aboutsummaryrefslogtreecommitdiff
path: root/src/northbridge/via/vt8623/raminit.c
blob: c5434282162c8cad0e93370075c7a4b892f4f8e4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
/*
 * (C) Copyright 2005 Nick Barker <nick.barker9@btinternet.com>
 *
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of
 * the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
 * MA 02110-1301 USA
 */

/* 
  Automatically detect and set up ddr dram on the CLE266 chipset.
  Assumes DDR memory, though chipset also supports SDRAM
  Assumes at least 266Mhz memory as no attempt is made to clock
  the chipset down if slower memory is installed.
  So far tested on:
	256 Mb 266Mhz 1 Bank (i.e. single sided)
	256 Mb 266Mhz 2 Bank (i.e. double sided)
	512 Mb 266Mhz 2 Bank (i.e. double sided)
*/
/* ported and enhanced from assembler level code in coreboot v1 */

#include <cpu/x86/mtrr.h>
#include "raminit.h"



void dimm_read(unsigned long bank,unsigned long x) 
{
	//unsigned long eax; 
	volatile unsigned long y;
	//eax =  x;
	y = * (volatile unsigned long *) (x+ bank) ;

}


void
dumpnorth(device_t north) 
{
	uint16_t r, c;
	for(r = 0; r < 256; r += 16) {
		print_debug_hex8(r);
		print_debug(":");
		for(c = 0; c < 16; c++) {
			print_debug_hex8(pci_read_config8(north, r+c));
			print_debug(" ");
		}
		print_debug("\r\n");
  }
}
void print_val(char *str, int val)
{
	print_debug(str);
	print_debug_hex8(val);
}

static void ddr_ram_setup(const struct mem_controller *ctrl) 
{
	device_t north = (device_t) 0;
	uint8_t b, c, bank;
	uint16_t i,j;
	unsigned long bank_address;

	print_debug("vt8623 init starting\r\n");
	north = pci_locate_device(PCI_ID(0x1106, 0x3123), 0);
	north = 0;
	

	pci_write_config8(north,0x75,0x08);

	/* setup cpu */
	pci_write_config8(north,0x50,0xc8);
	pci_write_config8(north,0x51,0xde);
	pci_write_config8(north,0x52,0xcf);
	pci_write_config8(north,0x53,0x88);
	pci_write_config8(north,0x55,0x04);

/*
    DRAM MA Map Type  Device 0  Offset 58

    Determine memory addressing based on the module's memory technology and
    arrangement.  See Table 4-9 of Intel's 82443GX datasheet for details.

    Bank 1/0 MA map type   58[7-5]
    Bank 1/0 command rate  58[4]
    Bank 3/2 MA map type   58[3-1]
    Bank 3/2 command rate  58[0]


    Read SPD byte 17, Number of banks on SDRAM device.
*/
	c = 0;
	b = smbus_read_byte(0xa0,17);
	print_val("Detecting Memory\r\nNumber of Banks ",b);

	if( b != 2 ){            // not 16 Mb type
	
/*
    Read SPD byte 3, Number of row addresses.
*/
		b = smbus_read_byte(0xa0,3);
		print_val("\r\nNumber of Rows ",b);
		if( b >= 0x0d ){	// not 64/128Mb (rows <=12)

/*
    Read SPD byte 13, Primary DRAM width.
*/
			b = smbus_read_byte(0xa0,13);
			print_val("\r\nPriamry DRAM width",b);
			if( b != 4 )   // mot 64/128Mb (x4)
				c = 0x80;  // 256Mb
		}

/*
    64/128Mb chip

    Read SPD byte 4, Number of column addresses.
*/		
		b = smbus_read_byte(0xa0,4);
		print_val("\r\nNo Columns ",b);
		if( b == 10 || b == 11 ) c |= 0x60;   // 10/11 bit col addr
		if( b == 9 ) c |= 0x40;           // 9 bit col addr
		if( b == 8 ) c |= 0x20;           // 8 bit col addr

	}
	print_val("\r\nMA type ",c);
	pci_write_config8(north,0x58,c);

