aboutsummaryrefslogtreecommitdiff
path: root/src/northbridge/intel/sandybridge/raminit.c
blob: 4d18c0b6b7d44d63275a010d60956ef340679a5f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
/*
 * This file is part of the coreboot project.
 *
 * Copyright (C) 2014 Damien Zammit <damien@zamaudio.com>
 * Copyright (C) 2014 Vladimir Serbinenko <phcoder@gmail.com>
 * Copyright (C) 2016 Patrick Rudolph <siro@das-labor.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <console/console.h>
#include <console/usb.h>
#include <bootmode.h>
#include <string.h>
#include <arch/io.h>
#include <cbmem.h>
#include <halt.h>
#include <timestamp.h>
#include <northbridge/intel/common/mrc_cache.h>
#include <southbridge/intel/bd82x6x/me.h>
#include <southbridge/intel/bd82x6x/smbus.h>
#include <cpu/x86/msr.h>
#include <delay.h>
#include <smbios.h>
#include <memory_info.h>
#include <lib.h>
#include "raminit_native.h"
#include "raminit_common.h"
#include "sandybridge.h"

/* FIXME: no ECC support.  */
/* FIXME: no support for 3-channel chipsets.  */

static const char *ecc_decoder[] = {
	"inactive",
	"active on IO",
	"disabled on IO",
	"active"
};

static void wait_txt_clear(void)
{
	struct cpuid_result cp;

	cp = cpuid_ext(0x1, 0x0);
	/* Check if TXT is supported?  */
	if (!(cp.ecx & 0x40))
		return;
	/* Some TXT public bit.  */
	if (!(read32((void *)0xfed30010) & 1))
		return;
	/* Wait for TXT clear.  */
	while (!(read8((void *)0xfed40000) & (1 << 7)));
}

/*
 * Disable a channel in ramctr_timing.
 */
static void disable_channel(ramctr_timing *ctrl, int channel) {
	ctrl->rankmap[channel] = 0;
	memset(&ctrl->rank_mirror[channel][0], 0, sizeof(ctrl->rank_mirror[0]));
	ctrl->channel_size_mb[channel] = 0;
	ctrl->cmd_stretch[channel] = 0;
	ctrl->mad_dimm[channel] = 0;
	memset(&ctrl->timings[channel][0], 0, sizeof(ctrl->timings[0]));
	memset(&ctrl->info.dimm[channel][0], 0, sizeof(ctrl->info.dimm[0]));
}

/*
 * Fill cbmem with information for SMBIOS type 17.
 */
static void fill_smbios17(ramctr_timing *ctrl)
{
	struct memory_info *mem_info;
	int channel, slot;
	struct dimm_info *dimm;
	uint16_t ddr_freq;
	dimm_info *info = &ctrl->info;

	ddr_freq = (1000 << 8) / ctrl->tCK;

	/*
	 * Allocate CBMEM area for DIMM information used to populate SMBIOS
	 * table 17
	 */
	mem_info = cbmem_add(CBMEM_ID_MEMINFO, sizeof(*mem_info));
	printk(BIOS_DEBUG, "CBMEM entry for DIMM info: 0x%p\n", mem_info);
	if (!mem_info)
		return;

	memset(mem_info, 0, sizeof(*mem_info));

	FOR_ALL_CHANNELS for (slot = 0; slot < NUM_SLOTS; slot++) {
		dimm = &mem_info->dimm[mem_info->dimm_cnt];
		if (info->dimm[channel][slot].size_mb) {
			dimm->ddr_type = MEMORY_TYPE_DDR3;
			dimm->ddr_frequency = ddr_freq;
			dimm->dimm_size = info->dimm[channel][slot].size_mb;
			dimm->channel_num = channel;
			dimm->rank_per_dimm = info->dimm[channel][slot].ranks;
			dimm->dimm_num = slot;
			memcpy(dimm->module_part_number,
				   info->dimm[channel][slot].part_number, 16);
			dimm->mod_id = info->dimm[channel][slot].manufacturer_id;
			dimm->mod_type = info->dimm[channel][slot].dimm_type;
			dimm->bus_width = info->dimm[channel][slot].width;
			mem_info->dimm_cnt++;
		}
	}
}

