aboutsummaryrefslogtreecommitdiff
path: root/src/northbridge/intel/i3100/raminit_ep80579.c
blob: 7996e111bc4dd9d14dfe0e5efe104a0bc3404582 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
/*
 * This file is part of the coreboot project.
 *
 * Copyright (C) 2005 Eric W. Biederman and Tom Zimmerman
 * Copyright (C) 2008 Arastra, Inc.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <lib.h>
#include <cpu/x86/mtrr.h>
#include <cpu/x86/cache.h>
#include <cpu/intel/speedstep.h>
#include <lib.h>
#include "raminit_ep80579.h"
#include "ep80579.h"

#define BAR ((u8 *)0x90000000)

static void sdram_set_registers(const struct mem_controller *ctrl)
{
	static const u32 register_values[] = {
		PCI_ADDR(0, 0x00, 0, CKDIS), 0xffff0000, 0x0000ffff,
		PCI_ADDR(0, 0x00, 0, DEVPRES), 0x00000000, 0x07420001 | DEVPRES_CONFIG,
		PCI_ADDR(0, 0x00, 0, PAM-1), 0xcccccc7f, 0x33333000,
		PCI_ADDR(0, 0x00, 0, PAM+3), 0xcccccccc, 0x33333333,
		PCI_ADDR(0, 0x00, 0, DEVPRES1), 0xffffffff, 0x0040003a,
		PCI_ADDR(0, 0x00, 0, SMRBASE), 0x00000fff, (uintptr_t)BAR | 0,
	};
	int i;

	for (i = 0; i < ARRAY_SIZE(register_values); i += 3) {
		device_t dev;
		u32 where;
		u32 reg;
		dev = (register_values[i] & ~0xff) - PCI_DEV(0, 0x00, 0) + ctrl->f0;
		where = register_values[i] & 0xff;
		reg = pci_read_config32(dev, where);
		reg &= register_values[i+1];
		reg |= register_values[i+2];
		pci_write_config32(dev, where, reg);
	}
}

struct dimm_size {
	u32 side1;
	u32 side2;
};

static struct dimm_size spd_get_dimm_size(u16 device)
{
	/* Calculate the log base 2 size of a DIMM in bits */
	struct dimm_size sz;
	int value, low;
	sz.side1 = 0;
	sz.side2 = 0;

	/* Note it might be easier to use byte 31 here, it has the DIMM size as
	 * a multiple of 4MB.  The way we do it now we can size both
	 * sides of an assymetric dimm.
	 */
	value = spd_read_byte(device, SPD_NUM_ROWS);
	if (value < 0) goto hw_err;
	if ((value & 0xf) == 0) goto val_err;
	sz.side1 += value & 0xf;

	value = spd_read_byte(device, SPD_NUM_COLUMNS);
	if (value < 0) goto hw_err;
	if ((value & 0xf) == 0) goto val_err;
	sz.side1 += value & 0xf;

	value = spd_read_byte(device, SPD_NUM_BANKS_PER_SDRAM);
	if (value < 0) goto hw_err;
	if ((value & 0xff) == 0) goto val_err;
	sz.side1 += log2(value & 0xff);

	/* Get the module data width and convert it to a power of two */
	value = spd_read_byte(device, SPD_MODULE_DATA_WIDTH_MSB);
	if (value < 0) goto hw_err;
	value &= 0xff;
	value <<= 8;

	low = spd_read_byte(device, SPD_MODULE_DATA_WIDTH_LSB);
	if (low < 0) goto hw_err;
	value = value | (low & 0xff);
	if ((value != 72) && (value != 64)) goto val_err;
	sz.side1 += log2(value);

	/* side 2 */
	value = spd_read_byte(device, SPD_NUM_DIMM_BANKS);

	if (value < 0) goto hw_err;
	value &= 7;
	value++;
	if (value == 1) goto out;
	if (value != 2) goto val_err;

