aboutsummaryrefslogtreecommitdiff
path: root/src/northbridge/intel/e7501/raminit.c
blob: 020585a30b32346b9392e712b4bc5719a695d122 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
/* This was originally for the e7500, modified for e7501
 * The primary differences are that 7501 apparently can 
 * support single channel RAM (i haven't tested),
 * CAS1.5 is no longer supported, The ECC scrubber
 * now supports a mode to zero RAM and init ECC in one step
 * and the undocumented registers at 0x80 require new 
 * (undocumented) values determined by guesswork and
 * comparison w/ OEM BIOS values.
 * Steven James 02/06/2003
 */

/* converted to C 6/2004 yhlu */

#define DEBUG_RAM_CONFIG 1

#define dumpnorth() dump_pci_device(PCI_DEV(0, 0, 0)) 

/* DDR DIMM Mode register Definitions */

#define BURST_2           (1<<0)
#define BURST_4           (2<<0)
#define BURST_8           (3<<0)

#define BURST_SEQUENTIAL  (0<<3)
#define BURST_INTERLEAVED (1<<3)

#define CAS_2_0	          (0x2<<4)
#define CAS_3_0           (0x3<<4)
#define CAS_1_5           (0x5<<4)
#define CAS_2_5           (0x6<<4)

#define MODE_NORM         (0 << 7)
#define MODE_DLL_RESET    (2 << 7)
#define MODE_TEST         (1 << 7)

#define BURST_LENGTH BURST_4
#define BURST_TYPE   BURST_INTERLEAVED
#define CAS_LATENCY  CAS_2_0
//#define CAS_LATENCY  CAS_2_5
//#define CAS_LATENCY  CAS_1_5

#define MRS_VALUE (MODE_NORM | CAS_LATENCY | BURST_TYPE | BURST_LENGTH)
#define EMRS_VALUE 0x000

#define MD_SHIFT 4

#define RAM_COMMAND_NONE	0x0
#define RAM_COMMAND_NOP		0x1
#define RAM_COMMAND_PRECHARGE	0x2
#define RAM_COMMAND_MRS		0x3
#define RAM_COMMAND_EMRS	0x4
#define RAM_COMMAND_CBR		0x6
#define RAM_COMMAND_NORMAL	0x7


static inline void do_ram_command (const struct mem_controller *ctrl, uint32_t value) {
        uint32_t dword;
        uint8_t byte;
        int i;
        uint32_t result;
#if DEBUG_RAM_CONFIG >= 2
        print_debug("P:");
        print_debug_hex8(value);
        print_debug("\r\n");
#endif
        /* %ecx - initial address to read from */
        /* Compute the offset */
        dword = value >> 16;
        for(i=0;i<8;i++) {
                /* Set the ram command */
                byte = pci_read_config8(ctrl->d0, 0x7c);
                byte &= 0x8f;
                byte |= (uint8_t)(value & 0xff);
                pci_write_config8(ctrl->d0, 0x7c, byte);

                /* Assert the command to the memory */
#if DEBUG_RAM_CONFIG  >= 2
                print_debug("R:");
                print_debug_hex32(dword);
                print_debug("\r\n");
#endif

                result = read32(dword);

                /* Go to the next base address */
                dword += 0x04000000;

        } 

        /* The command has been sent to all dimms so get out */
}


static inline void RAM_CMD(const struct mem_controller *ctrl, uint32_t command, uint32_t offset)  {
	uint32_t value = 	((offset) << (MD_SHIFT + 16))|((command << 4) & 0x70) ; 
	do_ram_command(ctrl, value);
}
	
#define RAM_NOP(ctrl)		RAM_CMD(ctrl, RAM_COMMAND_NOP, 0)
#define RAM_PRECHARGE(ctrl)		RAM_CMD(ctrl, RAM_COMMAND_PRECHARGE, 0)
#define RAM_CBR(ctrl)		RAM_CMD(ctrl, RAM_COMMAND_CBR, 0)
#define RAM_EMRS(ctrl)		RAM_CMD(ctrl, RAM_COMMAND_EMRS, EMRS_VALUE)

static const uint8_t ram_cas_latency[] = {
	CAS_2_5, CAS_2_0, CAS_1_5, CAS_2_5
	};

static inline void ram_mrs(const struct mem_controller *ctrl, uint32_t value){
	/* Read the cas latency setting */
	uint8_t byte;
	uint32_t dword;
	byte = pci_read_config8(ctrl->d0, 0x78); 
	/* Transform it into the form expected by SDRAM */
	dword = ram_cas_latency[(byte>>4) & 3];

	value  |= (dword<<(16+MD_SHIFT));
	
	value |= (MODE_NORM | BURST_TYPE | BURST_LENGTH) << (16+MD_SHIFT);

	do_ram_command(ctrl, value);
}

#define RAM_MRS(ctrl, dll_reset) ram_mrs( ctrl, (dll_reset << (8+MD_SHIFT+ 16)) | ((RAM_COMMAND_MRS <<4)& 0x70) )

static void RAM_NORMAL(const struct mem_controller *ctrl) {
	uint8_t byte;
	byte = pci_read_config8(ctrl->d0, 0x7c);
	byte &=  0x8f;
	byte |= (RAM_COMMAND_NORMAL << 4);
	pci_write_config8(ctrl->d0, 0x7c, byte);
}

static void  RAM_RESET_DDR_PTR(const struct mem_controller *ctrl) {
	uint8_t byte;
	byte = pci_read_config8(ctrl->d0, 0x88);
	byte |= (1 << 4 );
	pci_write_config8(ctrl->d0, 0x88, byte);
	byte = pci_read_config8(ctrl->d0, 0x88);
	byte &= ~(1 << 4);
	pci_write_config8(ctrl->d0, 0x88, byte);
}

static void ENABLE_REFRESH(const struct mem_controller *ctrl) 
{
	uint32_t dword;
	dword = pci_read_config32(ctrl->d0, 0x7c);
	dword |= (1 << 29);
	pci_write_config32(ctrl->d0, 0x7c, dword);
}

	/*
	 * Table:	constant_register_values
	 */
static const long register_values[] = {
	/* SVID - Subsystem Vendor Identification Register
	 * 0x2c - 0x2d
	 * [15:00] Subsytem Vendor ID (Indicates system board vendor)
	 */
	/* SID - Subsystem Identification Register
	 * 0x2e - 0x2f
	 * [15:00] Subsystem ID
	 */
	 0x2c, 0, (0x15d9 << 0) | (0x3580 << 16),

	/* Undocumented
	 * 0x80 - 0x80
	 * This register has something to do with CAS latencies,
	 * possibily this is the real chipset control.
	 * At 0x00 CAS latency 1.5 works.
	 * At 0x06 CAS latency 2.5 works.
	 * At 0x01 CAS latency 2.0 works.
	 */
	/* This is still undocumented in e7501, but with different values
	 * CAS 2.0 values taken from Intel BIOS settings, others are a guess
	 * and may be terribly wrong. Old values preserved as comments until I
	 * figure this out for sure.
	 * e7501 docs claim that CAS1.5 is unsupported, so it may or may not 
	 * work at all.
	 * Steven James 02/06/2003
	 */
#if CAS_LATENCY == CAS_2_5
//	0x80, 0xfffffe00, 0x06 /* Intel E7500 recommended */
	0x80, 0xfffff000, 0x0662, /* from Factory Bios */
#elif CAS_LATENCY == CAS_2_0
//	0x80, 0xfffffe00, 0x0d /* values for register 0x80 */
	0x80, 0xfffff000, 0x0bb1, /* values for register 0x80 */
#endif