/*
    DRAM bank size.  See 4.3.1 pg 35

    5a->5d  set to end address for each bank.  1 bit == 16MB
    5a = bank 0
    5b = bank 0 + b1
    5c = bank 0 + b1 + b2
    5d = bank 0 + b1 + b2 + b3
*/

// Read SPD byte 31 Module bank density
	c = 0;
	b = smbus_read_byte(0xa0,31);
	if( b & 0x02 ) c = 0x80;         // 2GB
	else if( b & 0x01) c = 0x40;     // 1GB
	else if( b & 0x80) c = 0x20;     // 512Mb
	else if( b & 0x40) c = 0x10;     // 256Mb 
	else if( b & 0x20) c = 0x08;     // 128Mb
	else if( b & 0x10) c = 0x04;     // 64Mb
	else if( b & 0x08) c = 0x02;     // 32Mb
	else if( b & 0x04) c = 0x01;     // 16Mb / 4Gb
	else c = 0x01;                   // Error, use default


	print_val("\r\nBank 0 (*16 Mb) ",c);

	// set bank zero size
	pci_write_config8(north,0x5a,c);
	// SPD byte 5  # of physical banks
	b = smbus_read_byte(0xa0,5);

	print_val("\r\nNo Physical Banks ",b);
	if( b == 2)
		c <<=1;

	print_val("\r\nTotal Memory (*16 Mb) ",c);
	// set banks 1,2,3
	pci_write_config8(north,0x5b,c);
	pci_write_config8(north,0x5c,c);
	pci_write_config8(north,0x5d,c);


	/* Read SPD byte 18 CAS Latency */
	b = smbus_read_byte(0xa0,18);
	print_debug("\r\nCAS Supported ");
	if(b & 0x04)
		print_debug("2 ");
	if(b & 0x08)
		print_debug("2.5 ");
	if(b & 0x10)
		print_debug("3");
	print_val("\r\nCycle time at CL X     (nS)",smbus_read_byte(0xa0,9));
	print_val("\r\nCycle time at CL X-0.5 (nS)",smbus_read_byte(0xa0,23));
	print_val("\r\nCycle time at CL X-1   (nS)",smbus_read_byte(0xa0,25));
	

	if( b & 0x10 ){             // DDR offering optional CAS 3
		print_debug("\r\nStarting at CAS 3");
		c = 0x30;
		/* see if we can better it */
		if( b & 0x08 ){     // DDR mandatory CAS 2.5
			if( smbus_read_byte(0xa0,23) <= 0x75 ){ // we can manage 133Mhz at CAS 2.5
				print_debug("\r\nWe can do CAS 2.5");
				c = 0x20;
			}
		}
		if( b & 0x04 ){     // DDR mandatory CAS 2
			if( smbus_read_byte(0xa0,25) <= 0x75 ){ // we can manage 133Mhz at CAS 2
				print_debug("\r\nWe can do CAS 2");
				c = 0x10;
			}
		}
	}else{                     // no optional CAS values just 2 & 2.5
		print_debug("\r\nStarting at CAS 2.5");
		c = 0x20;          // assume CAS 2.5
		if( b & 0x04){      // Should always happen
			if( smbus_read_byte(0xa0,23) <= 0x75){ // we can manage 133Mhz at CAS 2
				print_debug("\r\nWe can do CAS 2");
				c = 0x10;
			}
		}
	}



/*
    DRAM Timing  Device 0  Offset 64

    Row pre-charge  64[7]
    RAS Pulse width 64[6]
    CAS Latency     64[5,4]

         SDR  DDR
      00  1T   -
      01  2T   2T
      10  3T   2.5T
      11  -    3T

    RAS/CAS delay   64[2]
    Bank Interleave 64[1,0]


    Determine row pre-charge time (tRP)

    T    nS    SPD*4   SPD
    1T   7.5   0x1e
    2T   15    0x3c
    3T   22.5  0x5a
    4T   30            0x1e
    5T   37.5          0x25 .5?
    6T   45            0x2d