	/* Start with the symmetrical case */
	sz.side2 = sz.side1;

	value = spd_read_byte(device, SPD_NUM_ROWS);
	if (value < 0) goto hw_err;
	if ((value & 0xf0) == 0) goto out;	/* If symmetrical we are done */
	sz.side2 -= (value & 0x0f);		/* Subtract out rows on side 1 */
	sz.side2 += ((value >> 4) & 0x0f);	/* Add in rows on side 2 */

	value = spd_read_byte(device, SPD_NUM_COLUMNS);
	if (value < 0) goto hw_err;
	if ((value & 0xff) == 0) goto val_err;
	sz.side2 -= (value & 0x0f);		/* Subtract out columns on side 1 */
	sz.side2 += ((value >> 4) & 0x0f);	/* Add in columns on side 2 */
	goto out;

 val_err:
	die("Bad SPD value\n");
	/* If an hw_error occurs report that I have no memory */
 hw_err:
	sz.side1 = 0;
	sz.side2 = 0;
out:
	printk(BIOS_DEBUG, "dimm %02x size = %02x.%02x\n", device, sz.side1, sz.side2);
	return sz;

}

static long spd_set_ram_size(const struct mem_controller *ctrl, u8 dimm_mask)
{
	int i;
	int cum;

	for (i = cum = 0; i < DIMM_SOCKETS; i++) {
		struct dimm_size sz;
		if (dimm_mask & (1 << i)) {
			sz = spd_get_dimm_size(ctrl->channel0[i]);
			if (sz.side1 < 29) {
				return -1; /* Report SPD error */
			}
			/* convert bits to multiples of 64MB */
			sz.side1 -= 29;
			cum += (1 << sz.side1);
			pci_write_config8(ctrl->f0, DRB + (i*2), cum);
			pci_write_config8(ctrl->f0, DRB+1 + (i*2), cum);
			if (spd_read_byte(ctrl->channel0[i], SPD_NUM_DIMM_BANKS) & 0x1) {
				cum <<= 1;
			}
		}
		else {
			pci_write_config8(ctrl->f0, DRB + (i*2), cum);
			pci_write_config8(ctrl->f0, DRB+1 + (i*2), cum);
		}
	}
	printk(BIOS_DEBUG, "DRB = %08x\n", pci_read_config32(ctrl->f0, DRB));

	cum >>= 1;
	/* set TOM top of memory */
	pci_write_config16(ctrl->f0, TOM, cum);
	printk(BIOS_DEBUG, "TOM = %04x\n", cum);
	/* set TOLM top of low memory */
	if (cum > 0x18) {
		cum = 0x18;
	}
	cum <<= 11;
	pci_write_config16(ctrl->f0, TOLM, cum);
	printk(BIOS_DEBUG, "TOLM = %04x\n", cum);
	return 0;
}


static u8 spd_detect_dimms(const struct mem_controller *ctrl)
{
	u8 dimm_mask = 0;
	int i;
	for (i = 0; i < DIMM_SOCKETS; i++) {
		int byte;
		u16 device;
		device = ctrl->channel0[i];
		if (device) {
			byte = spd_read_byte(device, SPD_MEMORY_TYPE);
			printk(BIOS_DEBUG, "spd %02x = %02x\n", device, byte);
			if (byte == 8) {
				dimm_mask |= (1 << i);
			}
		}
	}
	return dimm_mask;
}


static int spd_set_row_attributes(const struct mem_controller *ctrl,
				  u8 dimm_mask)
{
	int value;
	int i;

	for (i = 0; i < DIMM_SOCKETS; i++) {
		u32 dra = 0;
		int reg = 0;

		if (!(dimm_mask & (1 << i))) {
			continue;
		}

		value = spd_read_byte(ctrl->channel0[i], SPD_NUM_ROWS);
		if (value < 0) die("Bad SPD data\n");
		if ((value & 0xf) == 0) die("Invalid # of rows\n");
		dra |= (((value-13) & 0x7) << 23);
		dra |= (((value-13) & 0x7) << 29);
		reg += value & 0xf;