/*
 * Dump in the log memory controller configuration as read from the memory
 * controller registers.
 */
static void report_memory_config(void)
{
	u32 addr_decoder_common, addr_decode_ch[NUM_CHANNELS];
	int i;

	addr_decoder_common = MCHBAR32(0x5000);
	addr_decode_ch[0] = MCHBAR32(0x5004);
	addr_decode_ch[1] = MCHBAR32(0x5008);

	printk(BIOS_DEBUG, "memcfg DDR3 clock %d MHz\n",
	       (MCHBAR32(MC_BIOS_DATA) * 13333 * 2 + 50) / 100);
	printk(BIOS_DEBUG, "memcfg channel assignment: A: %d, B % d, C % d\n",
	       addr_decoder_common & 3, (addr_decoder_common >> 2) & 3,
	       (addr_decoder_common >> 4) & 3);

	for (i = 0; i < ARRAY_SIZE(addr_decode_ch); i++) {
		u32 ch_conf = addr_decode_ch[i];
		printk(BIOS_DEBUG, "memcfg channel[%d] config (%8.8x):\n", i,
		       ch_conf);
		printk(BIOS_DEBUG, "   ECC %s\n",
		       ecc_decoder[(ch_conf >> 24) & 3]);
		printk(BIOS_DEBUG, "   enhanced interleave mode %s\n",
		       ((ch_conf >> 22) & 1) ? "on" : "off");
		printk(BIOS_DEBUG, "   rank interleave %s\n",
		       ((ch_conf >> 21) & 1) ? "on" : "off");
		printk(BIOS_DEBUG, "   DIMMA %d MB width x%d %s rank%s\n",
		       ((ch_conf >> 0) & 0xff) * 256,
		       ((ch_conf >> 19) & 1) ? 16 : 8,
		       ((ch_conf >> 17) & 1) ? "dual" : "single",
		       ((ch_conf >> 16) & 1) ? "" : ", selected");
		printk(BIOS_DEBUG, "   DIMMB %d MB width x%d %s rank%s\n",
		       ((ch_conf >> 8) & 0xff) * 256,
		       ((ch_conf >> 20) & 1) ? 16 : 8,
		       ((ch_conf >> 18) & 1) ? "dual" : "single",
		       ((ch_conf >> 16) & 1) ? ", selected" : "");
	}
}

/*
 * Return CRC16 match for all SPDs.
 */
static int verify_crc16_spds_ddr3(spd_raw_data *spd, ramctr_timing *ctrl)
{
	int channel, slot, spd_slot;
	int match = 1;

	FOR_ALL_CHANNELS {
		for (slot = 0; slot < NUM_SLOTS; slot++) {
			spd_slot = 2 * channel + slot;
			match &= ctrl->spd_crc[channel][slot] ==
					spd_ddr3_calc_unique_crc(spd[spd_slot], sizeof(spd_raw_data));
		}
	}
	return match;
}

void read_spd(spd_raw_data * spd, u8 addr, bool id_only)
{
	int j;
	if (id_only) {
		for (j = 117; j < 128; j++)
			(*spd)[j] = do_smbus_read_byte(SMBUS_IO_BASE, addr, j);
	} else {
		for (j = 0; j < 256; j++)
			(*spd)[j] = do_smbus_read_byte(SMBUS_IO_BASE, addr, j);
	}
}

static void dram_find_spds_ddr3(spd_raw_data *spd, ramctr_timing *ctrl)
{
	int dimms = 0, dimms_on_channel;
	int channel, slot, spd_slot;
	dimm_info *dimm = &ctrl->info;

	memset (ctrl->rankmap, 0, sizeof(ctrl->rankmap));

	ctrl->extended_temperature_range = 1;
	ctrl->auto_self_refresh = 1;

	FOR_ALL_CHANNELS {
		ctrl->channel_size_mb[channel] = 0;

		dimms_on_channel = 0;
		/* count dimms on channel */
		for (slot = 0; slot < NUM_SLOTS; slot++) {
			spd_slot = 2 * channel + slot;
			spd_decode_ddr3(&dimm->dimm[channel][slot], spd[spd_slot]);
			if (dimm->dimm[channel][slot].dram_type == SPD_MEMORY_TYPE_SDRAM_DDR3)
				dimms_on_channel++;
		}

		for (slot = 0; slot < NUM_SLOTS; slot++) {
			spd_slot = 2 * channel + slot;
			/* search for XMP profile */
			spd_xmp_decode_ddr3(&dimm->dimm[channel][slot],
					spd[spd_slot],
					DDR3_XMP_PROFILE_1);

			if (dimm->dimm[channel][slot].dram_type != SPD_MEMORY_TYPE_SDRAM_DDR3) {
				printram("No valid XMP profile found.\n");
				spd_decode_ddr3(&dimm->dimm[channel][slot], spd[spd_slot]);
			} else if (dimms_on_channel > dimm->dimm[channel][slot].dimms_per_channel) {
				printram("XMP profile supports %u DIMMs, but %u DIMMs are installed.\n",
						 dimm->dimm[channel][slot].dimms_per_channel,
						 dimms_on_channel);
				spd_decode_ddr3(&dimm->dimm[channel][slot], spd[spd_slot]);
			} else if (dimm->dimm[channel][slot].voltage != 1500) {
				/* TODO: support other DDR3 voltage than 1500mV */
				printram("XMP profile's requested %u mV is unsupported.\n",
						 dimm->dimm[channel][slot].voltage);
				spd_decode_ddr3(&dimm->dimm[channel][slot], spd[spd_slot]);
			}

