aboutsummaryrefslogtreecommitdiff
path: root/src/mainboard/google/slippy/gma.c
blob: 1e199128b9899a5f875a3fc01c7e9eb74a790b7b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
/*
 * This file is part of the coreboot project.
 *
 * Copyright 2013 Google Inc.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include <types.h>
#include <string.h>
#include <stdlib.h>
#include <device/device.h>
#include <device/device.h>
#include <device/pci_def.h>
#include <device/pci_ops.h>
#include <console/console.h>
#include <delay.h>
#include <pc80/mc146818rtc.h>
#include <arch/acpi.h>
#include <arch/io.h>
#include <arch/interrupt.h>
#include <boot/coreboot_tables.h>
#include "hda_verb.h"
#include <smbios.h>
#include <device/pci.h>
#include <ec/google/chromeec/ec.h>
#include <cbfs_core.h>

#include <cpu/x86/tsc.h>
#include <cpu/x86/cache.h>
#include <cpu/x86/mtrr.h>
#include <cpu/x86/msr.h>
#include <edid.h>
#include <drivers/intel/gma/i915.h>
#include "mainboard.h"

/*
 * Here is the rough outline of how we bring up the display:
 *  1. Upon power-on Sink generates a hot plug detection pulse thru HPD
 *  2. Source determines video mode by reading DPCD receiver capability field
 *     (DPCD 00000h to 0000Dh) including eDP CP capability register (DPCD
 *     0000Dh).
 *  3. Sink replies DPCD receiver capability field.
 *  4. Source starts EDID read thru I2C-over-AUX.
 *  5. Sink replies EDID thru I2C-over-AUX.
 *  6. Source determines link configuration, such as MAX_LINK_RATE and
 *     MAX_LANE_COUNT. Source also determines which type of eDP Authentication
 *     method to use and writes DPCD link configuration field (DPCD 00100h to
 *     0010Ah) including eDP configuration set (DPCD 0010Ah).
 *  7. Source starts link training. Sink does clock recovery and equalization.
 *  8. Source reads DPCD link status field (DPCD 00200h to 0020Bh).
 *  9. Sink replies DPCD link status field. If main link is not stable, Source
 *     repeats Step 7.
 * 10. Source sends MSA (Main Stream Attribute) data. Sink extracts video
 *     parameters and recovers stream clock.
 * 11. Source sends video data.
 */

/* how many bytes do we need for the framebuffer?
 * Well, this gets messy. To get an exact answer, we have
 * to ask the panel, but we'd rather zero the memory
 * and set up the gtt while the panel powers up. So,
 * we take a reasonable guess, secure in the knowledge that the
 * MRC has to overestimate the number of bytes used.
 * 8 MiB is a very safe guess. There may be a better way later, but
 * fact is, the initial framebuffer is only very temporary. And taking
 * a little long is ok; this is done much faster than the AUX
 * channel is ready for IO.
 */
#define FRAME_BUFFER_BYTES (8*MiB)
/* how many 4096-byte pages do we need for the framebuffer?
 * There are hard ways to get this, and easy ways:
 * there are FRAME_BUFFER_BYTES/4096 pages, since pages are 4096
 * on this chip (and in fact every Intel graphics chip we've seen).
 */
#define FRAME_BUFFER_PAGES (FRAME_BUFFER_BYTES/(4096))

static unsigned int *mmio;
static unsigned int graphics;
static unsigned int physbase;

void ug1(int);
void ug2(int);
void ug22(int);
void ug3(int);

/* GTT is the Global Translation Table for the graphics pipeline.
 * It is used to translate graphics addresses to physical
 * memory addresses. As in the CPU, GTTs map 4K pages.
 * The setgtt function adds a further bit of flexibility:
 * it allows you to set a range (the first two parameters) to point
 * to a physical address (third parameter);the physical address is
 * incremented by a count (fourth parameter) for each GTT in the
 * range.
 * Why do it this way? For ultrafast startup,
 * we can point all the GTT entries to point to one page,
 * and set that page to 0s:
 * memset(physbase, 0, 4096);
 * setgtt(0, 4250, physbase, 0);
 * this takes about 2 ms, and is a win because zeroing
 * the page takes a up to 200 ms.
 * This call sets the GTT to point to a linear range of pages
 * starting at physbase.
 */