		value = spd_read_byte(ctrl->channel0[i], SPD_NUM_COLUMNS);
		if (value < 0) die("Bad SPD data\n");
		if ((value & 0xf) == 0) die("Invalid # of columns\n");
		dra |= (((value-10) & 0x7) << 20);
		dra |= (((value-10) & 0x7) << 26);
		reg += value & 0xf;

		value = spd_read_byte(ctrl->channel0[i], SPD_NUM_BANKS_PER_SDRAM);
		if (value < 0) die("Bad SPD data\n");
		if ((value & 0xff) == 0) die("Invalid # of banks\n");
		reg += log2(value & 0xff);

		printk(BIOS_DEBUG, "dimm %02x reg = %02x\n", i, reg);

		/* set device density */
		dra |= ((31-reg));
		dra |= ((31-reg) << 6);

		/* set device width (x8) */
		dra |= (1 << 4);
		dra |= (1 << 10);

		/* set device type (registered) */
		dra |= (1 << 14);

		/* set number of ranks (0=single, 1=dual) */
		value = spd_read_byte(ctrl->channel0[i], SPD_NUM_DIMM_BANKS);
		dra |= ((value & 0x1) << 17);

		printk(BIOS_DEBUG, "DRA%02x = %08x\n", i, dra);

		pci_write_config32(ctrl->f0, DRA + (i*4), dra);
	}
	return 0;
}


static u32 spd_set_drt_attributes(const struct mem_controller *ctrl,
		u8 dimm_mask, u32 drc)
{
	int i;
	u32 val, val1;
	u32 cl;
	u32 trc = 0;
	u32 trfc = 0;
	u32 tras = 0;
	u32 trtp = 0;
	u32 twtr = 0;
	int index = drc & 0x00000003;
	int ci;
	static const u8 latencies[] = { /* 533, 800, 400, 667 */
		0x10, 0x60, 0x10, 0x20 };
	static const u32 drt0[] = { /* 533, 800, 400, 667 */
		0x24240002, 0x24360002, 0x24220002, 0x24360002 };
	static const u32 drt1[] = { /* 533, 800, 400, 667 */
		0x00400000, 0x00900000, 0x00200000, 0x00700000 };
	static const u32 magic[] = { /* 533, 800, 400, 667 */
		0x007b8221, 0x00b94331, 0x005ca1a1, 0x009a62b1 };
	static const u32 mrs[] = { /* 533, 800, 400, 667 */
		0x07020000, 0x0b020000, 0x05020000, 0x09020000 };
	static const int cycle[] = { /* 533, 800, 400, 667 */
		15, 10, 20, 12 }; /* cycle time in 1/4 ns units */
	static const int byte40rem[] = {
		0, 1, 2, 2, 3, 3, 0, 0 }; /* byte 40 remainder in 1/4 ns units */

	/* CAS latency in cycles */
	val = latencies[index];
	for (i = 0; i < DIMM_SOCKETS; i++) {
		if (!(dimm_mask & (1 << i)))
			continue;
		val &= spd_read_byte(ctrl->channel0[i], SPD_ACCEPTABLE_CAS_LATENCIES);
	}
	if (val & 0x10)
		cl = 4;
	else if (val & 0x20)
		cl = 5;
	else if (val & 0x40)
		cl = 6;
	else
		die("CAS latency mismatch\n");
	printk(BIOS_DEBUG, "cl = %02x\n", cl);

	ci = cycle[index];

