1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
|
#include <console/console.h>
#include <pc80/mc146818rtc.h>
#include <boot/coreboot_tables.h>
#include <string.h>
#if CONFIG_USE_OPTION_TABLE
#include "option_table.h"
#endif
/* control registers - Moto names
*/
#define RTC_REG_A 10
#define RTC_REG_B 11
#define RTC_REG_C 12
#define RTC_REG_D 13
/**********************************************************************
* register details
**********************************************************************/
#define RTC_FREQ_SELECT RTC_REG_A
/* update-in-progress - set to "1" 244 microsecs before RTC goes off the bus,
* reset after update (may take 1.984ms @ 32768Hz RefClock) is complete,
* totalling to a max high interval of 2.228 ms.
*/
# define RTC_UIP 0x80
# define RTC_DIV_CTL 0x70
/* divider control: refclock values 4.194 / 1.049 MHz / 32.768 kHz */
# define RTC_REF_CLCK_4MHZ 0x00
# define RTC_REF_CLCK_1MHZ 0x10
# define RTC_REF_CLCK_32KHZ 0x20
/* 2 values for divider stage reset, others for "testing purposes only" */
# define RTC_DIV_RESET1 0x60
# define RTC_DIV_RESET2 0x70
/* Periodic intr. / Square wave rate select. 0=none, 1=32.8kHz,... 15=2Hz */
# define RTC_RATE_SELECT 0x0F
# define RTC_RATE_NONE 0x00
# define RTC_RATE_32786HZ 0x01
# define RTC_RATE_16384HZ 0x02
# define RTC_RATE_8192HZ 0x03
# define RTC_RATE_4096HZ 0x04
# define RTC_RATE_2048HZ 0x05
# define RTC_RATE_1024HZ 0x06
# define RTC_RATE_512HZ 0x07
# define RTC_RATE_256HZ 0x08
# define RTC_RATE_128HZ 0x09
# define RTC_RATE_64HZ 0x0a
# define RTC_RATE_32HZ 0x0b
# define RTC_RATE_16HZ 0x0c
# define RTC_RATE_8HZ 0x0d
# define RTC_RATE_4HZ 0x0e
# define RTC_RATE_2HZ 0x0f
/**********************************************************************/
#define RTC_CONTROL RTC_REG_B
# define RTC_SET 0x80 /* disable updates for clock setting */
# define RTC_PIE 0x40 /* periodic interrupt enable */
# define RTC_AIE 0x20 /* alarm interrupt enable */
# define RTC_UIE 0x10 /* update-finished interrupt enable */
# define RTC_SQWE 0x08 /* enable square-wave output */
# define RTC_DM_BINARY 0x04 /* all time/date values are BCD if clear */
# define RTC_24H 0x02 /* 24 hour mode - else hours bit 7 means pm */
# define RTC_DST_EN 0x01 /* auto switch DST - works f. USA only */
/**********************************************************************/
#define RTC_INTR_FLAGS RTC_REG_C
/* caution - cleared by read */
# define RTC_IRQF 0x80 /* any of the following 3 is active */
# define RTC_PF 0x40
# define RTC_AF 0x20
# define RTC_UF 0x10
/**********************************************************************/
#define RTC_VALID RTC_REG_D
# define RTC_VRT 0x80 /* valid RAM and time */
/**********************************************************************/
#if CONFIG_USE_OPTION_TABLE
static int rtc_checksum_valid(int range_start, int range_end, int cks_loc)
{
int i;
unsigned sum, old_sum;
sum = 0;
for(i = range_start; i <= range_end; i++) {
sum += cmos_read(i);
}
sum = (~sum)&0x0ffff;
old_sum = ((cmos_read(cks_loc)<<8) | cmos_read(cks_loc+1))&0x0ffff;
return sum == old_sum;
}
static void rtc_set_checksum(int range_start, int range_end, int cks_loc)
{
int i;
unsigned sum;
sum = 0;
for(i = range_start; i <= range_end; i++) {
sum += cmos_read(i);
}
sum = ~(sum & 0x0ffff);
cmos_write(((sum >> 8) & 0x0ff), cks_loc);
cmos_write(((sum >> 0) & 0x0ff), cks_loc+1);
}
#endif
#if CONFIG_ARCH_X86
#define RTC_CONTROL_DEFAULT (RTC_24H)
#define RTC_FREQ_SELECT_DEFAULT (RTC_REF_CLCK_32KHZ | RTC_RATE_1024HZ)
#else
#if CONFIG_ARCH_ALPHA
#define RTC_CONTROL_DEFAULT (RTC_SQWE | RTC_24H)
#define RTC_FREQ_SELECT_DEFAULT (RTC_REF_CLCK_32KHZ | RTC_RATE_1024HZ)
