summaryrefslogtreecommitdiff
path: root/src/lib/lzmadecode.c
blob: c0efda5f8d01456d5a0c20bb090773a6adc7b029 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
/*
  LzmaDecode.c
  LZMA Decoder (optimized for Speed version)

  LZMA SDK 4.40 Copyright (c) 1999-2006 Igor Pavlov (2006-05-01)
  http://www.7-zip.org/

  LZMA SDK is licensed under two licenses:
  1) GNU Lesser General Public License (GNU LGPL)
  2) Common Public License (CPL)
  It means that you can select one of these two licenses and
  follow rules of that license.

  SPECIAL EXCEPTION:
  Igor Pavlov, as the author of this Code, expressly permits you to
  statically or dynamically link your Code (or bind by name) to the
  interfaces of this file without subjecting your linked Code to the
  terms of the CPL or GNU LGPL. Any modifications or additions
  to this file, however, are subject to the LGPL or CPL terms.
*/

#include "lzmadecode.h"
#include <stdint.h>

#define kNumTopBits 24
#define kTopValue ((UInt32)1 << kNumTopBits)

#define kNumBitModelTotalBits 11
#define kBitModelTotal (1 << kNumBitModelTotalBits)
#define kNumMoveBits 5

/* Use 32-bit reads whenever possible to avoid bad flash performance. Fall back
 * to byte reads for last 4 bytes since RC_TEST returns an error when BufferLim
 * is *reached* (not surpassed!), meaning we can't allow that to happen while
 * there are still bytes to decode from the algorithm's point of view. */
#define RC_READ_BYTE (look_ahead_ptr < 4 ? look_ahead.raw[look_ahead_ptr++] \
		      : ((((uintptr_t) Buffer & 3) || ((SizeT) (BufferLim - Buffer) <= 4)) ? (*Buffer++) \
	   : ((look_ahead.dw = *(UInt32 *)Buffer), (Buffer += 4), (look_ahead_ptr = 1), look_ahead.raw[0])))

#define RC_INIT2 Code = 0; Range = 0xFFFFFFFF; \
	{ int i; for (i = 0; i < 5; i++) { RC_TEST; Code = (Code << 8) \
		| RC_READ_BYTE; }}


#define RC_TEST { if (Buffer == BufferLim) return LZMA_RESULT_DATA_ERROR; }

#define RC_INIT(buffer, bufferSize) Buffer = buffer; BufferLim = buffer + bufferSize; RC_INIT2


#define RC_NORMALIZE if (Range < kTopValue) { RC_TEST; Range <<= 8; Code = (Code << 8) | RC_READ_BYTE; }

#define IfBit0(p) RC_NORMALIZE; bound = (Range >> kNumBitModelTotalBits) * *(p); if (Code < bound)
#define UpdateBit0(p) Range = bound; *(p) += (kBitModelTotal - *(p)) >> kNumMoveBits;
#define UpdateBit1(p) Range -= bound; Code -= bound; *(p) -= (*(p)) >> kNumMoveBits;

#define RC_GET_BIT2(p, mi, A0, A1) IfBit0(p) \
	{ UpdateBit0(p); mi <<= 1; A0; } else \
	{ UpdateBit1(p); mi = (mi + mi) + 1; A1; }

#define RC_GET_BIT(p, mi) RC_GET_BIT2(p, mi, ; , ;)

#define RangeDecoderBitTreeDecode(probs, numLevels, res)	\
{								\
	int i = numLevels;					\
								\
	res = 1;						\
	do {							\
		CProb *cp = probs + res;			\
		RC_GET_BIT(cp, res)				\
	} while (--i != 0);					\
	res -= (1 << numLevels);				\
}


#define kNumPosBitsMax 4
#define kNumPosStatesMax (1 << kNumPosBitsMax)

#define kLenNumLowBits 3
#define kLenNumLowSymbols (1 << kLenNumLowBits)
#define kLenNumMidBits 3
#define kLenNumMidSymbols (1 << kLenNumMidBits)
#define kLenNumHighBits 8
#define kLenNumHighSymbols (1 << kLenNumHighBits)

#define LenChoice 0
#define LenChoice2 (LenChoice + 1)
#define LenLow (LenChoice2 + 1)
#define LenMid (LenLow + (kNumPosStatesMax << kLenNumLowBits))
#define LenHigh (LenMid + (kNumPosStatesMax << kLenNumMidBits))
#define kNumLenProbs (LenHigh + kLenNumHighSymbols)


