aboutsummaryrefslogtreecommitdiff
path: root/src/northbridge/intel/x4x/raminit.c
blob: 122cab50ea11937eda19104af9fef67d7cde880d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
/*
 * This file is part of the coreboot project.
 *
 * Copyright (C) 2015 Damien Zammit <damien@zamaudio.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of
 * the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <arch/io.h>
#include <cbmem.h>
#include <console/console.h>
#include <cpu/x86/cache.h>
#include <cpu/x86/mtrr.h>
#include <delay.h>
#include <halt.h>
#include <lib.h>
#include "iomap.h"
#include <southbridge/intel/i82801gx/i82801gx.h> /* smbus_read_byte */
#include "x4x.h"
#include <pc80/mc146818rtc.h>
#include <spd.h>
#include <string.h>

static inline int spd_read_byte(unsigned int device, unsigned int address)
{
	return smbus_read_byte(device, address);
}

static void sdram_read_spds(struct sysinfo *s)
{
	u8 i, j, chan;
	int status = 0;
	FOR_EACH_DIMM(i) {
		if (s->spd_map[i] == 0) {
			/* Non-existent SPD address */
			s->dimms[i].card_type = RAW_CARD_UNPOPULATED;
			continue;
		}
		for (j = 0; j < 64; j++) {
			status = spd_read_byte(s->spd_map[i], j);
			if (status < 0) {
				/* No SPD here */
				s->dimms[i].card_type = RAW_CARD_UNPOPULATED;
				break;
			}
			s->dimms[i].spd_data[j] = (u8) status;
			if (j == 62)
				s->dimms[i].card_type = ((u8) status) & 0x1f;
		}
		if (status >= 0) {
			hexdump(s->dimms[i].spd_data, 64);
		}
	}

	s->spd_type = 0;
	int fail = 1;
	FOR_EACH_POPULATED_DIMM(s->dimms, i) {
		switch ((enum ddrxspd) s->dimms[i].spd_data[2]) {
			case DDR2SPD:
				if (s->spd_type == 0) {
					s->spd_type = DDR2;
				} else if (s->spd_type == DDR3) {
					die("DIMM type mismatch\n");
				}
				break;
			case DDR3SPD:
			default:
				if (s->spd_type == 0) {
					s->spd_type = DDR3;
				} else if (s->spd_type == DDR2) {
					die("DIMM type mismatch\n");
				}
				break;
		}
	}
	if (s->spd_type == DDR3) {
		FOR_EACH_POPULATED_DIMM(s->dimms, i) {
			s->dimms[i].sides = (s->dimms[i].spd_data[5] & 0x0f) + 1;
			s->dimms[i].ranks = ((s->dimms[i].spd_data[7] >> 3) & 0x7) + 1;
			s->dimms[i].chip_capacity = (s->dimms[i].spd_data[4] & 0xf);
			s->dimms[i].banks = 8;
			s->dimms[i].rows = ((s->dimms[i].spd_data[5] >> 3) & 0x7) + 12;
			s->dimms[i].cols = (s->dimms[i].spd_data[5] & 0x7) + 9;
			s->dimms[i].cas_latencies = 0xfe;
			s->dimms[i].cas_latencies &= (s->dimms[i].spd_data[14] << 1);
			if (s->dimms[i].cas_latencies == 0)
				s->dimms[i].cas_latencies = 0x40;
			s->dimms[i].tAAmin = s->dimms[i].spd_data[16];
			s->dimms[i].tCKmin = s->dimms[i].spd_data[12];
			s->dimms[i].width = s->dimms[i].spd_data[7] & 0x7;
			s->dimms[i].page_size = s->dimms[i].width * (1 << s->dimms[i].cols); // Bytes
			s->dimms[i].tRAS = ((s->dimms[i].spd_data[21] & 0xf) << 8) |
				s->dimms[i].spd_data[22];
			s->dimms[i].tRP = s->dimms[i].spd_data[20];
			s->dimms[i].tRCD = s->dimms[i].spd_data[18];
			s->dimms[i].tWR = s->dimms[i].spd_data[17];
			fail = 0;
		}
	} else if (s->spd_type == DDR2) {
		FOR_EACH_POPULATED_DIMM(s->dimms, i) {
			s->dimms[i].sides = (s->dimms[i].spd_data[5] & 0x7) + 1;
			s->dimms[i].banks = (s->dimms[i].spd_data[17] >> 2) - 1;
			s->dimms[i].chip_capacity = s->dimms[i].banks;
			s->dimms[i].rows = s->dimms[i].spd_data[3];// - 12;
			s->dimms[i].cols = s->dimms[i].spd_data[4];// - 9;
			s->dimms[i].cas_latencies = s->dimms[i].spd_data[18];
			if (s->dimms[i].cas_latencies == 0)
				s->dimms[i].cas_latencies = 0x60; // 6,5 CL
			s->dimms[i].tAAmin = s->dimms[i].spd_data[26];
			s->dimms[i].tCKmin = s->dimms[i].spd_data[25];
			s->dimms[i].width = (s->dimms[i].spd_data[13] >> 3) - 1;
			s->dimms[i].page_size = (s->dimms[i].width+1) * (1 << s->dimms[i].cols); // Bytes
			s->dimms[i].tRAS = s->dimms[i].spd_data[30];
			s->dimms[i].tRP = s->dimms[i].spd_data[27];
			s->dimms[i].tRCD = s->dimms[i].spd_data[29];
			s->dimms[i].tWR = s->dimms[i].spd_data[36];
			s->dimms[i].ranks = s->dimms[i].sides; // XXX