	/* Enable periodic memory recalibration */
	0x88, 0xffffff00, 0x80,

	/* FDHC - Fixed DRAM Hole Control
	 * 0x58
	 * [7:7] Hole_Enable
	 *       0 == No memory Hole
	 *       1 == Memory Hole from 15MB to 16MB
	 * [6:0] Reserved
	 *
	 * PAM - Programmable Attribute Map
	 * 0x59 [1:0] Reserved
	 * 0x59 [5:4] 0xF0000 - 0xFFFFF
	 * 0x5A [1:0] 0xC0000 - 0xC3FFF
	 * 0x5A [5:4] 0xC4000 - 0xC7FFF
	 * 0x5B [1:0] 0xC8000 - 0xCBFFF
	 * 0x5B [5:4] 0xCC000 - 0xCFFFF
	 * 0x5C [1:0] 0xD0000 - 0xD3FFF
	 * 0x5C [5:4] 0xD4000 - 0xD7FFF
	 * 0x5D [1:0] 0xD8000 - 0xDBFFF
	 * 0x5D [5:4] 0xDC000 - 0xDFFFF
	 * 0x5E [1:0] 0xE0000 - 0xE3FFF
	 * 0x5E [5:4] 0xE4000 - 0xE7FFF
	 * 0x5F [1:0] 0xE8000 - 0xEBFFF
	 * 0x5F [5:4] 0xEC000 - 0xEFFFF
	 *       00 == DRAM Disabled (All Access go to memory mapped I/O space)
	 *       01 == Read Only (Reads to DRAM, Writes to memory mapped I/O space)
	 *       10 == Write Only (Writes to DRAM, Reads to memory mapped I/O space)
	 *       11 == Normal (All Access go to DRAM)
	 */
	0x58, 0xcccccf7f, (0x00 << 0) | (0x30 << 8) | (0x33 << 16) | (0x33 << 24),
	0x5C, 0xcccccccc, (0x33 << 0) | (0x33 << 8) | (0x33 << 16) | (0x33 << 24),

	/* DRB - DRAM Row Boundary Registers
	 * 0x60 - 0x6F
	 *     An array of 8 byte registers, which hold the ending
	 *     memory address assigned  to each pair of DIMMS, in 64MB 
	 *     granularity.   
	 */
	/* Conservatively say each row has 64MB of ram, we will fix this up later */
	0x60, 0x00000000, (0x01 << 0) | (0x02 << 8) | (0x03 << 16) | (0x04 << 24),
	0x64, 0x00000000, (0x05 << 0) | (0x06 << 8) | (0x07 << 16) | (0x08 << 24),
	0x68, 0xffffffff, 0,
	0x6C, 0xffffffff, 0,

	/* DRA - DRAM Row Attribute Register 
	 * 0x70 Row 0,1
	 * 0x71 Row 2,3
 	 * 0x72 Row 4,5
	 * 0x73 Row 6,7
	 * [7:7] Device width for Odd numbered rows
	 *       0 == 8 bits wide x8
	 *       1 == 4 bits wide x4
	 * [6:4] Row Attributes for Odd numbered rows
	 *       010 == 8KB
	 *       011 == 16KB
	 *       100 == 32KB
	 *       101 == 64KB
	 *       Others == Reserved
	 * [3:3] Device width for Even numbered rows
	 *       0 == 8 bits wide x8
	 *       1 == 4 bits wide x4
	 * [2:0] Row Attributes for Even numbered rows
	 *       010 == 8KB
	 *       011 == 16KB
	 *       100 == 32KB
	 *       101 == 64KB (This page size appears broken)
	 *       Others == Reserved
	 */
	0x70, 0x00000000, 
		(((0<<3)|(0<<0))<< 0) | 
		(((0<<3)|(0<<0))<< 4) | 
		(((0<<3)|(0<<0))<< 8) | 
		(((0<<3)|(0<<0))<<12) | 
		(((0<<3)|(0<<0))<<16) | 
		(((0<<3)|(0<<0))<<20) | 
		(((0<<3)|(0<<0))<<24) | 
		(((0<<3)|(0<<0))<<28),
	0x74, 0xffffffff, 0,

	/* DRT - DRAM Time Register
	 * 0x78
	 * [31:30] Reserved
	 * [29:29] Back to Back Write-Read Turn Around
	 *         0 == 3 clocks between WR-RD commands
	 *         1 == 2 clocks between WR-RD commands
	 * [28:28] Back to Back Read-Write Turn Around
	 *         0 == 5 clocks between RD-WR commands
	 *         1 == 4 clocks between RD-WR commands
	 * [27:27] Back to Back Read Turn Around
	 *         0 == 4 clocks between RD commands
	 *         1 == 3 clocks between RD commands
	 * [26:24] Read Delay (tRD)
	 *         000 == 7 clocks
	 *         001 == 6 clocks
	 *         010 == 5 clocks
	 *         Others == Reserved
	 * [23:19] Reserved
	 * [18:16] DRAM idle timer
	 *	000 == infinite
	 *	011 == 16 dram clocks
	 *	001 == Datasheet says reserved, but Intel BIOS sets it
	 * [15:11] Reserved
	 * [10:09] Active to Precharge (tRAS)
	 *         00 == 7 clocks
	 *         01 == 6 clocks
	 *         10 == 5 clocks
	 *         11 == Reserved
	 * [08:06] Reserved
	 * [05:04] Cas Latency (tCL)
	 *         00 == 2.5 Clocks
	 *         01 == 2.0 Clocks
	 *         10 == 1.5 Clocks
	 *         11 == Reserved
	 * [03:03] Write Ras# to Cas# Delay (tRCD)
	 *         0 == 3 DRAM Clocks
	 *         1 == 2 DRAM Clocks
 	 * [02:01] Read RAS# to CAS# Delay (tRCD)
 	 *         00 == reserved
 	 *         01 == reserved
	 *         10 == 3 DRAM Clocks
	 *         11 == 2 DRAM Clocks
	 * [00:00] DRAM RAS# to Precharge (tRP)
	 *         0 == 3 DRAM Clocks
	 *         1 == 2 DRAM Clocks
	 */
#define DRT_CAS_2_5 (0<<4)
#define DRT_CAS_2_0 (1<<4)   
#define DRT_CAS_1_5 (2<<4)
#define DRT_CAS_MASK (3<<4)

#if CAS_LATENCY == CAS_2_5
#define DRT_CL DRT_CAS_2_5
#elif CAS_LATENCY == CAS_2_0
#define DRT_CL DRT_CAS_2_0
#elif CAS_LATENCY == CAS_1_5
#define DRT_CL DRT_CAS_1_5
#endif

	/* Most aggressive settings possible */
//	0x78, 0xc0fff8c4, (1<<29)|(1<<28)|(1<<27)|(2<<24)|(2<<9)|DRT_CL|(1<<3)|(1<<1)|(1<<0),
//	0x78, 0xc0f8f8c0, (1<<29)|(1<<28)|(1<<27)|(1<<24)|(1<<16)|(2<<9)|DRT_CL|(1<<3)|(3<<1)|(1<<0),
	0x78, 0xc0f8f9c0, (1<<29)|(1<<28)|(1<<27)|(1<<24)|(1<<16)|(2<<9)|DRT_CL|(1<<3)|(3<<1)|(1<<0),