#endif
#endif
void rtc_init(int invalid)
{
#if CONFIG_USE_OPTION_TABLE
unsigned char x;
int cmos_invalid, checksum_invalid;
#endif
printk(BIOS_DEBUG, "RTC Init\n");
#if CONFIG_USE_OPTION_TABLE
/* See if there has been a CMOS power problem. */
x = cmos_read(RTC_VALID);
cmos_invalid = !(x & RTC_VRT);
/* See if there is a CMOS checksum error */
checksum_invalid = !rtc_checksum_valid(PC_CKS_RANGE_START,
PC_CKS_RANGE_END,PC_CKS_LOC);
if (invalid || cmos_invalid || checksum_invalid) {
printk(BIOS_WARNING, "RTC:%s%s%s zeroing cmos\n",
invalid?" Clear requested":"",
cmos_invalid?" Power Problem":"",
checksum_invalid?" Checksum invalid":"");
#if 0
cmos_write(0, 0x01);
cmos_write(0, 0x03);
cmos_write(0, 0x05);
for(i = 10; i < 48; i++) {
cmos_write(0, i);
}
if (cmos_invalid) {
/* Now setup a default date of Sat 1 January 2000 */
cmos_write(0, 0x00); /* seconds */
cmos_write(0, 0x02); /* minutes */
cmos_write(1, 0x04); /* hours */
cmos_write(7, 0x06); /* day of week */
cmos_write(1, 0x07); /* day of month */
cmos_write(1, 0x08); /* month */
cmos_write(0, 0x09); /* year */
}
#endif
}
#endif
/* Setup the real time clock */
cmos_write(RTC_CONTROL_DEFAULT, RTC_CONTROL);
/* Setup the frequency it operates at */
cmos_write(RTC_FREQ_SELECT_DEFAULT, RTC_FREQ_SELECT);
#if CONFIG_USE_OPTION_TABLE
/* See if there is a LB CMOS checksum error */
checksum_invalid = !rtc_checksum_valid(LB_CKS_RANGE_START,
LB_CKS_RANGE_END,LB_CKS_LOC);
if(checksum_invalid)
printk(BIOS_DEBUG, "Invalid CMOS LB checksum\n");
/* Make certain we have a valid checksum */
rtc_set_checksum(PC_CKS_RANGE_START,
PC_CKS_RANGE_END,PC_CKS_LOC);
#endif
/* Clear any pending interrupts */
(void) cmos_read(RTC_INTR_FLAGS);
}
#if CONFIG_USE_OPTION_TABLE
/* This routine returns the value of the requested bits
input bit = bit count from the beginning of the cmos image
length = number of bits to include in the value
ret = a character pointer to where the value is to be returned
output the value placed in ret
returns 0 = successful, -1 = an error occurred
*/
static int get_cmos_value(unsigned long bit, unsigned long length, void *vret)
{
unsigned char *ret;
unsigned long byte,byte_bit;
unsigned long i;
unsigned char uchar;
/* The table is checked when it is built to ensure all
values are valid. */
ret = vret;
byte=bit/8; /* find the byte where the data starts */
byte_bit=bit%8; /* find the bit in the byte where the data starts */
if(length<9) { /* one byte or less */
uchar = cmos_read(byte); /* load the byte */
uchar >>= byte_bit; /* shift the bits to byte align */
/* clear unspecified bits */
ret[0] = uchar & ((1 << length) -1);
}
else { /* more that one byte so transfer the whole bytes */
for(i=0;length;i++,length-=8,byte++) {
/* load the byte */
ret[i]=cmos_read(byte);
}
}
return 0;
}
int get_option(void *dest, const char *name)
{
extern struct cmos_option_table option_table;
struct cmos_option_table *ct;
struct cmos_entries *ce;
size_t namelen;
int found=0;
/* Figure out how long name is */
namelen = strnlen(name, CMOS_MAX_NAME_LENGTH);
/* find the requested entry record */
ct=&option_table;
ce=(struct cmos_entries*)((unsigned char *)ct + ct->header_length);
for(;ce->tag==LB_TAG_OPTION;
ce=(struct cmos_entries*)((unsigned char *)ce + ce->size)) {
if (memcmp(ce->name, name, namelen) == 0) {
found=1;
break;
}
}
if(!found) {
printk(BIOS_DEBUG, "WARNING: No CMOS option '%s'.\n", name);
return(-2);
}
if(get_cmos_value(ce->bit, ce->length, dest))
return(-3);
if(!rtc_checksum_valid(LB_CKS_RANGE_START,
LB_CKS_RANGE_END,LB_CKS_LOC))
return(-4);
return(0);
}
#endif /* CONFIG_USE_OPTION_TABLE */
|