1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
|
/* SPDX-License-Identifier: GPL-2.0-only */
#include <assert.h>
#include <console/console.h>
#include <crc_byte.h>
#include <fmap.h>
#include <spd_cache.h>
#include <spd_bin.h>
#include <string.h>
/*
* SPD_CACHE layout
* +==========+ offset 0x00
* |DIMM 1 SPD| SPD data length is CONFIG_DIMM_SPD_SIZE.
* +----------+ offset CONFIG_DIMM_SPD_SIZE * 1
* |DIMM 2 SPD|
* +----------+ offset CONFIG_DIMM_SPD_SIZE * 2
* ...
* +----------+ offset CONFIG_DIMM_SPD_SIZE * (N -1)
* |DIMM N SPD| N = CONFIG_DIMM_MAX
* +----------+ offset CONFIG_DIMM_SPD_SIZE * CONFIG_DIMM_MAX
* | CRC 16 | Use to verify the data correctness.
* +==========+
*
* The size of the RW_SPD_CACHE needs to be aligned with 4KiB.
*/
/*
* Use to update SPD cache.
* *blk : the new SPD data will be stash into the cache.
*
* return CB_SUCCESS , update SPD cache successfully.
* return CB_ERR , update SPD cache unsuccessfully and the cache is invalid
*/
enum cb_err update_spd_cache(struct spd_block *blk)
{
struct region_device rdev;
uint16_t data_crc = 0;
int i, j;
assert(blk->len <= SC_SPD_LEN);
if (fmap_locate_area_as_rdev_rw(SPD_CACHE_FMAP_NAME, &rdev)) {
printk(BIOS_ERR, "SPD_CACHE: Cannot access %s region\n", SPD_CACHE_FMAP_NAME);
return CB_ERR;
}
/* Erase whole area, it's for align with 4KiB which is the size of SPI rom sector. */
if (rdev_eraseat(&rdev, 0, region_device_sz(&rdev)) < 0) {
printk(BIOS_ERR, "SPD_CACHE: Cannot erase %s region\n", SPD_CACHE_FMAP_NAME);
return CB_ERR;
}
/* Write SPD data */
for (i = 0; i < SC_SPD_NUMS; i++) {
if (blk->spd_array[i] == NULL) {
/* If DIMM is not present, we calculate the CRC with 0xff. */
for (j = 0; j < SC_SPD_LEN; j++)
data_crc = crc16_byte(data_crc, 0xff);
} else {
if (rdev_writeat(&rdev, blk->spd_array[i], SC_SPD_OFFSET(i), blk->len)
< 0) {
printk(BIOS_ERR, "SPD_CACHE: Cannot write SPD data at %d\n",
SC_SPD_OFFSET(i));
return CB_ERR;
}
for (j = 0; j < blk->len; j++)
data_crc = crc16_byte(data_crc, blk->spd_array[i][j]);
/* If the blk->len < SC_SPD_LEN, we calculate the CRC with 0xff. */
if (blk->len < SC_SPD_LEN)
for (j = 0; j < (SC_SPD_LEN - (blk->len)); j++)
data_crc = crc16_byte(data_crc, 0xff);
}
}
/* Write the crc16 */
/* It must be the last step to ensure that the data is written correctly */
if (rdev_writeat(&rdev, &data_crc, SC_CRC_OFFSET, SC_CRC_LEN) < 0) {
printk(BIOS_ERR, "SPD_CACHE: Cannot write crc at 0x%04x\n", SC_CRC_OFFSET);
return CB_ERR;
}
return CB_SUCCESS;
}
/*
* Locate the RW_SPD_CACHE area in the fmap and read SPD_CACHE data.
* return CB_SUCCESS ,if the SPD_CACHE data is ready and the pointer return at *spd_cache.
* return CB_ERR ,if it cannot locate RW_SPD_CACHE area in the fmap or data cannot be read.