	/* Trc, Trfc in cycles */
	for (i = 0; i < DIMM_SOCKETS; i++) {
		if (!(dimm_mask & (1 << i)))
			continue;
		val1 = spd_read_byte(ctrl->channel0[i], SPD_BYTE_41_42_EXTENSION);
		val = spd_read_byte(ctrl->channel0[i], SPD_MIN_ACT_TO_ACT_AUTO_REFRESH);
		val <<= 2; /* convert to 1/4 ns */
		val += byte40rem[(val1 >> 4) & 0x7];
		val = CEIL_DIV(val, ci) + 1; /* convert to cycles */
		if (trc < val)
			trc = val;
		val = spd_read_byte(ctrl->channel0[i], SPD_MIN_AUTO_REFRESH_TO_ACT);
		val <<= 2; /* convert to 1/4 ns */
		if (val1 & 0x01)
			val += 1024;
		val += byte40rem[(val1 >> 1) & 0x7];
		val = CEIL_DIV(val, ci); /* convert to cycles */
		if (trfc < val)
			trfc = val;
	}
	printk(BIOS_DEBUG, "trc = %02x\n", trc);
	printk(BIOS_DEBUG, "trfc = %02x\n", trfc);

	/* Tras, Trtp, Twtr in cycles */
	for (i = 0; i < DIMM_SOCKETS; i++) {
		if (!(dimm_mask & (1 << i)))
			continue;
		val = spd_read_byte(ctrl->channel0[i], SPD_MIN_ACTIVE_TO_PRECHARGE_DELAY);
		val <<= 2; /* convert to 1/4 ns */
		val = CEIL_DIV(val, ci); /* convert to cycles */
		if (tras < val)
			tras = val;
		val = spd_read_byte(ctrl->channel0[i], SPD_INT_READ_TO_PRECHARGE_DELAY);
		val = CEIL_DIV(val, ci); /* convert to cycles */
		if (trtp < val)
			trtp = val;
		val = spd_read_byte(ctrl->channel0[i], SPD_INT_WRITE_TO_READ_DELAY);
		val = CEIL_DIV(val, ci); /* convert to cycles */
		if (twtr < val)
			twtr = val;
	}
	printk(BIOS_DEBUG, "tras = %02x\n", tras);
	printk(BIOS_DEBUG, "trtp = %02x\n", trtp);
	printk(BIOS_DEBUG, "twtr = %02x\n", twtr);

	val = (drt0[index] | ((trc - 11) << 12) | ((cl - 3) << 9)
	       | ((cl - 3) << 6) | ((cl - 3) << 3));
	printk(BIOS_DEBUG, "drt0 = %08x\n", val);
	pci_write_config32(ctrl->f0, DRT0, val);

	val = (drt1[index] | ((tras - 8) << 28) | ((trtp - 2) << 25)
	       | (twtr << 15));
	printk(BIOS_DEBUG, "drt1 = %08x\n", val);
	pci_write_config32(ctrl->f0, DRT1, val);

	val = (magic[index]);
	printk(BIOS_DEBUG, "magic = %08x\n", val);
	pci_write_config32(PCI_DEV(0, 0x08, 0), 0xcc, val);

	val = (mrs[index] | (cl << 20));
	printk(BIOS_DEBUG, "mrs = %08x\n", val);
	return val;
}

static int spd_set_dram_controller_mode(const struct mem_controller *ctrl,
					u8 dimm_mask)
{
	int value;
	int drc = 0;
	int i;
	msr_t msr;
	u8 cycle = 0x25;

	for (i = 0; i < DIMM_SOCKETS; i++) {
		if (!(dimm_mask & (1 << i)))
			continue;
		if ((spd_read_byte(ctrl->channel0[i], SPD_MODULE_DATA_WIDTH_LSB) & 0xf0) != 0x40)
			die("ERROR: Only 64-bit DIMMs supported\n");
		if (!(spd_read_byte(ctrl->channel0[i], SPD_DIMM_CONFIG_TYPE) & 0x02))
			die("ERROR: Only ECC DIMMs supported\n");
		if (spd_read_byte(ctrl->channel0[i], SPD_PRIMARY_SDRAM_WIDTH) != 0x08)
			die("ERROR: Only x8 DIMMs supported\n");

		value = spd_read_byte(ctrl->channel0[i], SPD_MIN_CYCLE_TIME_AT_CAS_MAX);
		if (value > cycle)
			cycle = value;
	}
	printk(BIOS_DEBUG, "cycle = %02x\n", cycle);

	drc |= (1 << 20); /* enable ECC */
	drc |= (3 << 30); /* enable CKE on each DIMM */
	drc |= (1 << 4); /* enable CKE globally */