			/* fill in CRC16 for MRC cache */
			ctrl->spd_crc[channel][slot] =
					spd_ddr3_calc_unique_crc(spd[spd_slot], sizeof(spd_raw_data));

			if (dimm->dimm[channel][slot].dram_type != SPD_MEMORY_TYPE_SDRAM_DDR3) {
				// set dimm invalid
				dimm->dimm[channel][slot].ranks = 0;
				dimm->dimm[channel][slot].size_mb = 0;
				continue;
			}

			dram_print_spd_ddr3(&dimm->dimm[channel][slot]);
			dimms++;
			ctrl->rank_mirror[channel][slot * 2] = 0;
			ctrl->rank_mirror[channel][slot * 2 + 1] = dimm->dimm[channel][slot].flags.pins_mirrored;
			ctrl->channel_size_mb[channel] += dimm->dimm[channel][slot].size_mb;

			ctrl->auto_self_refresh &= dimm->dimm[channel][slot].flags.asr;
			ctrl->extended_temperature_range &= dimm->dimm[channel][slot].flags.ext_temp_refresh;

			ctrl->rankmap[channel] |= ((1 << dimm->dimm[channel][slot].ranks) - 1) << (2 * slot);
			printk(BIOS_DEBUG, "channel[%d] rankmap = 0x%x\n",
			       channel, ctrl->rankmap[channel]);
		}
		if ((ctrl->rankmap[channel] & 3) && (ctrl->rankmap[channel] & 0xc)
			&& dimm->dimm[channel][0].reference_card <= 5 && dimm->dimm[channel][1].reference_card <= 5) {
			const int ref_card_offset_table[6][6] = {
				{ 0, 0, 0, 0, 2, 2, },
				{ 0, 0, 0, 0, 2, 2, },
				{ 0, 0, 0, 0, 2, 2, },
				{ 0, 0, 0, 0, 1, 1, },
				{ 2, 2, 2, 1, 0, 0, },
				{ 2, 2, 2, 1, 0, 0, },
			};
			ctrl->ref_card_offset[channel] = ref_card_offset_table[dimm->dimm[channel][0].reference_card]
				[dimm->dimm[channel][1].reference_card];
		} else
			ctrl->ref_card_offset[channel] = 0;
	}

	if (!dimms)
		die("No DIMMs were found");
}

/* Frequency multiplier.  */
static u32 get_FRQ(u32 tCK)
{
	u32 FRQ;
	FRQ = 256000 / (tCK * BASEFREQ);
	if (FRQ > 8)
		return 8;
	if (FRQ < 3)
		return 3;
	return FRQ;
}

static u32 get_REFI(u32 tCK)
{
	/* Get REFI based on MCU frequency using the following rule:
	 *        _________________________________________
	 * FRQ : | 3    | 4    | 5    | 6    | 7    | 8    |
	 * REFI: | 3120 | 4160 | 5200 | 6240 | 7280 | 8320 |
	 */
	static const u32 frq_refi_map[] =
	    { 3120, 4160, 5200, 6240, 7280, 8320 };
	return frq_refi_map[get_FRQ(tCK) - 3];
}

static u8 get_XSOffset(u32 tCK)
{
	/* Get XSOffset based on MCU frequency using the following rule:
	 *             _________________________
	 * FRQ      : | 3 | 4 | 5 | 6 | 7  | 8  |
	 * XSOffset : | 4 | 6 | 7 | 8 | 10 | 11 |
	 */
	static const u8 frq_xs_map[] = { 4, 6, 7, 8, 10, 11 };
	return frq_xs_map[get_FRQ(tCK) - 3];
}

static u8 get_MOD(u32 tCK)
{
	/* Get MOD based on MCU frequency using the following rule:
	 *        _____________________________
	 * FRQ : | 3  | 4  | 5  | 6  | 7  | 8  |
	 * MOD : | 12 | 12 | 12 | 12 | 15 | 16 |
	 */
	static const u8 frq_mod_map[] = { 12, 12, 12, 12, 15, 16 };
	return frq_mod_map[get_FRQ(tCK) - 3];
}

