read8((uint8_t *)(uintptr_t)AOAC_MMIO_BASE
+ aoac_device_status_register);
byte &= (FCH_AOAC_PWR_RST_STATE | FCH_AOAC_RST_CLK_OK_STATE);
if (byte == (FCH_AOAC_PWR_RST_STATE | FCH_AOAC_RST_CLK_OK_STATE))
return true;
else
return false;
}
void enable_aoac_devices(void)
{
bool status;
int i;
for (i = 0; i < ARRAY_SIZE(aoac_devs); i++)
power_on_aoac_device(aoac_devs[i].enable);
/* Wait for AOAC devices to indicate power and clock OK */
do {
udelay(100);
status = true;
for (i = 0; i < ARRAY_SIZE(aoac_devs); i++)
status &= is_aoac_device_enabled(aoac_devs[i].status);
} while (!status);
}
void sb_pci_port80(void)
{
u8 byte;
byte = pci_read_config8(SOC_LPC_DEV, LPC_IO_OR_MEM_DEC_EN_HIGH);
byte &= ~DECODE_IO_PORT_ENABLE4_H; /* disable lpc port 80 */
pci_write_config8(SOC_LPC_DEV, LPC_IO_OR_MEM_DEC_EN_HIGH, byte);
}
void sb_lpc_port80(void)
{
u8 byte;
/* Enable LPC controller */
outb(PM_LPC_GATING, PM_INDEX);
byte = inb(PM_DATA);
byte |= PM_LPC_ENABLE;
outb(PM_LPC_GATING, PM_INDEX);
outb(byte, PM_DATA);
/* Enable port 80 LPC decode in pci function 3 configuration space. */
byte = pci_read_config8(SOC_LPC_DEV, LPC_IO_OR_MEM_DEC_EN_HIGH);
byte |= DECODE_IO_PORT_ENABLE4_H; /* enable port 80 */
pci_write_config8(SOC_LPC_DEV, LPC_IO_OR_MEM_DEC_EN_HIGH, byte);
}
void sb_lpc_decode(void)
{
u32 tmp = 0;
/* Enable I/O decode to LPC bus */
tmp = DECODE_ENABLE_PARALLEL_PORT0 | DECODE_ENABLE_PARALLEL_PORT2
| DECODE_ENABLE_PARALLEL_PORT4 | DECODE_ENABLE_SERIAL_PORT0
| DECODE_ENABLE_SERIAL_PORT1 | DECODE_ENABLE_SERIAL_PORT2
| DECODE_ENABLE_SERIAL_PORT3 | DECODE_ENABLE_SERIAL_PORT4
| DECODE_ENABLE_SERIAL_PORT5 | DECODE_ENABLE_SERIAL_PORT6
| DECODE_ENABLE_SERIAL_PORT7 | DECODE_ENABLE_AUDIO_PORT0
| DECODE_ENABLE_AUDIO_PORT1 | DECODE_ENABLE_AUDIO_PORT2
| DECODE_ENABLE_AUDIO_PORT3 | DECODE_ENABLE_MSS_PORT2
| DECODE_ENABLE_MSS_PORT3 | DECODE_ENABLE_FDC_PORT0
| DECODE_ENABLE_FDC_PORT1 | DECODE_ENABLE_GAME_PORT
| DECODE_ENABLE_KBC_PORT | DECODE_ENABLE_ACPIUC_PORT
| DECODE_ENABLE_ADLIB_PORT;
pci_write_config32(SOC_LPC_DEV, LPC_IO_PORT_DECODE_ENABLE, tmp);
}
void sb_acpi_mmio_decode(void)
{
uint8_t byte;
/* Enable ACPI MMIO range 0xfed80000 - 0xfed81fff */
outb(PM_ISA_CONTROL, PM_INDEX);
byte = inb(PM_DATA);
byte |= MMIO_EN;
outb(PM_ISA_CONTROL, PM_INDEX);
outb(byte, PM_DATA);
}
static void sb_enable_cf9_io(void)
{
uint32_t reg = pm_read32(PM_DECODE_EN);
pm_write32(PM_DECODE_EN, reg | CF9_IO_EN);
}
static void sb_enable_legacy_io(void)
{
uint32_t reg = pm_read32(PM_DECODE_EN);
pm_write32(PM_DECODE_EN, reg | LEGACY_IO_EN);
}
void sb_clk_output_48Mhz(void)
{
u32 ctrl;
u32 *misc_clk_cntl_1_ptr = (u32 *)(uintptr_t)(MISC_MMIO_BASE
+ MISC_MISC_CLK_CNTL_1);
/*
* Enable the X14M_25M_48M_OSC pin and leaving it at it's default so
* 48Mhz will be on ball AP13 (FT3b package)
*/
ctrl = read32(misc_clk_cntl_1_ptr);
/* clear the OSCOUT1_ClkOutputEnb to enable the 48 Mhz clock */
ctrl &= ~OSCOUT1_CLK_OUTPUT_ENB;