#define kNumStates 12
#define kNumLitStates 7

#define kStartPosModelIndex 4
#define kEndPosModelIndex 14
#define kNumFullDistances (1 << (kEndPosModelIndex >> 1))

#define kNumPosSlotBits 6
#define kNumLenToPosStates 4

#define kNumAlignBits 4
#define kAlignTableSize (1 << kNumAlignBits)

#define kMatchMinLen 2

#define IsMatch 0
#define IsRep (IsMatch + (kNumStates << kNumPosBitsMax))
#define IsRepG0 (IsRep + kNumStates)
#define IsRepG1 (IsRepG0 + kNumStates)
#define IsRepG2 (IsRepG1 + kNumStates)
#define IsRep0Long (IsRepG2 + kNumStates)
#define PosSlot (IsRep0Long + (kNumStates << kNumPosBitsMax))
#define SpecPos (PosSlot + (kNumLenToPosStates << kNumPosSlotBits))
#define Align (SpecPos + kNumFullDistances - kEndPosModelIndex)
#define LenCoder (Align + kAlignTableSize)
#define RepLenCoder (LenCoder + kNumLenProbs)
#define Literal (RepLenCoder + kNumLenProbs)

#if Literal != LZMA_BASE_SIZE
StopCompilingDueBUG
#endif

int LzmaDecodeProperties(CLzmaProperties *propsRes, const unsigned char *propsData, int size)
{
	unsigned char prop0;
	if (size < LZMA_PROPERTIES_SIZE)
		return LZMA_RESULT_DATA_ERROR;
	prop0 = propsData[0];
	if (prop0 >= (9 * 5 * 5))
		return LZMA_RESULT_DATA_ERROR;
	{
		for (propsRes->pb = 0; prop0 >= (9 * 5);
			propsRes->pb++, prop0 -= (9 * 5))
			;
		for (propsRes->lp = 0; prop0 >= 9; propsRes->lp++, prop0 -= 9)
			;
		propsRes->lc = prop0;
		/*
		 * unsigned char remainder = (unsigned char)(prop0 / 9);
		 * propsRes->lc = prop0 % 9;
		 * propsRes->pb = remainder / 5;
		 * propsRes->lp = remainder % 5;
		 */
	}

	return LZMA_RESULT_OK;
}

#define kLzmaStreamWasFinishedId (-1)

int LzmaDecode(CLzmaDecoderState *vs,
	const unsigned char *inStream, SizeT inSize, SizeT *inSizeProcessed,
	unsigned char *outStream, SizeT outSize, SizeT *outSizeProcessed)
{
	CProb *p = vs->Probs;
	SizeT nowPos = 0;
	Byte previousByte = 0;
	UInt32 posStateMask = (1 << (vs->Properties.pb)) - 1;
	UInt32 literalPosMask = (1 << (vs->Properties.lp)) - 1;
	int lc = vs->Properties.lc;


	int state = 0;
	UInt32 rep0 = 1, rep1 = 1, rep2 = 1, rep3 = 1;
	int len = 0;
	const Byte *Buffer;
	const Byte *BufferLim;
	int look_ahead_ptr = 4;
	union {
		Byte raw[4];
		UInt32 dw;
	} look_ahead;
	UInt32 Range;
	UInt32 Code;

	*inSizeProcessed = 0;
	*outSizeProcessed = 0;

	{
		UInt32 i;
		UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (lc
						+ vs->Properties.lp));
		for (i = 0; i < numProbs; i++)
			p[i] = kBitModelTotal >> 1;
	}

	RC_INIT(inStream, inSize);


	while (nowPos < outSize) {
		CProb *prob;
		UInt32 bound;
		int posState = (int)((nowPos)& posStateMask);

		prob = p + IsMatch + (state << kNumPosBitsMax) + posState;
		IfBit0(prob) {
			int symbol = 1;
			UpdateBit0(prob)
			prob = p + Literal + (LZMA_LIT_SIZE *
				((((nowPos) & literalPosMask) << lc)
				+ (previousByte >> (8 - lc))));

			if (state >= kNumLitStates) {
				int matchByte;
				matchByte = outStream[nowPos - rep0];
				do {
					int bit;
					CProb *probLit;
					matchByte <<= 1;
					bit = (matchByte & 0x100);
					probLit = prob + 0x100 + bit + symbol;
					RC_GET_BIT2(probLit, symbol,
						if (bit != 0)
							break,
						if (bit == 0)
							break)
				} while (symbol < 0x100);
			}
			while (symbol < 0x100) {
				CProb *probLit = prob + symbol;
				RC_GET_BIT(probLit, symbol)
			}
			previousByte = (Byte)symbol;