static u8 get_WLO(u32 tCK)
{
	/* Get WLO based on MCU frequency using the following rule:
	 *        _______________________
	 * FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
	 * WLO : | 4 | 5 | 6 | 6 | 8 | 8 |
	 */
	static const u8 frq_wlo_map[] = { 4, 5, 6, 6, 8, 8 };
	return frq_wlo_map[get_FRQ(tCK) - 3];
}

static u8 get_CKE(u32 tCK)
{
	/* Get CKE based on MCU frequency using the following rule:
	 *        _______________________
	 * FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
	 * CKE : | 3 | 3 | 4 | 4 | 5 | 6 |
	 */
	static const u8 frq_cke_map[] = { 3, 3, 4, 4, 5, 6 };
	return frq_cke_map[get_FRQ(tCK) - 3];
}

static u8 get_XPDLL(u32 tCK)
{
	/* Get XPDLL based on MCU frequency using the following rule:
	 *          _____________________________
	 * FRQ   : | 3  | 4  | 5  | 6  | 7  | 8  |
	 * XPDLL : | 10 | 13 | 16 | 20 | 23 | 26 |
	 */
	static const u8 frq_xpdll_map[] = { 10, 13, 16, 20, 23, 26 };
	return frq_xpdll_map[get_FRQ(tCK) - 3];
}

static u8 get_XP(u32 tCK)
{
	/* Get XP based on MCU frequency using the following rule:
	 *        _______________________
	 * FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
	 * XP  : | 3 | 4 | 4 | 5 | 6 | 7 |
	 */
	static const u8 frq_xp_map[] = { 3, 4, 4, 5, 6, 7 };
	return frq_xp_map[get_FRQ(tCK) - 3];
}

static u8 get_AONPD(u32 tCK)
{
	/* Get AONPD based on MCU frequency using the following rule:
	 *          ________________________
	 * FRQ   : | 3 | 4 | 5 | 6 | 7 | 8  |
	 * AONPD : | 4 | 5 | 6 | 8 | 8 | 10 |
	 */
	static const u8 frq_aonpd_map[] = { 4, 5, 6, 8, 8, 10 };
	return frq_aonpd_map[get_FRQ(tCK) - 3];
}

static u32 get_COMP2(u32 tCK)
{
	/* Get COMP2 based on MCU frequency using the following rule:
	 *         ___________________________________________________________
	 * FRQ  : | 3       | 4       | 5       | 6       | 7       | 8       |
	 * COMP : | D6BEDCC | CE7C34C | CA57A4C | C6369CC | C42514C | C21410C |
	 */
	static const u32 frq_comp2_map[] = { 0xD6BEDCC, 0xCE7C34C, 0xCA57A4C,
		0xC6369CC, 0xC42514C, 0xC21410C
	};
	return frq_comp2_map[get_FRQ(tCK) - 3];
}

static void dram_timing(ramctr_timing * ctrl)
{
	u8 val;
	u32 val32;