    Read SPD byte 27, min row pre-charge time.
*/

	b = smbus_read_byte(0xa0,27);
	print_val("\r\ntRP ",b);
	if( b > 0x3c )           // set tRP = 3T
		c |= 0x80;


/*
    Determine RAS to CAS delay (tRCD)

    Read SPD byte 29, min row pre-charge time.
*/

	b = smbus_read_byte(0xa0,29);
	print_val("\r\ntRCD ",b);
	if( b > 0x3c )           // set tRCD = 3T
		c |= 0x04;

/*
    Determine RAS pulse width (tRAS)


    Read SPD byte 30, device min active to pre-charge time.
*/

	b = smbus_read_byte(0xa0,30);
	print_val("\r\ntRAS ",b);
	if( b > 0x25 )           // set tRAS = 6T
		c |= 0x40;


/*
    Determine bank interleave

    Read SPD byte 17, Number of banks on SDRAM device.
*/
	b = smbus_read_byte(0xa0,17);
	if( b == 4) c |= 0x02;
	else if (b == 2) c |= 0x01;


	/* set DRAM timing for all banks */
	pci_write_config8(north,0x64,c);

	/* set DRAM type to DDR */
	pci_write_config8(north,0x60,0x02);


	/* DRAM arbitration timer */
	pci_write_config8(north,0x65,0x32);


/*
    CPU Frequency  Device 0 Offset 54

    CPU Frequency          54[7,6]  bootstraps at 0xc0 (133Mhz)
    DRAM burst length = 8  54[5]
*/
	pci_write_config8(north,0x54,0xe0);


/*
    DRAM Clock  Device 0 Offset 69

    DRAM/CPU speed      69[7,6]  (leave at default 00 == CPU)
    Controller que > 2  69[5]
    Controller que != 4 69[4]
    DRAM 8k page size   69[3]
    DRAM 4k page size   69[2]
    Multiple page mode  69[0]
*/

	pci_write_config8(north,0x69,0x2d);

	/* Delay >= 100ns after DRAM Frequency adjust, See 4.1.1.3 pg 15 */
	udelay(200);


	/* Enable CKE */
	pci_write_config8(north,0x6b,0x10);
	udelay(200);

	/* Disable DRAM refresh */
	pci_write_config8(north,0x6a,0x0);


	/* Set drive for 1 bank DDR  (Table 4.4.2, pg 40) */
	pci_write_config8(north,0x6d,0x044);
	pci_write_config8(north,0x67,0x3a);

	b = smbus_read_byte(0xa0,5); // SPD byte 5  # of physical banks
	if( b > 1) {
                // Increase drive control when there is more than 1 physical bank
		pci_write_config8(north,0x6c,0x84);   // Drive control: MA, DQS, MD/CKE
		pci_write_config8(north,0x6d,0x55);   // DC: Early clock select, DQM, CS#, MD
	}
	/* place frame buffer on last bank */
	if( !b) b++;     // make sure at least 1 bank reported
	pci_write_config8(north,0xe3,b-1);

	for( bank = 0 , bank_address=0; bank < b ; bank++){
/*
    DDR init described in Via BIOS Porting Guide.  Pg 28 (4.2.3.1)
*/


		/* NOP command enable */
		pci_write_config8(north,0x6b,0x11);

		/* read a double word from any address of the dimm */
		dimm_read(bank_address,0x1f000);
		//udelay(200);

		/* All bank precharge Command Enable */
		pci_write_config8(north,0x6b,0x12);
		dimm_read(bank_address,0x1f000);


		/* MSR Enable */
		pci_write_config8(north,0x6b,0x13);
		dimm_read(bank_address,0x2000);
		udelay(1);
		dimm_read(bank_address,0x800);
		udelay(1);

		/* All banks precharge Command Enable */
		pci_write_config8(north,0x6b,0x12);
		dimm_read(bank_address,0x1f200);

		/* CBR Cycle Enable */
		pci_write_config8(north,0x6b,0x14);