	/* FIXME why was I attempting to set a reserved bit? */
	/* 0x0100040f */

	/* DRC - DRAM Contoller Mode Register
	 * 0x7c
	 * [31:30] Reserved
	 * [29:29] Initialization Complete
	 *         0 == Not Complete
	 *         1 == Complete
	 * [28:23] Reserved
	 * [22:22]	   Channels
	 * 		0 == Single channel
	 *		1 == Dual Channel
	 * [21:20] DRAM Data Integrity Mode
	 *         00 == Disabled, no ECC
	 *         01 == Reserved
	 *         10 == Error checking, using chip-kill, with correction
	 *         11 == Reserved
	 * [19:18] Reserved
	 *         Must equal 01
	 * [17:17] (Intel Undocumented)	should always be set to 1
	 * [16:16] Command Per Clock - Address/Control Assertion Rule (CPC)
	 *         0 == 2n Rule
	 *         1 == 1n rule
	 * [15:11] Reserved
	 * [10:08] Refresh mode select
	 *         000 == Refresh disabled
	 *         001 == Refresh interval 15.6 usec
	 *         010 == Refresh interval 7.8 usec
	 *         011 == Refresh interval 64 usec
	 *         111 == Refresh every 64 clocks (fast refresh)
	 * [07:07] Reserved
	 * [06:04] Mode Select (SMS)
	 *         000 == Self Refresh Mode
	 *         001 == NOP Command
	 *         010 == All Banks Precharge
	 *         011 == Mode Register Set
 	 *         100 == Extended Mode Register Set
	 *         101 == Reserved
	 *         110 == CBR Refresh
	 *         111 == Normal Operation
	 * [03:00] Reserved
	 */
//	.long 0x7c, 0xffcefcff, (1<<22)|(2 << 20)|(1 << 16)| (0 << 8),
//	.long 0x7c, 0xff8cfcff, (1<<22)|(2 << 20)|(1 << 17)|(1 << 16)| (0 << 8),
//	.long 0x7c, 0xff80fcff, (1<<22)|(2 << 20)|(1 << 18)|(1 << 17)|(1 << 16)| (0 << 8),
	0x7c, 0xff82fcff, (1<<22)|(2 << 20)|(1 << 18)|(1 << 16)| (0 << 8),


	/* Another Intel undocumented register */
	0x88, 0x080007ff, (1<<31)|(1 << 30)|(1<<28)|(0 << 26)|(0x10 << 21)|(10 << 16)|(0x13 << 11),

	/* CLOCK_DIS - CK/CK# Disable Register
	 * 0x8C
	 * [7:4] Reserved
	 * [3:3] CK3
	 *       0 == Enable
	 *       1 == Disable
	 * [2:2] CK2
	 *       0 == Enable
	 *       1 == Disable
	 * [1:1] CK1
	 *       0 == Enable
	 *       1 == Disable
	 * [0:0] CK0
	 *       0 == Enable
	 *       1 == Disable
	 */
	0x8C, 0xfffffff0, 0xf,

	/* TOLM - Top of Low Memory Register
	 * 0xC4 - 0xC5
	 * [15:11] Top of low memory (TOLM)
	 *         The address below 4GB that should be treated as RAM,
	 *         on a 128MB granularity.
	 * [10:00] Reserved
	 */
	/* REMAPBASE - Remap Base Address Regsiter
	 * 0xC6 - 0xC7
	 * [15:10] Reserved
	 * [09:00] Remap Base Address [35:26] 64M aligned
	 *         Bits [25:0] are assumed to be 0.
	 */
	0xc4, 0xfc0007ff, (0x2000 << 0) | (0x3ff << 16),
	/* REMAPLIMIT - Remap Limit Address Register
	 * 0xC8 - 0xC9
	 * [15:10] Reserved
	 * [09:00] Remap Limit Address [35:26] 64M aligned
	 * When remaplimit < remapbase this register is disabled.
	 */
	0xc8, 0xfffffc00, 0,

	/* DVNP - Device Not Present Register
	 * 0xE0 - 0xE1
	 * [15:05] Reserved
 	 * [04:04] Device 4 Function 1 Present
	 *         0 == Present
	 *         1 == Absent
 	 * [03:03] Device 3 Function 1 Present
	 *         0 == Present
	 *         1 == Absent
 	 * [02:02] Device 2 Function 1 Present
	 *         0 == Present
	 *         1 == Absent
 	 * [01:01] Reserved
 	 * [00:00] Device 0 Function 1 Present
	 *         0 == Present
	 *         1 == Absent
	 */
	0xe0, 0xffffffe2, (1<<4)|(1<<3)|(1<<2)|(0<<0),
	0xd8, 0xffff9fff, 0x00000000,
	0xf4, 0x3f8ffffd, 0x40300002,
	0x1050, 0xffffffcf, 0x00000030,
};


	/*
	 * Routine:	ram_set_registers
	 * Arguments:	none
	 * Results:	none
	 * Trashed:	%eax, %ebx, %ecx, %edx, %esi, %eflags
	 * Effects:	Do basic ram setup that does not depend on serial
	 *		presence detect information.
	 *		This sets PCI configuration registers to known good
	 *		values based on the table: 
	 *			constant_register_values
	 *		Which are a triple of configuration regiser, mask, and value.
	 *		
	 */
/* from 1M or 512K */
#define RCOMP_MMIO 0x100000

	/* DDR RECOMP table */

static const long ddr_rcomp_1[] = {
	0x44332211, 0xc9776655, 0xffffffff, 0xffffffff,
	0x22111111, 0x55444332, 0xfffca876, 0xffffffff,
};
static const long ddr_rcomp_2[] = {
	0x00000000, 0x76543210, 0xffffeca8, 0xffffffff,
	0x21000000, 0xa8765432, 0xffffffec, 0xffffffff,
};
static const long ddr_rcomp_3[] = {
	0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,
	0x88888888, 0x88888888, 0x88888888, 0x88888888,
};

#define rcomp_init_str "Setting RCOMP registers.\r\n"

static void write_8dwords(uint32_t src_addr, uint32_t dst_addr) {
	int i;
	uint32_t dword;
	for(i=0;i<8;i++) {
		dword = read32(src_addr);
		write32(dst_addr, dword);
		src_addr+=4;
		dst_addr+=4;
		
	}
}

#if 1
#define SLOW_DOWN_IO inb(0x80);
#else
#define SLOW_DOWN_IO udelay(40);
#endif

static void ram_set_rcomp_regs(const struct mem_controller *ctrl) {
	uint32_t dword;
#if DEBUG_RAM_CONFIG
	print_debug(rcomp_init_str);
#endif

	/*enable access to the rcomp bar */
	dword = pci_read_config32(ctrl->d0, 0x0f4);
        dword &= ~(1<<31);
        dword |=((1<<30)|1<<22);
        pci_write_config32(ctrl->d0, 0x0f4, dword);
        

	/* Set the MMIO address to 512K */
        pci_write_config32(ctrl->d0, 0x14, RCOMP_MMIO);

	dword = read32(RCOMP_MMIO + 0x20);
	dword |= (1<<9);
	write32(RCOMP_MMIO + 0x20, dword);
	

	/* Begin to write the RCOMP registers */
	
	write8(RCOMP_MMIO + 0x2c, 0xff);
	write32(RCOMP_MMIO + 0x30, 0x01040444);
	write8(RCOMP_MMIO + 0x34, 0x04);
	write32(RCOMP_MMIO + 0x40, 0);
	write16(RCOMP_MMIO + 0x44, 0);
	write16(RCOMP_MMIO + 0x48, 0);
	write16(RCOMP_MMIO + 0x50, 0);
	write_8dwords((uint32_t)ddr_rcomp_1, RCOMP_MMIO + 0x60);
	write_8dwords((uint32_t)ddr_rcomp_2, RCOMP_MMIO + 0x80);
	write_8dwords((uint32_t)ddr_rcomp_2, RCOMP_MMIO + 0xa0);
	write_8dwords((uint32_t)ddr_rcomp_2, RCOMP_MMIO + 0x140);
	write_8dwords((uint32_t)ddr_rcomp_2, RCOMP_MMIO + 0x1c0);
	write_8dwords((uint32_t)ddr_rcomp_3, RCOMP_MMIO + 0x180);

	dword = read32(RCOMP_MMIO + 0x20);
	dword &= ~(3);
	dword |= 1;
	write32(RCOMP_MMIO + 0x20, dword);

	/* Wait 40 usec */
	SLOW_DOWN_IO;
	
	/* unblock updates */
	dword = read32(RCOMP_MMIO + 0x20);
	dword &= ~(1<<9);
	write32(RCOMP_MMIO+0x20, dword);
	dword |= (1<<8);
	write32(RCOMP_MMIO+0x20, dword);
	dword &= ~(1<<8);
	write32(RCOMP_MMIO+0x20, dword);
	
	/* Wait 40 usec */
	SLOW_DOWN_IO;

	/*disable access to the rcomp bar */
	dword = pci_read_config32(ctrl->d0, 0x0f4);
	dword &= ~(1<<22);
	pci_write_config32(ctrl->d0, 0x0f4, dword);	