	/* Maximum supported DDR3 frequency is 1066MHz (DDR3 2133) so make sure
	 * we cap it if we have faster DIMMs.
	 * Then, align it to the closest JEDEC standard frequency */
	if (ctrl->tCK <= TCK_1066MHZ) {
		ctrl->tCK = TCK_1066MHZ;
		ctrl->edge_offset[0] = 16;
		ctrl->edge_offset[1] = 7;
		ctrl->edge_offset[2] = 7;
		ctrl->timC_offset[0] = 18;
		ctrl->timC_offset[1] = 7;
		ctrl->timC_offset[2] = 7;
		ctrl->reg_320c_range_threshold = 13;
	} else if (ctrl->tCK <= TCK_933MHZ) {
		ctrl->tCK = TCK_933MHZ;
		ctrl->edge_offset[0] = 14;
		ctrl->edge_offset[1] = 6;
		ctrl->edge_offset[2] = 6;
		ctrl->timC_offset[0] = 15;
		ctrl->timC_offset[1] = 6;
		ctrl->timC_offset[2] = 6;
		ctrl->reg_320c_range_threshold = 15;
	} else if (ctrl->tCK <= TCK_800MHZ) {
		ctrl->tCK = TCK_800MHZ;
		ctrl->edge_offset[0] = 13;
		ctrl->edge_offset[1] = 5;
		ctrl->edge_offset[2] = 5;
		ctrl->timC_offset[0] = 14;
		ctrl->timC_offset[1] = 5;
		ctrl->timC_offset[2] = 5;
		ctrl->reg_320c_range_threshold = 15;
	} else if (ctrl->tCK <= TCK_666MHZ) {
		ctrl->tCK = TCK_666MHZ;
		ctrl->edge_offset[0] = 10;
		ctrl->edge_offset[1] = 4;
		ctrl->edge_offset[2] = 4;
		ctrl->timC_offset[0] = 11;
		ctrl->timC_offset[1] = 4;
		ctrl->timC_offset[2] = 4;
		ctrl->reg_320c_range_threshold = 16;
	} else if (ctrl->tCK <= TCK_533MHZ) {
		ctrl->tCK = TCK_533MHZ;
		ctrl->edge_offset[0] = 8;
		ctrl->edge_offset[1] = 3;
		ctrl->edge_offset[2] = 3;
		ctrl->timC_offset[0] = 9;
		ctrl->timC_offset[1] = 3;
		ctrl->timC_offset[2] = 3;
		ctrl->reg_320c_range_threshold = 17;
	} else  {
		ctrl->tCK = TCK_400MHZ;
		ctrl->edge_offset[0] = 6;
		ctrl->edge_offset[1] = 2;
		ctrl->edge_offset[2] = 2;
		ctrl->timC_offset[0] = 6;
		ctrl->timC_offset[1] = 2;
		ctrl->timC_offset[2] = 2;
		ctrl->reg_320c_range_threshold = 17;
	}

	/* Initial phase between CLK/CMD pins */
	ctrl->reg_c14_offset = (256000 / ctrl->tCK) / 66;

	/* DLL_CONFIG_MDLL_W_TIMER */
	ctrl->reg_5064b0 = (128000 / ctrl->tCK) + 3;

	val32 = (1000 << 8) / ctrl->tCK;
	printk(BIOS_DEBUG, "Selected DRAM frequency: %u MHz\n", val32);

	/* Find CAS latency */
	val = (ctrl->tAA + ctrl->tCK - 1) / ctrl->tCK;
	printk(BIOS_DEBUG, "Minimum  CAS latency   : %uT\n", val);
	/* Find lowest supported CAS latency that satisfies the minimum value */
	while (!((ctrl->cas_supported >> (val - MIN_CAS)) & 1)
	       && (ctrl->cas_supported >> (val - MIN_CAS))) {
		val++;
	}
	/* Is CAS supported */
	if (!(ctrl->cas_supported & (1 << (val - MIN_CAS)))) {
		printk(BIOS_ERR, "CAS %uT not supported. ", val);
		val = MAX_CAS;
		/* Find highest supported CAS latency */
		while (!((ctrl->cas_supported >> (val - MIN_CAS)) & 1))
			val--;

		printk(BIOS_ERR, "Using CAS %uT instead.\n", val);
	}

	printk(BIOS_DEBUG, "Selected CAS latency   : %uT\n", val);
	ctrl->CAS = val;
	ctrl->CWL = get_CWL(ctrl->tCK);
	printk(BIOS_DEBUG, "Selected CWL latency   : %uT\n", ctrl->CWL);

	/* Find tRCD */
	ctrl->tRCD = (ctrl->tRCD + ctrl->tCK - 1) / ctrl->tCK;
	printk(BIOS_DEBUG, "Selected tRCD          : %uT\n", ctrl->tRCD);

	ctrl->tRP = (ctrl->tRP + ctrl->tCK - 1) / ctrl->tCK;
	printk(BIOS_DEBUG, "Selected tRP           : %uT\n", ctrl->tRP);

	/* Find tRAS */
	ctrl->tRAS = (ctrl->tRAS + ctrl->tCK - 1) / ctrl->tCK;
	printk(BIOS_DEBUG, "Selected tRAS          : %uT\n", ctrl->tRAS);

	/* Find tWR */
	ctrl->tWR = (ctrl->tWR + ctrl->tCK - 1) / ctrl->tCK;
	printk(BIOS_DEBUG, "Selected tWR           : %uT\n", ctrl->tWR);

	/* Find tFAW */
	ctrl->tFAW = (ctrl->tFAW + ctrl->tCK - 1) / ctrl->tCK;
	printk(BIOS_DEBUG, "Selected tFAW          : %uT\n", ctrl->tFAW);

	/* Find tRRD */
	ctrl->tRRD = (ctrl->tRRD + ctrl->tCK - 1) / ctrl->tCK;
	printk(BIOS_DEBUG, "Selected tRRD          : %uT\n", ctrl->tRRD);