write32(misc_clk_cntl_1_ptr, ctrl);
}
static uintptr_t sb_spibase(void)
{
u32 base, enables;
/* Make sure the base address is predictable */
base = pci_read_config32(SOC_LPC_DEV, SPIROM_BASE_ADDRESS_REGISTER);
enables = base & 0xf;
base &= ~0x3f;
if (!base) {
base = SPI_BASE_ADDRESS;
pci_write_config32(SOC_LPC_DEV, SPIROM_BASE_ADDRESS_REGISTER,
base | enables | SPI_ROM_ENABLE);
/* PCI_COMMAND_MEMORY is read-only and enabled. */
}
return (uintptr_t)base;
}
void sb_set_spi100(u16 norm, u16 fast, u16 alt, u16 tpm)
{
uintptr_t base = sb_spibase();
write16((void *)base + SPI100_SPEED_CONFIG,
(norm << SPI_NORM_SPEED_NEW_SH) |
(fast << SPI_FAST_SPEED_NEW_SH) |
(alt << SPI_ALT_SPEED_NEW_SH) |
(tpm << SPI_TPM_SPEED_NEW_SH));
write16((void *)base + SPI100_ENABLE, SPI_USE_SPI100);
}
void sb_disable_4dw_burst(void)
{
uintptr_t base = sb_spibase();
write16((void *)base + SPI100_HOST_PREF_CONFIG,
read16((void *)base + SPI100_HOST_PREF_CONFIG)
& ~SPI_RD4DW_EN_HOST);
}
void sb_read_mode(u32 mode)
{
uintptr_t base = sb_spibase();
write32((void *)base + SPI_CNTRL0,
(read32((void *)base + SPI_CNTRL0)
& ~SPI_READ_MODE_MASK) | mode);
}
/*
* Enable FCH to decode TPM associated Memory and IO regions
*
* Enable decoding of TPM cycles defined in TPM 1.2 spec
* Enable decoding of legacy TPM addresses: IO addresses 0x7f-
* 0x7e and 0xef-0xee.
* This function should be called if TPM is connected in any way to the FCH and
* conforms to the regions decoded.
* Absent any other routing configuration the TPM cycles will be claimed by the
* LPC bus
*/
void sb_tpm_decode(void)
{
u32 value;
value = pci_read_config32(SOC_LPC_DEV, LPC_TRUSTED_PLATFORM_MODULE);
value |= TPM_12_EN | TPM_LEGACY_EN;
pci_write_config32(SOC_LPC_DEV, LPC_TRUSTED_PLATFORM_MODULE, value);
}
/*
* Enable FCH to decode TPM associated Memory and IO regions to SPI
*
* This should be used if TPM is connected to SPI bus.
* Assumes SPI address space is already configured via a call to sb_spibase().
*/
void sb_tpm_decode_spi(void)
{
/* Enable TPM decoding to FCH */
sb_tpm_decode();
/* Route TPM accesses to SPI */
u32 spibase = pci_read_config32(SOC_LPC_DEV,
SPIROM_BASE_ADDRESS_REGISTER);
pci_write_config32(SOC_LPC_DEV, SPIROM_BASE_ADDRESS_REGISTER, spibase
| ROUTE_TPM_2_SPI);
}
/*
* Enable 4MB (LPC) ROM access at 0xFFC00000 - 0xFFFFFFFF.
*
* Hardware should enable LPC ROM by pin straps. This function does not
* handle the theoretically possible PCI ROM, FWH, or SPI ROM configurations.
*
* The southbridge power-on default is to map 512K ROM space.
*
*/
void sb_enable_rom(void)
{
u8 reg8;
/*
* Decode variable LPC ROM address ranges 1 and 2.
* Bits 3-4 are not defined in any publicly available datasheet
*/
reg8 = pci_read_config8(SOC_LPC_DEV, LPC_IO_OR_MEM_DECODE_ENABLE);
reg8 |= (1 << 3) | (1 << 4);
pci_write_config8(SOC_LPC_DEV, LPC_IO_OR_MEM_DECODE_ENABLE, reg8);
/*
* LPC ROM address range 1:
* Enable LPC ROM range mirroring start at 0x000e(0000).