			printk(BIOS_DEBUG, "DIMM %d\n", i);
			printk(BIOS_DEBUG, "  Sides     : %d\n", s->dimms[i].sides);
			printk(BIOS_DEBUG, "  Banks     : %d\n", s->dimms[i].banks);
			printk(BIOS_DEBUG, "  Ranks     : %d\n", s->dimms[i].ranks);
			printk(BIOS_DEBUG, "  Rows      : %d\n", s->dimms[i].rows);
			printk(BIOS_DEBUG, "  Cols      : %d\n", s->dimms[i].cols);
			printk(BIOS_DEBUG, "  Page size : %d\n", s->dimms[i].page_size);
			printk(BIOS_DEBUG, "  Width     : %d\n", (s->dimms[i].width+1)*8);
			fail = 0;
		}
	}
	if (fail) {
		die("No memory dimms, halt\n");
	}

	FOR_EACH_POPULATED_CHANNEL(s->dimms, chan) {
		FOR_EACH_POPULATED_DIMM_IN_CHANNEL(s->dimms, chan, i) {
			int dimm_config;
			if (s->dimms[i].ranks == 1) {
				if (s->dimms[i].width == 0)	/* x8 */
					dimm_config = 1;
				else				/* x16 */
					dimm_config = 3;
			} else {
				if (s->dimms[i].width == 0)	/* x8 */
					dimm_config = 2;
				else
					die("Dual-rank x16 not supported\n");
			}
			s->dimm_config[chan] |=
				dimm_config << (i % DIMMS_PER_CHANNEL) * 2;
		}
		printk(BIOS_DEBUG, "  Config[CH%d] : %d\n", chan, s->dimm_config[chan]);
	}
}

static u8 msbpos(u8 val) //Reverse
{
	u8 i;
	for (i = 7; (i >= 0) && ((val & (1 << i)) == 0); i--);
	return i;
}

static void mchinfo_ddr2(struct sysinfo *s)
{
	const u32 eax = cpuid_ext(0x04, 0).eax;
	s->cores = ((eax >> 26) & 0x3f) + 1;
	printk(BIOS_WARNING, "%d CPU cores\n", s->cores);

	u32 capid = pci_read_config16(PCI_DEV(0, 0, 0), 0xe8);
	if (!(capid & (1<<(79-64)))) {
		printk(BIOS_WARNING, "iTPM enabled\n");
	}

	capid = pci_read_config32(PCI_DEV(0, 0, 0), 0xe4);
	if (!(capid & (1<<(57-32)))) {
		printk(BIOS_WARNING, "ME enabled\n");
	}

	if (!(capid & (1<<(56-32)))) {
		printk(BIOS_WARNING, "AMT enabled\n");
	}

	s->max_ddr2_mhz = 800; // All chipsets in x4x support up to 800MHz DDR2
	printk(BIOS_WARNING, "Capable of DDR2 of %d MHz or lower\n", s->max_ddr2_mhz);

	if (!(capid & (1<<(48-32)))) {
		printk(BIOS_WARNING, "VT-d enabled\n");
	}
}

static void sdram_detect_ram_speed(struct sysinfo *s)
{
	u8 i;
	u8 commoncas = 0;
	u8 currcas;
	u8 currfreq;
	u8 maxfreq;
	u8 freq = 0;

	// spdidx,cycletime @CAS				 5	   6
	u8 idx800[7][2] = {{0,0}, {0,0}, {0,0}, {0,0}, {0,0}, {23,0x30}, {9,0x25}};
	int found = 0;

	// Find max FSB speed
	switch (MCHBAR32(0xc00) & 0x7) {
	case 0x0:
		s->max_fsb = FSB_CLOCK_1066MHz;
		break;
	case 0x2:
		s->max_fsb = FSB_CLOCK_800MHz;
		break;
	case 0x4:
		s->max_fsb = FSB_CLOCK_1333MHz;
		break;
	default:
		s->max_fsb = FSB_CLOCK_800MHz;
		printk(BIOS_WARNING, "Can't detect FSB, setting 800MHz\n");
		break;
	}