	/* Find tRTP */
	ctrl->tRTP = (ctrl->tRTP + ctrl->tCK - 1) / ctrl->tCK;
	printk(BIOS_DEBUG, "Selected tRTP          : %uT\n", ctrl->tRTP);

	/* Find tWTR */
	ctrl->tWTR = (ctrl->tWTR + ctrl->tCK - 1) / ctrl->tCK;
	printk(BIOS_DEBUG, "Selected tWTR          : %uT\n", ctrl->tWTR);

	/* Refresh-to-Active or Refresh-to-Refresh (tRFC) */
	ctrl->tRFC = (ctrl->tRFC + ctrl->tCK - 1) / ctrl->tCK;
	printk(BIOS_DEBUG, "Selected tRFC          : %uT\n", ctrl->tRFC);

	ctrl->tREFI = get_REFI(ctrl->tCK);
	ctrl->tMOD = get_MOD(ctrl->tCK);
	ctrl->tXSOffset = get_XSOffset(ctrl->tCK);
	ctrl->tWLO = get_WLO(ctrl->tCK);
	ctrl->tCKE = get_CKE(ctrl->tCK);
	ctrl->tXPDLL = get_XPDLL(ctrl->tCK);
	ctrl->tXP = get_XP(ctrl->tCK);
	ctrl->tAONPD = get_AONPD(ctrl->tCK);
}

static void dram_freq(ramctr_timing * ctrl)
{
	if (ctrl->tCK > TCK_400MHZ) {
		printk (BIOS_ERR, "DRAM frequency is under lowest supported frequency (400 MHz). Increasing to 400 MHz as last resort");
		ctrl->tCK = TCK_400MHZ;
	}
	while (1) {
		u8 val2;
		u32 reg1 = 0;

		/* Step 1 - Set target PCU frequency */

		if (ctrl->tCK <= TCK_1066MHZ) {
			ctrl->tCK = TCK_1066MHZ;
		} else if (ctrl->tCK <= TCK_933MHZ) {
			ctrl->tCK = TCK_933MHZ;
		} else if (ctrl->tCK <= TCK_800MHZ) {
			ctrl->tCK = TCK_800MHZ;
		} else if (ctrl->tCK <= TCK_666MHZ) {
			ctrl->tCK = TCK_666MHZ;
		} else if (ctrl->tCK <= TCK_533MHZ) {
			ctrl->tCK = TCK_533MHZ;
		} else if (ctrl->tCK <= TCK_400MHZ) {
			ctrl->tCK = TCK_400MHZ;
		} else {
			die ("No lock frequency found");
		}

		/* Frequency multiplier.  */
		u32 FRQ = get_FRQ(ctrl->tCK);

		/* The PLL will never lock if the required frequency is
		 * already set. Exit early to prevent a system hang.
		 */
		reg1 = MCHBAR32(MC_BIOS_DATA);
		val2 = (u8) reg1;
		if (val2)
			return;

		/* Step 2 - Select frequency in the MCU */
		reg1 = FRQ;
		reg1 |= 0x80000000;	// set running bit
		MCHBAR32(MC_BIOS_REQ) = reg1;
		int i=0;
		printk(BIOS_DEBUG, "PLL busy... ");
		while (reg1 & 0x80000000) {
			udelay(10);
			i++;
			reg1 = MCHBAR32(MC_BIOS_REQ);
		}
		printk(BIOS_DEBUG, "done in %d us\n", i * 10);

		/* Step 3 - Verify lock frequency */
		reg1 = MCHBAR32(MC_BIOS_DATA);
		val2 = (u8) reg1;
		if (val2 >= FRQ) {
			printk(BIOS_DEBUG, "MCU frequency is set at : %d MHz\n",
			       (1000 << 8) / ctrl->tCK);
			return;
		}
		printk(BIOS_DEBUG, "PLL didn't lock. Retrying at lower frequency\n");
		ctrl->tCK++;
	}
}

static void dram_ioregs(ramctr_timing * ctrl)
{
	u32 reg, comp2;

	int channel;

	// IO clock
	FOR_ALL_CHANNELS {
		MCHBAR32(0xc00 + 0x100 * channel) = ctrl->rankmap[channel];
	}

	// IO command
	FOR_ALL_CHANNELS {
		MCHBAR32(0x3200 + 0x100 * channel) = ctrl->rankmap[channel];
	}

	// IO control
	FOR_ALL_POPULATED_CHANNELS {
		program_timings(ctrl, channel);
	}

	// Rcomp
	printram("RCOMP...");
	reg = 0;
	while (reg == 0) {
		reg = MCHBAR32(0x5084) & 0x10000;
	}
	printram("done\n");