*/
pci_write_config16(SOC_LPC_DEV, ROM_ADDRESS_RANGE1_START, 0x000e);
/* Enable LPC ROM range mirroring end at 0x000f(ffff). */
pci_write_config16(SOC_LPC_DEV, ROM_ADDRESS_RANGE1_END, 0x000f);
/*
* LPC ROM address range 2:
*
* Enable LPC ROM range start at:
* 0xfff8(0000): 512KB
* 0xfff0(0000): 1MB
* 0xffe0(0000): 2MB
* 0xffc0(0000): 4MB
*/
pci_write_config16(SOC_LPC_DEV, ROM_ADDRESS_RANGE2_START, 0x10000
- (CONFIG_COREBOOT_ROMSIZE_KB >> 6));
/* Enable LPC ROM range end at 0xffff(ffff). */
pci_write_config16(SOC_LPC_DEV, ROM_ADDRESS_RANGE2_END, 0xffff);
}
static void sb_lpc_early_setup(void)
{
uint32_t dword;
/* Enable SPI prefetch */
dword = pci_read_config32(SOC_LPC_DEV, LPC_ROM_DMA_EC_HOST_CONTROL);
dword |= SPI_FROM_HOST_PREFETCH_EN | SPI_FROM_USB_PREFETCH_EN;
pci_write_config32(SOC_LPC_DEV, LPC_ROM_DMA_EC_HOST_CONTROL, dword);
if (IS_ENABLED(CONFIG_STONEYRIDGE_LEGACY_FREE)) {
/* Decode SIOs at 2E/2F and 4E/4F */
dword = pci_read_config32(SOC_LPC_DEV,
LPC_IO_OR_MEM_DECODE_ENABLE);
dword |= DECODE_ALTERNATE_SIO_ENABLE | DECODE_SIO_ENABLE;
pci_write_config32(SOC_LPC_DEV,
LPC_IO_OR_MEM_DECODE_ENABLE, dword);
}
}
static void setup_spread_spectrum(int *reboot)
{
uint16_t rstcfg = pm_read16(PWR_RESET_CFG);
rstcfg &= ~TOGGLE_ALL_PWR_GOOD;
pm_write16(PWR_RESET_CFG, rstcfg);
uint32_t cntl1 = misc_read32(MISC_CLK_CNTL1);
if (cntl1 & CG1PLL_FBDIV_TEST) {
printk(BIOS_DEBUG, "Spread spectrum is ready\n");
misc_write32(MISC_CGPLL_CONFIG1,
misc_read32(MISC_CGPLL_CONFIG1) |
CG1PLL_SPREAD_SPECTRUM_ENABLE);
return;
}
printk(BIOS_DEBUG, "Setting up spread spectrum\n");
uint32_t cfg6 = misc_read32(MISC_CGPLL_CONFIG6);
cfg6 &= ~CG1PLL_LF_MODE_MASK;
cfg6 |= (0x0F8 << CG1PLL_LF_MODE_SHIFT) & CG1PLL_LF_MODE_MASK;
misc_write32(MISC_CGPLL_CONFIG6, cfg6);
uint32_t cfg3 = misc_read32(MISC_CGPLL_CONFIG3);
cfg3 &= ~CG1PLL_REFDIV_MASK;
cfg3 |= (0x003 << CG1PLL_REFDIV_SHIFT) & CG1PLL_REFDIV_MASK;
cfg3 &= ~CG1PLL_FBDIV_MASK;
cfg3 |= (0x04B << CG1PLL_FBDIV_SHIFT) & CG1PLL_FBDIV_MASK;
misc_write32(MISC_CGPLL_CONFIG3, cfg3);
uint32_t cfg5 = misc_read32(MISC_CGPLL_CONFIG5);
cfg5 &= ~CG1PLL_SS_AMOUNT_NFRAC_SLIP_MASK;
cfg5 |= (0x2 << CG1PLL_SS_AMOUNT_NFRAC_SLIP_SHIFT) & CG1PLL_SS_AMOUNT_NFRAC_SLIP_MASK;
misc_write32(MISC_CGPLL_CONFIG5, cfg5);
uint32_t cfg4 = misc_read32(MISC_CGPLL_CONFIG4);
cfg4 &= ~CG1PLL_SS_AMOUNT_DSFRAC_MASK;
cfg4 |= (0xD000 << CG1PLL_SS_AMOUNT_DSFRAC_SHIFT) & CG1PLL_SS_AMOUNT_DSFRAC_MASK;
cfg4 &= ~CG1PLL_SS_STEP_SIZE_DSFRAC_MASK;
cfg4 |= (0x02D5 << CG1PLL_SS_STEP_SIZE_DSFRAC_SHIFT) & CG1PLL_SS_STEP_SIZE_DSFRAC_MASK;
misc_write32(MISC_CGPLL_CONFIG4, cfg4);
rstcfg |= TOGGLE_ALL_PWR_GOOD;
pm_write16(PWR_RESET_CFG, rstcfg);
cntl1 |= CG1PLL_FBDIV_TEST;