#define GTT_PTE_BASE (2 << 20)

static void
setgtt(int start, int end, unsigned long base, int inc)
{
	int i;

	for(i = start; i < end; i++){
		u32 word = base + i*inc;
		/* note: we've confirmed by checking
		 * the values that mrc does no
		 * useful setup before we run this.
		 */
		gtt_write(GTT_PTE_BASE + i * 4, word|1);
		gtt_read(GTT_PTE_BASE + i * 4);
	}
}

static int i915_init_done = 0;

/* fill the palette. */
static void palette(void)
{
	int i;
	unsigned long color = 0;

	for(i = 0; i < 256; i++, color += 0x010101){
		gtt_write(_LGC_PALETTE_A + (i<<2),color);
	}
}

void dp_init_dim_regs(struct intel_dp *dp);
void dp_init_dim_regs(struct intel_dp *dp)
{
	struct edid *edid = &(dp->edid);

	dp->bytes_per_pixel = edid->framebuffer_bits_per_pixel / 8;

	dp->stride = edid->bytes_per_line;

	dp->htotal = (edid->ha - 1) | ((edid->ha + edid->hbl - 1) << 16);

	dp->hblank = (edid->ha - 1) | ((edid->ha + edid->hbl - 1) << 16);

	dp->hsync = (edid->ha + edid->hso - 1) |
		((edid->ha + edid->hso + edid->hspw - 1) << 16);

	dp->vtotal = (edid->va - 1) | ((edid->va + edid->vbl - 1) << 16);

	dp->vblank = (edid->va - 1) | ((edid->va + edid->vbl - 1) << 16);

	dp->vsync = (edid->va + edid->vso - 1) |
		((edid->va + edid->vso + edid->vspw - 1) << 16);

	/* PIPEASRC is wid-1 x ht-1 */
	dp->pipesrc = (edid->ha-1)<<16 | (edid->va-1);

	dp->pfa_pos = 0;

	dp->pfa_ctl = 0x80800000;

	dp->pfa_sz = (edid->ha << 16) | (edid->va);

	dp->flags = intel_ddi_calc_transcoder_flags(3 * 6,  /* bits per color is 6 */
						    dp->port,
						    dp->pipe,
						    dp->type,
						    dp->lane_count,
						    dp->pfa_sz,
						    dp->edid.phsync == '+'?1:0,
						    dp->edid.pvsync == '+'?1:0);

	dp->transcoder = intel_ddi_get_transcoder(dp->port,
						  dp->pipe);

	intel_dp_compute_m_n(dp->pipe_bits_per_pixel,
			     dp->lane_count,
			     dp->edid.pixel_clock,
			     dp->edid.link_clock,
			     &dp->m_n);

	printk(BIOS_SPEW, "dp->stride  = 0x%08x\n",dp->stride);
	printk(BIOS_SPEW, "dp->htotal  = 0x%08x\n", dp->htotal);
	printk(BIOS_SPEW, "dp->hblank  = 0x%08x\n", dp->hblank);
	printk(BIOS_SPEW, "dp->hsync   = 0x%08x\n", dp->hsync);
	printk(BIOS_SPEW, "dp->vtotal  = 0x%08x\n", dp->vtotal);
	printk(BIOS_SPEW, "dp->vblank  = 0x%08x\n", dp->vblank);
	printk(BIOS_SPEW, "dp->vsync   = 0x%08x\n", dp->vsync);
	printk(BIOS_SPEW, "dp->pipesrc = 0x%08x\n", dp->pipesrc);
	printk(BIOS_SPEW, "dp->pfa_pos = 0x%08x\n", dp->pfa_pos);
	printk(BIOS_SPEW, "dp->pfa_ctl = 0x%08x\n", dp->pfa_ctl);
	printk(BIOS_SPEW, "dp->pfa_sz  = 0x%08x\n", dp->pfa_sz);
	printk(BIOS_SPEW, "dp->link_m  = 0x%08x\n", dp->m_n.link_m);
	printk(BIOS_SPEW, "dp->link_n  = 0x%08x\n", dp->m_n.link_n);
	printk(BIOS_SPEW, "0x6f030     = 0x%08x\n", TU_SIZE(dp->m_n.tu) | dp->m_n.gmch_m);
	printk(BIOS_SPEW, "0x6f030     = 0x%08x\n", dp->m_n.gmch_m);
	printk(BIOS_SPEW, "0x6f034     = 0x%08x\n", dp->m_n.gmch_n);
	printk(BIOS_SPEW, "dp->flags   = 0x%08x\n", dp->flags);
}