	// Max RAM speed
	if (s->spd_type == DDR2) {

		// FIXME: Limit memory speed to 667MHz if FSB is 1333MHz
		maxfreq = (s->max_fsb == FSB_CLOCK_1333MHz)
			? MEM_CLOCK_667MHz : MEM_CLOCK_800MHz;

		// Choose common CAS latency from {6,5}, 4 does not work
		commoncas = 0x60;

		FOR_EACH_POPULATED_DIMM(s->dimms, i) {
			commoncas &= s->dimms[i].cas_latencies;
		}
		if (commoncas == 0) {
			die("No common CAS among dimms\n");
		}

		// Working from fastest to slowest,
		// fast->slow 5@800 6@800 5@667
		found = 0;
		for (currcas = 5; currcas <= msbpos(commoncas); currcas++) {
			currfreq = maxfreq;
			if (currfreq == MEM_CLOCK_800MHz) {
				found = 1;
				FOR_EACH_POPULATED_DIMM(s->dimms, i) {
					if (s->dimms[i].spd_data[idx800[currcas][0]] > idx800[currcas][1]) {
						// this is too fast
						found = 0;
					}
				}
				if (found)
					break;
			}
		}

		if (!found) {
			currcas = 5;
			currfreq = MEM_CLOCK_667MHz;
			found = 1;
			FOR_EACH_POPULATED_DIMM(s->dimms, i) {
				if (s->dimms[i].spd_data[9] > 0x30) {
					// this is too fast
					found = 0;
				}
			}
		}

		if (!found)
			die("No valid CAS/frequencies detected\n");

		s->selected_timings.mem_clk = currfreq;
		s->selected_timings.CAS = currcas;

	} else { // DDR3
		// Limit frequency for MCH
		maxfreq = (s->max_ddr2_mhz == 800) ? MEM_CLOCK_800MHz : MEM_CLOCK_667MHz;
		maxfreq >>= 3;
		freq = MEM_CLOCK_1333MHz;
		if (maxfreq) {
			freq = maxfreq + 2;
		}
		if (freq > MEM_CLOCK_1333MHz) {
			freq = MEM_CLOCK_1333MHz;
		}

		// Limit DDR speed to FSB speed
		switch (s->max_fsb) {
		case FSB_CLOCK_800MHz:
			if (freq > MEM_CLOCK_800MHz) {
				freq = MEM_CLOCK_800MHz;
			}
			break;
		case FSB_CLOCK_1066MHz:
			if (freq > MEM_CLOCK_1066MHz) {
				freq = MEM_CLOCK_1066MHz;
			}
			break;
		case FSB_CLOCK_1333MHz:
			if (freq > MEM_CLOCK_1333MHz) {
				freq = MEM_CLOCK_1333MHz;
			}
			break;
		default:
			die("Invalid FSB\n");
			break;
		}

		// TODO: CAS detection for DDR3
	}
}

/**
 * @param boot_path: 0 = normal, 1 = reset, 2 = resume from s3
 */
void sdram_initialize(int boot_path, const u8 *spd_map)
{
	struct sysinfo s;
	u8 reg8;

	printk(BIOS_DEBUG, "Setting up RAM controller.\n");

	pci_write_config8(PCI_DEV(0,0,0), 0xdf, 0xff);

	memset(&s, 0, sizeof(struct sysinfo));

	s.boot_path = boot_path;
	s.spd_map[0] = spd_map[0];
	s.spd_map[1] = spd_map[1];
	s.spd_map[2] = spd_map[2];
	s.spd_map[3] = spd_map[3];

	/* Detect dimms per channel */
	s.dimms_per_ch = 2;
	reg8 = pci_read_config8(PCI_DEV(0,0,0), 0xe9);
	if (reg8 & 0x10)
		s.dimms_per_ch = 1;

	printk(BIOS_DEBUG, "Dimms per channel: %d\n", s.dimms_per_ch);

	mchinfo_ddr2(&s);

	sdram_read_spds(&s);

	/* Choose Common Frequency */
	sdram_detect_ram_speed(&s);

	switch (s.spd_type) {
	case DDR2:
		raminit_ddr2(&s);
		break;
	case DDR3:
		// FIXME Add: raminit_ddr3(&s);
		break;
	default:
		die("Unknown DDR type\n");
		break;
	}

	reg8 = pci_read_config8(PCI_DEV(0, 0x1f, 0), 0xa2);
	pci_write_config8(PCI_DEV(0, 0x1f, 0), 0xa2, reg8 & ~0x80);

	reg8 = pci_read_config8(PCI_DEV(0,0,0), 0xf4);
	pci_write_config8(PCI_DEV(0,0,0), 0xf4, reg8 | 1);
	printk(BIOS_DEBUG, "RAM initialization finished.\n");
}