misc_write32(MISC_CLK_CNTL1, cntl1);
*reboot = 1;
}
static void setup_misc(int *reboot)
{
/* Undocumented register */
uint32_t reg = misc_read32(0x50);
if (!(reg & BIT(16))) {
reg |= BIT(16);
misc_write32(0x50, reg);
*reboot = 1;
}
}
/* Before console init */
void bootblock_fch_early_init(void)
{
int reboot = 0;
sb_enable_rom();
sb_lpc_port80();
sb_lpc_decode();
sb_lpc_early_setup();
sb_spibase();
sb_disable_4dw_burst(); /* Must be disabled on CZ(ST) */
sb_acpi_mmio_decode();
sb_enable_cf9_io();
setup_spread_spectrum(&reboot);
setup_misc(&reboot);
if (reboot)
soft_reset();
sb_enable_legacy_io();
enable_aoac_devices();
}
static void print_num_status_bits(int num_bits, uint32_t status,
const char *const bit_names[])
{
int i;
if (!status)
return;
for (i = num_bits - 1; i >= 0; i--) {
if (status & (1 << i)) {
if (bit_names[i])
printk(BIOS_DEBUG, "%s ", bit_names[i]);
else
printk(BIOS_DEBUG, "BIT%d ", i);
}
}
}
static void sb_print_pmxc0_status(void)
{
/* PMxC0 S5/Reset Status shows the source of previous reset. */
uint32_t pmxc0_status = pm_read32(PM_RST_STATUS);
static const char *const pmxc0_status_bits[] = {
[0] = "ThermalTrip",
[1] = "FourSecondPwrBtn",
[2] = "Shutdown",
[3] = "ThermalTripFromTemp",
[4] = "RemotePowerDownFromASF",
[5] = "ShutDownFan0",
[16] = "UserRst",
[17] = "SoftPciRst",
[18] = "DoInit",
[19] = "DoReset",
[20] = "DoFullReset",
[21] = "SleepReset",
[22] = "KbReset",
[23] = "LtReset",
[24] = "FailBootRst",
[25] = "WatchdogIssueReset",
[26] = "RemoteResetFromASF",
[27] = "SyncFlood",
[28] = "HangReset",
[29] = "EcWatchdogRst",
[31] = "BIT31",
};
printk(BIOS_SPEW, "PMxC0 STATUS: 0x%x ", pmxc0_status);
print_num_status_bits(ARRAY_SIZE(pmxc0_status_bits), pmxc0_status,
pmxc0_status_bits);
printk(BIOS_SPEW, "\n");
}
/* After console init */
void bootblock_fch_init(void)
{
sb_print_pmxc0_status();
}
void sb_enable(device_t dev)
{
printk(BIOS_DEBUG, "%s\n", __func__);
}
static void sb_init_acpi_ports(void)
{
u32 reg;
/* We use some of these ports in SMM regardless of whether or not
* ACPI tables are generated. Enable these ports indiscriminately.
*/
pm_write16(PM_EVT_BLK, ACPI_PM_EVT_BLK);
pm_write16(PM1_CNT_BLK, ACPI_PM1_CNT_BLK);
pm_write16(PM_TMR_BLK, ACPI_PM_TMR_BLK);
pm_write16(PM_GPE0_BLK, ACPI_GPE0_BLK);
/* CpuControl is in \_PR.CP00, 6 bytes */
pm_write16(PM_CPU_CTRL, ACPI_CPU_CONTROL);
if (IS_ENABLED(CONFIG_HAVE_SMI_HANDLER)) {
/* APMC - SMI Command Port */
pm_write16(PM_ACPI_SMI_CMD, APM_CNT);
configure_smi(SMITYPE_SMI_CMD_PORT, SMI_MODE_SMI);
/* SMI on SlpTyp requires sending SMI before completion
* response of the I/O write. The BKDG also specifies
* clearing ForceStpClkRetry for SMI trapping.