			outStream[nowPos++] = previousByte;
			if (state < 4)
				state = 0;
			else if (state < 10)
				state -= 3;
			else
				state -= 6;
		} else {
			UpdateBit1(prob);
			prob = p + IsRep + state;
			IfBit0(prob) {
				UpdateBit0(prob);
				rep3 = rep2;
				rep2 = rep1;
				rep1 = rep0;
				state = state < kNumLitStates ? 0 : 3;
				prob = p + LenCoder;
			} else {
				UpdateBit1(prob);
				prob = p + IsRepG0 + state;
				IfBit0(prob) {
					UpdateBit0(prob);
					prob = p + IsRep0Long + (state << kNumPosBitsMax) + posState;
					IfBit0(prob) {
						UpdateBit0(prob);

						if (nowPos == 0)
							return LZMA_RESULT_DATA_ERROR;

						state = state < kNumLitStates ? 9 : 11;
						previousByte = outStream[nowPos - rep0];
						outStream[nowPos++] = previousByte;

						continue;
					} else
						UpdateBit1(prob);
				} else {
					UInt32 distance;
					UpdateBit1(prob);
					prob = p + IsRepG1 + state;
					IfBit0(prob) {
						UpdateBit0(prob);
						distance = rep1;
					} else {
						UpdateBit1(prob);
						prob = p + IsRepG2 + state;
						IfBit0(prob) {
							UpdateBit0(prob);
							distance = rep2;
						} else {
							UpdateBit1(prob);
							distance = rep3;
							rep3 = rep2;
						}
						rep2 = rep1;
					}
					rep1 = rep0;
					rep0 = distance;
				}
				state = state < kNumLitStates ? 8 : 11;
				prob = p + RepLenCoder;
			}
			{
				int numBits, offset;
				CProb *probLen = prob + LenChoice;
				IfBit0(probLen) {
					UpdateBit0(probLen);
					probLen = prob + LenLow + (posState << kLenNumLowBits);
					offset = 0;
					numBits = kLenNumLowBits;
				} else {
					UpdateBit1(probLen);
					probLen = prob + LenChoice2;
					IfBit0(probLen) {
						UpdateBit0(probLen);
						probLen = prob + LenMid + (posState << kLenNumMidBits);
						offset = kLenNumLowSymbols;
						numBits = kLenNumMidBits;
					} else {
						UpdateBit1(probLen);
						probLen = prob + LenHigh;
						offset = kLenNumLowSymbols + kLenNumMidSymbols;
						numBits = kLenNumHighBits;
					}
				}
				RangeDecoderBitTreeDecode(probLen, numBits, len);
				len += offset;
			}

			if (state < 4) {
				int posSlot;
				state += kNumLitStates;
				prob = p + PosSlot +
					((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) <<
					kNumPosSlotBits);
				RangeDecoderBitTreeDecode(prob, kNumPosSlotBits, posSlot);
				if (posSlot >= kStartPosModelIndex) {
					int numDirectBits = ((posSlot >> 1) - 1);
					rep0 = (2 | ((UInt32)posSlot & 1));
					if (posSlot < kEndPosModelIndex) {
						rep0 <<= numDirectBits;
						prob = p + SpecPos + rep0 - posSlot - 1;
					} else {
						numDirectBits -= kNumAlignBits;
						do {
							RC_NORMALIZE
							Range >>= 1;
							rep0 <<= 1;
							if (Code >= Range) {
								Code -= Range;
								rep0 |= 1;
							}
						} while (--numDirectBits != 0);
						prob = p + Align;
						rep0 <<= kNumAlignBits;
						numDirectBits = kNumAlignBits;
					}
					{
						int i = 1;
						int mi = 1;
						do {
							CProb *prob3 = prob + mi;
							RC_GET_BIT2(prob3, mi, ; , rep0 |= i);
							i <<= 1;
						} while (--numDirectBits != 0);
					}
				} else
					rep0 = posSlot;
				if (++rep0 == (UInt32)(0)) {
					/* it's for stream version */
					len = kLzmaStreamWasFinishedId;
					break;
				}
			}

			len += kMatchMinLen;
			if (rep0 > nowPos)
				return LZMA_RESULT_DATA_ERROR;


			do {
				previousByte = outStream[nowPos - rep0];
				len--;
				outStream[nowPos++] = previousByte;
			} while (len != 0 && nowPos < outSize);
		}
	}
	RC_NORMALIZE;


	*inSizeProcessed = (SizeT)(Buffer - inStream);
	*outSizeProcessed = nowPos;
	return LZMA_RESULT_OK;
}