1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
|
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2016 Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <cbfs.h>
#include <console/console.h>
#include <spd_bin.h>
#include <string.h>
#include <device/dram/ddr3.h>
void dump_spd_info(struct spd_block *blk)
{
u8 i;
for (i = 0; i < CONFIG_DIMM_MAX; i++)
if (blk->spd_array[i] != NULL && blk->spd_array[i][0] != 0) {
printk(BIOS_DEBUG, "SPD @ 0x%02X\n", blk->addr_map[i]);
print_spd_info(blk->spd_array[i]);
}
}
static bool is_memory_type_ddr4(int dram_type)
{
return (dram_type == SPD_DRAM_DDR4);
}
static const char *spd_get_module_type_string(int dram_type)
{
switch (dram_type) {
case SPD_DRAM_DDR3:
return "DDR3";
case SPD_DRAM_LPDDR3_INTEL:
case SPD_DRAM_LPDDR3_JEDEC:
return "LPDDR3";
case SPD_DRAM_DDR4:
return "DDR4";
case SPD_DRAM_LPDDR4:
return "LPDDR4";
}
return "UNKNOWN";
}
static int spd_get_banks(const uint8_t spd[], int dram_type)
{
static const int ddr3_banks[4] = { 8, 16, 32, 64 };
static const int ddr4_banks[10] = { 4, 8, -1, -1, 8, 16, -1, -1, 16, 32 };
int index = (spd[SPD_DENSITY_BANKS] >> 4) & 0xf;
switch (dram_type) {
/* DDR3 and LPDDR3 have the same bank definition */
case SPD_DRAM_DDR3:
case SPD_DRAM_LPDDR3_INTEL:
case SPD_DRAM_LPDDR3_JEDEC:
if (index >= ARRAY_SIZE(ddr3_banks))
return -1;
return ddr3_banks[index];
/* DDR4 and LPDDR4 has the same bank definition */
case SPD_DRAM_DDR4:
case SPD_DRAM_LPDDR4:
if (index >= ARRAY_SIZE(ddr4_banks))
return -1;
return ddr4_banks[index];
default:
return -1;
}
}
static int spd_get_capmb(const uint8_t spd[])
{
static const int spd_capmb[13] = { 1, 2, 4, 8, 16, 32, 64,
128, 48, 96, 12, 24, 72 };
int index = spd[SPD_DENSITY_BANKS] & 0xf;
if (index >= ARRAY_SIZE(spd_capmb))
return -1;
return spd_capmb[index] * 256;
}
static int spd_get_rows(const uint8_t spd[])
{
static const int spd_rows[7] = { 12, 13, 14, 15, 16, 17, 18 };
int index = (spd[SPD_ADDRESSING] >> 3) & 7;
if (index >= ARRAY_SIZE(spd_rows))
return -1;
return spd_rows[index];
}
static int spd_get_cols(const uint8_t spd[])
{
static const int spd_cols[4] = { 9, 10, 11, 12 };
int index = spd[SPD_ADDRESSING] & 7;
if (index >= ARRAY_SIZE(spd_cols))
return -1;
return spd_cols[index];
}
static int spd_get_ranks(const uint8_t spd[], int dram_type)
{
static const int spd_ranks[8] = { 1, 2, 3, 4, 5, 6, 7, 8 };
int organ_offset = is_memory_type_ddr4(dram_type) ? DDR4_ORGANIZATION
: DDR3_ORGANIZATION;
int index = (spd[organ_offset] >> 3) & 7;
if (index >= ARRAY_SIZE(spd_ranks))
return -1;
return spd_ranks[index];
}
static int spd_get_devw(const uint8_t spd[], int dram_type)
{
static const int spd_devw[4] = { 4, 8, 16, 32 };
int organ_offset = is_memory_type_ddr4(dram_type) ? DDR4_ORGANIZATION
: DDR3_ORGANIZATION;
int index = spd[organ_offset] & 7;
if (index >= ARRAY_SIZE(spd_devw))
return -1;
return spd_devw[index];
}
static int spd_get_busw(const uint8_t spd[], int dram_type)
{
static const int spd_busw[4] = { 8, 16, 32, 64 };
int busw_offset = is_memory_type_ddr4(dram_type) ? DDR4_BUS_DEV_WIDTH
: DDR3_BUS_DEV_WIDTH;
int index = spd[busw_offset] & 7;