*/
reg = pm_read32(PM_PCI_CTRL);
reg |= FORCE_SLPSTATE_RETRY;
reg &= ~FORCE_STPCLK_RETRY;
pm_write32(PM_PCI_CTRL, reg);
/* Disable SlpTyp feature */
reg = pm_read8(PM_RST_CTRL1);
reg &= ~SLPTYPE_CONTROL_EN;
pm_write8(PM_RST_CTRL1, reg);
configure_smi(SMITYPE_SLP_TYP, SMI_MODE_SMI);
} else {
pm_write16(PM_ACPI_SMI_CMD, 0);
}
/* Decode ACPI registers and enable standard features */
pm_write8(PM_ACPI_CONF, PM_ACPI_DECODE_STD |
PM_ACPI_GLOBAL_EN |
PM_ACPI_RTC_EN_EN |
PM_ACPI_TIMER_EN_EN);
}
static uint16_t reset_pm1_status(void)
{
uint16_t pm1_sts = inw(ACPI_PM1_STS);
outw(pm1_sts, ACPI_PM1_STS);
return pm1_sts;
}
static uint16_t print_pm1_status(uint16_t pm1_sts)
{
static const char *const pm1_sts_bits[] = {
[0] = "TMROF",
[4] = "BMSTATUS",
[5] = "GBL",
[8] = "PWRBTN",
[10] = "RTC",
[14] = "PCIEXPWAK",
[15] = "WAK",
};
if (!pm1_sts)
return 0;
printk(BIOS_SPEW, "PM1_STS: ");
print_num_status_bits(ARRAY_SIZE(pm1_sts_bits), pm1_sts, pm1_sts_bits);
printk(BIOS_SPEW, "\n");
return pm1_sts;
}
static void sb_log_pm1_status(uint16_t pm1_sts)
{
if (!IS_ENABLED(CONFIG_ELOG))
return;
if (pm1_sts & WAK_STS)
elog_add_event_byte(ELOG_TYPE_ACPI_WAKE,
acpi_is_wakeup_s3() ? ACPI_S3 : ACPI_S5);
if (pm1_sts & PWRBTN_STS)
elog_add_event_wake(ELOG_WAKE_SOURCE_PWRBTN, 0);
if (pm1_sts & RTC_STS)
elog_add_event_wake(ELOG_WAKE_SOURCE_RTC, 0);
if (pm1_sts & PCIEXPWAK_STS)
elog_add_event_wake(ELOG_WAKE_SOURCE_PCIE, 0);
}
static void sb_save_sws(uint16_t pm1_status)
{
struct soc_power_reg *sws;
uint32_t reg32;
uint16_t reg16;
sws = cbmem_add(CBMEM_ID_POWER_STATE, sizeof(struct soc_power_reg));
if (sws == NULL)
return;
sws->pm1_sts = pm1_status;
sws->pm1_en = inw(ACPI_PM1_EN);
reg32 = inl(ACPI_GPE0_STS);
outl(ACPI_GPE0_STS, reg32);
sws->gpe0_sts = reg32;
sws->gpe0_en = inl(ACPI_GPE0_EN);
reg16 = inw(ACPI_PM1_CNT_BLK);
reg16 &= SLP_TYP;
sws->wake_from = reg16 >> SLP_TYP_SHIFT;
}
static void sb_clear_pm1_status(void)
{
uint16_t pm1_sts = reset_pm1_status();
sb_save_sws(pm1_sts);
sb_log_pm1_status(pm1_sts);
print_pm1_status(pm1_sts);
}
static int get_index_bit(uint32_t value, uint16_t limit)
{
uint16_t i;
uint32_t t;
if (limit >= TOTAL_BITS(uint32_t))
return -1;
/* get a mask of valid bits. Ex limit = 3, set bits 0-2 */
t = (1 << limit) - 1;
if ((value & t) == 0)
return -1;
t = 1;
for (i = 0; i < limit; i++) {
if (value & t)
break;
t <<= 1;
}
return i;
}
static void set_nvs_sws(void *unused)
{
struct soc_power_reg *sws;
struct global_nvs_t *gnvs;
int index;
sws = cbmem_find(CBMEM_ID_POWER_STATE);
if (sws == NULL)
return;
gnvs = cbmem_find(CBMEM_ID_ACPI_GNVS);
if (gnvs == NULL)
return;