}

static void ram_set_d0f0_regs(const struct mem_controller *ctrl) {
#if DEBUG_RAM_CONFIG >= 2
	dumpnorth();
#endif
	int i;
	int max;
        max = sizeof(register_values)/sizeof(register_values[0]);
        for(i = 0; i < max; i += 3) {
                uint32_t reg;
#if DEBUG_RAM_CONFIG >= 2
                print_debug_hex32(register_values[i]);
                print_debug(" <-");
                print_debug_hex32(register_values[i+2]);
                print_debug("\r\n");
#endif
                reg = pci_read_config32(ctrl->d0,register_values[i]);
                reg &= register_values[i+1];
                reg |= register_values[i+2] & ~(register_values[i+1]);
                pci_write_config32(ctrl->d0,register_values[i], reg);


        }
#if DEBUG_RAM_CONFIG >= 2
	dumpnorth();
#endif
}
static void sdram_set_registers(const struct mem_controller *ctrl){
        ram_set_rcomp_regs(ctrl);
        ram_set_d0f0_regs(ctrl);
}


	/*
	 * Routine:	sdram_spd_get_page_size
	 * Arguments:	%bl SMBUS_MEM_DEVICE
	 * Results:	
	 *		%edi log base 2 page size of DIMM side 1 in bits
	 *		%esi log base 2 page size of DIMM side 2 in bits
	 *
	 * Preserved:	%ebx (except %bh), %ebp
	 *
	 * Trashed:	%eax, %bh, %ecx, %edx, %esp, %eflags
	 * Used:	%eax, %ebx, %ecx, %edx, %esi, %edi, %esp, %eflags
	 *
	 * Effects:	Uses serial presence detect to set %edi & %esi
	 *		to the page size of a dimm.
	 * Notes:
	 *              %bl SMBUS_MEM_DEVICE
	 *              %edi holds the page size for the first side of the DIMM.
	 *		%esi holds the page size for the second side of the DIMM.
	 *		     memory size is represent as a power of 2.
	 *
	 *		This routine may be worth moving into generic code somewhere.
	 */
struct dimm_page_size { 
        unsigned long side1;
        unsigned long side2;
};      
  
static struct dimm_page_size sdram_spd_get_page_size(unsigned device) {

	uint32_t ecx;
	int value;
	struct dimm_page_size pgsz;

	pgsz.side1 = 0;
	pgsz.side2 = 0;	
		
	value  = spd_read_byte(device, 4); /* columns */
	if(value < 0) goto hw_err;
	pgsz.side1 = value & 0xf;
	
	/* Get the module data width and convert it to a power of two */
	value = spd_read_byte(device,7);		/* (high byte) */
	if(value < 0) goto hw_err;
	ecx = value & 0xff;
	ecx <<= 8;

	value = spd_read_byte(device, 6);	 /* (low byte) */
	if(value < 0) goto hw_err;
	ecx |= (value & 0xff);

	pgsz.side1 += log2(ecx);	 /* compute cheap log base 2 */	

	/* side two */
	value = spd_read_byte(device, 5);	/* number of physical banks */
	if(value < 0) goto hw_err;
	if(value==1) goto out;
	if(value!=2) goto val_err;

	/* Start with the symmetrical case */
	pgsz.side2 = pgsz.side1;
	value = spd_read_byte(device,4);   /* columns */
	if(value < 0) goto hw_err;
	if((value & 0xf0)==0 ) goto out;
	pgsz.side2 -=value & 0xf; /* Subtract out columns on side 1 */
	pgsz.side2 +=(value>>4)& 0xf; /* Add in columns on side 2 */
        goto out;

 val_err:
        die("Bad SPD value\r\n");
        /* If an hw_error occurs report that I have no memory */
hw_err:
	pgsz.side1 = 0;
	pgsz.side2 = 0;
out:
	return pgsz;	
}


	/*
	 * Routine:	sdram_spd_get_width
	 * Arguments:	%bl SMBUS_MEM_DEVICE
	 * Results:	
	 *		%edi width of SDRAM chips on DIMM side 1 in bits
	 *		%esi width of SDRAM chips on DIMM side 2 in bits
	 *
	 * Preserved:	%ebx (except %bh), %ebp
	 *
	 * Trashed:	%eax, %bh, %ecx, %edx, %esp, %eflags
	 * Used:	%eax, %ebx, %ecx, %edx, %esi, %edi, %esp, %eflags
	 *
	 * Effects:	Uses serial presence detect to set %edi & %esi
	 *		to the width of a dimm.
	 * Notes:
	 *              %bl SMBUS_MEM_DEVICE
	 *              %edi holds the width for the first side of the DIMM.
	 *		%esi holds the width for the second side of the DIMM.
	 *		     memory size is represent as a power of 2.
	 *
	 *		This routine may be worth moving into generic code somewhere.
	 */
struct dimm_width {
        unsigned side1;
        unsigned side2;
};      
  
static struct dimm_width sdram_spd_get_width(unsigned device) {
	int value;
	struct dimm_width wd;
	uint32_t ecx;
	
	wd.side1 = 0;
	wd.side2 = 0;

	value = spd_read_byte(device, 13); /* sdram width */
	if(value < 0 )  goto hw_err;
	ecx = value;
	
	wd.side1 = value & 0x7f;	
	
	/* side two */
	value = spd_read_byte(device, 5); /* number of physical banks */
	if(value < 0 ) goto hw_err;	
	if(value <=1 ) goto out;

	/* Start with the symmetrical case */
	wd.side2 = wd.side1;

	if((ecx & 0x80)==0) goto out;
	
	wd.side2 <<=1;
hw_err:
	wd.side1 = 0;
	wd.side2 = 0;

 out:
        return wd;
}
	
	/*
	 * Routine:	sdram_spd_get_dimm_size
	 * Arguments:	%bl SMBUS_MEM_DEVICE
	 * Results:	
	 *		%edi log base 2 size of DIMM side 1 in bits
	 *		%esi log base 2 size of DIMM side 2 in bits
	 *
	 * Preserved:	%ebx (except %bh), %ebp
	 *
	 * Trashed:	%eax, %bh, %ecx, %edx, %esp, %eflags
	 * Used:	%eax, %ebx, %ecx, %edx, %esi, %edi, %esp, %eflags
	 *
	 * Effects:	Uses serial presence detect to set %edi & %esi
	 *		the size of a dimm.
	 * Notes:
	 *              %bl SMBUS_MEM_DEVICE
	 *              %edi holds the memory size for the first side of the DIMM.
	 *		%esi holds the memory size for the second side of the DIMM.
	 *		     memory size is represent as a power of 2.
	 *
	 *		This routine may be worth moving into generic code somewhere.
	 */

struct dimm_size {
        unsigned long side1;
        unsigned long side2;
};

static struct dimm_size spd_get_dimm_size(unsigned device)
{
        /* Calculate the log base 2 size of a DIMM in bits */
        struct dimm_size sz;
        int value, low;
        sz.side1 = 0;
        sz.side2 = 0;

        /* Note it might be easier to use byte 31 here, it has the DIMM size as
         * a multiple of 4MB.  The way we do it now we can size both
         * sides of an assymetric dimm.
         */
        value = spd_read_byte(device, 3);       /* rows */
        if (value < 0) goto hw_err;
//        if ((value & 0xf) == 0) goto val_err;
        sz.side1 += value & 0xf;

        value = spd_read_byte(device, 4);       /* columns */
        if (value < 0) goto hw_err;
//        if ((value & 0xf) == 0) goto val_err;
        sz.side1 += value & 0xf;

        value = spd_read_byte(device, 17);      /* banks */
        if (value < 0) goto hw_err;
//        if ((value & 0xff) == 0) goto val_err;
	value &=0xff;
        sz.side1 += log2(value);