	/* TODO check: */
	/* set front side bus speed */
	msr = rdmsr(MSR_FSB_FREQ); /* returns 0 on Pentium M 90nm */
	printk(BIOS_DEBUG, "MSR FSB_FREQ(0xcd) = %08x%08x\n", msr.hi, msr.lo);

	/* TODO check that this msr really indicates fsb speed! */
	if (msr.lo & 0x07) {
		printk(BIOS_INFO, "533 MHz FSB\n");
		if (cycle <= 0x25) {
			drc |= 0x5;
			printk(BIOS_INFO, "400 MHz DDR\n");
		} else if (cycle <= 0x30) {
			drc |= 0x7;
			printk(BIOS_INFO, "333 MHz DDR\n");
		} else if (cycle <= 0x3d) {
			drc |= 0x4;
			printk(BIOS_INFO, "266 MHz DDR\n");
		} else {
			drc |= 0x2;
			printk(BIOS_INFO, "200 MHz DDR\n");
		}
	}
	else {
		printk(BIOS_INFO, "400 MHz FSB\n");
		if (cycle <= 0x30) {
			drc |= 0x7;
			printk(BIOS_INFO, "333 MHz DDR\n");
		} else if (cycle <= 0x3d) {
			drc |= 0x0;
			printk(BIOS_INFO, "266 MHz DDR\n");
		} else {
			drc |= 0x2;
			printk(BIOS_INFO, "200 MHz DDR\n");
		}
	}

	printk(BIOS_DEBUG, "DRC = %08x\n", drc);

	return drc;
}

static void sdram_set_spd_registers(const struct mem_controller *ctrl)
{
	u8 dimm_mask;

	/* Test if we can read the SPD */
	dimm_mask = spd_detect_dimms(ctrl);
	if (!(dimm_mask & ((1 << DIMM_SOCKETS) - 1))) {
		printk(BIOS_ERR, "No memory for this cpu\n");
		return;
	}
	return;
}

static void set_on_dimm_termination_enable(const struct mem_controller *ctrl)
{
	u8 c1,c2;
	u32 i;
	u32 data32 = 0;

	/* Set up northbridge values */
	/* ODT enable */
  	pci_write_config32(ctrl->f0, SDRC, 0xa0002c30);

	c1 = pci_read_config8(ctrl->f0, DRB);
	c2 = pci_read_config8(ctrl->f0, DRB+2);
	if (c1 == c2) {
		/* 1 single-rank DIMM */
		data32 = 0x00000010;
	}
	else {
		/* 2 single-rank DIMMs or 1 double-rank DIMM */
		data32 = 0x00002010;
	}

	printk(BIOS_DEBUG, "ODT Value = %08x\n", data32);

  	pci_write_config32(ctrl->f0, DDR2ODTC, data32);

	for (i = 0; i < 2; i++) {
		printk(BIOS_DEBUG, "ODT CS%d\n", i);

		write32(BAR+DCALADDR, 0x0b840001);
		write32(BAR+DCALCSR, 0x80000003 | ((i+1)<<21));
		do data32 = read32(BAR+DCALCSR);
		while (data32 & 0x80000000);
	}
}


static void dump_dcal_regs(void)
{
	int i;
	for (i = 0x0; i < 0x2a0; i += 4) {
		if ((i % 16) == 0) {
			printk(BIOS_DEBUG, "\n%04x: ", i);
		}
		printk(BIOS_DEBUG, "%08x ", read32(BAR+i));
	}
	printk(BIOS_DEBUG, "\n");
}


static void sdram_enable(int controllers, const struct mem_controller *ctrl)
{
	int i;
	int cs;
	long mask;
	u32 drc;
	u32 data32;
	u32 mode_reg;

	mask = spd_detect_dimms(ctrl);
	printk(BIOS_DEBUG, "Starting SDRAM Enable\n");

