aboutsummaryrefslogtreecommitdiff
path: root/src/security/vboot/vbnv_flash.c
blob: 58d3aba2a754b42d904dda9ecaafbee1333ab14e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
/*
 * This file is part of the coreboot project.
 *
 * Copyright (C) 2014 The ChromiumOS Authors.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <commonlib/region.h>
#include <console/console.h>
#include <fmap.h>
#include <string.h>
#include <vb2_api.h>
#include <security/vboot/vboot_common.h>
#include <security/vboot/vbnv.h>
#include <security/vboot/vbnv_layout.h>

#define BLOB_SIZE VB2_NVDATA_SIZE

struct vbnv_flash_ctx {
	/* VBNV flash is initialized */
	int initialized;

	/* Offset of the current nvdata in flash */
	int blob_offset;

	/* Offset of the topmost nvdata blob in flash */
	int top_offset;

	/* Region to store and retrieve the VBNV contents. */
	struct region_device vbnv_dev;

	/* Cache of the current nvdata */
	uint8_t cache[BLOB_SIZE];
};
static struct vbnv_flash_ctx vbnv_flash;

/*
 * This code assumes that flash is erased to 1-bits, and write operations can
 * only change 1-bits to 0-bits. So if the new contents only change 1-bits to
 * 0-bits, we can reuse the current blob.
 */
static inline uint8_t erase_value(void)
{
	return 0xff;
}

static inline int can_overwrite(uint8_t current, uint8_t new)
{
	return (current & new) == new;
}

static int init_vbnv(void)
{
	struct vbnv_flash_ctx *ctx = &vbnv_flash;
	struct region_device *rdev = &ctx->vbnv_dev;
	uint8_t buf[BLOB_SIZE];
	uint8_t empty_blob[BLOB_SIZE];
	int used_below, empty_above;
	int offset;
	int i;

	if (fmap_locate_area_as_rdev_rw("RW_NVRAM", rdev) ||
	    region_device_sz(rdev) < BLOB_SIZE) {
		printk(BIOS_ERR, "%s: failed to locate NVRAM\n", __func__);
		return 1;
	}

	/* Prepare an empty blob to compare against. */
	for (i = 0; i < BLOB_SIZE; i++)
		empty_blob[i] = erase_value();

	ctx->top_offset = region_device_sz(rdev) - BLOB_SIZE;

	/* Binary search for the border between used and empty */
	used_below = 0;
	empty_above = region_device_sz(rdev) / BLOB_SIZE;

	while (used_below + 1 < empty_above) {
		int guess = (used_below + empty_above) / 2;
		if (rdev_readat(rdev, buf, guess * BLOB_SIZE, BLOB_SIZE) < 0) {
			printk(BIOS_ERR, "failed to read nvdata\n");
			return 1;
		}
		if (!memcmp(buf, empty_blob, BLOB_SIZE))
			empty_above = guess;
		else
			used_below = guess;
	}

	/*
	 * Offset points to the last non-empty blob.  Or if all blobs are empty
	 * (nvram is totally erased), point to the first blob.
	 */
	offset = used_below * BLOB_SIZE;

	/* reread the nvdata and write it to the cache */
	if (rdev_readat(rdev, ctx->cache, offset, BLOB_SIZE) < 0) {
		printk(BIOS_ERR, "failed to read nvdata\n");
		return 1;
	}

	ctx->blob_offset = offset;
	ctx->initialized = 1;

	return 0;
}

static int erase_nvram(void)
{
	struct vbnv_flash_ctx *ctx = &vbnv_flash;
	const struct region_device *rdev = &ctx->vbnv_dev;

	if (rdev_eraseat(rdev, 0, region_device_sz(rdev)) < 0) {
		printk(BIOS_ERR, "failed to erase nvram\n");
		return 1;
	}

	printk(BIOS_INFO, "nvram is cleared\n");
	return 0;
}

void read_vbnv_flash(uint8_t *vbnv_copy)
{
	struct vbnv_flash_ctx *ctx = &vbnv_flash;

	if (!ctx->initialized)
		if (init_vbnv())
			return;  /* error */

	memcpy(vbnv_copy, ctx->cache, BLOB_SIZE);
}

void save_vbnv_flash(const uint8_t *vbnv_copy)
{
	struct vbnv_flash_ctx *ctx = &vbnv_flash;
	int new_offset;
	int i;
	const struct region_device *rdev = &ctx->vbnv_dev;

	if (!ctx->initialized)
		if (init_vbnv())
			return;  /* error */

	/* Bail out if there have been no changes. */
	if (!memcmp(vbnv_copy, ctx->cache, BLOB_SIZE))
		return;

	new_offset = ctx->blob_offset;

	/* See if we can overwrite the current blob with the new one */
	for (i = 0; i < BLOB_SIZE; i++) {
		if (!can_overwrite(ctx->cache[i], vbnv_copy[i])) {
			/* unable to overwrite. need to use the next blob */
			new_offset += BLOB_SIZE;
			if (new_offset > ctx->top_offset) {
				if (erase_nvram())
					return;  /* error */
				new_offset = 0;
			}
			break;
		}
	}

	if (rdev_writeat(rdev, vbnv_copy, new_offset, BLOB_SIZE) == BLOB_SIZE) {
		/* write was successful. safely move pointer forward */
		ctx->blob_offset = new_offset;
		memcpy(ctx->cache, vbnv_copy, BLOB_SIZE);
	} else {
		printk(BIOS_ERR, "failed to save nvdata\n");
	}
}