	// Set comp2
	comp2 = get_COMP2(ctrl->tCK);
	MCHBAR32(0x3714) = comp2;
	printram("COMP2 done\n");

	// Set comp1
	FOR_ALL_POPULATED_CHANNELS {
		reg = MCHBAR32(0x1810 + channel * 0x100);	//ch0
		reg = (reg & ~0xe00) | (1 << 9);	//odt
		reg = (reg & ~0xe00000) | (1 << 21);	//clk drive up
		reg = (reg & ~0x38000000) | (1 << 27);	//ctl drive up
		MCHBAR32(0x1810 + channel * 0x100) = reg;
	}
	printram("COMP1 done\n");

	printram("FORCE RCOMP and wait 20us...");
	MCHBAR32(0x5f08) |= 0x100;
	udelay(20);
	printram("done\n");
}

static void save_timings(ramctr_timing *ctrl)
{
	/* Save the MRC S3 restore data to cbmem */
	store_current_mrc_cache(ctrl, sizeof(*ctrl));
}

static int try_init_dram_ddr3(ramctr_timing *ctrl, int fast_boot,
		int s3_resume, int me_uma_size)
{
	int err;

	printk(BIOS_DEBUG, "Starting RAM training (%d).\n", fast_boot);

	if (!fast_boot) {
		/* Find fastest common supported parameters */
		dram_find_common_params(ctrl);

		dram_dimm_mapping(ctrl);
	}

	/* Set MCU frequency */
	dram_freq(ctrl);

	if (!fast_boot) {
		/* Calculate timings */
		dram_timing(ctrl);
	}

	/* Set version register */
	MCHBAR32(0x5034) = 0xC04EB002;

	/* Enable crossover */
	dram_xover(ctrl);

	/* Set timing and refresh registers */
	dram_timing_regs(ctrl);

	/* Power mode preset */
	MCHBAR32(0x4e80) = 0x5500;

	/* Set scheduler parameters */
	MCHBAR32(0x4c20) = 0x10100005;

	/* Set CPU specific register */
	set_4f8c();

	/* Clear IO reset bit */
	MCHBAR32(0x5030) &= ~0x20;

	/* Set MAD-DIMM registers */
	dram_dimm_set_mapping(ctrl);
	printk(BIOS_DEBUG, "Done dimm mapping\n");

	/* Zone config */
	dram_zones(ctrl, 1);

	/* Set memory map */
	dram_memorymap(ctrl, me_uma_size);
	printk(BIOS_DEBUG, "Done memory map\n");

	/* Set IO registers */
	dram_ioregs(ctrl);
	printk(BIOS_DEBUG, "Done io registers\n");

	udelay(1);

	if (fast_boot) {
		restore_timings(ctrl);
	} else {
		/* Do jedec ddr3 reset sequence */
		dram_jedecreset(ctrl);
		printk(BIOS_DEBUG, "Done jedec reset\n");

		/* MRS commands */
		dram_mrscommands(ctrl);
		printk(BIOS_DEBUG, "Done MRS commands\n");

		/* Prepare for memory training */
		prepare_training(ctrl);

		err = read_training(ctrl);
		if (err)
			return err;

		err = write_training(ctrl);
		if (err)
			return err;

		printram("CP5a\n");

		err = discover_edges(ctrl);
		if (err)
			return err;

		printram("CP5b\n");

		err = command_training(ctrl);
		if (err)
			return err;

		printram("CP5c\n");

		err = discover_edges_write(ctrl);
		if (err)
			return err;

		err = discover_timC_write(ctrl);
		if (err)
			return err;

		normalize_training(ctrl);
	}

	set_4008c(ctrl);

	write_controller_mr(ctrl);

	if (!s3_resume) {
		err = channel_test(ctrl);
		if (err)
			return err;
	}

	return 0;
}

static void init_dram_ddr3(int mobile, int min_tck, int s3resume)
{
	int me_uma_size;
	int cbmem_was_inited;
	ramctr_timing ctrl;
	int fast_boot;
	spd_raw_data spds[4];
	struct mrc_data_container *mrc_cache;
	ramctr_timing *ctrl_cached;
	int err;

	MCHBAR32(0x5f00) |= 1;

	report_platform_info();