int intel_dp_bw_code_to_link_rate(u8 link_bw);

int intel_dp_bw_code_to_link_rate(u8 link_bw)
{
	switch (link_bw) {
        case DP_LINK_BW_1_62:
        default:
		return 162000;
        case DP_LINK_BW_2_7:
		return 270000;
        case DP_LINK_BW_5_4:
                return 540000;
	}
}

void mainboard_train_link(struct intel_dp *intel_dp)
{
	u8 read_val;
	u8 link_status[DP_LINK_STATUS_SIZE];

	gtt_write(DP_TP_CTL(intel_dp->port),DP_TP_CTL_ENABLE | DP_TP_CTL_ENHANCED_FRAME_ENABLE);
	gtt_write(DP_A, DP_PORT_EN | DP_LINK_TRAIN_PAT_1 | DP_LINK_TRAIN_PAT_1_CPT | DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0 | DP_PORT_WIDTH_1 | DP_PLL_FREQ_270MHZ | DP_SYNC_VS_HIGH |0x80000011);

	intel_dp_get_training_pattern(intel_dp, &read_val);
	intel_dp_set_training_pattern(intel_dp, DP_TRAINING_PATTERN_1 | DP_LINK_QUAL_PATTERN_DISABLE | DP_SYMBOL_ERROR_COUNT_BOTH);
	intel_dp_get_lane_count(intel_dp, &read_val);
	intel_dp_set_training_lane0(intel_dp, DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0);
	intel_dp_get_link_status(intel_dp, link_status);

	gtt_write(DP_TP_CTL(intel_dp->port),DP_TP_CTL_ENABLE | DP_TP_CTL_ENHANCED_FRAME_ENABLE | DP_TP_CTL_LINK_TRAIN_PAT2);

	intel_dp_get_training_pattern(intel_dp, &read_val);
	intel_dp_set_training_pattern(intel_dp, DP_TRAINING_PATTERN_2 | DP_LINK_QUAL_PATTERN_DISABLE | DP_SYMBOL_ERROR_COUNT_BOTH);
	intel_dp_get_link_status(intel_dp, link_status);
	intel_dp_get_lane_align_status(intel_dp, &read_val);
	intel_dp_get_training_pattern(intel_dp, &read_val);
	intel_dp_set_training_pattern(intel_dp, DP_TRAINING_PATTERN_DISABLE | DP_LINK_QUAL_PATTERN_DISABLE | DP_SYMBOL_ERROR_COUNT_BOTH);
}

#define TEST_GFX 0

#if TEST_GFX
static void test_gfx(struct intel_dp *dp)
{
	int i;

	/* This is a sanity test code which fills the screen with two bands --
	   green and blue. It is very useful to ensure all the initializations
	   are made right. Thus, to be used only for testing, not otherwise
	*/
	for (i = 0; i < (dp->edid.va - 4); i++) {
		u32 *l;
		int j;
		u32 tcolor = 0x0ff;
		for (j = 0; j < (dp->edid.ha-4); j++) {
			if (j == (dp->edid.ha/2)) {
				tcolor = 0xff00;
			}
			l = (u32*)(graphics + i * dp->stride + j * sizeof(tcolor));
			memcpy(l,&tcolor,sizeof(tcolor));
		}
	}
}
#else
static void test_gfx(struct intel_dp *dp) {}
#endif


void mainboard_set_port_clk_dp(struct intel_dp *intel_dp)
{
	u32 ddi_pll_sel = 0;