	/* Set DRAM type and Front Side Bus frequency */
	drc = spd_set_dram_controller_mode(ctrl, mask);
	if (drc == 0) {
		die("Error calculating DRC\n");
	}
	data32 = drc & ~(3 << 20);  /* clear ECC mode */
	data32 = data32 | (3 << 5);  /* temp turn off ODT */
  	/* Set DRAM controller mode */
  	pci_write_config32(ctrl->f0, DRC, data32);

	/* Turn the clocks on */
  	pci_write_config16(ctrl->f0, CKDIS, 0x0000);

	/* Program row size */
	spd_set_ram_size(ctrl, mask);

	/* Program row attributes */
	spd_set_row_attributes(ctrl, mask);

	/* Program timing values */
	mode_reg = spd_set_drt_attributes(ctrl, mask, drc);

	dump_dcal_regs();

	/* Apply NOP */
	for (cs = 0; cs < 2; cs++) {
		printk(BIOS_DEBUG, "NOP CS%d\n", cs);
		udelay(16);
		write32(BAR+DCALCSR, (0x00000000 | ((cs+1)<<21)));
		write32(BAR+DCALCSR, (0x80000000 | ((cs+1)<<21)));
		do data32 = read32(BAR+DCALCSR);
		while (data32 & 0x80000000);
	}

	/* Apply NOP */
	udelay(16);
	for (cs = 0; cs < 2; cs++) {
		printk(BIOS_DEBUG, "NOP CS%d\n", cs);
		write32(BAR + DCALCSR, (0x80000000 | ((cs+1)<<21)));
		do data32 = read32(BAR+DCALCSR);
		while (data32 & 0x80000000);
	}

	/* Precharge all banks */
	udelay(16);
	for (cs = 0; cs < 2; cs++) {
		printk(BIOS_DEBUG, "Precharge CS%d\n", cs);
		write32(BAR+DCALADDR, 0x04000000);
		write32(BAR+DCALCSR, (0x80000002 | ((cs+1)<<21)));
		do data32 = read32(BAR+DCALCSR);
		while (data32 & 0x80000000);
	}

	/* EMRS: Enable DLLs, set OCD calibration mode to default */
	udelay(16);
	for (cs = 0; cs < 2; cs++) {
		printk(BIOS_DEBUG, "EMRS CS%d\n", cs);
		write32(BAR+DCALADDR, 0x0b840001);
		write32(BAR+DCALCSR, (0x80000003 | ((cs+1)<<21)));
		do data32 = read32(BAR+DCALCSR);
		while (data32 & 0x80000000);
	}
	/* MRS: Reset DLLs */
	udelay(16);
	for (cs = 0; cs < 2; cs++) {
		printk(BIOS_DEBUG, "MRS CS%d\n", cs);
		write32(BAR+DCALADDR, mode_reg);
		write32(BAR+DCALCSR, (0x80000003 | ((cs+1)<<21)));
		do data32 = read32(BAR+DCALCSR);
		while (data32 & 0x80000000);
	}

	/* Precharge all banks */
	udelay(48);
	for (cs = 0; cs < 2; cs++) {
		printk(BIOS_DEBUG, "Precharge CS%d\n", cs);
		write32(BAR+DCALADDR, 0x04000000);
		write32(BAR+DCALCSR, (0x80000002 | ((cs+1)<<21)));
		do data32 = read32(BAR+DCALCSR);
		while (data32 & 0x80000000);
	}