	/* Wait for ME to be ready */
	intel_early_me_init();
	me_uma_size = intel_early_me_uma_size();

	printk(BIOS_DEBUG, "Starting native Platform init\n");

	u32 reg_5d10;

	wait_txt_clear();

	wrmsr(0x000002e6, (msr_t) { .lo = 0, .hi = 0 });

	reg_5d10 = read32(DEFAULT_MCHBAR + 0x5d10);	// !!! = 0x00000000
	if ((pci_read_config16(SOUTHBRIDGE, 0xa2) & 0xa0) == 0x20	/* 0x0004 */
	    && reg_5d10 && !s3resume) {
		write32(DEFAULT_MCHBAR + 0x5d10, 0);
		/* Need reset.  */
		outb(0x6, 0xcf9);

		halt();
	}

	early_pch_init_native();
	early_thermal_init();

	/* try to find timings in MRC cache */
	mrc_cache = find_current_mrc_cache();
	if (!mrc_cache || (mrc_cache->mrc_data_size < sizeof(ctrl))) {
		if (s3resume) {
			/* Failed S3 resume, reset to come up cleanly */
			outb(0x6, 0xcf9);
			halt();
		}
		ctrl_cached = NULL;
	} else {
		ctrl_cached = (ramctr_timing *)mrc_cache->mrc_data;
	}

	/* verify MRC cache for fast boot */
	if (!s3resume && ctrl_cached) {
		/* Load SPD unique information data. */
		memset(spds, 0, sizeof(spds));
		mainboard_get_spd(spds, 1);

		/* check SPD CRC16 to make sure the DIMMs haven't been replaced */
		fast_boot = verify_crc16_spds_ddr3(spds, ctrl_cached);
		if (!fast_boot)
			printk(BIOS_DEBUG, "Stored timings CRC16 mismatch.\n");
	} else {
		fast_boot = s3resume;
	}

	if (fast_boot) {
		printk(BIOS_DEBUG, "Trying stored timings.\n");
		memcpy(&ctrl, ctrl_cached, sizeof(ctrl));

		err = try_init_dram_ddr3(&ctrl, fast_boot, s3resume, me_uma_size);
		if (err) {
			if (s3resume) {
				/* Failed S3 resume, reset to come up cleanly */
				outb(0x6, 0xcf9);
				halt();
			}
			/* no need to erase bad mrc cache here, it gets overwritten on
			 * successful boot. */
			printk(BIOS_ERR, "Stored timings are invalid !\n");
			fast_boot = 0;
		}
	}
	if (!fast_boot) {
		/* Reset internal state */
		memset(&ctrl, 0, sizeof(ctrl));
		ctrl.mobile = mobile;
		ctrl.tCK = min_tck;

		/* Get DDR3 SPD data */
		memset(spds, 0, sizeof(spds));
		mainboard_get_spd(spds, 0);
		dram_find_spds_ddr3(spds, &ctrl);

		err = try_init_dram_ddr3(&ctrl, fast_boot, s3resume, me_uma_size);
	}

	if (err) {
		/* fallback: disable failing channel */
		printk(BIOS_ERR, "RAM training failed, trying fallback.\n");
		printram("Disable failing channel.\n");

		/* Reset internal state */
		memset(&ctrl, 0, sizeof(ctrl));
		ctrl.mobile = mobile;
		ctrl.tCK = min_tck;

		/* Reset DDR3 frequency */
		dram_find_spds_ddr3(spds, &ctrl);

		/* disable failing channel */
		disable_channel(&ctrl, GET_ERR_CHANNEL(err));

		err = try_init_dram_ddr3(&ctrl, fast_boot, s3resume, me_uma_size);
	}

	if (err)
		die("raminit failed");

	/* FIXME: should be hardware revision-dependent.  */
	write32(DEFAULT_MCHBAR + 0x5024, 0x00a030ce);

	set_scrambling_seed(&ctrl);

	set_42a0(&ctrl);

	final_registers(&ctrl);

	/* Zone config */
	dram_zones(&ctrl, 0);

	if (!fast_boot)
		quick_ram_check();

	intel_early_me_status();
	intel_early_me_init_done(ME_INIT_STATUS_SUCCESS);
	intel_early_me_status();

	report_memory_config();

	cbmem_was_inited = !cbmem_recovery(s3resume);
	if (!fast_boot)
		save_timings(&ctrl);
	if (s3resume && !cbmem_was_inited) {
		/* Failed S3 resume, reset to come up cleanly */
		outb(0x6, 0xcf9);
		halt();
	}

	fill_smbios17(&ctrl);
}

void perform_raminit(int s3resume)
{
	post_code(0x3a);

	timestamp_add_now(TS_BEFORE_INITRAM);

	init_dram_ddr3(1, get_mem_min_tck(), s3resume);
}