        /* Get the module data width and convert it to a power of two */
        value = spd_read_byte(device, 7);       /* (high byte) */
        if (value < 0) goto hw_err;
        value &= 0xff;
        value <<= 8;
        
        low = spd_read_byte(device, 6); /* (low byte) */
        if (low < 0) goto hw_err;
        value |= (low & 0xff);
//        if ((value != 72) && (value != 64)) goto val_err;
        sz.side1 += log2(value);
        
        /* side 2 */
        value = spd_read_byte(device, 5);       /* number of physical banks */
        if (value < 0) goto hw_err;
        if (value == 1) goto out;
//        if (value != 2) goto val_err;

        /* Start with the symmetrical case */
        sz.side2 = sz.side1;

        value = spd_read_byte(device, 3);       /* rows */
        if (value < 0) goto hw_err;
        if ((value & 0xf0) == 0) goto out;      /* If symmetrical we are done */
        sz.side2 -= (value & 0x0f);             /* Subtract out rows on side 1 */
        sz.side2 += ((value >> 4) & 0x0f);      /* Add in rows on side 2 */

        value = spd_read_byte(device, 4);       /* columns */
        if (value < 0) goto hw_err;
//        if ((value & 0xff) == 0) goto val_err;
        sz.side2 -= (value & 0x0f);             /* Subtract out columns on side 1 */
        sz.side2 += ((value >> 4) & 0x0f);      /* Add in columsn on side 2 */
        goto out;

 val_err:
        die("Bad SPD value\r\n");
        /* If an hw_error occurs report that I have no memory */
hw_err:
        sz.side1 = 0;
        sz.side2 = 0;
 out:
        return sz;
}



	/*
	 * This is a place holder fill this out
	 * Routine:	spd_set_row_attributes 
	 * Arguments:	%bl SMBUS_MEM_DEVICE
	 * Results:	
	 *		%edi log base 2 size of DIMM side 1 in bits
	 *		%esi log base 2 size of DIMM side 2 in bits
	 *
	 * Preserved:	%ebx (except %bh), %ebp
	 *
	 * Trashed:	%eax, %bh, %ecx, %edx, %esp, %eflags
	 * Used:	%eax, %ebx, %ecx, %edx, %esi, %edi, %esp, %eflags
	 *
	 * Effects:	Uses serial presence detect to set %edi & %esi
	 *		the size of a dimm.
	 * Notes:
	 *              %bl SMBUS_MEM_DEVICE
	 *              %edi holds the memory size for the first side of the DIMM.
	 *		%esi holds the memory size for the second side of the DIMM.
	 *		     memory size is represent as a power of 2.
	 *
	 *		This routine may be worth moving into generic code somewhere.
	 */
static long spd_set_row_attributes(const struct mem_controller *ctrl, long dimm_mask) {
	int i;  
        uint32_t dword=0;
        int value;
        

        /* Walk through all dimms and find the interesection of the support
         * for ecc sdram and refresh rates
         */        
        
 
        for(i = 0; i < DIMM_SOCKETS; i++) {
		if (!(dimm_mask & (1 << i))) {
                        continue;
                }
                 /* Test to see if I have ecc sdram */
		struct dimm_page_size sz;
                sz = sdram_spd_get_page_size(ctrl->channel0[i]);  /* SDRAM type */
#if DEBUG_RAM_CONFIG>=2 
		print_debug("page size =");
		print_debug_hex32(sz.side1);
		print_debug(" ");
		print_debug_hex32(sz.side2);
		print_debug("\r\n");
#endif
	
		/* Test to see if the dimm is present */
		if( sz.side1 !=0) {

			/* Test for a valid dimm width */
			if((sz.side1 <15) || (sz.side1>18) ) {
				print_err("unsupported page size\r\n");
			}

	 		/* double because I have 2 channels */
			sz.side1++;

			/* Convert to the format needed for the DRA register */
			sz.side1-=14;	

			/* Place in the %ebp the dra place holder */ //i
			dword |= sz.side1<<(i<<3);
			
			/* Test to see if the second side is present */

	                if( sz.side2 !=0) {
        
	                        /* Test for a valid dimm width */
        	                if((sz.side2 <15) || (sz.side2>18) ) {
                	                print_err("unsupported page size\r\n");
                        	}

                        	/* double because I have 2 channels */
                        	sz.side2++;

                        	/* Convert to the format needed for the DRA register */
                        	sz.side2-=14;

	                        /* Place in the %ebp the dra place holder */ //i
        	                dword |= sz.side2<<((i<<3) + 4 );

			}
		}

		/* Now add the SDRAM chip width to the DRA */
		struct dimm_width wd;
		wd = sdram_spd_get_width(ctrl->channel0[i]);

#if DEBUG_RAM_CONFIG
                print_debug("width =");
                print_debug_hex32(wd.side1);
                print_debug(" ");
                print_debug_hex32(wd.side2);
                print_debug("\r\n");
#endif
		
		if(wd.side1 == 0) continue;
		if(wd.side1 == 4) {
			/* Enable an x4 device */
			dword |= 0x08 << (i<<3);
		}

		if(wd.side2 == 0) continue;
                if(wd.side2 == 4) {
                        /* Enable an x4 device */
                        dword |= 0x08 << ((i<<3 ) + 4);
                }
		
	/* go to the next DIMM */
	}

	/* Write the new row attributes register */
	pci_write_config32(ctrl->d0, 0x70, dword);

	return dimm_mask;

}
#define spd_pre_init  "Reading SPD data...\r\n"
#define spd_pre_set "setting based on SPD data...\r\n"
#define spd_post_init "done\r\n"


static const uint32_t refresh_rate_rank[]= {
	/* Refresh rates ordered from most conservative (lowest)
	 * to most agressive (highest)
	 * disabled 0 -> rank 3 
	 * 15.6usec 1 -> rank 1
	 * 7.8 usec 2 -> rank 0
	 * 64usec   3 -> rank 2
	 */
	3, 1, 0, 2 };
static const uint32_t refresh_rate_index[] = {
	/* Map the spd refresh rates to memory controller settings 
	 * 15.625us -> 15.6us
 	 * 3.9us    -> err
	 * 7.8us    -> 7.8us
	 * 31.3s    -> 15.6us
	 * 62.5us   -> 15.6us
	 * 125us    -> 64us
	 */
	1, 0xff, 2, 1, 1, 3
};
#define MAX_SPD_REFRESH_RATE 5

static long spd_set_dram_controller_mode (const struct mem_controller *ctrl, long dimm_mask) {

        int i;  
        uint32_t dword;
        int value;
	uint32_t ecx;
	uint32_t edx;
        
        /* Read the inititial state */
        dword = pci_read_config32(ctrl->d0, 0x7c);

/*
        // Test if ECC cmos option is enabled 
        movb    $RTC_BOOT_BYTE, %al
        outb    %al, $0x70
        inb     $0x71, %al
        testb   $(1<<2), %al
        jnz     1f
        // Clear the ecc enable 
        andl    $~(3 << 20), %esi
1:
*/


        /* Walk through all dimms and find the interesection of the support
         * for ecc sdram and refresh rates
         */        

 
        for(i = 0; i < DIMM_SOCKETS; i++) {
		if (!(dimm_mask & (1 << i))) {
                        continue;
                }
		 /* Test to see if I have ecc sdram */
                value = spd_read_byte(ctrl->channel0[i], 11);  /* SDRAM type */
                if(value < 0) continue;
		if(value !=2 ) {
			/* Clear the ecc enable */
			dword &= ~(3 << 20);
		}
		value = spd_read_byte(ctrl->channel0[i], 12);  /* SDRAM refresh rate */
		if(value < 0 ) continue;
		value &= 0x7f;
		if(value > MAX_SPD_REFRESH_RATE) { print_err("unsupported refresh rate\r\n");}
//		if(value == 0xff) { print_err("unsupported refresh rate\r\n");}
		
		ecx = refresh_rate_index[value];

		/* Isolate the old refresh rate setting */
		/* Load the refresh rate ranks */
		edx = refresh_rate_rank[(dword >> 8) & 3]<<8;
		edx |= refresh_rate_rank[ecx] & 0xff; 
	