if (index >= ARRAY_SIZE(spd_busw))
return -1;
return spd_busw[index];
}
static void spd_get_name(const uint8_t spd[], char spd_name[], int dram_type)
{
switch (dram_type) {
case SPD_DRAM_DDR3:
memcpy(spd_name, &spd[DDR3_SPD_PART_OFF], DDR3_SPD_PART_LEN);
spd_name[DDR3_SPD_PART_LEN] = 0;
break;
case SPD_DRAM_LPDDR3_INTEL:
case SPD_DRAM_LPDDR3_JEDEC:
memcpy(spd_name, &spd[LPDDR3_SPD_PART_OFF],
LPDDR3_SPD_PART_LEN);
spd_name[LPDDR3_SPD_PART_LEN] = 0;
break;
case SPD_DRAM_DDR4:
case SPD_DRAM_LPDDR4:
memcpy(spd_name, &spd[DDR4_SPD_PART_OFF], DDR4_SPD_PART_LEN);
spd_name[DDR4_SPD_PART_LEN] = 0;
break;
default:
break;
}
}
void print_spd_info(uint8_t spd[])
{
char spd_name[DDR4_SPD_PART_LEN+1] = { 0 };
int type = spd[SPD_DRAM_TYPE];
int banks = spd_get_banks(spd, type);
int capmb = spd_get_capmb(spd);
int rows = spd_get_rows(spd);
int cols = spd_get_cols(spd);
int ranks = spd_get_ranks(spd, type);
int devw = spd_get_devw(spd, type);
int busw = spd_get_busw(spd, type);
/* Module type */
printk(BIOS_INFO, "SPD: module type is %s\n",
spd_get_module_type_string(type));
/* Module Part Number */
spd_get_name(spd, spd_name, type);
printk(BIOS_INFO, "SPD: module part number is %s\n", spd_name);
printk(BIOS_INFO,
"SPD: banks %d, ranks %d, rows %d, columns %d, density %d Mb\n",
banks, ranks, rows, cols, capmb);
printk(BIOS_INFO, "SPD: device width %d bits, bus width %d bits\n",
devw, busw);
if (capmb > 0 && busw > 0 && devw > 0 && ranks > 0) {
/* SIZE = DENSITY / 8 * BUS_WIDTH / SDRAM_WIDTH * RANKS */
printk(BIOS_INFO, "SPD: module size is %u MB (per channel)\n",
capmb / 8 * busw / devw * ranks);
}
}
int get_spd_cbfs_rdev(struct region_device *spd_rdev, u8 spd_index)
{
struct cbfsf fh;
uint32_t cbfs_type = CBFS_TYPE_SPD;
if (cbfs_boot_locate(&fh, "spd.bin", &cbfs_type) < 0)
return -1;
cbfs_file_data(spd_rdev, &fh);
return rdev_chain(spd_rdev, spd_rdev, spd_index * CONFIG_DIMM_SPD_SIZE,
CONFIG_DIMM_SPD_SIZE);
}
#if CONFIG_DIMM_SPD_SIZE == 128
int read_ddr3_spd_from_cbfs(u8 *buf, int idx)
{
const int SPD_CRC_HI = 127;
const int SPD_CRC_LO = 126;
const char *spd_file;
size_t spd_file_len = 0;
size_t min_len = (idx + 1) * CONFIG_DIMM_SPD_SIZE;
spd_file = cbfs_boot_map_with_leak("spd.bin", CBFS_TYPE_SPD,
&spd_file_len);
if (!spd_file)
printk(BIOS_EMERG, "file [spd.bin] not found in CBFS");
if (spd_file_len < min_len)
printk(BIOS_EMERG, "Missing SPD data.");
if (!spd_file || spd_file_len < min_len)
return -1;
memcpy(buf, spd_file + (idx * CONFIG_DIMM_SPD_SIZE),
CONFIG_DIMM_SPD_SIZE);
u16 crc = spd_ddr3_calc_crc(buf, CONFIG_DIMM_SPD_SIZE);
if (((buf[SPD_CRC_LO] == 0) && (buf[SPD_CRC_HI] == 0))
|| (buf[SPD_CRC_LO] != (crc & 0xff))
|| (buf[SPD_CRC_HI] != (crc >> 8))) {
printk(BIOS_WARNING,
"SPD CRC %02x%02x is invalid, should be %04x\n",
buf[SPD_CRC_HI], buf[SPD_CRC_LO], crc);
buf[SPD_CRC_LO] = crc & 0xff;
buf[SPD_CRC_HI] = crc >> 8;
u16 i;
printk(BIOS_WARNING, "\nDisplay the SPD");
for (i = 0; i < CONFIG_DIMM_SPD_SIZE; i++) {
if ((i % 16) == 0x00)
printk(BIOS_WARNING, "\n%02x: ", i);
printk(BIOS_WARNING, "%02x ", buf[i]);
}
printk(BIOS_WARNING, "\n");
}
return 0;
}
#endif
|