		/* Read 8 times */
		dimm_read(bank_address,0x1f300);
		udelay(100);
		dimm_read(bank_address,0x1f400);
		udelay(100);
		dimm_read(bank_address,0x1f500);
		udelay(100);
		dimm_read(bank_address,0x1f600);
		udelay(100);
		dimm_read(bank_address,0x1f700);
		udelay(100);
		dimm_read(bank_address,0x1f800);
		udelay(100);
		dimm_read(bank_address,0x1f900);
		udelay(100);
		dimm_read(bank_address,0x1fa00);
		udelay(100);

		/* MSR Enable */
		pci_write_config8(north,0x6b,0x13);

/* 
    Mode Register Definition
    with adjustement so that address calculation is correct - 64 bit technology, therefore
    a0-a2 refer to byte within a 64 bit long word, and a3 is the first address line presented
    to DIMM as a row or column address.

    MR[9-7]   CAS Latency
    MR[6]     Burst Type 0 = sequential, 1 = interleaved
    MR[5-3]   burst length 001 = 2, 010 = 4, 011 = 8, others reserved
    MR[0-2]   dont care 

    CAS Latency 
    000       reserved
    001       reserved
    010       2
    011       3
    100       reserved
    101       1.5
    110       2.5
    111       reserved

    CAS 2     0101011000 = 0x158
    CAS 2.5   1101011000 = 0x358
    CAS 3     0111011000 = 0x1d8

*/
		c = pci_read_config8(north,0x64);
		if( (c & 0x30) == 0x10 )
			dimm_read(bank_address,0x150);
		else if((c & 0x30) == 0x20 )
			dimm_read(bank_address,0x350);
		else
			dimm_read(bank_address,0x1d0);

		//dimm_read(bank_address,0x350);

		/* Normal SDRAM Mode */
		pci_write_config8(north,0x6b,0x58 );


		bank_address = pci_read_config8(north,0x5a+bank) * 0x1000000;
	} // end of for each bank

	/* Adjust DQS (data strobe output delay). See 4.2.3.2 pg 29 */
	pci_write_config8(north,0x66,0x41);

	/* determine low bond */
	if( b == 2)
		bank_address = pci_read_config8(north,0x5a) * 0x1000000;
	else
		bank_address = 0;

	for(i = 0 ; i < 0x0ff; i++){
		c = i ^ (i>>1);			// convert to gray code
		pci_write_config8(north,0x68,c);
		// clear
		*(volatile unsigned long*)(0x4000) = 0;
		*(volatile unsigned long*)(0x4100+bank_address) = 0;
		*(volatile unsigned long*)(0x4200) = 0;
		*(volatile unsigned long*)(0x4300+bank_address) = 0;
		*(volatile unsigned long*)(0x4400) = 0;
		*(volatile unsigned long*)(0x4500+bank_address) = 0;


		// fill
		*(volatile unsigned long*)(0x4000) = 0x12345678;
		*(volatile unsigned long*)(0x4100+bank_address) = 0x81234567;
		*(volatile unsigned long*)(0x4200) = 0x78123456;
		*(volatile unsigned long*)(0x4300+bank_address) = 0x67812345;
		*(volatile unsigned long*)(0x4400) = 0x56781234;
		*(volatile unsigned long*)(0x4500+bank_address) = 0x45678123;

			// verify
		if( *(volatile unsigned long*)(0x4000) != 0x12345678)
			continue;

		if( *(volatile unsigned long*)(0x4100+bank_address) != 0x81234567)
			continue;

		if( *(volatile unsigned long*)(0x4200) != 0x78123456)
			continue;

		if( *(volatile unsigned long*)(0x4300+bank_address) != 0x67812345)
			continue;

		if( *(volatile unsigned long*)(0x4400) != 0x56781234)
			continue;

		if( *(volatile unsigned long*)(0x4500+bank_address) != 0x45678123)
			continue;

		// if everything verified then found low bond
		break;
		
	}
	print_val("\r\nLow Bond ",i);	
	if( i < 0xff ){ 
		c = i++;
		for(  ; i <0xff ; i++){
 			pci_write_config8(north,0x68,i ^ (i>>1) );