		/* See if the new refresh rate is more conservative than the old
	 	* refresh rate setting. (Lower ranks are more conservative)
	 	*/
		if((edx & 0xff)< ((edx >> 8) & 0xff) ) {
			/* Clear the old refresh rate */
			dword &= ~(3<<8);
			/* Move in the new refresh rate */
			dword |= (ecx<<8);
		}
		
		value = spd_read_byte(ctrl->channel0[i], 33); /* Address and command hold time after clock */
		if(value < 0) continue;
		if(value >= 0xa0) { 		/* At 133Mhz this constant should be 0x75 */
			dword &= ~(1<<16);	/* Use two clock cyles instead of one */
		}
	
	/* go to the next DIMM */
	}

	/* Now write the controller mode */
	pci_write_config32(ctrl->d0, 0x7c, dword);
	
	return dimm_mask;

}
static long spd_enable_clocks(const struct mem_controller *ctrl, long dimm_mask)
{
        int i;
	uint32_t dword;
	int value;

        /* Read the inititial state */
        dword = pci_read_config32(ctrl->d0, 0x8c);
/*
# Intel clears top bit here, should we?
# No the default is on and for normal timming it should be on.  Tom Z
        andl    $0x7f, %esi
*/

 
        for(i = 0; i < DIMM_SOCKETS; i++) {
		if (!(dimm_mask & (1 << i))) {
                        continue;
                }
	        /* Read any spd byte to see if the dimm is present */
	        value = spd_read_byte(ctrl->channel0[i], 5); /* Physical Banks */
       	 	if(value < 0) continue;
        
        	dword &= ~(1<<i);
        }
	
	pci_write_config32(ctrl->d0, 0x8c, dword);
	
	return dimm_mask;
}

static const uint16_t cas_latency_80[] = {
	/* For cas latency 2.0 0x01 works and until I see a large test sample
	 * I am not prepared to change this value, to the intel recommended value
	 * of 0x0d.  Eric Biederman
 	 */
 	/* The E7501 requires b1 rather than 01 for CAS2 or memory will be hosed
 	 * CAS 1.5 is claimed to be unsupported, will try to test that
 	 * will need to determine correct values for other CAS values
 	 * (perhaps b5, b1, b6?)
 	 * Steven James 02/06/2003
 	 */
 	 
//#	.byte 0x05, 0x01, 0x06 
//#	.byte 0xb5, 0xb1, 0xb6 
	0x0, 0x0bb1, 0x0662   /* RCVEN */ 
};
static const uint16_t cas_latency_80_4dimms[] = {
        0x0, 0x0bb1, 0x0882
};


static const uint8_t cas_latency_78[] = {
	DRT_CAS_1_5, DRT_CAS_2_0, DRT_CAS_2_5
};

static long spd_set_cas_latency(const struct mem_controller *ctrl, long dimm_mask) {
	/* Walk through all dimms and find the interesection of the
	 * supported cas latencies.
	 */
        int i;
        /* Initially allow cas latencies 2.5, 2.0
         * which the chipset supports.
         */
	uint32_t dword = (1<<3)| (1<<2);// esi
	uint32_t edi;
	uint32_t ecx;
	unsigned device;
	int value;
	uint8_t byte;
	uint16_t word;

	
        for(i = 0; i < DIMM_SOCKETS; i++) {
		if (!(dimm_mask & (1 << i))) {
                        continue;
                }
		value = spd_read_byte(ctrl->channel0[i], 18);
		if(value < 0) continue;
		/* Find the highest supported cas latency */
		ecx = log2(value & 0xff); 
		edi = (1<< ecx);

		 /* Remember the supported cas latencies */
        	ecx = (value & 0xff);

		/* Verify each cas latency at 133Mhz */
		/* Verify slowest/highest CAS latency */
		value = spd_read_byte(ctrl->channel0[i], 9);
		if(value < 0 ) continue;
		if(value > 0x75 ) {	
			/* The bus is too fast so we cannot support this case latency */
			ecx &= ~edi;
		}

		/* Verify the highest CAS latency - 0.5 clocks */
		edi >>= 1;
		if(edi != 0) {
			value = spd_read_byte(ctrl->channel0[i], 23);
			if(value < 0 ) continue;
			if(value > 0x75) {
				/* The bus is too fast so we cannot support this cas latency */
				ecx &= ~edi;
			}
		}

		/* Verify the highest CAS latency - 1.0 clocks */
		edi >>=1;
		if(edi !=0) {
                        value = spd_read_byte(ctrl->channel0[i], 25);
                        if(value < 0 ) continue;
                        if(value > 0x75) {
                                /* The bus is too fast so we cannot support this cas latency */
                                ecx &= ~edi;
                        }
		}

		/* Now find which cas latencies are supported for the bus */
		dword &= ecx;
	/* go to the next DIMM */
	}

	/* After all of the arduous calculation setup with the fastest
	 * cas latency I can use.
	 */
	value = __builtin_bsf(dword);  // bsrl = log2 how about bsfl?
	if(value ==0 ) return -1;
	ecx = value -1;

	byte = pci_read_config8(ctrl->d0, 0x78);
	byte &= ~(DRT_CAS_MASK);
	byte |= cas_latency_78[ecx];
	pci_write_config8(ctrl->d0,0x78, byte);

	/* set master DLL reset */
	dword = pci_read_config32(ctrl->d0, 0x88);
	dword |= (1<<26);
	
	/* the rest of the references are words */
//	ecx<<=1;  // don't need shift left, because we already define that in u16 array
	pci_write_config32(ctrl->d0, 0x88, dword);
	
	
	dword &= 0x0c0000ff;	/* patch try register 88 is undocumented tnz */
	dword |= 0xd2109800;

	pci_write_config32(ctrl->d0, 0x88, dword);
	
	word = pci_read_config16(ctrl->d0, 0x80);
	word &= ~(0x0fff);
	word |= cas_latency_80[ecx];

	dword = pci_read_config32(ctrl->d0, 0x70);

	if((dword & 0xff) !=0 ) {
		dword >>=8;
		if((dword & 0xff)!=0) {
			dword >>=8;
			if((dword & 0xff)!=0) {
				dword >>= 8;
				if( (dword & 0xff)!=0) {
        				word &=~(0x0fff);  /* we have dimms in all 4 slots */ 
        				word |=cas_latency_80_4dimms[ecx];
				}
			}
		}
	}
	
	pci_write_config16(ctrl->d0, 0x80, word);
	
	dword = pci_read_config32(ctrl->d0, 0x88);	/* reset master DLL reset */
	dword &= ~(1<<26);
	pci_write_config32(ctrl->d0, 0x88, dword);
	
	RAM_RESET_DDR_PTR(ctrl);

	return dimm_mask;

}

static long spd_set_dram_timing(const struct mem_controller *ctrl, long dimm_mask) {
	/* Walk through all dimms and find the interesection of the
	 * supported dram timings.
	 */

        int i;
        uint32_t dword;
        int value;

        /* Read the inititial state */
        dword = pci_read_config32(ctrl->d0, 0x78);
/*
# Intel clears top bit here, should we?
# No the default is on and for normal timming it should be on.  Tom Z
        andl    $0x7f, %esi
*/
        
        
        for(i = 0; i < DIMM_SOCKETS; i++) {
		if (!(dimm_mask & (1 << i))) {
                        continue;
                }
		/* Trp */
                value = spd_read_byte(ctrl->channel0[i], 27);
                if(value < 0) continue;
		if(value > (15<<2)) {
        		/* At 133Mhz if row precharge time is above than 15ns than we
         		 * need 3 clocks not 2 clocks.
         		*/
			dword &= ~(1<<0); 
		}
		/*  Trcd */
		value = spd_read_byte(ctrl->channel0[i],29);
		if(value < 0 ) continue;
		if(value > (15<<2)) {
		        /* At 133Mhz if the Minimum ras to cas delay is about 15ns we
        		 * need 3 clocks not 2 clocks.
         		*/
			dword &= ~((1<<3)|(1<<1));
		}
		/* Tras */
		value = spd_read_byte(ctrl->channel0[i],30);
		if(value < 0 ) continue;
		        /* Convert tRAS from ns to 133Mhz clock cycles */
		value <<=1;	 /* mult by 2 to make 7.5 15 */
		value  += 15;	/* Make certain we round up */
		value --;
		value &= 0xff;	/* Clear the upper bits of eax */
		value /= 15;
		