index = get_index_bit(sws->pm1_sts & sws->pm1_en, PM1_LIMIT);
if (index < 0)
gnvs->pm1i = ~0ULL;
else
gnvs->pm1i = index;
index = get_index_bit(sws->gpe0_sts & sws->gpe0_en, GPE0_LIMIT);
if (index < 0)
gnvs->gpei = ~0ULL;
else
gnvs->gpei = index;
}
BOOT_STATE_INIT_ENTRY(BS_OS_RESUME, BS_ON_ENTRY, set_nvs_sws, NULL);
void southbridge_init(void *chip_info)
{
sb_init_acpi_ports();
sb_clear_pm1_status();
}
static void set_sb_final_nvs(void)
{
uintptr_t amdfw_rom;
uintptr_t xhci_fw;
uintptr_t fwaddr;
size_t fwsize;
const struct device *sd, *sata, *ehci;
struct global_nvs_t *gnvs = cbmem_find(CBMEM_ID_ACPI_GNVS);
if (gnvs == NULL)
return;
gnvs->aoac.ic0e = is_aoac_device_enabled(FCH_AOAC_D3_STATE_I2C0);
gnvs->aoac.ic1e = is_aoac_device_enabled(FCH_AOAC_D3_STATE_I2C1);
gnvs->aoac.ic2e = is_aoac_device_enabled(FCH_AOAC_D3_STATE_I2C2);
gnvs->aoac.ic3e = is_aoac_device_enabled(FCH_AOAC_D3_STATE_I2C3);
gnvs->aoac.ut0e = is_aoac_device_enabled(FCH_AOAC_D3_STATE_UART0);
gnvs->aoac.ut1e = is_aoac_device_enabled(FCH_AOAC_D3_STATE_UART1);
gnvs->aoac.ehce = is_aoac_device_enabled(FCH_AOAC_D3_STATE_USB2);
gnvs->aoac.xhce = is_aoac_device_enabled(FCH_AOAC_D3_STATE_USB3);
/* Rely on these being in sync with devicetree */
sd = dev_find_slot(0, SD_DEVFN);
gnvs->aoac.st_e = sd && sd->enabled ? 1 : 0;
sata = dev_find_slot(0, SATA_DEVFN);
gnvs->aoac.sd_e = sata && sata->enabled ? 1 : 0;
gnvs->aoac.espi = 1;
amdfw_rom = 0x20000 - (0x80000 << CONFIG_AMD_FWM_POSITION_INDEX);
xhci_fw = read32((void *)(amdfw_rom + XHCI_FW_SIG_OFFSET));
fwaddr = 2 + read16((void *)(xhci_fw + XHCI_FW_ADDR_OFFSET
+ XHCI_FW_BOOTRAM_SIZE));
fwsize = read16((void *)(xhci_fw + XHCI_FW_SIZE_OFFSET
+ XHCI_FW_BOOTRAM_SIZE));
gnvs->fw00 = 0;
gnvs->fw01 = ((32 * KiB) << 16) + 0;
gnvs->fw02 = fwaddr + XHCI_FW_BOOTRAM_SIZE;
gnvs->fw03 = fwsize << 16;
ehci = dev_find_slot(0, EHCI1_DEVFN);
gnvs->eh10 = pci_read_config32(SOC_EHCI1_DEV, PCI_BASE_ADDRESS_0)
& ~PCI_BASE_ADDRESS_MEM_ATTR_MASK;
}
void southbridge_final(void *chip_info)
{
uint8_t restored_power = PM_S5_AT_POWER_RECOVERY;
if (IS_ENABLED(CONFIG_MAINBOARD_POWER_RESTORE))
restored_power = PM_RESTORE_S0_IF_PREV_S0;
pm_write8(PM_RTC_SHADOW, restored_power);
set_sb_final_nvs();
}
/*
* Update the PCI devices with a valid IRQ number
* that is set in the mainboard PCI_IRQ structures.
*/
static void set_pci_irqs(void *unused)
{
/* Write PCI_INTR regs 0xC00/0xC01 */
write_pci_int_table();
/* Write IRQs for all devicetree enabled devices */
write_pci_cfg_irqs();
}
/*
* Hook this function into the PCI state machine
* on entry into BS_DEV_ENABLE.
*/
BOOT_STATE_INIT_ENTRY(BS_DEV_ENABLE, BS_ON_ENTRY, set_pci_irqs, NULL);
|