			// clear
			*(volatile unsigned long*)(0x8000) = 0;
			*(volatile unsigned long*)(0x8100+bank_address) = 0;
			*(volatile unsigned long*)(0x8200) = 0x0;
			*(volatile unsigned long*)(0x8300+bank_address) = 0;
			*(volatile unsigned long*)(0x8400) = 0x0;
			*(volatile unsigned long*)(0x8500+bank_address) = 0;

			// fill
			*(volatile unsigned long*)(0x8000) = 0x12345678;
			*(volatile unsigned long*)(0x8100+bank_address) = 0x81234567;
			*(volatile unsigned long*)(0x8200) = 0x78123456;
			*(volatile unsigned long*)(0x8300+bank_address) = 0x67812345;
			*(volatile unsigned long*)(0x8400) = 0x56781234;
			*(volatile unsigned long*)(0x8500+bank_address) = 0x45678123;

			// verify
			if( *(volatile unsigned long*)(0x8000) != 0x12345678)
				break;

			if( *(volatile unsigned long*)(0x8100+bank_address) != 0x81234567)
				break;

			if( *(volatile unsigned long*)(0x8200) != 0x78123456)
				break;

			if( *(volatile unsigned long*)(0x8300+bank_address) != 0x67812345)
				break;

			if( *(volatile unsigned long*)(0x8400) != 0x56781234)
				break;

			if( *(volatile unsigned long*)(0x8500+bank_address) != 0x45678123)
				break;

		}
		print_val("  High Bond",i);
		c = ((i - c)<<1)/3 +c;
		print_val("  Setting DQS delay",c);
		c = c ^ (c>>1);		// convert to gray code
		pci_write_config8(north,0x68,c);
		pci_write_config8(north,0x68,0x42);
	}else{
		print_debug("Unable to determine low bond - Setting default\r\n");
		pci_write_config8(north,0x68,0x59);
	}


	pci_write_config8(north,0x66,0x01);
	pci_write_config8(north,0x55,0x07);



/*
    DRAM refresh rate  Device 0 Offset 6a

    Units of 16 DRAM clock cycles.  (See 4.4.1 pg 39)

    Rx69 (DRAM freq)  Rx58 (chip tech)  Rx6a

    133Mhz            64/128Mb          0x86
    133Mhz            256/512Mb         0x43
    100Mhz            64/128Mb          0x65
    100Mhz            256/512Mb         0x32
*/

	b = pci_read_config8(north,0x58);
	if( b < 0x80 )   // 256 tech
		pci_write_config8(north,0x6a,0x86);
	else
		pci_write_config8(north,0x6a,0x43);

	pci_write_config8(north,0x61,0xff);
	//pci_write_config8(north,0x67,0x22);

	/* pci */
	pci_write_config8(north,0x70,0x82);
	pci_write_config8(north,0x73,0x01);
	pci_write_config8(north,0x76,0x50);


	pci_write_config8(north,0x71,0xc8);
	

	/* graphics aperture base */

	pci_write_config8(north,0x13,0xd0);

	//pci_write_config8(north,0xe1,0xdf);
	//pci_write_config8(north,0xe2,0x42);
	pci_write_config8(north,0xe0,0x00);

	pci_write_config8(north,0x84,0x80);
	pci_write_config16(north,0x80,0x610f);
	pci_write_config32(north,0x88,0x00000002);



	pci_write_config8(north,0xa8,0x04);
	pci_write_config8(north,0xac,0x2f);
	pci_write_config8(north,0xae,0x04);

        print_debug("vt8623 done\r\n");
	dumpnorth(north);

	print_debug("AGP\r\n");
	north = pci_locate_device(PCI_ID(0x1106, 0xb091), 0);
	pci_write_config32(north,0x20,0xddf0dc00);
	pci_write_config32(north,0x24,0xdbf0d800);
	pci_write_config8(north,0x3e,0x0c);
	//dumpnorth(north);

	//print_err("VGA\n");
	//north = pci_locate_device(PCI_ID(0x1106, 0x3122), 0);
	//pci_write_config32(north,0x10,0xd8000008);
	//pci_write_config32(north,0x14,0xdc000000);
	//dumpnorth(north);

}