		/* Don't even process small timings */
		if(value >5) {
			uint32_t tmp;
			/* Die if the value is to large */
			if(value>7) {
				die ("unsupported_rcd\r\n");
			}
			/* Convert to clocks - 5 */
			value -=5;
			/* Convert the existing value into clocks - 5 */
			tmp = (~((dword>>9) & 3) - 1) & 3;
			/* See if we need a slower timing */
			if(value > tmp ) {
				/* O.k. put in our slower timing */
				dword &= ~(3<<9);
				dword |= ((~(value + 1)) & 3)<<9 ;
			}
		}
	
		/* Trd */ 
		/* Set to a 7 clock read delay. This is for 133Mhz
	 	*  with a CAS latency of 2.5  if 2.0 a 6 clock
	 	*  delay is good  */
		if( (pci_read_config8(ctrl->d0, 0x78) & 0x30) ==0 ){
			dword &= ~(7<<24); /* CAS latency is 2.5, make 7 clks */
		}

		/*
	 	* Back to Back Read Turn Around
	 	*/
		/* Set to a 3 clock back to back read turn around.  This
	 	 *  is good for CAS latencys 2.5 and 2.0 */
		dword |= (1<<27);
		/*
	 	* Back to Back Read-Write Turn Around
	 	*/
		/* Set to a 5 clock back to back read to write turn around.
	 	*  4 is a good delay if the CAS latency is 2.0 */
		if( ( pci_read_config8(ctrl->d0, 0x78) & (1<<4)) == 0) {
			dword &= ~(1<<28);
		}
		/*
	 	* Back to Back Write-Read Turn Around
	 	*/
		/* Set to a 2 clock back to back write to read turn around.
	 	*  This is good for 2.5 and 2.0 CAS Latencies. */
		dword |= (1<<29);
	}
	
	pci_write_config32(ctrl->d0, 0x78, dword);
	
	return dimm_mask;

}
static unsigned int spd_detect_dimms(const struct mem_controller *ctrl)
{               
        unsigned dimm_mask;
        int i;  
        dimm_mask = 0;  
#if DEBUG_RAM_CONFIG 
	print_debug("spd_detect_dimms:\r\n");
#endif
        for(i = 0; i < DIMM_SOCKETS; i++) {
                int byte;
                unsigned device;
#if DEBUG_RAM_CONFIG 
		print_debug_hex32(i);
		print_debug("\r\n");
#endif
                device = ctrl->channel0[i];
                if (device) {
                        byte = spd_read_byte(ctrl->channel0[i], 2);  /* Type */
                        if (byte == 7) {
                                dimm_mask |= (1 << i);
                        }
                }
#if 1
                device = ctrl->channel1[i];
                if (device) {
                        byte = spd_read_byte(ctrl->channel1[i], 2);
                        if (byte == 7) {
                                dimm_mask |= (1 << (i + DIMM_SOCKETS));
                        }
                }
#endif
        }       
#if 1
	i = (dimm_mask>>DIMM_SOCKETS);
	if(i != (dimm_mask & ( (1<<DIMM_SOCKETS) - 1) ) ) {
		die("now we only support dual channel\r\n");
	}

#endif

        return dimm_mask;
}               

static uint32_t set_dimm_size(const struct mem_controller *ctrl, struct dimm_size sz, uint32_t memsz, unsigned index)
{
        int i;
        uint32_t base0, base1;
        uint32_t dch;
	uint8_t byte;

        /* Double the size if we are using dual channel memory */
//        if (is_dual_channel(ctrl)) {
                /* Since I have 2 identical channels double the sizes */
                sz.side1++ ;
                sz.side2++;
//        }
              
	if (sz.side1 != sz.side2) {
                sz.side2 = 0;
        } 
 
        /* Make certain side1 of the dimm is at least 64MB */
        if (sz.side1 >= (25 + 4)) {
                memsz += (1 << (sz.side1 - (25 + 4)) ) ;
        }
	 /* Write the size of side 1 of the dimm */
	byte = memsz;
        pci_write_config8(ctrl->d0, 0x60+(index<<1), byte);

        /* Make certain side2 of the dimm is at least 64MB */
        if (sz.side2 >= (25 + 4)) {
                memsz += (1 << (sz.side2 - (25 + 4)) ) ;
        }
        
         /* Write the size of side 2 of the dimm */
	byte = memsz;
        pci_write_config8(ctrl->d0, 0x61+(index<<1), byte);
        
        /* now, fill in DRBs where no physical slot exists */
        
        for(i=index+1;i<4;i++) {
                pci_write_config8(ctrl->d0, 0x60+(i<<1),byte);
                pci_write_config8(ctrl->d0, 0x61+(i<<1),byte);
        
        }
        
        return memsz;

}
/* LAST_DRB_SLOT is a constant for any E7500 board */
#define LAST_DRB_SLOT 0x67

static long spd_set_ram_size(const struct mem_controller *ctrl, long dimm_mask)
{
        int i;
        uint32_t memsz=0;
	uint16_t word;

        for(i = 0; i < DIMM_SOCKETS; i++) {
                struct dimm_size sz;
                if (!(dimm_mask & (1 << i))) {
                        continue;
                }
                sz = spd_get_dimm_size(ctrl->channel0[i]);
#if DEBUG_RAM_CONFIG
                print_debug("dimm size =");
                print_debug_hex32(sz.side1);
                print_debug(" ");
                print_debug_hex32(sz.side2);
                print_debug("\r\n");
#endif

                if (sz.side1 == 0) {
			return -1; /* Report SPD error */
                }
                memsz = set_dimm_size(ctrl, sz, memsz, i);
        }
        /* For now hardset everything at 128MB boundaries */
        /* %ebp has the ram size in multiples of 64MB */
//        cmpl    $0, %ebp        /* test if there is no mem - smbus went bad */
//        jz      no_memory_bad_smbus
        if(memsz < 0x30)  {
        	/* I should really adjust all of this in C after I have resources
         	* to all of the pcie devices.
         	*/

        	/* Round up to 128M granularity */
        	memsz++;
        	memsz &= 0xfe;
        	memsz<<= 10;
		word = memsz;
        	pci_write_config16(ctrl->d0, 0xc4, word);
        } else {

        	/* FIXME will this work with 3.5G of ram? */
        	/* Put TOLM at 3G */
        	pci_write_config16(ctrl->d0, 0xc4, 0xc000);
        	/* Hard code a 1G remap window, right after the ram */
        	if(memsz< 0x40){
                	word = 0x40;  /* Ensure we are over 4G */
        	} else {
			word = memsz;
		}
        	pci_write_config16(ctrl->d0, 0xc6, word);
		word += 0x10;
        	pci_write_config16(ctrl->d0, 0xc8, word);

        }

        return dimm_mask;
}
                                                
static void sdram_set_spd_registers(const struct mem_controller *ctrl) {
	long dimm_mask;
#if DEBUG_RAM_CONFIG
	print_debug(spd_pre_init);
#endif
        //activate_spd_rom(ctrl);
        dimm_mask = spd_detect_dimms(ctrl);
	if (!(dimm_mask & ((1 << DIMM_SOCKETS) - 1))) {
                print_debug("No memory for this controller\n");
                return;
        }
	dimm_mask = spd_enable_clocks(ctrl, dimm_mask);
        if (dimm_mask < 0)
                goto hw_spd_err;
	//spd_verify_dimms(ctrl);
#if DEBUG_RAM_CONFIG
	print_debug(spd_pre_set);
#endif
	dimm_mask = spd_set_row_attributes(ctrl,dimm_mask);
        if (dimm_mask < 0)
                goto hw_spd_err;
	dimm_mask = spd_set_dram_controller_mode(ctrl,dimm_mask);
        if (dimm_mask < 0)
                goto hw_spd_err;	
	dimm_mask = spd_set_cas_latency(ctrl,dimm_mask);
        if (dimm_mask < 0)
                goto hw_spd_err;
	dimm_mask = spd_set_dram_timing(ctrl,dimm_mask);
        if (dimm_mask < 0)
                goto hw_spd_err;
#if DEBUG_RAM_CONFIG
	print_debug(spd_post_init);
#endif
	//moved from dram_post_init
	spd_set_ram_size(ctrl, dimm_mask);
	        return;
 hw_spd_err:
        /* Unrecoverable error reading SPD data */
        print_err("SPD error - reset\r\n");
        hard_reset();
        return;
}