*/
enum cb_err load_spd_cache(uint8_t **spd_cache, size_t *spd_cache_sz)
{
struct region_device rdev;
if (fmap_locate_area_as_rdev(SPD_CACHE_FMAP_NAME, &rdev) < 0) {
printk(BIOS_ERR, "SPD_CACHE: Cannot find %s region\n", SPD_CACHE_FMAP_NAME);
return CB_ERR;
}
/* Assume boot device is memory mapped. */
assert(CONFIG(BOOT_DEVICE_MEMORY_MAPPED));
*spd_cache = rdev_mmap_full(&rdev);
if (*spd_cache == NULL)
return CB_ERR;
*spd_cache_sz = region_device_sz(&rdev);
/* SPD cache found */
printk(BIOS_INFO, "SPD_CACHE: cache found, size 0x%zx\n", *spd_cache_sz);
return CB_SUCCESS;
}
/* Use to verify the cache data is valid. */
bool spd_cache_is_valid(uint8_t *spd_cache, size_t spd_cache_sz)
{
uint16_t data_crc = 0;
int i;
if (spd_cache_sz < SC_SPD_TOTAL_LEN + SC_CRC_LEN)
return false;
/* Check the spd_cache crc */
for (i = 0; i < SC_SPD_TOTAL_LEN; i++)
data_crc = crc16_byte(data_crc, *(spd_cache + i));
return *(uint16_t *)(spd_cache + SC_CRC_OFFSET) == data_crc;
}
/*
* Check if the DIMM is preset in cache.
* return true , DIMM is present.
* return false, DIMM is not present.
*/
static bool get_cached_dimm_present(uint8_t *spd_cache, uint8_t idx)
{
if (*(uint16_t *)(spd_cache + SC_SPD_OFFSET(idx)) == 0xffff)
return false;
else
return true;
}
/*
* Use to check if the SODIMM is changed.
* spd_cache : it's a valid SPD cache.
* blk : it must include the smbus addresses of SODIMM.
*/
bool check_if_dimm_changed(u8 *spd_cache, struct spd_block *blk)
{
int i;
u32 sn;
bool dimm_present_in_cache;
bool dimm_changed = false;
/* Check if the dimm is the same with last system boot. */
for (i = 0; i < SC_SPD_NUMS && !dimm_changed; i++) {
if (blk->addr_map[i] == 0) {
printk(BIOS_NOTICE, "SPD_CACHE: DIMM%d does not exist\n", i);
continue;
}
/* Return true if any error happened here. */
if (get_spd_sn(blk->addr_map[i], &sn) == CB_ERR)
return true;
dimm_present_in_cache = get_cached_dimm_present(spd_cache, i);
/* Dimm is not present now. */
if (sn == 0xffffffff) {
if (!dimm_present_in_cache)
printk(BIOS_NOTICE, "SPD_CACHE: DIMM%d is not present\n", i);
else {
printk(BIOS_NOTICE, "SPD_CACHE: DIMM%d lost\n", i);
dimm_changed = true;
}
} else { /* Dimm is present now. */
if (dimm_present_in_cache) {
if (memcmp(&sn, spd_cache + SC_SPD_OFFSET(i) + DDR4_SPD_SN_OFF,
SPD_SN_LEN) == 0)
printk(BIOS_NOTICE, "SPD_CACHE: DIMM%d is the same\n",
i);
else {
printk(BIOS_NOTICE, "SPD_CACHE: DIMM%d is new one\n",
i);
dimm_changed = true;
}
} else {
printk(BIOS_NOTICE, "SPD_CACHE: DIMM%d is new one\n", i);
dimm_changed = true;
}
}
}
return dimm_changed;
}
/* Use to fill the struct spd_block with cache data.*/
enum cb_err spd_fill_from_cache(uint8_t *spd_cache, struct spd_block *blk)
{
int i;
u8 dram_type;
/* Find the first present SPD */
for (i = 0; i < SC_SPD_NUMS; i++)
if (get_cached_dimm_present(spd_cache, i))
break;
if (i == SC_SPD_NUMS) {
printk(BIOS_ERR, "SPD_CACHE: No DIMM is present.\n");
return CB_ERR;
}
dram_type = *(spd_cache + SC_SPD_OFFSET(i) + SPD_DRAM_TYPE);
if (dram_type == SPD_DRAM_DDR4)
blk->len = SPD_PAGE_LEN_DDR4;
else
blk->len = SPD_PAGE_LEN;
for (i = 0; i < SC_SPD_NUMS; i++)
if (get_cached_dimm_present(spd_cache, i))
blk->spd_array[i] = spd_cache + SC_SPD_OFFSET(i);
else
blk->spd_array[i] = NULL;
return CB_SUCCESS;
}
|