	switch (intel_dp->link_bw) {
	case DP_LINK_BW_1_62:
		ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
		break;
	case DP_LINK_BW_2_7:
		ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
		break;
	case DP_LINK_BW_5_4:
		ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
		break;
	default:
		printk(BIOS_ERR, "invalid link bw %d\n", intel_dp->link_bw);
		return;
	}

	gtt_write(PORT_CLK_SEL(intel_dp->port), ddi_pll_sel);
}

int i915lightup(unsigned int pphysbase, unsigned int pmmio,
		unsigned int pgfx, unsigned int init_fb)
{
	int must_cycle_power = 0;
	struct intel_dp adp, *dp = &adp;
	int i;
	int edid_ok;
	int pixels = FRAME_BUFFER_BYTES/64;

	mmio = (void *)pmmio;
	physbase = pphysbase;
	graphics = pgfx;
	printk(BIOS_SPEW,
	       "i915lightup: graphics %p mmio %p"
	       "physbase %08x\n",
	       (void *)graphics, mmio, physbase);

	void runio(struct intel_dp *dp);
	void runlinux(struct intel_dp *dp);
	dp->gen = 8; // This is gen 8 which we believe is Haswell
	dp->is_haswell = 1;
	dp->DP = 0x2;
	/* These values are used for training the link */
	dp->lane_count = 2;
	dp->link_bw = DP_LINK_BW_2_7;
	dp->panel_power_down_delay = 600;
	dp->panel_power_up_delay = 200;
	dp->panel_power_cycle_delay = 600;
	dp->pipe = PIPE_A;
	dp->port = PORT_A;
	dp->plane = PLANE_A;
	dp->clock = 160000;
	dp->pipe_bits_per_pixel = 32;
	dp->type = INTEL_OUTPUT_EDP;
	dp->output_reg = DP_A;
	/* observed from YABEL. */
	dp->aux_clock_divider = 0xe1;
	dp->precharge = 3;

	/* 1. Normal mode: Set the first page to zero and make
	   all GTT entries point to the same page
	   2. Developer/Recovery mode: We do not zero out all
	   the pages pointed to by GTT in order to avoid wasting time */
        if (init_fb)
                setgtt(0, FRAME_BUFFER_PAGES, physbase, 4096);
        else {
                setgtt(0, FRAME_BUFFER_PAGES, physbase, 0);
                memset((void*)graphics, 0, 4096);
        }

	dp->address = 0x50;

	if ( !intel_dp_get_dpcd(dp) )
		goto fail;

	intel_dp_i2c_aux_ch(dp, MODE_I2C_WRITE, 0, NULL);
	for(dp->edidlen = i = 0; i < sizeof(dp->rawedid); i++){
		if (intel_dp_i2c_aux_ch(dp, MODE_I2C_READ,
					0x50, &dp->rawedid[i]) < 0)
			break;
		dp->edidlen++;
	}

	edid_ok = decode_edid(dp->rawedid, dp->edidlen, &dp->edid);
	printk(BIOS_SPEW, "decode edid returns %d\n", edid_ok);

	dp->edid.link_clock = intel_dp_bw_code_to_link_rate(dp->link_bw);

	printk(BIOS_SPEW, "pixel_clock is %i, link_clock is %i\n",dp->edid.pixel_clock, dp->edid.link_clock);

	dp_init_dim_regs(dp);

	intel_ddi_set_pipe_settings(dp);

	runio(dp);

	palette();

	pixels = dp->edid.ha * (dp->edid.va-4) * 4;
	printk(BIOS_SPEW, "ha=%d, va=%d\n",dp->edid.ha, dp->edid.va);

	test_gfx(dp);

	set_vbe_mode_info_valid(&dp->edid, graphics);
	i915_init_done = 1;
	return i915_init_done;

fail:
	printk(BIOS_SPEW, "Graphics could not be started;");
	if (0 && must_cycle_power){
		printk(BIOS_SPEW, "Turn off power and wait ...");
		gtt_write(PCH_PP_CONTROL,0xabcd0000);
		udelay(600000);
		gtt_write(PCH_PP_CONTROL,0xabcd000f);
	}
	printk(BIOS_SPEW, "Returning.\n");
	return 0;
}