#if 0
static void ram_postinit(const struct mem_controller *ctrl) {
#if DEBUG_RAM_CONFIG 
	dumpnorth();
#endif
	/* Include a test to verify that memory is more or less working o.k. 
  	 * This test is to catch programming errors and hardware that is out of
	 * spec, not a test to see if the memory dimms are working 100%
	 */
//#	CALL_LABEL(verify_ram)
	spd_set_ram_size(ctrl);
}
#define FIRST_NORMAL_REFERENCE() CALL_LABEL(ram_postinit)

#define SPECIAL_FINISHUP()   CALL_LABEL(dram_finish)

#endif

#define ecc_pre_init	"Initializing ECC state...\r\n"
#define ecc_post_init	"ECC state initialized.\r\n"
static void dram_finish(const struct mem_controller *ctrl)
{
	uint32_t dword;
	uint8_t byte;
	/* Test to see if ECC support is enabled */
	dword = pci_read_config32(ctrl->d0, 0x7c);
	dword >>=20;
	dword &=3;
	if(dword == 2)  {
		
#if DEBUG_RAM_CONFIG 	
		print_debug(ecc_pre_init);
#endif
		/* Initialize ECC bits , use ECC zero mode (new to 7501)*/
		pci_write_config8(ctrl->d0, 0x52, 0x06);
		pci_write_config8(ctrl->d0, 0x52, 0x07);
		do {
			byte = pci_read_config8(ctrl->d0, 0x52);

		} while ( (byte & 0x08 ) == 0);

		pci_write_config8(ctrl->d0, 0x52, byte & 0xfc);
#if DEBUG_RAM_CONFIG 	
		print_debug(ecc_post_init);	
#endif

		/* Clear the ECC error bits */
		pci_write_config8(ctrl->d0f1, 0x80, 0x03); /* dev 0, function 1, offset 80 */
		pci_write_config8(ctrl->d0f1, 0x82, 0x03); /* dev 0, function 1, offset 82 */

		pci_write_config32(ctrl->d0f1, 0x40, 1<<18); /* clear dev 0, function 1, offset 40; bit 18 by writing a 1 to it */
  	        pci_write_config32(ctrl->d0f1, 0x44, 1<<18); /* clear dev 0, function 1, offset 44; bit 18 by writing a 1 to it */

		pci_write_config8(ctrl->d0, 0x52, 0x0d);
	}
	
	dword = pci_read_config32(ctrl->d0, 0x7c); /* FCS_EN */
	dword |= (1<<17);
	pci_write_config32(ctrl->d0, 0x7c, dword);


#if DEBUG_RAM_CONFIG >= 2
	dumpnorth();
#endif

//	verify_ram();
}

#if ASM_CONSOLE_LOGLEVEL > BIOS_DEBUG
#define ram_enable_1    "Ram Enable 1\r\n"
#define ram_enable_2	"Ram Enable 2\r\n"
#define ram_enable_3 	"Ram Enable 3\r\n"
#define ram_enable_4 	"Ram Enable 4\r\n"
#define ram_enable_5 	"Ram Enable 5\r\n"
#define ram_enable_6 	"Ram Enable 6\r\n"
#define ram_enable_7 	"Ram Enable 7\r\n"
#define ram_enable_8 	"Ram Enable 8\r\n"
#define ram_enable_9 	"Ram Enable 9\r\n"
#define ram_enable_10 	"Ram Enable 10\r\n"
#define ram_enable_11 	"Ram Enable 11\r\n"
#endif

	/* Estimate that SLOW_DOWN_IO takes about 50&76us*/
	/* delay for 200us */

#if 1
static void do_delay(void)
{
	int i;
	for(i = 0; i < 16; i++) { SLOW_DOWN_IO }
}
#define DO_DELAY do_delay();
#else
#define DO_DELAY \
	udelay(200);
#endif		

#define EXTRA_DELAY DO_DELAY

static void sdram_enable(int controllers, const struct mem_controller *ctrl)
{
	int i;
	/* 1 & 2 Power up and start clocks */
#if DEBUG_RAM_CONFIG 
	print_debug(ram_enable_1);
	print_debug(ram_enable_2);
#endif

	/* A 200us delay is needed */

	DO_DELAY
	EXTRA_DELAY

	/* 3. Apply NOP */
#if DEBUG_RAM_CONFIG 
	print_debug(ram_enable_3);
#endif
	RAM_NOP(ctrl);
	EXTRA_DELAY

	/* 4 Precharge all */
#if DEBUG_RAM_CONFIG 
	print_debug(ram_enable_4);
#endif
	RAM_PRECHARGE(ctrl);
	EXTRA_DELAY
	
	/* wait until the all banks idle state... */
	/* 5. Issue EMRS to enable DLL */
#if DEBUG_RAM_CONFIG 
	print_debug(ram_enable_5);
#endif
	RAM_EMRS(ctrl);
	EXTRA_DELAY
	
	/* 6. Reset DLL */
#if DEBUG_RAM_CONFIG 
	print_debug(ram_enable_6);
#endif
	RAM_MRS(ctrl,1);
	EXTRA_DELAY

	/* Ensure a 200us delay between the DLL reset in step 6 and the final
	 * mode register set in step 9.
	 * Infineon needs this before any other command is sent to the ram.
	 */
	DO_DELAY
	EXTRA_DELAY
	
	/* 7 Precharge all */
#if DEBUG_RAM_CONFIG 
	print_debug(ram_enable_7);
#endif
	RAM_PRECHARGE(ctrl);
	EXTRA_DELAY
	
	/* 8 Now we need 2 AUTO REFRESH / CBR cycles to be performed */
#if DEBUG_RAM_CONFIG 
	print_debug(ram_enable_8);
#endif
	RAM_CBR(ctrl);
	EXTRA_DELAY
	RAM_CBR(ctrl);
	EXTRA_DELAY
	/* And for good luck 6 more CBRs */
	RAM_CBR(ctrl);
	EXTRA_DELAY
	RAM_CBR(ctrl);
	EXTRA_DELAY
	RAM_CBR(ctrl);
	EXTRA_DELAY
	RAM_CBR(ctrl);
	EXTRA_DELAY
	RAM_CBR(ctrl);
	EXTRA_DELAY
	RAM_CBR(ctrl);
	EXTRA_DELAY

	/* 9 mode register set */
#if DEBUG_RAM_CONFIG 
	print_debug(ram_enable_9);
#endif
	RAM_MRS(ctrl,0);
	EXTRA_DELAY
	
	/* 10 DDR Receive FIFO RE-Sync */
#if DEBUG_RAM_CONFIG 
	print_debug(ram_enable_10);
#endif
	RAM_RESET_DDR_PTR(ctrl);
	EXTRA_DELAY
	
	/* 11 normal operation */
#if DEBUG_RAM_CONFIG 
	print_debug(ram_enable_11);
#endif
	RAM_NORMAL(ctrl);


	// special from v1
        //FIRST_NORMAL_REFERENCE();
	//spd_set_ram_size(ctrl, 0x03);

        /* Finally enable refresh */
        ENABLE_REFRESH(ctrl);

	//SPECIAL_FINISHUP();
	dram_finish(ctrl);

}