	/* Do 2 refreshes */
	for (i = 0; i < 2; i++) {
		udelay(16);
		for (cs = 0; cs < 2; cs++) {
			printk(BIOS_DEBUG, "Refresh CS%d\n", cs);
			write32(BAR+DCALCSR, (0x80000001 | ((cs+1)<<21)));
			do data32 = read32(BAR+DCALCSR);
			while (data32 & 0x80000000);
		}
	}

	/* MRS: Set DLLs to normal */
	udelay(16);
	for (cs = 0; cs < 2; cs++) {
		printk(BIOS_DEBUG, "MRS CS%d\n", cs);
		write32(BAR+DCALADDR, (mode_reg & ~(1<<24)));
		write32(BAR+DCALCSR, (0x80000003 | ((cs+1)<<21)));
		do data32 = read32(BAR+DCALCSR);
		while (data32 & 0x80000000);
	}

	/* EMRS: Enable DLLs */
	udelay(16);
	for (cs = 0; cs < 2; cs++) {
		printk(BIOS_DEBUG, "EMRS CS%d\n", cs);
		write32(BAR+DCALADDR, 0x0b840001);
		write32(BAR+DCALCSR, (0x80000003 | ((cs+1)<<21)));
		do data32 = read32(BAR+DCALCSR);
		while (data32 & 0x80000000);
        }

	udelay(16);
	/* No command */
	write32(BAR+DCALCSR, 0x0000000f);

	write32(BAR, 0x00100000);

	/* Enable on-DIMM termination */
	set_on_dimm_termination_enable(ctrl);

	dump_dcal_regs();

	/* Receive enable calibration */
	udelay(16);
	for (cs = 0; cs < 1; cs++) {
		printk(BIOS_DEBUG, "receive enable calibration CS%d\n", cs);
		write32(BAR+DCALCSR, (0x8000000c | ((cs+1)<<21)));
		do data32 = read32(BAR+DCALCSR);
		while (data32 & 0x80000000);
	}

	dump_dcal_regs();

	/* Adjust RCOMP */
	data32 = read32(BAR+DDRIOMC2);
	data32 &= ~(0xf << 16);
	data32 |= (0xb << 16);
	write32(BAR+DDRIOMC2, data32);

	dump_dcal_regs();

	data32 = drc & ~(3 << 20);  /* clear ECC mode */
	pci_write_config32(ctrl->f0, DRC, data32);
	write32(BAR+DCALCSR, 0x0008000f);

	/* Clear memory and init ECC */
	for (cs = 0; cs < 2; cs++) {
		if (!(mask & (1<<cs)))
			continue;
		printk(BIOS_DEBUG, "clear memory CS%d\n", cs);
		write32(BAR+MBCSR, 0xa00000f0 | ((cs+1)<<20) | (0<<16));
		do data32 = read32(BAR+MBCSR);
		while (data32 & 0x80000000);
		if (data32 & 0x40000000)
			printk(BIOS_DEBUG, "failed!\n");
	}

	/* Clear read/write FIFO pointers */
	printk(BIOS_DEBUG, "clear read/write fifo pointers\n");
	write32(BAR+DDRIOMC2, read32(BAR+DDRIOMC2) | (1<<15));
	udelay(16);
	write32(BAR+DDRIOMC2, read32(BAR+DDRIOMC2) & ~(1<<15));
	udelay(16);

	dump_dcal_regs();

	printk(BIOS_DEBUG, "Done\n");

	/* Set initialization complete */
	drc |= (1 << 29);
	drc |= (3 << 30);
	data32 = drc & ~(3 << 20);  /* clear ECC mode */
	pci_write_config32(ctrl->f0, DRC, data32);

	/* Set the ECC mode */
	pci_write_config32(ctrl->f0, DRC, drc);
}

static inline int memory_initialized(void)
{
	return pci_read_config32(PCI_DEV(0, 0x00, 0), DRC) & (1 << 29);
}